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The well-known theorem of Godel (Godel [1], [2]) shows that every
system of logic is in a certain sense incomplete, but at the same time it
indicates means whereby from a system L of logic a more complete system
L' may be obtained. By repeating the process we get a sequence
L, L1 = L', L2 = Li, ... each more complete than the preceding. A logic
Lu may then be constructed in which the provable theorems are the
totality of. theorems provable with the help of the logics L, Lv L.2, ....
We may then form L2lo related to Lu in the same way as Lu was related to
L. Proceeding in this way we can associate a system of logic with any
constructive ordinal | . It may be asked whether a sequence of logics of
this kind is complete in the sense that to any problem A there corresponds

•f This paper represents work done while a Jane Eliza Procter Visiting Fellow at
Princeton University, where the author received most valuable advice and assistance from
Prof. Alonzo Church.

J The situation is not quite so simple as is suggested by this crude argument. See
pages 189-193, 202, 203.
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an ordinal a such that A is solvable by means of the logic La. I propose
to investigate this question in a rather more general case, and to give some
other examples of ways in which systems of logic may be associated with
constructive ordinals.

1. The calculus of conversion. Godel representations.

It Avill be convenient to be able to use the "conversion calculus" of
Church for the description of functions and for some other purposes.
This will make greater clarity and simplicity of expression possible. I
give a short account of this calculus. For detailed descriptions see
Church [3], [2], Kleene [1], Church and Rosser [1].

The formulae of the calculus are formed from the symbols {, }, (, ),
['. ], A, S, and an infinite list of others called variables; we shall take for
our infinite list a, b, .... z, x', x", .... Certain finite sequences of such
symbols are called well-formed formulae (abbreviated to W.F.F.); we
define this class inductively, and define simultaneously the free and
the bound variables of a W.F.F. Any variable is a W.F.F.; it is its only
free variable, and it has no bound variables. 8 is a W.F.F. and has no free
or bound variables. If M and N are W.F.F. then (M}(N) is a W.F.F.,
whose free variables are the free variables of M together with the free
variables of N, and whose bound variables are the bound variables of M
together with those of N. If M is a W.F.F. and V is one of its free variables,
then AV[M] is a W.F.F. whose free variables are those of M with the
exception of V. and whose bound variables are those of M together with V.
No sequence of symbols is a W.F.F. except in consequence of these three
statements.

In metamathematical statements we use heavy type letters to
stand for variable or undetermined formulae, as was done in the last
paragraph, and in future such letters will stand for well-formed formulae
unless otherwise stated. Small letters in heavy type will stand for
formulae representing undetermined positive integers (see below).

A. W.F.F. is said to be in normal form if it has no parts of the form
(AV[M]}(N) and none of the form j{8}(M)} (N), where M and N have no
free variables.

We say that one W.F.F. is immediately convertible into another if it is
obtained from it either by:

(i) Replacing one occurrence of a well-formed part AV[M] by AU[N],
where the variable U does not occur in M, and N is obtained from M by
replacing the variable V by U throughout.
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(ii) Replacing a well-formed part (AV[M]}(N) by the formula which is
obtained from M by replacing V by N throughout, provided that the bound
variables of M are distinct both from V and from the free variables of N.

(iii) The process inverse to (ii).

(iv) Replacing a well-formed part •1{8}(M)|(M) by

if M is in normal form and has no free variables,

(v) Replacing a well-formed part |{8}(M)j (N) by

A

if M and N are in normal form, are not transformable into one another
by repeated application of (i), and have no free variables.

(vi) The process inverse to (iv).

(vii) The process inverse to (v).

These rules could have been expressed in such a way that in no case
could there be any doubt about the admissibility or the result of the
transformation [in particular this can be done in the case of process (v)].

A formula A is said to be convertible into another B (abbreviated to
" A conv B") if there is a finite chain of immediate conversions leading
from one formula to the other. It is easily seen that the relation of convert-
ibility is an equivalence relation, i.e. it is symmetric, transitive, and
reflexive.

Since the formulae are liable to be very lengthy, we need means for
abbreviating them. If we wish to introduce a particular letter as an
abbreviation for a particular lengthy formula we write the letter fol-
lowed by " ->" and then by the formula, thus

I->Xx[x]

indicates that I is an abbreviation for A#[a;]. We also use the arrow
in less sharply defined senses, but never so as to cause any real confusion.
In these cases the meaning of the arrow may be rendered by the words
"stands for".

M2
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If a formula F is, or is represented by, a single symbol we abbreviate

{F}(X) to F(X). A formula {{F}(X)}(Y) may be abbreviated to

{F}(X, Y),

or to F(X, Y) if F is, or is represented by, a single symbol. Similarly

for !{{F}(X)}(Y)j(Z), etc. A formula A Vx f~A V2.. . [AVr[M ] ] . . . ] maybe

abbreviated to AVxVa ... Vr .M.
We have not as yet assigned any meanings to our formulae, and we do

not intend to do so in general. An exception may be made for the case
of the positive integers, which are very conveniently represented by the
formulae Xfx.f{x), tfx.fyf(x)j, .... In fact we introduce the abbrevi-
ations

1->A/;U./(.'.)

2->Xfx.f(f(x))

3-* A/*./(/(/(*))), etc.,

and we also say, for example, that hfx.f(f(x)j, or in full

V[** [{/}({/}(*))]],

represents the positive integer 2. Later we shall allow certain formulae
to represent ordinals, but otherwise we leave them without explicit
meaning; an implicit meaning may be suggested by the abbreviations
used. In any case where any meaning is assigned to formulae it is desirable
that the meaning should be invariant under conversion. Our definitions
of the positive integers do not violate this requirement, since it may be
proved that no two formulae representing different positive integers are
convertible the one into the other.

In connection with the positive integers we introduce the abbreviation

S->\ufx.f(u(f, x)).

This formula has the property that, if n represents a positive integer, S(n)
is convertible to a formula representing its successorf.

Formulae representing undetermined positive integers will be repre-
sented by small letters in heavy type, and we adopt once for all the

f This follows from (A) below.
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convention that, if a small letter, n say, stands for a positive integer, then
the same letter in heavy type, n, stands for the formula representing the
positive integer. When no confusion arises from so doing, we shall not
trouble to distinguish between an integer and the formula which represents it.

Suppose that/(%) is a function of positive integers taking positive integers
as values, and that there is a W.F.F. F not containing 8 such that, for each
positive integer n, F(n) is convertible to the formula representing f{n).
We shall then say that f{n) is X-definable or formally definable, and that F
formally defines f(n). Similar conventions are used for functions of more
than one variable. The sum function is, for instance, formally defined by

Xabfx.ayf, b(f, x)j ; in fact, for any positive integers m, n, p for which
= p, we have

•jXabfx. a (/,&(/, &)) • (m, n) conv p.

In order to emphasize this relation we introduce the abbreviation

X+Y-+{Xabfx.a(f, b(f, x))} (X, Y)

and we shall use similar notations for sums of three or more terms, products,
etc.

For any W.F.F. G we shall say that G enumerates the sequence
G(l), G(2), ... and any other sequence whose terms are convertible to
those of this sequence.

When a formula is convertible to another which is in normal form, the
second is described as a normal form of the first, which is then said to have
a normal form. I quote here some of the more important theorems
concerning normal forms.

(A) If a formula has two normal forms they are convertible into one
another by the use of (i) alone. (Church and Rosser [1], 479, 481.)

(B) If a formula has a normal form then every well-formed part of il
has a normal form. (Church and Rosser [1], 480-481.)

(C) There is (demonstrably) no process whereby it can be said of a formula
whether it has a normal form. (Church [3], 360, Theorem XVIII.)

We often need to be able to describe formulae by means of positive
integers. The method used here is due to Godel (Godel [1]). To each
single symbol s of the calculus we assign an integer r[s] as in the table below.

8

r[8]

{, (, or [

1

}, ), or ]

2

A.

3

5

4

a

5

z

30

x'

31

x"

32

x'"

33
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If sv s2, ..., sk is a sequence of symbols, then 2rfs^ 3r[*2l ...pr£sJ (where pk is
the k-th prime number) is called the Godel representation (G.R.) of that
sequence of symbols. No tA\ro W.F.F. have the same G.R.

Two theorems on G.R. of W.F.F. are quoted here.

(D) There is a W.F.F. "form" such that if a is the G.R. of a W.F.F.
A without free variables, then form (a) conv A. (This follows from a similar
theorem to be found in Church [3], 53 66. Metads are used there in place
of G.R.)

(E) There is a W.F.F. Gr such that, if A is a W.F.F. with a normal form
ivithout free variables, then Gr(A) conv a, where a is the G.R. of a normal
form of A. [Church [3], 53, 66, as (D).]

2. Effective calculability. Abbreviation of treatment.

A function is said to be "effectively calculable" if its values can be
found by some purely mechanical process. Although it is fairly easy to
get an intuitive grasp of this idea, it is nevertheless desirable to have some
more definite, mathematically expressible definition. Such a definition
was first given by Godel at Princeton in 1934 (Godel [2], 26), following in
part an unpublished suggestion of Herbrand, and has since been developed
by Kleene [2]). These functions were described as " general recursive " by
Godel. We shall not be much concerned here with this particular definition.
Another definition of effective calculability has been given by Church
(Church [3], 356-358), who identifies it with A-definability. The author has
recently suggested a definition corresponding more closely to the intuitive
idea (Turing [1], see also Post [1]). It was stated above that ' ' a function
is effectively calculable if its values can be found by some purely mechanical
process''. We may take this statement literally, understanding by a purely
mechanical process one which could be carried out by a machine. It is
possible to give a mathematical description, in a certain normal form, of
the structures of these machines. The development of these ideas leads to
the author's definition of a computable function, and to an identification
of computability f with effective calculability. It is not difficult, though
somewhat laborious, to prove that these three definitions are equivalent
(Kleene [3], Turing [2]).

f We shall use the expression " computable function " to mean a function calculable by
a machine, and we let " effectively calculable " refer to the intuitive idea without particular
identification with any one of these definitions. We do not restrict the values taken by a
computable function to be natural numbers; we may for instance have computable pro-
positional functions.



1938.] SYSTEMS OF LOGIC BASED ON ORDINALS. 167

In the present paper we shall make considerable use of Church's
identification of effective calculability with A-definability, or, what comes
to the same thing, of the identification with computability and one of the
equivalence theorems. In most cases where we have to deal with an
effectively calculable function, we shall introduce the corresponding W.F.F.
with some such phrase as "the function/is effectively calculable, let F be
a formula A defining it", or "let F be a formula such that F{n) is
convertible to . . . whenever n represents a positive integer". In such
cases there is no difficulty in seeing how a machine could in principle be
designed to calculate the values of the function concerned; and, assuming
this done, the equivalence theorem can be applied. A statement of
what the formula F actually is may be omitted. We may immediately
introduce on this basis a W.F.F. w with the property that

£j(m, n) conv r,

if r is the greatest positive integer, if any, for which mr divides n and r is 1
if there is none. We also introduce Dt with the properties

Dt(n, n) conv 3,

Dt(n+m, n) conv 2,

Dt(n, n+m) conv 1.

There is another point to be made clear in connection with the point of
view that we are adopting. It is intended that all proofs that are given
should be regarded no more critically than proofs in classical analysis. The
subject matter, roughly speaking, is constructive systems of logic, but since
the purpose is directed towards choosing a particular constructive system
of logic for practical use, an attempt at this stage to put our theorems into
constructive form would be putting the cart before the horse.

Those computable functions which take only the values 0 and 1 are of
particular importance, since they determine and are determined by
computable properties, as may be seen by replacing " 0 " and " 1 " by
"true " and "false ". But, besides this type of property, we may have to
consider a different type, which is, roughly speaking, less constructive
than the computable properties, but more so than the general predicates
of classical mathematics. Suppose that we have a computable function of
the natural numbers taking natural numbers as values, then corresponding
to this function there is the property of being a value of the function.
Such a property we shall describe as " axiomatic " ; the reason for using
this term is that it is possible to define such a property by giving a set of
axioms, the property to hold for a given argument if and only if it is possible
to deduce that it holds from the axioms.
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Axiomatic properties may also be characterized in this \va,y. A
property if; of positive integers is axiomatic if and only if there is a
computable property cf> of two positive integers, such that tfj(x) is true if
and only if there is a positive integer y such that <f)(x, y) is true. Or again
ifj is axiomatic if and only if there is a W.F.F. F such that tfj(n) is true if
and only if F(n) conv 2.

3. Number-theoretic theorems.

By a number-theoretic theorem^ we shall mean a theorem of the form
"6{x) vanishes for infinitely many natural numbers x", where 6(x) is a
primitive recursive $ function.

We shall say that a problem is number-theoretic if it has been shown
that any solution of the problem may be put in the form of a proof of one
or more number-theoretic theorems. More accurately we may say that
a class of problems is number-theoretic if the solution of any one of them
can be transformed (by a uniform process) into the form of proofs of
number-theoretic theorems.

I shall now draw a few consequences from the definition of "number
theoretic theorems", and in section 5 I shall try to justify confining
our consideration to this type of problem.

f I believe that there is no generally accepted meaning for this term, but it should be
noticed that we are using it in a rather restricted sense. The most generally accepted mean-
ing is probably this: suppose that we take an arbitrary formula of the functional calculus of
the first order and replace the function variables by primitive recursive relations. The re-
sulting formula represents a typical number-theoretic theorem in this (more general) sense.

I Primitive recursive functions of natural numbers are defined inductively as follows.
Suppose t h a t f(xlt . . . , a.\,_i), g{xx, ..., xn), h(xu ...,xn+i) are pr imit ive recursive, t hen

<p(xlt ..., xn) is primitive recursive if it is defined by one of the sets of equations (a) to (e).

(a) <p(xlt ..., xn) = h(xlt ..., x,,,-\, g(xy, ..., xn), x,ll+h ..., xn^, xm\ (1 < m < n);

((>) <p{xu ..., » „ ) = / ( « „ , ..., »„); .

(c) (pix-i) — a, where n = 1 and a is some particular natural number;

(d) ip{xt) = a ^+1 (n= 1);

(e) <t>(xlt ..., xn-u 0)=f(xu . . . , a;B_i);

<p(xlt . . . , xu-u xK + l) = h(xlt . . . , xn) <p{xlt ..., £ „ ) ] .

The class of primitive recursive functions is more restricted than the class of computable
functions, but it has the advantage that there is a process whereby it-can be said of a set of
equations whether it defines a primitive recursive function in the manner described above.

If <p{xlt ..., xn) is primitive recursive, then <p(xv ..., xn) = 0 is described as a primitive
recursive relation between xv . . . ,£„.
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An alternative form for number-theoretic theorems is "for each natural
number x there exists a natural number y such that <j>(x, y) vanishes",
where (j>{x, y) is primitive recursive. In other words, there is a rule
whereby, given the function 8{x), we can find a function (j){x, y), or given
(j>(x,y), we can find a function 6(x), such that "6(x) vanishes infinitely
often" is a necessary and sufficient condition for "for each x there is a y
such that <j)(x, y) = 0". In fact, given 6(x), we define

<f){x, y) = d(x)+a{x, y),

where a (a;, y) is the (primitive recursive) function with the properties

a{x,y)=l {y^x),

= 0 (y>x).

If on the other hand we are given <f)(x, y)we define d(x) by the equations

0i(O) = 3,

where wr(x) is defined so as to mean "the largest s for which rs divides
x". The function a(x) is defined by the equations o-(O) = 0, a{x-\-\)= 1.
It is easily verified that the functions so defined have the desired pro-
perties.

We shall now show that questions about the truth of the statements of
the form " does/(&) vanish identically ", where/(x) is a computable function,
can be reduced to questions about the truth of number-theoretic theorems.
It is understood that in each case the rule for the calculation oif(x) is given
and that we are satisfied that this rule is valid, i.e. that the machine which
should calculate f(x) is circle free (Turing [1], 233). The function/(re),
being computable, is general recursive in the Herbrand-Godel sense, and
therefore, by a general theorem due to Kleenef, is expressible in the form

(3.2)

where ey[W(y)] means "the least y for which %{y) is true" and ifj(y) and
<j>(x, y) are primitive recursive functions. Without loss of generality, we
may suppose that the functions <j>, tft take only the values 0, 1. Then, if

f Kleene [3], 727. This result is really superfluous for our purpose, since the proof that
every computable function is general recursive proceeds by showing that these functions
are of the form (3 . 2). (Turing [2], 161).
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we define p(x) by the equations (3.1) and

it will be seen that/(a;) vanishes identically if and only if p(x) vanishes for
infinitely many values of x.

