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Indeed, by using (12),
, —i 2k +1 (n—l—k(n+k)t
= Lm+k+1\ m—k m+ k)
Z(2k+l)t,,,‘z(n+j+k)(m+k+1)(m—k—1)
m+k+1%5 2m m—j—k J
n+j 2k +1 (m+k+1)(m—-1-—k)
;(2m)2k:m+k_+-l m—j J\ j—k ]%
o (n+i 2k +1 (m—l—k)(m+k)
—;(2m)zkk+j+1 j—k j k)
_ S (nti
—j;o(zm)tmr

Note that To(n, ) = Fum and r,, = 8,0, so that r,, is the solution when
tye = Oy - Also, since g,, = 1,

(n)z_i 2k +1 (n—l—k)(n+k)
m k=om+k+1 m—k m+ k)
Further results appear in the problems. »

15 ABEL’S GENERALIZATION OF THE BINOMIAL FORMULA

Abel’s celebrated generalization of the binomial formula (given in his
Oeuvres Complétes, Christiania, C. Groendahl, 1839) in one form, preferred by

Hurwitz (1902), reads

(13) x“Yx+y+na)= i (Z)(x + ka)*(y + (n — ka7~

k=0
If x is replaced by ax and y by ay, this is the same as
Wa)  ayer= 3 (erpmosn-R
[+]

k=
so the parameter a is disposable.
Abel’s formula (13a) is the instance p = — 1, ¢ =0, of a class of sums de-
fined by
19 Amyp= 5 (et en R
whose study, a little surprisingly, simplifies the proof of (13a). Note first that
replacing k with n — k on the right of (14) yields the relation

(15) An(x: y:Dps q) = An(y: X5 4, P)
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Next, by the basic recurrence (i),
(16) A y;p =4, (x,y+1Lp g+ D+ A, (x+1,y;p+1,9)
Also

(D Ay 20 = X () e+ 0+ 0170 4 = ks
=xA,(x,y;p—1,9)
+n) (Z : i)(x + Ky 4 — k)R

=xA4,x,y;p—1,9) +nd,_(x+1,y;p, 9.
Similarly,

A i p =X ()04 n =B+ R +n = e
or

(17a)  ASx,y;p,q) =yA(x, y;p, g —1)+nd,_(x,y+1; p, 9.

This is an alternate 'fo (17) because it may be obtained by interchanging both
x, y and p, g and using (15). Use of (16) in (17) leads to the two relations

(18)
Alx, y;p, @) = x4y (%, y+ Lip—1L g+ D+ (x+mA,_1(x+ 1, y; p, q)
=(x+nmnAx,y;p—1,9 —nA,_(x,y+1;p—1,9+1).

Th’e first line of (18) with p =0, g = —1, leads to an immediate proof of
Abel’s formula (134): first

A%, 330, 1) = xA,_((x, y + 1; —=1,0) + (x + M)A, _y(x + 1, y; 0, —1),
which by (15) is the same as

Ay, x; —1,0) = xA,_ (%, y +1; =1, 00 + (x + )4, _,(y, x + 1; —1,0),
Or, omitting the constant parameters —1 and 0 and interchanging x and y,
(19 A%, Y) = YAuey (9, X+ 1)+ (5 + m) 4, i(x, y + 1).
il;yA(l(“)’ A(fx, _yl) = Ay(x, y; =1, 0)=x"", Ai(x, y) =x"'(x+y+ 1), and,

KX, ) =x"Yx + y + k¥ k=0()n — 1, it follows from (19) that
A, )=y M x+y+n) T