The converse of this result is not quite true. We cannot say that the
question about the truth of any number-theoretic theorem is reducible to
a question about whether a corresponding computable function vanishes
identically; we should have rather to say that it is reducible to the problem
of whether a certain machine is circle free and calculates an identically
vanishing function. But more is true: every number-theoretic theorem
is equivalent to the statement that a corresponding machine is circle free.
The behaviour of the machine may be described roughly as follows: the
machine is one for the calculation of the primitive recursive function 9(x)
of the number-theoretic problem, except that the results of the calculation
are first arranged in a form in which the figures 0 and 1 do not occur, and
the machine is then modified so that, whenever it has been found that the
function vanishes for some value of the argument, then 0 is printed. The
machine is circle free if and only if an infinity of these figures are printed,
i.e. if and only if 6{x) vanishes for infinitely many values of the argument.
That, on the other hand, questions of circle freedom may be reduced to
questions of the truth of number-theoretic theorems follows from the fact
that 6(x) is primitive recursive when it is defined to have the value 0 if
a certain machine U prints 0 or 1 in its (rc-j-l)-th complete configuration,
and to have the value 1 otherwise.

The conversion calculus provides another normal form for the number-
theoretic theorems, and the one which we shall find the most convenient to
use. Every number-theoretic theorem is equivalent to a statement of the
form £t A(n) is convertible to 2 for every W.F.F. n representing a positive
integer", A being a W.F.F. determined by the theorem; the property of
A here asserted will be described briefly as " A is dual". Conversely such
statements are reducible to number theoretic theorems. The first half of
this assertion follows from our results for computable functions, or directly
in this way. Since 6(x — 1)+2 is primitive recursive, it is formally definable,
say, by means of a formula G. Now there is (Kleene [1], 232) a
W.F.F. 3* with the property that, if T(r) is convertible to a formula repre-
senting a positive integer for each positive integer r, then CS> (T, n) is con-
vertible to s, where s is the n-th. positive integer t (if there is one) for which
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T(t) conv 2; if T(t) conv2 for less than n values of t then @{T, n) has
no normal form. The formula G('-?(G, n)j is therefore convertible to 2
if and only if 6(x) vanishes for at least n values of x, and is con-
vertible to 2 for every positive integer x if and only if 6(x) vanishes
infinitely often. To prove the second half of the assertion, we take Godel
representations for the formulae of the conversion calculus. Let c(x) be 0
if x is the G.R. of 2 (i.e. if x is 23. 310. 5. 73. II28.13.17.1910. 232. 29. 31.
3710.412.43.4728. 532. 592. 612. 672) and let c(x) be 1 otherwise. Take an
enumeration of the G.R. of the formulae into which A(m) is convertible:
let a(m, n) be the n-ih number in the enumeration. We can arrange the
enumeration so that a(m, n) is primitive recursive. Now the statement
that A(m) is convertible to 2 for every positive integer m is equivalent to
the statement that, corresponding to each positive integer m, there is a

positive integer n such that c(a(m, n) \ = 0; and this is number-theoretic.
It is easy to show that a number of unsolved problems, such as the

problem of the truth of Fermat's last theorem, are number-theoretic.
There are, however, also problems of analysis which are number-theoretic.
The Riemann hypothesis gives us an example of this. We denote by £(s)

00

the function defined for $\s = a > 1 by the series £ n~s and over the rest
n = l

of the complex plane with the exception of the point s = 1 by analytic
continuation. The Riemann hypothesis asserts that this function does
not vanish in the domain a>\. It is easily shown that this is equivalent
to saying that it does not vanish for 2 > a > \, %s = t > 2, i.e. that it does
not vanish inside any rectangle 2 > a>l-\-ljT, T>t>2, where T is
an integer greater than 2. Now the function satisfies the inequalities

N Nl-a
2t(N-2)-i,

K(5)-C(s')|< m\s-s'

and we can define a primitive recursive function g(l, I', m, m', N, M) such
that

jy A71-S
V, m, m', N, M)—M S r s + ^ - r

1 s—i m

and therefore, if we put

i(l, M, m, M, Jf2+2, M) = X{1, m, M),
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M r" M

provided that

,m, M)-122T
M

<

If we define B(M, T) to be the smallest value of X(l, m, M) for which

I . J L L i < J 2 2 ^ < T
—

then the Riemann hypothesis is true if for each T there is an M satisfying

B(M, T) > U2T.

If on the other hand there is a T such that, for all if, B(M, T) < 122T,
the Riemann hypothesis is false; for let lM, mM be such that

X(lM, mM, M) < 122T,

then (lM+imM

\ M
244T

: M "

Now if a is a condensation point of the sequence (lM-\-imM)/M then since
l(s) is continuous except at 5 = 1 we must have £(a) = 0 implying the falsity
of the Riemann hypothesis. Thus we have reduced the problem to the
question whether for each T there is an M for which

B{M, T) > 122T.

B(M, T) is primitive recursive, and the problem is therefore number-
theoretic.

4. A type of problem which is not number-theoretic^.

Let us suppose that we are supplied with some unspecified means of
solving number-theoretic problems; a kind of oracle as it were. We shall

f Compare Rosser [1].
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not go any further into the nature of this oracle apart from saying that it
cannot be a machine. With the help of the oracle we could form a new
kind of machine (call them o-machines), having as one of its fundamental
processes that of solving a given number-theoretic problem. More
definitely these machines are to behave in this way. The moves of the
machine are determined as usual by a table except in the case of moves
from a certain internal configuration o. If the machine is in the internal
configuration o and if the sequence of symbols marked with I is then the
well-formed| formula A, then the machine goes into the internal
configuration p or t according as it is or is not true that A is dual. The
decision as to which is the case is referred to the oracle.

These machines may be described by tables of the same kind as those
used for the description of a-machines, there being no entries, however, for
the internal configuration o. We obtain description numbers from these
tables in. the same way as before. If we make the convention that, in.
assigning numbers to internal configurations, o, p, t are always to be
q2, q3, g4, then the description numbers determine the behaviour of the
machines uniquely.

Given any one of these machines we may ask ourselves the question
whether or not it prints an infinity of figures 0 or 1; I assert that this class
of problem is not number-theoretic. In view of the definition of "number
theoretic problem" this means that it is not possible to construct
an o-machine which, when supplied $ with the description of any other
o-machine, will determine whether that machine is o-circle free. The
argument may be taken over directly from Turing [1], § 8. We say that
a number is o-satisfactory if it is the description number of an o-circle free
machine. Then, if there is an o-machine which will determine of any
integer whether it is o-satisfactory, there is also an o-machine to
calculate the values of the function 1—(f>n{n). Let r(n) be the n-th.
o-satisfactory number and let <f>n{m) be the ra-th figure printed by the
o-machine whose description number is r(n). This o-machine is circle free
and there is therefore an o-satisfactory number K such that <f>K(n) = 1—<f>n(n)
for all n. Putting n = K yields a contradiction. This completes the proof
that problems of circle freedom of o-machines are not number-theoretic.

Propositions of the form that an o-machine is o-circle free can always
be put in the form of propositions obtained from formulae of the functional
calculus of the first order by replacing some of the functional variables by
primitive recursive relations. Compare foot-note f on page 168.

| Without real loss of generality we may suppose that A is always well formed.
J Compare Turing [1], §6, 7.
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5. Syntactical theorems as number-theoretic theorems.

I now mention a property of number-theoretic theorems which suggests
that there is reason for regarding them as of particular importance.

Suppose that we have some axiomatic system of a purely formal nature.
We do not concern ourselves at all in interpretations for the formulae of
this system; they are to be regarded as of interest for themselves. An
example of what is in mind is afforded by the conversion calculus (§1).
Every sequence of symbols " A conv B ", where A and B are well formed
formulae, is a formula of the axiomatic system and is provable if the
W.F.F. A is convertible to B. The rules of conversion give us the rules of
procedure in this axiomatic system.

Now consider a new rule of procedure which is reputed to yield only
formulae provable in the original sense. We may ask ourselves whether
such a rule is valid. The statement that such a rule is valid would be
number-theoretic. To prove this, let us take Godel representations for the
formulae, and an enumeration of the provable formulae; let <f>(r) be the
G.R. of the r-th formula in the enumeration. We may suppose </>(r) to be
primitive recursive if we are prepared to allow repetitions in the enumer-
ation. Let ifj(r) be the G.R. of the r-th formula obtained by the new rule,
then the statement that this new rule is valid is equivalent to the assertion of

(the domain of individuals being the natural numbers). It has been shown
in §3 that such statements are number-theoretic.

It might plausibly be argued that all those theorems of mathematics
which have any significance when taken alone are in effect syntactical
theorems of this kind, stating the validity of certain "derived rules" of
procedure. Without going so far as this, I should assert that theorems of
this kind have an importance which makes it worth while to give them
special consideration.

6. Logic formulae.

We shall call a formula L a logic formula (or, if it is clear that we are
speaking of a W.F.F., simply a logic) if it has the property that, if A is a
formula such that L( A) conv 2, then A is dual.

A logic formula gives us a means of satisfying ourselves of the truth of
number-theoretic theorems. For to each number-theoretic proposition
there corresponds a W.F.F. A which is dual if and only if the proposition is
true. Now, if L is a logic and L( A) conv 2, then A is dual and we know that
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the corresponding number-theoretic proposition is true. It does not
follow that, if L is a logic, we can use L to satisfy ourselves of the truth of
any number-theoretic theorem.

If L is a logic, the set of formulae A for which L(A) conv 2 will be called
the extent of L.

It may be proved by the use of (D), (E), p. 166, that there is a formula X
such that, if M has a normal form, has no free variables and is not convertible
to 2, then X(M) conv 1, but, if M conv 2, then X{M) conv 2. If L is a logic,
then Xx.x(L(x)f is also a logic whose extent is the same as that of L,
and which has the property that, if A has no free variables, then

{\x.x(L(x)))(A)

either is always convertible to 1 or to 2 or else has no normal form. A
logic with this property will be said to be standardized.

We shall say that a logic L' is at least as complete as a logic L if the extent
of L is a subset of the extent of L'. The logic L' is more complete than L if
the extent of L is a proper subset of the extent of L'.

Suppose that we have an effective set of rules by which we can prove
formulae to be dual; i.e. we have a system of symbolic logic in which the
propositions proved are of the form that certain formulae are dual. Then
we can find a logic formula whose extent consists of just those formulae
which can be proved to be dual by the rules; that is to say, there is
a rule for obtaining the logic formula from the system of symbolic logic.
In fact the system of symbolic logic enables us to obtain f a computable
function of positive integers whose values run through the Go del represen-
tations of the formulae provable by means of the given rules. By the
theorem of equivalence of computable and A-definable functions, there is
a formula J such that J(l), J(2), ... are the G.R. of these formulae. Now
let

(u),v), 1,7,2).

Then I assert that W(J) is a logic with the required properties. The
properties of <$ imply that ^(C, 1) is convertible to the least positive integer
n for which C(n) conv 2, and has no normal form if there is no such integer.
Consequently 9* (C, 1, / , 2) is convertible to 2 if C(n) conv 2 for some positive
integer n, and it has no normal form otherwise. That is to say that W(J, A)

conv 2 if and only if §(j(n), Aj conv 2, some n, i.e. if J(n) conv A some n.

f Compare Turing [1], 252, second footnote, [2], 156.
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There is conversely a formula W such that, if L is a logic, then ^ '(L)
enumerates the extent of L. For there is a formula Q such that
Q{L, A, n) conv 2 if and only if L(A) is convertible to 2 in less than n steps.
We then put

W'->Mn.form( m(2,® (XX.Q(I, form (m(2,x)), G>(3, re)), n)\\

Of course, TF'(jT(J)J normally entirely different from J and WyW'(L)j
from L.

Li the case where we have a symbolic logic whose propositions can be
interpreted as number-theoretic theorems, but are not expressed in the
form of the duality of formulae, we shall again have a corresponding logic
formula, but its relation to the symbolic logic is not so simple. As an
example let us take the case where the symbolic logic proves that certain
primitive recursive functions vanish infinitely often. As was shown in
§ 3, we can associate with each such proposition a W.F.F. which is dual if
and only if the proposition is true. When we replace the propositions of
the symbolic logic by theorems on the duality of formulae in this way, our
previous argument applies and we obtain a certain logic formula L.
However, L does not determine uniquely which are the propositions provable
in the symbolic logic; for it is possible that "dx{x) vanishes infinitely
often" and "92{x) vanishes infinitely often" are both associated with
" A is dual", and that the first of these propositions is provable in the
system, but the second not. However, if we suppose that the system of
symbolic logic is sufficiently powerful to be able to carry out the argument
on pp. 170-171 then this difficulty cannot arise. There is also the possibility
that there may be formulae in the extent of L with no propositions of the
form " 9(x) vanishes infinitely often " corresponding to them. But to each
such formula we can assign (by a different argument) a proposition p of
the symbolic logic which is a necessary and sufficient condition for A to
be dual. With p is associated (in the first way) a formula A'. Now L
can always be modified so that its extent contains A' whenever it
contains A.

We shall be interested principally in questions of completeness. Let us
suppose that we have a class of systems of symbolic logic, the propositions
of these systems being expressed in a uniform notation and interpretable as
number-theoretic theorems; suppose also that there is a rule by which we
can assign to each proposition p of the notation a W.F.F. A^ which is dual
if and only if p is true, and that to each W.F.F. A we can assign a propo-
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sition pk which is a necessary and sufficient condition for A to be dual.
pkp is to be expected to differ from p. To each symbolic logic C we can
assign two logic formulae Lc and Lc'. A formula A belongs to the extent
of Lc if ^A is provable in C, while the extent of Lc' consists of all Av. where
p is provable in C. Let us say that the class of symbolic logics is complete
if each true proposition is provable in one of them : let us also say that a
class of logic formulae is complete if the set-theoretic sum of the extents of
these logics includes all dual formulae. I assert that a necessary condition
for a class of symbolic logics C to be complete is that the class of logics L^
is complete, while a sufficient condition is that the class of logics Lc' is
complete. Let us suppose that the class of symbolic logics is complete;
consider pk, where A is arbitrary but dual. It must be provable in one of
the systems, C say. A therefore belongs to the extent of Lc, i.e. the class
of logics Lc is complete. Now suppose the class of logics Lc' to be
complete. Let p be an arbitrary true proposition of the notation ; Ap must
belong to the extent of some Lc', and this means thatp is provable in C.

We shall say that a single logic formula L.is complete if its extent
includes all dual formulae; that is to say, it is complete if it enables
us to prove every true number-theoretic theorem. It is a consequence
of the theorem of Godel (if suitably extended) that no logic formula is com-
plete, and this also follows from (C), p. 165, or from the results of Turing
[1], § 8, when taken in conjunction with § 3 of the present paper. The idea
of completeness of a logic formula is not therefore very important,
although it is useful to have a term for it.

Suppose Y to be a W.F.F. such that Y(n) is a logic for each positive in-

teger n. The formulae of the extent of Y(n) are enumerated by W{Y(n) j ,

and the combined extents of these logics by

Xr.W (Y(w(2,r), w(3,

If we put

T->\y. W'fxr. W(y(m{2, r),

then F(Y) is a logic whose extent is the combined extent of

Y(2), Y(3), ....

To each W.F.F. L we can assign a W.F.F. V(L) such that a necessary
and sufficient condition for L to be a logic formula is that F(L) is dual.
Let Nm be a W.F.F. which enumerates all formulae with normal forms

SEE. 2. VOL. 45. NO. 2240. N
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and no free variables. Then the condition for L to be a logic is that

L^Nm(r), sj conv 2 for all positive integers r, s, i.e. that

ro(3, a))

is dual. We may therefore put

( , a)), ro(3, a)V

7. Ordinals.

Wo begin our treatment of ordinals with some brief definitions from
the Cantor theory of ordinals, but for the understanding of some of the
proofs a greater amount of the Cantor theory is necessary than is set out
here.

Suppose that we have a class determined by the propositional function
D(x) and a relation G{x, y) ordering its members, i.e. satisfying

Q(x,y)&Q(y,z)DG{x,z), (i)]

D{x)&D{y)DQ{xty)vQ(y,x)vz = y, (ii)

G(x,y)DD(x)&,D(y), (iii)

~G(x, x). (iv)

The class defined by D(x) is then called a series with the ordering relation
G(x} y). The series is said to be well ordered and the ordering relation is
called an ordinal if every sub-series which is not void has a first term, i.e. if

(D'){(3X)(D'(X))&(X)(D'(X)Z>D(X))

o{3z)(y)[D'(z)&(D'(y)oG(z,y)Vz = y)]}. (7.2)

The condition (7.2) is equivalent to another, more suitable for our
purposes, namely the condition that every descending subsequence must
terminate; formally

(x){D'(x)Z>D{x)&{3y)(D'(y)&Q{y,x))}?(x)(~D'(x)). (7.3)

The ordering relation G(x, y) is said to be similar to G'(x, y) if there is
a one-one correspondence between the series transforming the one relation
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into the other. This is best expressed formally, thus

{3M)[(X){D{X)D(3X')M(X, x')}&{x'){D'{x')o (3x)M(x, x')}

(X, x')&M(x, X"))V(M{X', x)&3f{x", x)}z>x' =

(7 .4)

Ordering relations are regarded as belonging to the same ordinal if and only
if they are similar.

We wish to give names to all the ordinals, bu t this will not be possible
unti l they have been restricted in some w a y ; the class of ordinals, as a t
present defined, is more than enumerable. The restrictions t h a t we actually
impose are these : D(x) is to imply t ha t x is a positive integer; D(x) and
G(x, y) arc to be computable properties. Both of the propositional
functions D(x), G(x, y) can then be described by means of a single W . F . F .
Q with the propert ies:

Q(m, n) conv 4 unless both D(m) and D(n) are t rue,

Q(m, m) conv 3 if D(m) is t rue,

£)(m, n) conv 2 if D(m), D(n), G(m, n), ~ (m = n) are true,

Q(m, n) conv 1 if i)(m), D(n), ~ G(m, n), ~ (m — n) are t rue.

I n consequence of the conditions to which D(x), G(x, y) are subjected,
Q mus t further satisfy:

(a) if Q(m, n) is convertible to 1 or 2, then Q(m, m) and Q(n, n) are
convertible to 3,

(6) if Q(m, m) and Q(n, n) are convertible to 3, then Q(m, n) is
convertible to 1, 2, or 3,

(c) if Q(m, n) is convertible to 13 then Q(n, m) is convertible to 2 and
conversely,

{d) if Q(m, n) and Q(n, p) are convertible to 1, then Q(m, p) is also,

(e) there is no sequence mv ra2, ... such t h a t ii(m,-+1, m,) conv 2 for
each positive integer i,

(/) Q(m, n) is always convertible to 1, 2, 3, or 4.

If a formula Q satisfies these conditions then there are corresponding
propositional functions D(x), G(x, y). We shall therefore say t h a t Q is

N2



180 A. M. TURING [June 16,

an ordinal formula if it satisfies the conditions (a)-(f). It will be seen that
a consequence of this definition is that Dt is an ordinal formula; it repre-
sents the ordinal to. The definition that we have given does not pretend
to have virtues such as elegance or convenience. It has been introduced
rather to fix our ideas and to show how it is possible in principle to describe
ordinals by means of well formed formulae. The definitions could be
modified in a number of ways. Some such modifications are quite trivial;
they are typified by modifications such as changing the numbers 1, 2, 35 4,
used in the definition, to others. Two such definitions will be said to
be equivalent; in general, we shall say that two definitions are equivalent if
there are W.F.F. T, T' such that, if A is an ordinal formula under one defi-
nition and represents the ordinal a, then T'(A) is an ordinal formula under
the second definition and represents the same ordinal; and, conversely,
if A' is an ordinal formula under the second definition representing a, then
T(A') represents a under the first definition. Besides definitions equivalent
in this sense to our original definition, there are a number of other possibili-
ties open. Suppose for instance that we do not require D(x) and Q(x, ij) to
be computable, but that we require only that D{x) and G(x,y)&,x<y are
axiomatic "j". This leads to a definition of an ordinal formula which is
(presumably) not equivalent to the definition that we are using J. There
are numerous possibilities, and little to guide us in choosing one definition
rather than another. No one of them could well be described as "wrong " ;
some of them may be found more valuable in applications than others,
and the particular choice that we have made has been determined partly
by the applications that we have in view. In the case of theorems of a
negative character, one would wish to prove them for each one of the
possible definitions of "ordinal formula". This programme could, I
think, be carried through for the negative results of §9, 10.

Before leaving the subject of possible ways of defining ordinal formulae,
I must mention another definition due to Church and Kleene (Church and
Kleenc [1]). We can make use of this definition in constructing ordinal
logics, but it is more convenient to use a slightly different definition which
is equivalent (in the sense just described) to the Church-Kleene defi-
nition as modified in Church [4].

f To require G[x, y) to be axiomatic; amounts to requiring G(x, y) to be computable
on account of (7. 1) (ii).

% On the other hand, if D(x) is axiomatic and O'(x, y) is computable in the modified sense
that there is a rule for determining whether G{x, y) is true which leads to a definite result
in all cases where D(x) and D(y) arc true, the corresponding definition of ordinal formula
is equivalent to our definition. To give the proof would be too much of a digression.
Probably other equivalences of this kind hold.
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Introduce the abbreviations

U^Xufx.u[Xy.f{y{I,x))),

Sue->Aaufx .f[a(u,f, x) J.

We define first a partial ordering relation " < " which holds between
certain pairs of W.F.F. [conditions (l)-(5)].

(1) If A conv B, then A < C implies B < C and C < A implies C < B.

(2) A < Sue (A).

(3) For any positive integers m and n, Xufx. R(n) < Xufx. R(m) implies
Xufx.R{n)<Xufx.u{R).

(4) If A < B and B < C, then A < C. (l)-(4) are required for any
W.F.F. A, B, C, Xufx.R.

(5) The relation A < B holds only when compelled to do so by (l)-(4).

We define C-K ordinal formulae by the conditions (6)-(10).

(6) If A conv B and A is a C-K ordinal formula, then B is a C-K ordinal
formula.

(7) U is a C-K ordinal formula.

(8) If A is a C-K ordinal formula, then Sue (A) is a C-K ordinal formula.

(9) If Xufx.R(n) is a C-K ordinal formula and

Xufx. R(n) < Xufx.

for each positive integer n, then Xufx. u(R) is a C-K ordinal formulaf.

(10) A formula is a C-K ordinal formula only if compelled to be so by

f If we also allow \ufx.u(R) to be a C-K ordinal formula when

Aufx. n(R) conv Kufx. S(n, R)

for all n, then the formulae for sum, product and exponentiation of C-K ordinal formulae
can be much simplified. For instance, if A and B represent a and $, then

\ufx.B(u,f, A(u,f,x))

represents a+fi. Property (6) remains true.
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The representation of ordinals by formulae is described by (11)—(15).

(11) If AconvB and A represents a, then B represents a.

(12) U represents 1.

(13) If A represents a, then Sue (A) represents a + 1 .

(14) If Xufx. R(n) represents an for each positive integer n, then
Xufx.u(R) represents the upper bound of the sequence al5 a2, a3,

(15) A formula represents an ordinal only when compelled to do so by
(ll)-(H).

We denote any ordinal represented by A by SA without prejudice to
the possibility that more than one ordinal may be represented by A. We
shall write A ^ B to mean A < B or A conv B.

In proving properties of C-K ordinal formulae we shall often use a kind
of analogue of the principle of transfinite induction. If </> is some property
and we have:

(a) If AconvB and <j>(A), then

(6) cf>(U),

(c) If <£(A), then </>(Suc (A)),

{el) If <f>(\ufx .R(n)) and Xufx. R(n) < Xufx.R(8(n)) for each
positive integer n, then

cf>(Xufx.u(R));

then </>(A) for each C-K ordinal formula A. To prove the validity of this
principle we have only to observe that the class of formulae A satisfying
</>(A) is one of those of which the class of C-K ordinal formulae was defined
to be the smallest. We can use this principle to help us to prove:—

(i) Every C-K ordinal formula is convertible to the form Xufx.E,
where B is in normal form.

(ii) There is a method by which for any C-K ordinal formula, we can
determine into which of the forms U, Sue (Xufx.B), Xufx.u(R) (where u
is free in R) it is convertible, and by which we can determine B, R. In
each case B, R are unique apart from conversions.

(iii) If A represents any ordinal, SA is unique. If HA, SB exist and
A < B , then S A < S B .
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(iv) If A, B, C are C-K ordinal formulae and B < A, C < A, then either
B < C , C < B , or BconvC.

(v) A formula A is a C-K ordinal formula if:

(A) U^A,

(B) If Xufx.u(R) ^ A and n is a positive integer, then

Xufx. R(n) < Xufx. R(#(n)),

(C) For any two W.F.F. B, C with B < A , C < A we have
B < C, C < B, or B conv C5 but never B < B,

(D) There is no infinite sequence B1} B2, ... for which

Br < Br_! < A

for each r.

(vi) There is a formula H such that, if A is a C-K ordinal formula, then
H(A) is an ordinal formula representing the same ordinal. H(A) is not
an ordinal formula unless A is a C-K ordinal formula.

Proof of (i). Take </>(A) to be " A is convertible to the form Xufx . B,
where B is in normal form". The conditions (a) and (6) are trivial. For
(c), suppose that A conv Xufx. B, where B is in normal form; then

Sue (A) conv Xufx ./(B)

and /(B) is in normal form. For (d) we have only to show that u(R) has a
normal form, i.e. that R has a normal form; and this is true since
R(l) has a normal form.

Proof of (ii). Since, by hypothesis, the formula is a C-K ordinal formula
we have only to perform conversions on it until it is in one of the forms
described. It is not possible to convert it into two of these three forms.

For suppose that Xufx.fl A(u, f, x)j conv Xufx .u(R) and is a C-K ordinal
formula; it is then convertible to the form Xufx. B, where B is in normal
form. But the normal form of Xufx. u(R) can be obtained by conversions

on R, and that of Xufx .fyA(u, f, xn by conversions on A(u, f, x) (as fol-
lows from Church and Rosser [1], Theorem 2); this, however, would imply
that the formula in question had two normal forms, one of form Xufx .u(S)
and one of form Xufx ./(C), which is impossible. Or let U conv Xufx. u(R),
where R is a well formed formula with u as a free variable. We may

suppose R to be in normal form. Now U is Xufx.u(Xy .f(y(I, x)\). By
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(A), p. 165, R is identical with Xy .f(y(I, x)\ which does not have u as a

free variable. It now remains to show only that if

Sue (Xufx. B) convSue (Xufx. B') and Xufx. u(R) convXufx. w(R'),

then B convB' and R convR'.

If Sue (Xufx. B) conv Sue (Xufx. B'),

then Xufx ./(B) conv Xufx ./(B');

but both of these formulae can be brought to normal form by conversions
on B, B' and therefore B conv B\ The same argument applies in the case
in which Xufx .u(R) conv Xufx. u(R').

Proof of (iii). To prove the first half, take 0(A) to be " SA is unique ".
Then (7.5) (a) is trivial, and (6) follows from the fact that U is not convertible
either to the form Sue (A) or to Xufx.u(R), where R has u as a free variable.
For (c): Sue (A) is not convertible to the form Xufx. u{R); the possibility
that Sue (A) represents an ordinal on account of (12) or (14) is therefore
eliminated. By (13), Sue (A) represents a' + l if A' represents a" and
Sue (A) conv Sue (A'). If we suppose that A represents a, then A, A', being
C-K ordinal formulae, are convertible to the forms Xufx. B, Xufx. B' ; but
then, by (ii), B convB', i.e. A conv A', and therefore a = a by the hypo-
thesis </>(A). Then SSuc(A) = a' + l is unique. For (d): Xufx.u(R) is not
convertible to the form Sue (A) or to U if R has u as a free variable. If
Xufx.u{R)represents an ordinal, it is so therefore in virtue of (14), possibly
together with (11). Now, if Xufx.u(R) conv Xufx .u(R')} then R convR',
so that the sequence Xufx. R(l), Xufx, R(2), ... in (14) is unique apart from
conversions. Then, by the induction hypothesis, the sequence al5 a2, a3, ...
is unique. The only ordinal that is represented by Xufx . u (R) is the upper
bound of this sequence; and this is unique.

For the second half we use a type of argument rather different from our
transfinite induction principle. The formulae B for which A < B form
the smallest class for which:

Sue (A) belongs to the class.
If C belongs to the class, then Sue (C) belongs to it.
If Xufx. R(n) belongs to the class and

Xufx. R(n) < Xufx. R(m),

where m, n are some positive integers, then Xufx.u(R) belongs
to it.

If C belongs to the class and C conv C, then C belongs to it.

(7.6)
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I t will be sufficient to prove that the class of formulae B for which
either SB does not exist or SA < EB satisfies the conditions (7 .6). Now

-Suc(A) = - A + l > -A>

ESuC(o > SQ > EA if C is in the class.

If "Exufx. R(n) tloea not exist, then SAW/* .M(R) does not exist, and therefore
Xufx .u{R) is in the class. If SAU^ R(n) exists and is greater than 2A, and
Xufx. R(n) < Xufx. R(m), then

Z-Kufx. w(R) ^ Skufx. R(n) > -A*

so that Ait/a;.w(R) belongs to the class.

Proof of (iv). We prove this by induction with respect to A. Take
<f>(A) to be " whenever B< A and C< A then B < C or C < B or B conv C"\
(f>( U) follows from the fact that we never have B < U. If we have <£(A) and
B < Sue (A), then either B < A or B conv A; for we can find D such that
B ^ D , and then D < Sue (A) can be proved without appealing either to
(1) or (5); (4) does not apply, so we must have D conv A. Then, if
B < Sue (A) and C<Suc(A), we have four possibilities,

B conv A, C conv A,

B conv A, C < A ,

B < A , C conv A,

B < A , C < A .

In the first case B conv C, in the second C < B, in the third B < C, and in
the fourth the induction hypothesis applies.

Now suppose that Xufx.R(n) is a C-K ordinal formula, that

Xufx.R(n)<Xufx.R(tf(n)) and

for each positive integer n, and that A conv Xufx. u(R). Then, if B < A,
this means that B < Xufx. R(n) for some n; if we have also C < A,
then B < Xufx. R(q), C < Xufx. R(q) for some q. Thus, for these B and C,
the required result follows from <f>\Xufx.R(qn.

Proof of (v). The conditions (C), (D) imply that the classes of inter-
convertible formulae B, B < A are well-ordered by the relation " < ".
We prove (v) by (ordinary) transfinite induction with respect to the order
type a of the series formed by these classes; (a is, in fact, the solution of the
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equation l-fa = SA, but we do not need this). We suppose then that
(v) is true for all order types less than a. If E < A, then E satisfies the condi-
tions of (v) and the corresponding order type is smaller: E is therefore a
C-K ordinal formula. This expresses all consequences of the induction
hypothesis that we need. There are three cases to consider:

(x) a = 0.

(y) a = jS+L

(z) a is of neither of the forms (x), {y).

In case (x) we must have A conv U on account of (A). In case (y) there is
a formula D such that D < A, and B ^ D whenever B < A. The relation
D < A must hold in virtue of either (1), (2), (3), or (4). It cannot be in virtue
of (4); for then there would be B, B < A, D < B contrary to (C), taken in
conjunction with the definition of D. If it is in virtue of (3), then a is the
upper bound of a sequence al5 a2, ... of ordinals, which are increasing
by reason of (iii) and the conditions Xufx.K(n) <Xufx.R(S(nj) in (B).
This is inconsistent with a = jS-f 1. This means that (2) applies [after we
have eliminated (1) by suitable conversions on A, D] and we see that
A conv Sue (D); but, since D < A, D is a C-K ordinal formula, and A must
therefore be a C-K ordinal formula by (8). Now take case (z). It is
impossible for A to be of the form Sue (D), for then we should have B < D
whenever B < A, and this would mean that we had case (y). Since U < A,
there must be an F such that F < A is demonstrable either by (2) or by
(3) (after a possible conversion on A); it must of course be demonstrable
by (3). Then A is of the form Xufx.u(R). By (3), (B) we see that
Xufx. R(n) < A for each positive integer n; each Xufx. R(n) is therefore a
C-K ordinal formula. Applying (9), (B) we see that A is a C-K ordinal
formula.

Proof of (vi). To prove the first half, it is sufficient to find a method
whereby from a C-K ordinal formula A we can find the corresponding
ordinal formula Q. For then there is a formula H1 such that #i(a) conv p
if a is the G.R. of A and p is that of Q. H is then to be defined by

The method of finding Q may be replaced by a method of finding Q(m, n),
given A and any two positive integers m, n. We shall arrange the method
so that, whenever A is not an ordinal formula, either the calculation of the
values does not terminate or else the values are not consistent with
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Q being an ordinal formula. In this way we can prove the second half
of (vi).

Let Ls be a formula such that Ls(A) enumerates the classes of formulae
B, B < A [i.e. if B < A there is one and only one positive integer n for which
Ls(A, n) convB]. Then the rule for finding the value of Q(m, n) is as
follows:—

First determine whether U ^ A and whether A is convertible to the form
r(Suc, U). This terminates if A is a C-K ordinal formula.

If A conv r (Sue, U) and either m > r + 1 or n > r-\-1, then the value is 4.
If ra<w<r+l, the value is 2. If n<m <r- j- l , the value is 1. If
m = n ^ r + 1 , the value is 3.

If A is not convertible to this form, we determine whether either A or
Ls(A, m) is convertible to the form Xufx.u(R); and if either of them is, we

verify that Xufx. R(n) <Xufx. R($(n)j . We shall eventually come to

an affirmative answer if A is a C-K ordinal formula.
Having checked this, we determine concerning m and n whether

Ls(A, m)<Ls(A, n), Ls(A, n) <Ls(A, m), orm = w, and the value is to
be accordingly 1, 2, or 3.

If A is a C-K ordinal formula, this process certainly terminates.
To see that the values so calculated correspond to an ordinal formula, and
one representing SA, first observe that this is so when SA is finite. In the
other case (iii) and (iv) show that SB determines a one-one correspondence
between the ordinals /3, 1 ̂ /3=$C3A, and the classes of interconvertible
formulae B, B < A. If we take O(m, n) to be Ls(A, m) < Ls(A, n), we see
that O (m, n) is the ordering relation of a series of order typef SA and on the
other hand that the values of Q(m, n) are related to O(m, n) as on p. 179.

To prove the second half suppose that A is not a C-K ordinal formula.
Then one of the conditions (A)-(D) in (v) must not be satisfied. If (A) is
not satisfied we shall not obtain a result even in the calculation of Q(l, 1).
If (B) is not satisfied, we shall have for some positive integers p and q,

Ls(A, p) conv Xufx. u(R)

but not Xufx.R(q) <Xufx .R(8(q)J. Then the process of calculating
Q(p, q) will not terminate. In case of failure of (C) or (D) the values
of Q(m, n) may all be calculable, but if so conditions (a)-(f), p. 179,
will be violated. Thus, if A is not a C-K ordinal formula, then H(A) is
not an ordinal formula.

| The order type is £, where 1 + /3 = HA; but 0 = EA, since EA is infinite.



188 A.M. TURING [June 16,

I propose now to define three formulae Sum, Lim, Inf of importance in
connection with ordinal formulae. Since they are comparatively simple,
they will for once be given almost in full. The formula Ug is one with the
property that Ug(m) is convertible to the formula representing the largest
odd integer dividing m: it is not given in full. P is the predecessor

function; P(S(mn convm, P( l )convl .

Al -7>Apxy .pyXguv.g(v, u), Xuv,u(I. v), x, y),

Hf ~>Xm.P( m\Xguv.g(v, S(u)Y Xuv.v{I,u)y 1, 2j V

Bd -+Xww' aa' x. A\(Xf.w(a,a, w'(a',a',f)), x, 4 j ,

f w, w', Hf(#), H%),

, Al(q,w'(Ef(p), Hf(g)), l ) , A\(S(q), w(m(p),

Lim ^Xzpq. \xab .Bd(z{a), z(b), Vg(p), Ug(g), Al^Dt(a, 6)+Dt(6, a),

Dt(a, 6), zla, Ug(p), Ugfa))) )Kro(2, p), w(2, q)),
/ / /1 \ /

I n f ->Xiuapq. A\\Xf .wia, p , w(a, q,f)), w(p, q), 4 j .

The essential properties of these formulae are described by :t

Al(2r—1, m, n) convm, Al(2r, m, n) convn,

Hf(2m) convm, Hf(2m—1) convm,

Bd(Q, Q', a, a', x) conv4, unless both

Q(a, a) conv3 and Q'(a', a') conv 3,

it is then convertible to x.

If Q, Q' are ordinal formulae representing a, § respectively, then
•Sum(Q, Q') is an ordinal formula representing a+j8. If Z is a W.F.F.
enumerating a sequence of ordinal formulae representing al9 a2, ..., then
Lim(Z) is an ordinal formula representing the infinite sum ai+c^+ag
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If Q is an ordinal formula representing a, then Inf (Q) enumerates a
sequence of ordinal formulae representing all the ordinals less than a
without repetitions other than repetitions of the ordinal 0.

To prove that there is no general method for determining about a formula
whether it is an ordinal formula, we use an argument akin to that leading
to the Burali-Forti paradox; but the emphasis and the conclusion are
different. Let us suppose that such an algorithm is available. This
enables us to obtain a recursive enumeration Q^ Q>, ... of the ordinal
formulae in normal form. There is a formula Z such that Z(n) conv Qn.
Now Lim(Z) represents an ordinal greater than any represented by an Qn,
and it has therefore been omitted from the enumeration.

This argument proves more than was originally asserted. In fact, it
proves that, if we take any class E of ordinal formulae in normal form, such
that, if A is any ordinal formula, then there is a formula in E representing
the same ordinal as A, then there is no method whereby one can determine
whether a W.F.F. in normal form belongs to E.

S. Ordinal logics.

An ordinal logic is a W.F.F. A such that A (Q) is a logic formula whenever
Q is an ordinal formula.

This definition is intended to bring under one heading a number of
ways of constructing logics which have recently been proposed or which
are suggested by recent advances. In this section I propose to show how
to obtain some of these ordinal logics.

Suppose that we have a class W of logical systems. The symbols used
in each of these systems are the same, and a class of sequences of symbols
called "formulae" is defined, independently of the particular system in
W. The rules of procedure of a system C define an axiomatic subset of
the formulae, which are to be described as the "provable formulae of G"\
Suppose further that we have a method whereby, from any system C
of W, we can obtain a new system C, also in W, and such that the set of
provable formulae of C includes the provable formulae of C (we shall be
most interested in the case in which they are included as a proper subset).
It is to be understood that this "method" is an effective procedure
for obtaining the rules of procedure of C from those of C.

Suppose that to certain of the formulae of W we make number-
theoretic theorems correspond: by modifying the definition of formula, we
may suppose that this is donef or all formulae. We shall say that one of the
systems C is valid if the provability of a formula in C implies the truth
of the corresponding number-theoretic theorem. Now let the relation of
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C to C be such that the validity of C implies the validity of C", and let
there be a valid system Co in W. Finally, suppose that, given any
computable sequence Cv C2, ... of systems in W, the "limit system", in
which a formula is provable if and only if it is provable in one of the systems
Cj, also belongs to W. These limit systems are to be regarded, not as
functions of the sequence given in extension, but as functions of the rules
of formation of their terms. A sequence given in extension may be
described by various rules of formation, and there will be several corre-
sponding limit systems. Each of these may be described as a limit system
of the sequence.

In these circumstances we may construct an ordinal logic. Let us
associate positive integers Math the systems in such a way that to each C
there corresponds a positive integer mc, and that mc completely describes
the rules of procedure of G. Then there is a W.F.F. K, such that

K(mc) convmc-

for each C in W, and there is a W.F.F. 0 such that, if D(r) convmCr for
each positive integer r, then 0(D) convmc, where C is a limit system of
Cx, C2, .... With each system C of W it is possible to associate a logic
formula Lc: the relation between them is that, if 0 is a formula of W and
the number-theoretic theorem corresponding to 0 (assumed expressed in
the conversion calculus form) asserts that B is dual, then LC(B) conv 2 if
and only if G is provable in G. There is a W.F.F. G such that

G(mc) convLc

for each C of W. Put

N^Aa.G(a (0 , K, mCo)).

I assert that N(A) is a logic formula for each C-K ordinal formula A, and
that, if A < B, then N(B) is more complete than N(A), provided that there
are formulae provable in C but not in C for each valid C of W.

To prove this we shall show that to each C-K ordinal formula A there
corresponds a unique system C[A] such that:

(i) A(0, K, mCo) convmC[A],

and that it further satisfies:

(ii) C[U] is a limit system of Co', Go', ...,

(iii) C[Suc(A)] is (C[A])'5

(iv) C[Xufx. u{R)] is a limit system of C[Xufx. R(l)], C[Xufx. R(2)], ...,
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A and Xufx.u(R) being assumed to be C-K ordinal formulae. The
uniqueness of the system follows from the fact that mc determines C
completely. Let us try to prove the existence of C[A] for each C-K ordinal
formula A. As we have seen (p. 182) it is sufficient to prove

(a) C[U] exists,

(6) if C[A] exists, then C[Sue (A)] exists,

(c) if C[Xufx. R(l)], C[Xufx.R{2)], ... exist, then C[Xufx.u{R)] exists.

Proof of (a).

{Xy.K(y(I, mCo))\ (n) convK(mCo) convmcv

for all positive integers n, and therefore, by the definition of 0, there is a
system, which we call C[U] and which is a limit system of C'o', Go', ...,
satisfying

( )) convmC[P].

But, on the other hand,

U(Q, K, m0o)conve(Ay.K(y(7, mOg))).

This proves (a) and incidentally (ii).

Proof of (b).

Sue (A, 0, K, mo0) convK(A(0, K, m0o))

convK(mC[A])

conv m(Cf[A])'-

Hence C[Suc (A)] exists and is given by (iii).

Proof of (c).

{{Xufx. R}(0, K, m0o)} (n) conv {Xufx. R(n)}(0, K, mCo

by hypothesis. Consequently, by the definition of 0, there exists a C
which is a limit system of

C[Xufx.R{l)l C[Xufx.
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and satisfies

e({Aw/z.w(R)}(0, K> mCo))convmc.

We define G[Xufx. u(R)] to be this C. We then have (iv) and

{\ufx.u(R)}(6, K, mCo) conv0({Ait/a;.R}(0, K, mCo))

This completes the proof of the properties (i)-(iv). From (ii), (iii), (iv),
the fact that Co is valid, and that C is valid when C is valid, we infer that
C [A] is valid for each C-K ordinal formula A: also that there are more
formulae provable in G'[B] than in C[A] when A < B. The truth of our
assertions regarding N now follows in view of (i) and the definitions of N
and G.

We cannot conclude that N is an ordinal logic, since the formulae A
are C-K ordinal formulae; but the formula H enables us to obtain an
ordinal logic from N. By the use of the formula Gr we obtain a formula
Tn such that, if A has a normal form, then Tn(A) enumerates the G.R.'s
of the formulae into which A is convertible. Also there is a formula Ck such
that, if h is the G.R. of a formula H(B), then Ck(h) conv B, but otherwise
Ck(h) conv U. Since H(B) is an ordinal formula only if B is a C-K ordinal

formula, Ck(Tn(Q, n)J is a C-K ordinal formula for each ordinal formula
Q, and each integer n. For many ordinal formulae it will be convertible
to U, but, for suitable Q, it will be convertible to any given C-K ordinal
formula. If we put

A->Xwa. T(Xn.N(Ck(Tn{w,

A is the required ordinal logic. In fact, on account of the properties of
F, A(Q. A) will be convertible to 2 if and only if there is a positive integer
n such that

N(ck(Tn(Q, n)), A)conv2.

If Q conv H(h), there will be an integer n such that Ck(Tn(Q, n)) conv B,
and then

NfCk(Tn(a n)), AJ convN(B, A)
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For any n, Ck(Tn(Q, n)) is convertible to U or to some B5 where
Q conv#(B). Thus A(Q, A) conv2 if Q conv#(B) and N(B, A) conv2
or if N(U, A) conv2, but not in any other case.

We may now specialize and consider particular classes W of systems.
First let us try to construct the ordinal logic described roughly in the
introduction. For W we take the class of systems arising from the system
of Principia Mathematical by adjoining to it axiomatic (in the sense
described on p. 167) sets of axioms%. Godel has shown that primitive
recursive relations § can be expressed by means of formulae in P. In fact,
there is a rule whereby, given the recursion equations denning a primitive
recursive relation, we can find a formula|| 2( [x0. ..., z0] such that

a r t / w o , ..., /*'«->o]
is provable in P if F(m1} ..., mr) is true, and its negation is provable other-
wise. Further, there is a method by which we can determine about a
formula %[x0, ..., z0] whether it arises from a primitive recursive relation in
this way, and by which we can find the equations which defined the relation.
Formulae of this kind will be called recursion formulae. We shall make use
of a property that they possess, which we cannot prove formally here with-
out giving their definition in full, but which is essentially trivial. Db [xQ, y0]
is to stand for a certain recursion formula such that Db[/(m)0,/(/i)0] is
provable in P if m = 2n and its negation is provable otherwise. Suppose
that 2f[#0], 23 [#0] are two recursion formulae. Then the theorem which
I am assuming is that there is a recursion relation £?[, $[£0] such that
we can prove

<5w. 0 3 K l - (Byo)((Bb[xo, y0]. %[y0]) v (Db[fx0, fy0]. S3[y0])) ( 8 . 1 )

i n P.

f Whitehead and Russell [1]. The axioms and rules of procedure of a similar system
P will be found in a convenient form in Godel [1], and I follow Godel. The symbols
for the natural numbers in P are 0,/0, ffO, ..., f!"-0 Variables with the suffix " 0 " stand
for natural numbers.

$ It is sometimes regarded as necessary that the set of axioms used should be computable,
the intention being that it should be possible to verify of a formula reputed to be an axiom
whether it really is so. We can obtain the same effect with axiomatic sets of axioms in
this way. In the rules of procedure describing which are the axioms, we incorporate a
method of enumerating them, and we also introduce a rule that in the main part of tho
deduction, whenever we write down an axiom as such, we must also write down its position
in the enumeration. It is possible to verify whether this has been done correctly.

§ A relation !"(«!, ..., mr) is primitive recursive if it is a necessary and sufficient
condition for the vanishing of a primitive recursive function <p(nilt ..., 'in,.).

|| Capital German letters will be used to stand for variable or undetermined formulae
in P. An expression such as ?IQS>>, (£] stands for the result of substituting 2) and (£
for x0 and y0 in 91.

SKK. 2. vox.. 45. NO. 2241. O
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The significant formulae in any of our extensions of P are those of the
form

(*o)(3yo)*[*o>yo]. (8-2)

where 21 [#0, y0] is a recursion formula, arising from the relation R(m, n)
let us say. The corresponding number-theoretic theorem states that for
each natural number m there is a natural number n such that R(m, n) is
true.

The systems in W which are not valid are those in which a formula of
the form (8.2) is provable, but at the same time there is a natural number,
m say, such that, for each natural number n, R(m, n) is false. This means
to say that ~ 2f[/(m) 0, fn) 0] is provable for each natural number n. Since
(8.2) is provable, (3zo)2l[/(m)O, yQ] is provable, so that

, 0], ~ V > 0 , / 0 ] , ... (8.3)

are all provable in the system. We may simplify (8.3). For a given m we
may prove a formula of the form 5([/ ( m )0,2/0]-^W *n -^ where 23[%]
is a recursion formula. Thus we find that a necessary and sufficient
condition for a system of W to be valid is that for no recursion formula
58 [x0] are all of the formulae

. - (8.4)

provable. An important consequence of this is that, if

are recursion formulae, if

(3xo)%1[xo]v...v(3xo)Vn[xo\ (8.5)

is provable in C, and C is valid, then we can prbve 2fr[/
(a)0] in C for some

natural numbers r, a, where 1 < r < n. Let us define £)r to be the formula

and then define &r[x0]. recursively by the condition that ^[ZQ] is
and Qr+1[x0] be Sgv> wr+1[x0]. Now I say that
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is provable for 1 < r ^ ? i . It is clearly provable for r= 1: suppose it
to be provable for a given r. We can prove

o, fy0],

from which we obtain

er[2/0] D (3*0)((Db[a:0, y0]. <*.[</0]) v (Db[/z0, fy0]

and

%+1[y0] => (3so)((Db[a;o, y0]. @r[y0]) v

These together with (8.1) yield

which is sufficient to prove (8 . 6) for r + 1 - Now, since (8. 5) is provable
in C, (3xo)<in[xQ] must also be provable, and, since C is valid, this means
that S?l[/

(wi)0] must be provable for some natural number m. From (8.1)
and the definition of @n[a;0] we see that this implies that %[fa)0] is
provable for some natural numbers a and r, 1 ̂ .r ^?i.

To any system C of W we can assign a primitive recursive relation
Pcim, n) with the intuitive meaning "m is the G.R. of a proof of the
formula whose G.R. is n". We call the corresponding recursion formula
Proofc[a;0, yQ] (i.e. Proofc[/

(m)0, /(n)0] is provable when Pc(w, n) is true,
and its negation is provable otherwise). We can now explain what is the
relation of a system C to its predecessor C. The set of axioms which we
adjoin to P to obtain C consists of those adjoined in obtaining C, together
with all formulae of the form

(3x0) Proofed, ^ 0 ] D g , (8.7)

where m is the G.R. of §.
We want to show that a contradiction can be obtained by assuming C

to be invalid but C to be valid. Let us suppose that a set of formulae of
the form (8.4) is provable in C. Let 2il5 2(2, ..., %k be those axioms of
C of the form (8.7) which are used in the proof of (3#0)23[a;0]. We may
suppose that none of them is provable in C. Then by the deduction
theorem we see that

(8.8)
02
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is provable in C. Let %t be (3x0) Proofc|>0, fW>0] D §,. Then from (8.8)
we find that

(3x0) Proofc[x0) /
(mi)0] v ... v (3a0) Proofc(>0, /<»*>0] v (3x0) 23[x0]

is provable in C. It follows from a result which we have just proved
that either 53[/(c)O] is provable for some natural number c, or else
Proofc[/

(n)0. /(m<>0] is provable in C for some natural number u and some
I, 1 < I ^ k: but this would mean that $t is provable in G (this is one of the
points where we assume the validity of C) and therefore also in C, con-
trary to hypothesis. Thus 58 [/(c)0] must be provable in C ; but we are also
assuming ^ 58 [/(t) 0] to be provable in C. There is therefore a contra-
diction in C. Let us suppose that the axioms 21/, ..., 21//, of the form
(8.7), when adjoined to C are sufficient to obtain the contradiction and
that none of these axioms is that provable in C. Then

is provable in G, and if 21/ is (3&0) Proofed, / ^ O ] D 8/ then

(3x0] Proofc[rc0) /(»»i') 0] v ... v (3a;0) Proof [x0, f
nh') 0]

is provable in C. But. by repetition of a previous argument, this means
that 2i/ is provable for some I, 1 ̂ .l <&', contrary to hypothesis. This
is the required contradiction.

We may now construct an ordinal logic in the manner described on
pp. 190-193. We shall, however, carry out the construction in rather more
detail, and with some modifications appropriate to the particular case.
Each system C of our set W may be described by means of a W.F.F. Mc

which enumerates the G.R.'s of the axioms of C. There is a W.F.F. E
such that, if a is the G.R. of some proposition %, then E(MC, a) is con-
vertible to the G.R. of

(3x0) Proofc[>0, /
( a )0]D$.

If a is not the G.R. of any proposition in P , then E{Ma, a) is to be
convertible to the G.R. of 0 = 0. From E we obtain a W.F.F. K such
that K(MC, 2n+1) conv Mc(n), K(MC, 2n) conv E(MC) n). The successor
system C" is defined by K(MC) conv Ma'. Let us choose a formula O
such that G(MC, A) conv 2 if and only if the number-theoretic theorem
equivalent to " A is dual" is provable in C. Then we define AP by

( I I I \ \\ \
Ap^Xwa.Tl Xy. (2(Ck(Tn(w, y), Xmn. w(ro(2, n), CJ(3, n)},K, MP\\, a 1

\ /
This is an ordinal logic provided that P is valid.
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Another ordinal logic of this type has in effect been introduced by
Churchf. Superficially.this ordinal logic seems to have no more in common
with Aj. than that they both arise by the method which we have described,
which uses C-K ordinal formulae. The initial systems are entirely
different. However, in the relation between C and C there is an
interesting analogy. In Church's method the step from C to C is performed
by means of subsidiary axioms of which the most important (Church [2],
p. 88, lm) is almost a direct translation into his symbolism of the rule that
we may take any formula of the form (8.4) as an axiom. There are other
extra axioms, however, in Church's system, and it is therefore not unlikely
that it is in some respects more complete than AP.

There are other types of ordinal logic, apparently quite unrelated to the
type that we have so far considered. I have in mind two types of ordinal
logic, both of which can be best described directly in terms of ordinal
formulae without any reference to C-K ordinal formulae. I shall describe
here a specimen AH of one of these types of ordinal logic. Ordinal logics
of this kind were first considered by Hilbert (Hilbert [1], 183ff), and have
also been used by Tarski (Tarski [1], 395ff); see also Gbdel [1], foot-note
48".

Suppose that we have selected a particular ordinal formula Q. We shall
construct a modification Pn of the system P of Godel (see foot-note f
on p. 193. We shall say that a natural number n is a type if it is either even
or 2^—1, where Q(p, p) conv 3. The definition of a variable in P is to be
modified by the condition that the only admissible subscripts are to be the
types in our sense. Elementary expressions are then defined as in P : in
particular the definition of an elementary expression of type 0 is un-
changed. An elementary formula is defined to be a sequence of symbols
of the form %m %n, where 2(OT, %n are elementary expressions of types m,
n satisfying one of the conditions (a), (6), (c).

(a) m and n are both even and m exceeds n,

(b) m is odd and n is even,

(c) m= 2p—l, n= 2q—l, and Q(p, q) conv 2.

With these modifications the formal development of Pfi is the same as
that of P. We want, however, to have a method of associating number-
theoretic theorems with certain of the formulae of Pfi. We cannot take
over directly the association which we used in P. Suppose that G is a

f In outline Church [1], 279-280. In greater detail Church [2], Chap. X.
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formula in P interpretable as a number-theoretic theorem in the way
described in the course of constructing AP (p. 193). Then, if every type
suffix in G is doubled, we shall obtain a formula in Pa which is to be
interpreted as the same number-theoretic theorem. By the method of
§ 6 we can now obtain from Pa a formula La which is a logic formula
if Pa is valid; in fact, given D, there is a method of obtaining La, so
that there is a formula AH such that AH(C1) conv La for each ordinal
formula Cl.

Having now familiarized ourselves with ordinal logics by means of
these examples we may begin to consider general questions concerning
them.

9. Completeness questions.

The purpose of introducing ordinal logics was to avoid as far as possible
the effects of Godel's theorem. It is a consequence of this theorem,
suitably modified, that it is impossible to obtain a complete logic formula,
or (roughly speaking now) a complete system of logic. We were able,
however, from a given system to obtain a more complete one by the
adjunction as axioms of formulae, seen intuitively to be correct, but which
the Gddel theorem shows are unprovablef in the original system; from
this we obtained a yet more complete system by a repetition of the
process, and so on. We found that the repetition of the process gave us
a new system for each C-K ordinal formula. We should like to know
whether this process suffices, or whether the system should be extended
in other ways as well. If it were possible to determine about a W.F.F.
in normal form whether it was an ordinal formula, we should know for
certain that it was necessary to make extensions in other ways. In fact
for any ordinal formula A it would then be possible to find a single logic
formula L such that, if A(Q, A) conv 2 for some ordinal formula Q, then
L(A) conv 2. Since L must be incomplete, there must be formulae A for
which A (Q, A) is not convertible to 2 for any ordinal formula £2. However,
in view of the fact, proved in §7, that there is no method of determining
about a formula in normal form whether it is an ordinal formula, the
case does not arise, and there is still a possibility that some ordinal
logics may be complete in some sense. There is a quite natural way of
defining completeness.

Definition of completeness of an ordinal logic. We say that an ordinal
logic A is complete if corresponding to each dual formula A there is an
ordinal formula OA such that A(QA> A) conv2.

I In the case of P we adjoined all of the axioms (3xo) Proof [a:0, /<"*)0] D J, where m
is the G.R. of %} the Godel theorem shows that some of them are improvable in P,
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As has been explained in §2, the reference in the definition to the
existence of QA for each A is to be understood in the same naive way as
any reference to existence in mathematics.

There is room for modification in this definition: we might require
that there is a formula X such that X(A) conv £2A, X(A) being an ordinal
formula whenever A is dual. There is no need, however, to discuss the
relative merits of these two definitions, because in all cases in which we
prove an ordinal logic to be complete we shall prove it to be complete even
in the modified sense; but in cases in which we prove an ordinal logic
to be incomplete, we use the definition as it stands.

In the terminology of §6, A is complete if the class of logics A(Q) is
complete when £1 runs through all ordinal formulae.

There is another completeness property which is related to this one.
Let us for the moment describe an ordinal logic A as all inclusive if to each
logic formula L there corresponds an ordinal formula Q(L) such that
A(O(D) is as complete as L. Clearly every all-inclusive ordinal logic is
complete; for, if A is dual, then 8 (A) is a logic with A in its extent. But,
if A is complete and

, 8(2, k(w, F (Nm(r ) ) ) )+8(2 ,Nm(r , a ) ) ) \

then Ai(A) is an all inclusive ordinal logic. For, if A is in the extent of
A(QA) for each A, and we put Q(L)->QF(Q, then I say that, if B is in the
extent of L, it must be in the extent of Ai(A, ft(L>). In fact, we see that
Ai(A, £V(L)> B) is convertible to

.tU, 8(2, A(QF(L), F(Nm(r)))) +8(2, Nm(r, o ) ) \ B V

For suitable n, Nm(n)convL and then

A(QF<L>» F(Nm(n)))conv2,

Nm(n, B) conv 2,

and therefore, by the properties of F and 8

Ai(A, Qpxu, B) conv 2.

Conversely Ai(A, Clva.)> B) can be convertible to 2 only if both Nm(n, B)
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andA(QF(L), WNm(n))) are convertible to 2 for some positive integer

n; but, ifA(Qr(L), F(Nm(n)j j conv25 thenNm(n) must be a logic, and,

since Nm(n, B)conv2, B must be dual.
It should be noticed that our definitions of completeness refer only to

number-theoretic theorems. Although it would be possible to introduce
formulae analogous to ordinal logics which would prove more general
theorems than number-theoretic ones, and have a corresponding definition
of completeness, jet, if our theorems are too general, we shall find that our
(modified) ordinal logics are never complete. This follows from the
argument of § 4. If our " oracle " tells us, not whether any given number-
theoretic statement is true, but whether a given formula is an ordinal
formula, the argument still applies, and we find that there are classes of
problem which cannot be solved by a uniform process even with the help
of this oracle. This is equivalent to saying that there is no ordinal logic
of the proposed modified type which is complete with respect to these
problems. This situation becomes more definite if we take formulae
satisfying conditions {a)-(e), (/') (as described at the end of § 12) instead
of ordinal formulae; it is then not possible for the ordinal logic to be
complete with respect to any class of problems more extensive than the
number-theoretic problems.

We might hope to obtain some intellectually satisfying system of
logical inference (for the proof of number-theoretic theorems) with some
ordinal logic. Godel's theorem shows that such a system cannot be
wholly mechanical; but with a complete ordinal logic we should be able
to confine the non-mechanical steps entirely to verifications that particular
formulae are ordinal formulae.

We might also expect to obtain an interesting classification of number-
theoretic theorems according to "depth". A theorem which required an
ordinal a- to prove it would be deeper than one which could be proved by
the use of an ordinal £ less than a. However, this presupposes more than
is justified. We now define

Invariance of ordinal logics. An ordinal logic A is said to be in-
variant up to an ordinal a if, whenever Q, Cl' are ordinal formulae repre-
senting the same ordinal less than a, the extent of A(Cl) is identical with
the extent of A (ft'). An ordinal logic is invariant if it is invariant up
to each ordinal represented by an ordinal formula.

Clearly the classification into depths presupposes that the ordinal
logic used is invariant,
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Among the questions that we should now like to ask are

(a) Are there any complete ordinal logics?

(b) Are there any complete invariant ordinal logics?

To these we might have added "are all ordinal logics complete? " ; but
this is trivial; in fact, there are ordinal logics which do not suffice to
prove any number-theoretic theorems whatever.

We shall now show that (a) must be answered affirmatively. In fact,
we can write down a complete ordinal logic at once. Put

Od^Xa.[Xfmn. Dt(/(m),/

and Comp->Xwa.8[w, Od(a)V

I shall show that Comp is a complete ordinal logic.

For if, Comp(Q, A)conv2, then

ft conv Od (A)

c o n v A w m . D t ^ A r . ^ / , A(ra)), 1, m), ®(\r.r(l,

Q(m, n) has a normal form if Cl is an ordinal formula, so that then

has a normal form; this means that r ( / , A(m)j conv2 some r, i.e.
A(m)conv2. Thus, if Comp(Q, A)conv2 and Q is an ordinal formula,
then A is dual. Comp is therefore an ordinal logic. Now suppose con-
versely that A is dual. I shall show that Od(A) is an ordinal formula
representing the ordinal OJ. For

p(Ar . r ( / , A(m)), 1, m) conv9)(Ar.r(7, 2), 1, m)

conv l(m) convm,

Od(A, m, n) convDt(m, n),

i.e. Od(A) is an ordinal formula representing the same ordinal as Dt. But

Comp (Od(A), A) convS(Od(A), Od(A)) conv 2.

This proves the completeness of Comp.
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Of course Comp is not the kind of complete ordinal logic that we should
really wish to use. The use of Comp does not make it any easier to see
that A is dual. In fact, if we really want to use an ordinal logic a proof,
of completeness for that particular ordinal logic will be of little value; the
ordinals given by the completeness proof will not be ones which can easily
be seen intuitively to be ordinals. The only value in a completeness proof
of this kind would be to show that, if any objection is to be raised against
an ordinal logic, it must be on account of something more subtle than
incompleteness.

The theorem of completeness is also unexpected in that the ordinal
formulae used are all formulae representing to. This is contrary to our
intentions in constructing AP for instance; implicitly we had in mind large
ordinals expressed in a simple manner. Here we have small ordinals
expressed in a very complex and artificial way.

Before trying to solve the problem (6), let us see how far AP and AH are
invariant. We should certainly not expect AP to be invariant, since the
extent of AP(D) will depend on whether Q, is convertible to a formula of the
form H(A): but suppose that we call an ordinal logic A " C-K invariant up
to a" if the extent of A(H(A)) is the same as the extent of A(H(H)\ when-
ever A and B are C-K ordinal formulae representing the same ordinal less
than a. How far is AP C-K invariant ? It is not difficult to see that it is
C-K invariant up to any finite ordinal, that is to say up to w. It is also
C-K invariant up to o)-\-l, as follows from the fact that the extent of

Ap(H[Xufx.u{*)))

is the set-theoretic sum of the extents of

AP(H(Xufx.R(l))y AP(H(\ufx.R(2)f), ....

However, there is no obvious reason for believing that it is C-K invariant
up to to-f 2, and in fact it is demonstrable that this is not the case (see the
end of this section). Let us find out what happens if we try to prove
that the extent of

is the same as the extent of
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where Aw/r.2t(R1) and Xufx.u(R2) are two C-K ordinal formulae repre-

senting u). We should have to prove that a formula interpretable as a

number-theoretic theorem is provable in C [Sue (Xufx. ^ ( R j j J if, and

only if, it is provable in CI Sue (Xufx. u (R2) J 1. Now C Sue (Xufx. u (Rx) j J

is obtained from C[Xufx .uiR-J] by adjoining all axioms of the form

(3xQ)?voofC[Kufx.mi)][x0, / ^ 0 ) D S , ( 9 . 1 )

where m is the G.R. of $, and C[SuG[Xufx.u{R2)
yj J is obtained from

C[Xufx .u(R2)] by adjoining all axioms of the form

(3*0) Proofot^.^R,,)^, / ^ 0 ] D g. (9 . 2)

The axioms which must be adjoined to P to obtain C[Xufx .uiR-^] are
essentially the same as those which must be adjoined to obtain the system
C[Xufx.u(R2)]: however the rules of procedure which have to be applied
before these axioms can be written down are in general quite different in the
two cases. Consequently (9.1) and (9.2) are quite different axioms,
and there is no reason to expect their consequences to be the same.
A proper understanding of this will make our treatment of question
(6) much more intelligible. See also footnote J on page 193.

Now let us turn to AH. This ordinal logic is invariant. Suppose that Cl,
Cl' represent the same ordinal, and suppose that we have a proof of a number-
theoretic theorem G in P^. The formula expressing the number-theoretic
theorem does not involve any odd types. Now there is a one-one corre-
spondence between the odd types such that if 2m— 1 corresponds to 2m' — 1
and In— 1 to 2n' — 1 then Q(m, n) conv 2 implies Q'(m', n') conv 2. Let us
modify the odd type-subscripts occurring in the proof of G, replacing each
by its mate in the one-one correspondence. There results a proof in P^,
with the same end formula G. That is to say that if G is provable in Pf i it
is provable in PQ,. A H is invariant.

The question (b) must be answered negatively. Much more can be
proved, but we shall first prove an even weaker result which can be
established very quickly, in order to illustrate the method.

I shall prove that an ordinal logic A cannot be invariant and have the
property that the extent of A (ft) is a strictly increasing function of the
ordinal represented by Cl. Suppose that A has these properties; then we
shall obtain a contradiction. Let A be a W.F.F. in normal form and with-
out free variables, and consider the process of carrying out conversions on
A(l) until we have shown it convertible to 2, then converting A(2) to 2,
then A (3) and so on: suppose that after r steps we are still performing the
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conversion on A(mr). There is a formula Jh such that Jh(A, r) eonvmr

for each positive integer r. Now let Z be a formula such that, for each
positive integer n, Z(n) is an ordinal formula representing to", and suppose

B to be a member of the extent of AI Sue (Lim(Z))) but not of the extent

of A(Lira(Z)). Put

then K:!: is a complete logic. For, if A is dual, then

Suc(Lim(Ar.Z(jh(AJ ?•)

represents the ordinal o>w+l, and therefore K*(A)conv2; but, if A(c)
is not convertible to 2, then

Suc(Lim(Ar.Z(jh(A,r))))

represents an ordinal not exceeding a / + l , and K*(A) is therefore not
convertible to 2. Since there are no complete logic formulae, this proves
our assertion.

We may now prove more powerful results.

Incompleteness theorems. (A) If an ordinal logic A is invariant up to
an ordinal a, then for any ordinal formula Q representing an ordinal /?,
/3<a, the extent of A(Q) is contained in the (set-theoretic) sum of the
extents of the logics A(P), where P is finite.

(B) If an ordinal logic A is C-K invariant up to an ordinal a, then for
any C-K ordinal formula A representing an ordinal /?, jS < a, the extent of

A[H(A)) is contained in the (set-theoretic) sum of the extents of the

logics A (^(F)) , where F is a C-K ordinal formula representing an ordinal

less than w2.

Proof of (A). It is sufficient to prove that, if Cl represents an ordinal y,
no ^ y < a, then the extent of A(Q) is contained in the set-theoretic sum of
the extents of the logics A(Q'), where Q' represents an ordinal less than y.
The ordinal y must be of the form yo+/>, where p is finite and represented by
P say, and y0 is not the successor of any ordinal and is not less than co.
There are two cases to consider; y0 = co and y0 ^ 2OJ. In each of them we
shall obtain a contradiction from the assumption that there is a W.F.F.
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B such that A (Q, B) conv 2 whenever Q represents y, but is not convertible
to 2 if Q. represents a smaller ordinal. Let us take first the case y0 > 2w.
Suppose that y0 = co-\-yi, and that Qx is an ordinal formula representing
yv Let A be any W.F.F. with a normal form and no free variables, and let
Z be the class of those positive integers which are exceeded by all integers
n for which A(n) is not convertible to 2. Let E be the class of integers
2p such that Q(p, n) conv 2 for some n belonging to Z. The class E,
together with the class Q of all odd integers, is constructively enumerable.
It is evident that the class can be enumerated with repetitions, and since
it is infinite the required enumeration can be obtained by striking out the
repetitions. There is, therefore, a formula En such that En(Q, A, r) runs
through the formulae of the class E-\-Q without repetitions as ;• runs
through the positive integers. We define

Rt—>\wamn. Sum(~Dt, w, En (w, u, m), En(w, a,

Then Rt{Q.x, A) is an ordinal formula which represents yQ if A is dual, but
a smaller ordinal otherwise. In fact

Rt(Ql3 A, m, n) conv {Sum(Dt, ^ ( E n ^ , A, m), En(Gls A, n)).

Now, if A is dual, E-\-Q includes all integers m for which

{Sum(Dt, QJ} (m, m) conv 3.

(This depends on the particular form that we have chosen for the formula
Sum.) Putting " En(Ql3 A, p) conv q " for M(p, q), we see that condition
(7.4) is satisfied, so that Rt(Q1, A) is an ordinal formula representing y0.
But, if A is not dual, the set E-\-Q consists of all integers m for which

(Sum(Dt, Clj)} (m, r) conv 2,

where r depends only on A. In this case Rt(Qx, A) is an ordinal formula

representing the same ordinal as Inf(Sum(Dt, Qx), rV and this is
smaller than y0. Now consider K:

K-»Aa.A(Sum(Rt(a1> A), P ) ,

If A is dual, K(A) is convertible to 2 since Sum (Rt(Ql5 A), p ) represents y.
But, if A is not dual, it is not convertible to 2, since Sumf Rt(Ql5 A), P )
then represents an ordinal smaller than y. In K we therefore have a
complete logic formula, which is impossible.

Now we take the case y0 = o>. We introduce a W.F.F. Mg such that if
n is the D.N. of a computing machine i t , and if by the m-th complete
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configuration of .11 the figure 0 has been printed, then Mg(n, m) is
convertible to Xpq.Al(4:(P, 2p-\-2q), 3, i\ (which is an ordinal formula
representing the ordinal 1), but if 0 has not been printed it is convertible to
Xpq.p(q, I, 4) (which represents 0). Now consider

M->Aw.AfSum(Lim(Mg(»))> P ) , B

If the machine never prints 0, then Lim(Ar.Mg(n, rU represents cu and

Sum (Lim(Mg(n)J, Pj represents y. This means that M(n) is convert-

ible to 2. If, however,. IInever prints 0, Sum(Lim( Mg(n)), P) represents

a finite ordinal and M(n) is not convertible to 2. In M we therefore
have means of determining about a machine whether it ever prints 0,
which is impossible! (Turing [1], §8). This completes the proof of (A).

Proof of (B). It is sufficient to prove that, if C represents an ordinal y,
a>2<y<a, then the extent of A(H(Cn is included in the set-theoretic sum
of the extents of A (H(G)\ where G represents an ordinal less than y. We
obtain a contradiction from the assumption that there is a formula B
which is in the extent of A(H(G)J if G represents y, but not if it
represents any smaller ordinal. The ordinal y is of the form S+aj2+f,
where f < u>2. Let D be a C-K ordinal formula representing 8 and

Xufx .Q[u,f, A(u, f, x)j one representing a-J-£ whenever A represents a.
We now define a formula Hg. Suppose that A is a W.F.F. in normal

form and without free variables; consider the process of carrying out con-
versions on A(l) until it is brought into the form 2, then converting A(2) to
2, then A(3), and so on. Suppose that at the r-th step of this process we
are doing the nr-th. step in the conversion of A(mP). Thus, for instance, if
A is not convertible to 2, mr can never exceed 3. Then Hg(A, r) is to be
convertible to A/./(mr, nr) for each positive integer r. Put

Sq->Xdmn .n( Sue, m[Xaufx.u\Xy.y(Sue, a{u, f, %))), d(u, f, x)} )

M->Xaufx.Q(u,f, w

(a), B) ,

t This part of the argument can equally well be based on the impossibility of deter-
mining about two W.F.F. whether they are interconvertible. (Church [3], 363.)
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then I say that K̂  is a complete logic formula. Sq (D, m, n) is a C-K
ordinal formula representing 8+ma>-\-n, and therefore Hg^A, r, Sq(DM
represents an ordinal £r which increases steadily with increasing r, and
tends to the limit S+a>2 if A is dual. Further

Hg(A, r, Sq(D)) < H g ( A , 8(r), Sq(D))

for each positive integer r. Therefore Xufx ,u[\y .Hgi A, y, Sq(D)M is

a C-K ordinal formula and represents the limit of the sequence £1} £2, £3, ....
This is 8+o>2 if A is dual, but a smaller ordinal otherwise. Likewise
M(A) represents y if A is dual, but is a smaller ordinal otherwise. The

formula B therefore belongs to the extent of A(H(M(A)J ) if and only

if A is dual, and this implies that Kx is a complete logic formula, as was
asserted. But this is impossible and we have the required contradiction.

As a corollary to (A) we see that AH is incomplete and in fact that the
extent of AH(Dt) contains the extent of AH(C1) for any ordinal formula Cl.
This result, suggested to me first by the solution of question (6), may also
be obtained more directly. In fact, if a number-theoretic theorem can be
proved in any particular Pn, it can also be proved in •̂ >AWJji.?«(n,/,4)- The
formulae describing number-theoretic theorems in P do not involve more
than a finite number of types, type 3 being the highest necessary. The
formulae describing the number-theoretic theorems in any PQ, will be
obtained by doubling the type subscripts. Now suppose that we have a
proof of a number-theoretic theorem G in Pft and that the types occurring
in the proof are among 0, 2, 4, 6, tv t2, t3, .... We may suppose that
they have been arranged with all the even types preceding all the odd
types, the even types in order of magnitude and the type 2m— 1 preceding
2n— 1 if ft(m, n) conv 2. Now let each tT be replaced by 10+2r through-
out the proof of G. We thus obtain a proof of G in PKmn,{n,i,^-

As with problem (a), the solution bf problem (6) does not require the
use of high ordinals [e.g. if we make the assumption that the extent of
A(Q) is a steadily increasing function of the ordinal represented by Q we
do not have to consider ordinals higher than tu-f-2]. However, if we
restrict what we are to call ordinal formulae in some way, we shall have
corresponding modified problems (a) and (6); the solutions will presumably
be essentially the same, but will involve higher ordinals. Suppose, for
example, that Prod is a W.F.F. with the property that Prod(Q1} ft2) is an
ordinal formula representing ax a2 when ill} Cl2

 a r e ordinal formulae repre-
senting alf a2 respectively, and suppose that we call a W.F.F. a 1-ordinal
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formula when it is convertible to the form Sum(Prod(Q, Dt), P Y where
Q, P are ordinal formulae of which P represents a finite ordinal. We may
define 1-ordinal logics, 1-completeness and 1-invariance in an obvious way,
and obtain a solution of problem (6) which differs from the solution in the
ordinary case in that the ordinals less than o»2 take the place of the finite
ordinals. More generally the cases that I have in mind are covered by
the following theorem.

Suppose that we have a class V of formulae representing ordinals in
some manner which we do not propose to specify definitely, and a subsctf
U of the class F such that:

(i) There is a formula 0 such that if T enumerates a sequence of members
of U representing an increasing sequence of ordinals, then O(T) is a member
of U representing the limit of the sequence.

(ii) There is a formula E such that E(m, n) is a member of U for each
pair of positive integers m, n and, if it represents emn, then e m n < em^n> if
either m < m' or m = m', n < n'.

(iii) There is a formula G such that, if A is a member of £/, then G(A) is
a member of U representing a larger ordinal than does A, and such that
G^E(m, n)j always represents an ordinal not larger than emn+1.

We define a F-ordinal logic to be a W.F.F. A such that A(A) is a logic
whenever A belongs to F. A is F-invariant if the extent of A (A) depends
only on the ordinal represented by A. Then it is not possible for a
F-ordinal logic A to be F-invariant and have the property that, if Ct

represents a greater ordinal than C2 (Cj and C2 both being members of U),
then the extent of A(Ci) is greater than the extent of A(C2).

We suppose the contrary. Let B be a formula belonging to the extent

of A ( (<D(Ar.E(r, l ) ) ) j but not to the extent of A(<l>(Ar. E(r, 1))),

and let K'->Aa.A(G(o(Ar.Hg(a, r, E ) ) 3 B V

Then K' is a complete logic. For

Hg(A, r, E) convE(mr , np).

f The subset U wholly supersedes V in what follows. The introduction of V serves
to emphasise the fact that the set of ordinals represented by members of U may have gaps.
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E(mr, nr) is a sequence of F-ordinal formulae representing an increasing

sequence of ordinals. Their limit is represented by <b(Xr. Hg(A; r, E)) ;

let us see what this limit is. First suppose that A is dual: then mr tends to

infinity as r tends to infinity, and Of Xr .Hg(A, r, E n therefore represents

the same ordinal as $\Xr.E(r, l)\ In this case we must have

K'(A)conv2.

Now suppose that A is not dual: mr is eventually equal to some constant

number, a say, and O^Ar .Hg (A, r, E) J represents the same ordinal

as Of Xr. E(a, r)\ which is smaller than that represented by <Df Xr. E(r, 1) Y

B cannot therefore belong to the extent of A( Gf O(Ar.Hg(A, r, E) ) j j ,

and K'(A) is not convertible to 2. We have proved that K' is a complete
logic, which is impossible.

This theorem can no doubt be improved in many ways. However, it
is sufficiently general to show that, with almost any reasonable notation
for ordinals, completeness is incompatible with invariance.

We can still give a certain meaning to the classification into depths with
highly restricted kinds of ordinals. Suppose that we take a particular
ordinal logic A and a particular ordinal formula ¥ representing the ordinal
a say (preferably a large one), and that we restrict ourselves to ordinal
formulae of the form Inf (T, a). We then have a classification into depths,
but the extents of all the logics which we so obtain are contained in the
extent of a single logic.

We now attempt a problem of a rather different character, that of the
completeness of AP. I t is to be expected that this ordinal logic is complete.
I cannot at present give a proof of this, but I can give a proof that it is
complete as regards a simpler type of theorem than the number-theoretic
theorems, viz. those of form "6(x) vanishes identically", where 6(x) is
primitive recursive. The proof will have to be much abbreviated since we
do not wish to go into the formal details of the system P. Also there is a
certain lack of definiteness in the problem as at present stated, owing to
the fact that the formulae 0, E, MP were not completely defined. Our
attitude here is that it is open to the sceptical reader to give detailed
definitions for these formulae and then verify that the remaining details
of the proof can be filled in, using his definition. It is not asserted that
these details can be filled in whatever be the definitions of 0, E, Mv

consistent with the properties already required of them, only that they
can be filled in with the more natural definitions.

SER. 2. vol.. 45. NO. 2242. P
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I shall prove the completeness theorem in the following form. If
23 [x0] is a recursion formula and if 95 [0], 23 [/0],... are all provable in P, then
there is a C-K ordinal formula A such that {xo))8[xo] is provable in the
system PA of logic obtained from P by adjoining as axioms all formulae
whose G.R.'s are of the form

, n), m(3, n)\, K, MP, r)

(provided they represent propositions).
First let us define the formula A. Suppose that D is a W.F.F. with the

property that D(n) conv 2 if 23 [/(w-1) 0] is provable in P, but D(n) conv 1
if '—' S[/(' l-1)0] is provable in P {P is being assumed consistent). Let 0
be defined by

\Xvu.u[v{v, u)\l(Xvu.u( v(v, u) I),

and let Vi be a formula with the properties

Vi(2)convAw.w(Suc, 17),

Vi(l) convXu.u(l, 0(Suc)Y

The existence of such a formula is established in Kleene [1], corollary on
p. 220. Now put

A*->Xufx.u\Xy.Vi(D(y), y, u, f,xj\,

A ̂  Sue (A*)-

I assert that A:;:, A are C-K ordinal formulae whenever it is true that
23[0], 23[/0]3 ... are all provable in P. For in this case A* is Xufx.u(R),
where

R^Xy.Vi(D{y),y, u, f, x),

and then

Xufx.R(n) convXufx. Vi^D(n), n, u, / , x\

convXufx.Vi(2, n, u, f, x)

conv Xufx. {Xn.n($xic, U)}(n, u, f. x)

convXufx.n(Sue, U, u f, x), which is a C-K ordinal formula,
and

Xufx. 8(n, Sue, U, u, f, x) conv Sue [Xufx. n(Suc, U, u, f, x)\
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These relations hold for an arbitrary positive integer n and therefore A*
is a C-K ordinal formula [condition (9) p. 181]: it follows immediately
that A is also a C-K ordinal formula. It remains to prove that (%0))8[x0]
is provable in PA. To do this it is necessary to examine the structure of
A* in the case in which (x0) 23 [x0] is false. Let us suppose that ^ 23 [/(a~1} 0]
is true, so that D (a) conv 1, and let us consider B where

B^Aw/a;.Vi(D(a), a, u, f, x).

If A* was a C-K ordinal formula, then B would be a member of its
fundamental sequence; but

B convAufx.Vi(l, a, u, f, x)

conv Aufx. JAit. u(I, 0(Sue)))(a, u, f, x)

convAufx.®(Sue, u, f, x)

conv Aufx. \Au. u f 0 (u) J | (Sue, u, f, x)

convAw/cc .Suc( 0(Suc), u, f,xj

conv Sue [Aufx.® (Sue, u, f, x)j

convSuc(B). (9.3)

This, of course, implies that B < B and therefore that B is no C-K ordinal
formula. This, although fundamental in the possibility of proving our
completeness theorem, does not form an actual step in the argument.
Roughly speaking, our argument amounts to this. The relation (9.3)
implies that the system PB is inconsistent and therefore that PA* is
inconsistent and indeed we can prove in P (and a fortiori in PA) that
r w (xo)®[xo\ implies the inconsistency of PA*. On the other hand in PA

we can prove the consistency of PA*. The inconsistency of PB is proved
by the GOdel argument. Let us return to the details.

The axioms in PB are those whose G.R.'s are of the form

B(Awm.m(ra(2, n), GJ(3, n)\, K, MP, r ] .
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When we replace B, by Suc(B), this becomes

SucfB, Xmn.m( W(2, n), w(3, n)), K, MP, rj

conv i n B[Xmn.m(m(2, n), w(Z, n)), K, MP> r) I
\ \ / /

convB(A?«.7i.??i(n7(2, n), m{3, n)), K,MP) p)

if rconvj2p+l,

/ / , \ , \ \
c o n v E l B{Amn.7n[7D{21 n)} io (3 , n ) j , A , MP\y p 1

if r conv 2p.

When we remember the essential property of the formula E, we see that
the axioms of PB include all formulae of the form

where q is the G.R. of the formula %.
Let b be the G.R. of the formula %.

~ (3.T0)(32/0){ProofpB[a;0) y0]. Sb[z0) z0,

Sb[a;0, yQ, zQ] is a particular recursion formula such that Sb[/(/)O, /(wi)0,/(n) 0]
holds if and only if n is the G.R. of the result of substituting/(m)0 for z0 in
the formula whose G.R. is I at all points where z0 is free. Let p be the G.R.
of the formula @.

- (=x0)(3y0){Pvoo^B[xQ, yQ]. Sb [/WO, / ^ 0 , yj}. (6)

Then we have as an axiom in P

and we can prove in Pk

W(Sb [/(">03 /(»>0, a i J s ^ ^ O } , (9.4)

since £ is the result of substituting/(6) 0 for z0 in %; hence

(9.5)

is provable in P. Using (9.4) again, we see that @ can be proved in PB.
But, if we can prove (S in PB, then we can prove its provability in PB, the
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proof being in P ; i.e. we can prove

(3a:0)ProofPB[>0,/(*)()]

in P (since p is the C4.R. of §). But this contradicts (9 . 5), so that, if

is true, we can prove a contradiction in PB or in Pk*. Now I assert that
the whole argument up to this point can be carried through formally in
the system P, in fact, that, if c is the G.R. of ~ (0 = 0), then

~ (xQ) 85[a:0) D (3t;0) ProofpA* [v0, /<«>0] (9. 6)

is provable in P. I shall not attempt to give any more detailed proof of
this assertion.

The formula

{3xQ) ProofpA* [x0, f^Q] D ~ (0 = 0) (9.7)

is an axiom in PA. Combining (9 . 6), (9 . 7) we obtain (a;0) 23[#0] in PA.
This completeness theorem as usual is of no value. Although it shows,

for instance, that it is possible to prove Fermat's last theorem with AP (if
it is true) yet the truth of the theorem would really be assumed by taking
a certain formula as an ordinal formula.

That Ap is not invariant may be proved easily by our general theorem;
alternatively it follows from the fact that, in proving our partial complete-
ness theorem, we never used ordinals higher than tu + 1. This fact can
also be used to prove that AP is not C-K invariant up to to+ 2.

10. The continuum hypothesis. A digression.

The methods of § 9 may be applied to problems which are constructive
analogues of the continuum hypothesis problem. The continuum
hypothesis asserts that 2*o = ^v i n other words that, if u>x is the smallest
ordinal a greater than o> such that a series with order type a cannot be
put into one-one correspondence with the positive integers, then the
ordinals less than wx can be put into one-one correspondence with the sub-
sets of the positive integers. To obtain a constructive analogue of this
proposition we may replace the ordinals less than OJX either by the ordinal
formulae, or by the ordinals represented by them; we may replace the
subsets of the positive integers either by the computable sequences of
figures 0, 1, or by the description numbers of the machines which compute
these sequences. In the manner in which the correspondence is to be set
up there is also more than one possibility. Thus, even when we use only
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one kind of ordinal formula, there is still great ambiguity concerning
what the constructive analogue of the continuum hypothesis should be.
I shall prove a single result in this connection f. A number of others
may be proved in the same way.

We ask " Is it possible to find a computable function of ordinal formulae
determining a one-one correspondence between the ordinals represented by
ordinal formulae and the computable sequences of figures 0, 1? " More
accurately, " Is there a formula F such that if Cl is an ordinal formula and
n a positive integer then F(Q, n) is convertible to 1 or to 2, and such that
F(Q, n) convF(Q', n) for each positive integer n, if and only if Cl and ft'
represent the same ordinal?" The answer is "No", as will be seen to
be a consequence of the following argument: there is no formula F such
that F(Q) enumerates one sequence of integers (each being 1 or 2) when £1
represents w and enumerates another sequence when £1 represents 0. If
there is such an F, then there is an a such that F(Q, a) conv (Dt, a) if Cl
represents ID but F(Q, a) and F(Dt, a) are convertible to different integers
(1 or 2) if Q represents 0. To obtain a contradiction from this we introduce
a W.F.F. Gm not unlike Mg. If the machine i t whose D.N. is n has
printed 0 by the time the'm-th complete configuration is reached then

Gm(n, m) convAmw. m(n, I, 4);

otherwise Gm (n, m) convXpq .Al(4:(P, 2p-\-2q), 3, 4Y Now consider

F(Dt, a)andF(Lim(Gm(n)Y a j . If It never prints 0,Lim(Gm(n)) repre-

sents the ordinal a>. Otherwise it represents 0. Consequently these two

formulae are convertible to one another if and only if i t never prints 0.

This gives us a means of determining about any machine whether it ever

prints 0, which is impossible.
Results of this kind have of course no real relevance for the classical

continuum hypothesis.

11. The purpose of ordinal logics.

Mathematical reasoning may be regarded rather schematically as
the exercise of a combination of two faculties J, which we may call
intuition and ingenuity. The activity of the intuition consists in making
spontaneous judgments which are not the result of conscious trains

f A suggestion to consider this problem came to me indirectly from F. Bernstein.
A related problem was suggested by P. Bernays.

% We are leaving out of account that most important faculty which distinguishes topics
of interest from others; in fact, we are regarding the function of the mathematician as
simply to determine the truth or falsity of propositions.
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of reasoning. These judgments are often but by no means invariably
correct (leaving aside the question what is meant by "correct").
Often it is possible to find some other way of verifying the correctness of an
intuitive judgment. We may, for instance, judge that all positive integers
are uniquely factorizable into primes; a detailed mathematical argument
leads to the same result. This argument will also involve intuitive judg-
ments, but they will be less open to criticism than the original judgment
about factorization. I shall not attempt to explain this idea of "in-
tuition" any more explicitly.

The exercise of ingenuity in mathematics consists in aiding the intuition
through suitable arrangements of propositions, and perhaps geometrical
figures or drawings. It is intended that when these are really well
arranged the validity of the intuitive steps which are required cannot
seriously be doubted.

The parts played by these two faculties differ of course from occasion
to occasion, and from mathematician to mathematician. This arbitrariness
can be removed by the introduction of a formal logic. The necessity for
using the intuition is then greatly reduced by setting down formal rules for
carrying out inferences which are always intuitively valid. When working
with a formal logic, the idea of ingenuity takes a more definite shape. In
general a formal logic, will be framed so as to admit a considerable variety
of possible steps in any stage in a proof. Ingenuity will then determine
which steps are the more profitable for the purpose of proving a particular
proposition. In pre-GOdel times it was thought by some that it would
probably be possible to carry this programme to such a point that all the
intuitive judgments of mathematics could be replaced by a finite number
of these rules. The necessity for intuition would then be entirely
eliminated.

In our discussions, however, we have gone to the opposite extreme and
eliminated not intuition but ingenuity, and this in spite of the fact that our
aim has been ;n much the same direction. We have been trying to see how
far it is possible to eliminate intuition, and leave only ingenuity. We do
not mind how much ingenuity is required, and therefore assume it to be
available in unlimited supply. In our metamathematical discussions we
actually express this assumption rather differently. We are always able
to obtain from the rules of a formal logic a method of enumerating the
propositions proved by its means. We then imagine that all proofs
take the form of a search through this enumeration for the theorem for
which a proof is desired. In this way ingenuity is replaced by patience.
In these heuristic discussions, however, it is better not to make this
reduction.
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In consequence of the impossibility of finding a formal logic which wholly
eliminates the necessity of using intuition, we naturally turn to "non-
constructive " systems of logic with which not all the steps in a proof are
mechanical, some being intuitive. An example of a non-constructive logic
is afforded by any ordinal logic. When we have an ordinal logic, we are
in a position to prove number-theoretic theorems by the intuitive steps of
recognizing formulae as ordinal formulae, and the mechanical steps of
carrying out conversions. What properties do we desire a non-constructive
logic to have if we are to make use of it for the expression of mathematical
proofs ? We want it to show quite clearly when a step makes use of intui-
tion, and when it is purely formal. The strain put on the intuition should
be a minimum. Most important of all, it must be beyond all reasonable
doubt that the logic leads to correct results whenever the intuitive steps
are correctf. It is also desirable that the logic shall be adequate for the
expression of number-theoretic theorems, in order that it may be used in
metamathematical discussions (cf. §5).

Of the particular ordinal logics that we have discussed, AH and AP cer-
tainly will not satisfy us. In the case of AH we are in no better position than
with a constructive logic. In the case of AP (and for that matter also AH)
we are by no means certain that we shall never obtain any but true results,
because we do not know whether all the number-theoretic theorems provable
in the system P are true. To take AP as a fundamental non-constructive
logic for metamathematical arguments would be most unsound. There
remains the system of Church which is free from these objections. It is
probably complete (although this would not necessarily mean much) and
it is beyond reasonable doubt that it always leads to correct results J. In
the next section I propose to describe another ordinal logic, of a very
different type, which is suggested by the work of Gentzen and which
should also be adequate for the formalization of number-theoretic theorems.
In particular it should be suitable for proofs of metamathematical theorems
(cf. §5).

t This requirement is very vague. It is not of course intended that the criterion of
the correctness of the intuitive steps be the correctness of the final result. The meaning
becomes clearer if each intuitive step is regarded as a judgment that a particular proposi-
tion is true. In the case of an ordinal logic it is always a judgment that a formula is an
ordinal formula, and this is equivalent to judging that a number-theoretic proposition is
true. In this case then the requirement is that the reputed ordinal logic is an ordinal logic.

J This ordinal logic arises from a certain system Co in essentially the same way as
Aj> arose from P. By an argument similar to one occurring in § 8 we can show that the
ordinal logic leads to correct results if and only if Co is valid; the validity of Co is proved
in Church [1], making use of the results of Church and Rosser [1].
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12. Gentzen type ordinal logics.

In proving the consistency of a certain system of formal logic Gentzen
(Gentzen [1]) has made use of the principle of transfinite induction for
ordinals less than e0, and has suggested that it is to be expected that trans -
finite induction carried sufficiently far would suffice to solve all problems of
consistency. Another suggestion of basing systems of logic on transfinite
induction has been made by Zermelo (Zermelo [1]). In this section I
propose to show how this method of proof may be put into the form of a
formal (non-constructive) logic, and afterwards to obtain from it an
ordinal logic.

We can express the Gentzen method of proof formally in this way.
Let us take the system P and adjoin to it an axiom 2to with the intuitive
meaning that the W.F.F. Q. is an ordinal formula, whenever we feel certain
that Q is an ordinal formula. This is a non-constructive system of logic
which may easily be put into the form of an ordinal logic. By the method
of § 6 we make correspond to the system of logic consisting of P with the
axiom 3fo adjoined a logic formula La: Ln is an effectively calculable
function of Cl, and there is therefore a formula A^1 such that A .̂1 (£}) conv Ln
for each formula 12. A^1 is certainly not an ordinal logic unless P is valid,
and therefore consistent. This formalization of Gentzen's idea would
therefore not be applicable for the problem with which Gentzen himself
was concerned, for he was proving the consistency of a sj'stem weaker than
P. However, there are other ways in which the Gentzen method of proof
can be formalized. I shall explain one, beginning by describing a certain
logical calculus.

The symbols of the calculus are/, x,x, v 0, S, R, F, A, E, \, ®, !, ( , ) , = ,
and the comma ", ". For clarity we shall use various sizes of brackets
(,) in the following. We use capital German letters to stand for variable
or undetermined sequences of these symbols.

It is to be understood that the relations that we are about to define hold
only when compelled to do so by the conditions that we lay down. The
conditions should be taken together as a simultaneous inductive definition
of all the relations involved.

Suffixes.

1 is a suffix* If © is a suffix then ©j is a suffix.

Indices.
1 is an index. If 3 is an index then 2tl is an index.

Numerical variables.

If © is a suffix then x& is a numerical variable.
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Functional variables.

If © is a suffix and 3 is an index, then /<S3 is a functional variable of
index 3.

Arguments.

(,) is an argument of index x. If (%) is an argument of index 3 and X is
a term, then (2l£.) is an argument of index 31.

Numerals.

0 is a numeral.
If 91 is a numeral, then S(, 91,) is a numeral.
In metamathematical statements we shall denote the numeral in which

8 occurs r times by 8{r)(, 0,).

Expressions of a given index.

A functional variable of index 3 is an expression of index 3.
R, S are expressions of index m , u respectively.
If 91 is a numeral, then it is also an expression of index *.
Suppose that © is an expression of index 3, Jj one of index S1 and $ one

of index 31 1 1; then (F@) and (A©) are expressions of index 3, while
and (@ | S?) and (@O$) and (@ ! Sp ! $) are expressions of index 31.

Function constants.

An expression of index 3 in which no functional variable occurs is a
function constant of index 3. If in addition R does not occur, the ex-
pression is called a primitive function constant.

Terms.

0 is a term.
Every numerical variable is a term.
If @ is an expression of index 3 and (21) is an argument of index 3, then

is a term.

Equations.

If % and X' are terms, then % — X' is an equation.

Provable equations.

We define what is meant by the provable equations relative to a given
set of equations as axioms.
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(a) The provable equations include all the axioms. The axioms are of
the form of equations in which the symbols F, A, E, |, ©, ! do not appear.

(6) If © is an expression of index 31 1 and (31) is an argument of index 3,
then

is a provable equation.

(c) If® is an expression of index 31, and (2J) is an argument of index 3,
then

is a provable equation.

(d) If ® is an expression of index 3, and (2() is an argument of index 3,
then

is a provable equation.

(e) If @ is an expression of index 3 and J£> is one of index 31, and (51)
is an argument of index 3, then

is a provable equation.

(/) If 9t is an expression of index 1
J then 9fl(,) = 91 is a provable equation.

(g) If @ is an expression of index 3 and $ one of index 3111, and (2J) an
argument of index 31, then

and {®<D&)(%8(,x1,),) = &(Wxv S(,xv),

are provable equations. If in addition fy is an expression of index 3 1 and

is provable, then

and

are provable.
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(h) If X = X' and U = It' are provable, where X, X', U and U' are terms,
then U' = U and the result of substituting U' for U at any particular
occurrence in X—X' are provable equations.

(i) The result of substituting any term for a particular numerical
variable throughout a provable equation is provable.

(j) Suppose that @, ©' are expressions of index S1, that (2() is an
argument of index 3 not containing the numerical variable £ and that
@(2f0,) = ©'(2(0,) is provable. Also suppose that, if we add

®{%3c,) = &{%$,)

to the axioms and restrict (i) so that it can never be applied to the numerical
variable £, then

becomes a provable equation; in the hypothetical proof of this equation
this rule (j) itself may be used provided that a different variable is chosen
to take the part of 33.

Under these conditions ©(2(3:,) = ©'(2(3:,) is a provable equation.

(k) Suppose that ©, ©', So are expressions of index S1, that (2() is an
argument of index 3 not containing the numerical variable •£ and that

©(2(0,) = ©'(2(0,) and R(, S?(%S(, £ , ) , ) , 8(, £,),) = 0

are provable equations. Suppose also that, if we add

@(2Up(%Sf (,£,),)) = © '

to the axioms, and again restrict (i) so that it does not apply to £, then

(12.1)

becomes a provable equation; in the hypothetical proof of (12.1) the rule
(k) may be used if a different variable takes the part of 3E.

Under these conditions (12.1) is a provable equation.
We have now completed the definition of a provable equation relative

to a given set of axioms. Next we shall show how to obtain an ordinal
logic from this calculus. The first step is to set up a correspondence
between some of the equations and number-theoretic theorems, in other
words to show how they can be interpreted as number-theoretic theorems.
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Let @ be a primitive function constant of index m . @ describes a certain
primitive recursive function </>(m, n), determined by the condition that, for
all natural numbers ra, n, the equation

© (, £<«>(, 0,), $»>(, 0,),) = 8^m'n% 0,)

is provable without using the axioms (a). Suppose also that Sp is an
expression of index 3. Then to the equation

we make correspond the number-theoretic theorem which asserts that for
each natural number m there is a natural number n such that <f>(m, n) = 0.
(The circumstance that there is more than one equation to represent each
number-theoretic theorem could be avoided by a trivial but inconvenient
modification of the calculus.)

Now let us suppose that some definite method is chosen for describing
the sets of axioms by means of positive integers, the null set of axioms being
described by the integer 1. By an argument used in § 6 there is a W.F.F. 2
such that, if r is the integer describing a set A of axioms, then Z(r) is a logic
formula enabling us to prove just those number-theoretic theorems which
are associated with equations provable with the above described calculus,
the axioms being those described by the number r.

I explain two ways in which the construction of the ordinal logic may
be completed.

In the first method we make use of the theory of general recursive
functions (Kleene [2]). Let us consider all equations of the form

22 (, £<»»(,0,), #«>(,<),),) = #»>(,(),) (12.2)

which are obtainable from the axioms by the use of rules (h), (%). It is a
consequence of the theorem of equivalence of A-definable and. general recur-
sive functions (Kleene [3]) that, if r(m, n) is any A-definable function of two
variables, then we can choose the axioms so that (12.2) with p = r(m} n) is
obtainable in this way for each pair of natural numbers ra, n, and no
equation of the form

8M(,0,) = &'%0,) (m^n) (12.3)

is obtainable. In particular, this is the case if ?(m, n) is defined by the
condition that

Q(m, n) conv S(p) implies p = r(m, n),

r(0, n)=l, all n > 0, r(0, 0) = 2,
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where Q is an ordinal formula. There is a method for obtaining the axioms
given the ordinal formula, and consequently a formula Rec such that, for
any ordinal formula Q, Rec (Q) convm, where m is the integer describing
the set of axioms corresponding to Cl. Then the formula

is an ordinal logic. Let us leave the proof of this aside for the present.
Our second ordinal logic is to be constructed by a method not unlike the

one which we used in constructing AP. We begin by assigning ordinal for-
mulae to all sets of axioms satisfying certain conditions. For this purpose
we again consider that part of the calculus which is obtained by restricting
"expressions" to be functional variables or R or S and restricting the
meaning of "term" accordingly; the new provable equations are given
by conditions (a), (h), (i), together with an extra condition (I).

(I) The equation

JR(,O, 8(,xv),) = 0

is provable.
We could design a machine which would obtain all equations of the form

(12.2), with m^n, provable in this sense, and all of the form (12.3), except
that it would cease to obtain any more equations when it had once obtained
one of the latter " contradictory " equations. From the description of the
machine we obtain a formula Q such that

Q(m, n) conv 2 if JR(, &™-% 0,), S^~% 0,),) = 0

is obtained by the machine,

Q(m, n) conv 1 if R ( , £<»-% 0,), S(™~»(, 0,),) = 0

is obtained by the machine, and

Q(m, m) conv 3 always.

The formula Q is an effectively calculable function of the set of axioms,
and therefore also of m: consequently there is a formula M such that
M(m) convQ when m describes the set of axioms. Now let Cm be a
formula such that, if 6 is the G.R. of a formula M(m), then Cm(6) conv m,
but otherwise Cm(6)convl. Let

, a\.
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Then AG
3 (Cl, A) conv 2 if and only if Cl conv M(m), where m describes a set

of axioms which, taken with our calculus, suffices to prove the equation
which is, roughly speaking, equivalent to " A is dual". To prove that AG

3

is an ordinal logic, it is sufficient to prove that the calculus with the axioms
described by m proves only true number-theoretic theorems when Cl is an
ordinal formula. This condition on m may also be expressed in this way.
Let us put m < n if we can prove u(,$m>(,0,), £<">(,0,),) = 0 with (a),
(h), (i), (1): the condition is that ra<^n is a well-ordering of the natural
numbers and that no contradictory equation (12.3) is provable with the
same rules (a), (h), (i), (I). Let us say that such a set of axioms is
admissible. AG

3 is an ordinal logic if the calculus leads to none but true
number-theoretic theorems when an admissible set of axioms is used.

In the case of AG
2, Rec {Cl) describes an admissible set of axioms whenever

Cl is an ordinal formula. A#2 therefore is an ordinal logic if the calculus
leads to correct results when admissible axioms are used.

To prove that admissible axioms have the required property, I do not
attempt to do more than show how interpretations can be given to the
equations of the calculus so that the rules of inference (a)-(k) become
intuitively valid methods of deduction, and so that the interpretation
agrees with our convention regarding number-theoretic theorems.

Each expression is the name of a function, which may be only partially
defined. The expression S corresponds simply to the successor function.
If © is either R or a functional variable and has p-\-l symbols in its index,
then it corresponds to a function gofp natural numbers defined as follows.
If

is provable by the use of (a), (h), (i), (I) only, then g(rv r2, ..., rp) has the
value p. It may not be defined for all arguments, but its value is always
unique, for otherwise we could prove a "contradictory" equation and
M (m) would then not be an ordinal formula. The functions corresponding
to the other expressions are essentially defined by {b)-(f). For example,
if g is the function corresponding to (3 and g' that corresponding to (F@),
then

g'(rlt r2, ...,rp,l,m) = g{rv r2, ..., rp, m, I),

The values of the functions are clearly unique (when defined at all) if given
by one of (b)-(e). The case (/) is less obvious since the function defined
appears also in the definiens. I do not treat the case of (($©$), since this
is the well-known definition by primitive recursion, but I shall show that
the values of the function corresponding to (©! $! Jj?) are unique. Without
loss of generality we may suppose that (21) in (/) is of index 1. We have
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then to show that, if h(m) is the function corresponding to Jj) and r(m, n)
that corresponding to R, and k(u, v, w) is a given function and a a given
natural number, then the equations

1(0) = a, (a)

/
m-f 1,

do not ever assign two different values for the function l(m). Consider
those values of r for which we obtain more than one value oil{r), and suppose
that there is at least one such. Clearly 0 is not one, for 1(0) can be denned
only by (a). Since the relation ^ is a well ordering, there is an integer r0

such that ?'o > 0, l(r0) is not unique, and if <s ^ r0 and l(s) is not unique then

ro<^s. We may put s = h(r0), for, if I (h(r0)) were unique, then £(r0), defined

by (£), would be unique. But r(h(rQ), r0) = 0 i.e. s <̂  r0. There is, therefore,
no integer r for which we obtain more than one value for the function l(r).

Our interpretation of expressions as functions gives us an immediate
interpretation for equations with no numerical variables. In general we
interpret an equation with numerical variables as the (infinite) conjunction
of all equations obtainable by replacing the variables by numerals. With
this interpretation (h), (i) are seen to be valid methods of proof. In (j) the
provability of

when Q)(tyx1,) = G)'(Wx1,) is assumed to be interpreted as meaning that
the implication between these equations holds for all substitutions of
numerals for x1. To justify this, one should satisfy oneself that these
implications always hold when the hypothetical proof can be carried out.
The rule of procedure (j) is now seen to be simply mathematical induction.
The rule (k) is a form of transfinite induction. In proving the validity of
(k) we may again suppose (21) is of index 1. Let r(m, n), g(m), gx(m), h(n)
be the functions corresponding respectively to R, ©, ©', $. We shall

prove that, if g(0) = g'(0) and r(h(ii), n) = 0 for each positive integer n and

iig(n-\-\) = g'(n-\-l) wheneverg(h(n-{-\)) = g'\h(n+1)), theng(n) = g'(n)
for each natural number n. We consider the class of natural numbers for
which g(n) = g'(n) is not true. If the class is not void it has a positive
member n0 which precedes all other members in the well ordering < .̂ But
h(n0) is another member of the class, for otherwise we should have
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and therefore g{nQ) = g' (n0), i.e. n0 would not be in the class. This implies

n0 <^.h(nQ) contrary to r (h(n0), n0 j = 0. The class is therefore void.

It should be noticed that we do not really need to make use of the fact
that Q is an ordinal formula. It suffices that 0 should satisfy conditions
(a)-(e) (p. 179) for ordinal formulae, and in place of (/) satisfy (/').

(/') There is no formula T such that T(n) is convertible to a formula
representing a positive integer for each positive integer n, and such that

(n), n ) conv2, for each positive integer n for which Q.{n, n) conv3.

The problem whether a formula satisfies conditions (a)-(e), (/') is
number-theoretic. If we use formulae satisfying these conditions instead
of ordinal formulae with AG

2 or A.G
3, we have a non-constructive logic with

certain advantages over ordinal logics. The intuitive judgments that
must be made are all judgments of the truth of number theoretic-theorems.
We have seen in § 9 that the connection of ordinal logics with the classical
theory of ordinals is quite superficial. There seem to be good reasons,
therefore, for giving attention to ordinal formulae in this modified sense.

The ordinal logic AG
3 appears to be adequate for most purposes. It

should, for instance, be possible to carry out Gentzen's proof of consistency
of number theory, or the proof of the uniqueness of the normal form of a
well-formed formula (Church and Rosser [1]) with our calculus and a fairly
simple set of axioms. How far this is the case can, of course, only be
determined by experiment.

One would prefer a non-constructive system of logic based on trans-
finite induction rather simpler than the system which we have described.
In particular, it would seem that it should be possible to eliminate the
necessity of stating explicitly the validity of definitions by primitive
recursions, since this principle itself can be shown to be valid by transfinitc
induction. It is possible to make such modifications in the system, even
in such a way that the resulting system is still complete, but no real
advantage is gained by doing so. The effect is always, so far as I know,
to restrict the class of formulae provable with a given set of axioms, so
that we obtain no theorems but trivial restatements of the axioms. We
have therefore to compromise between simplicity and comprehensiveness.

Index of definitions.

No attempt is being made to list heavy type formulae since their
meanings are not always constant throughout the paper. Abbreviations

SEB. 2. VOL. 45. NO. 2243. Q
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for definite well-formed formulae are listed alphabetically.

Page Page
Ai 199 Prod 207
Al 188 Q 176
Bd 188 Rec 222
Ck 192 Rt 205
Cm 222 S 164
Comp 201 Sum 188
Dt 167 Sq 206
E 196 Tn 192
form 166 Ug 188
0 196 V 177
Gm 214 Vi 210
Gr 166 W 175

H 183, 186 W 176
H1 186 X 175
Hf 188 Z 204
Hg 206
7 163 F 177
Inf 188 8 162
Jh 204 0 210
K 196 AG1 217
Lim 188 AG

2 222
Ls 187 Ae

3 222
M 222 AH 198
MP 196 AP ... 196
Mg 205 m 167
Nm 177 2 221
Od 201 1, 2, 3, 164
P 188 3> 170

{The following refer to §§1-10 only.)

All-inclusive (logic formula) 199
Axiomatic (class or property) 167
Circle-free (Turing [1], 233)
Computable function ... ... ... ••• ••• ••• ••• 166
Completeness, of class of logics ... ... ... ••• ... 176

of logic ... ... ... ••• ••• ••• ••• 177
of ordinal logic 198

Convertible 163
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Description number (D.N.) ... ... ... ... (Turing [1], 240)
Dual (W.F.F.) 170
Effectively calculable function 16G
Enumerate (to) 165
Formally definable function ... ... ... ... ... ... 165
General recursive function ... ... ... ... ... ... 166
Godel representation (G.R.) ... ... ... ... ... 165, 166
Immediately convertible 162
Invariance (of ordinal logics) . ... ... ... ... ... 200

(see also 202, 203)
Limit system ... ... ... ... ... ... ... ... 190
Logic formula, Logic ... ... ... ... ... ... ... 174
Normal form 162, .165
Number-theoretic (theorem or problem) ... ... ... ... 168
Oracle ... ... ... ... ... ... ... ... ... 172
Ordinal 178
Ordinal formula 179, 180
C-K ordinal formula 181
Ordinal logic ... ... ... ... ... ... ... ... 189
Primitive recursive (function or relation) 168, 193
Recursion formula ... ... ... ... ... ... ... 19,'}
Representation of ordinals, by ordinal formulae 17!)

by C-K ordinal formulae ... ... 182
Standardized logic ... ... ... ... ... ... ... 175
Type 197
Validity of system ... ... ... ... ... ... ... 189
Well-formed formula (W.F.F.) 162
Well ordered series ... ... ... ... ... ... ... 178

Miscellaneous (in order of appearance).

-> 163
A-definable function ... ... ... ... ... ... ... 165
G(x, y), D(x) 173
" < " between W.F.F. 181

SA 182
Class C, systems W 189
C[A] (A a C-K ordinal formula) 190
System P (foot-note f) 193
Proofc[x0, y0] 195
Systems Pn 197
Systems P A 210

Q2
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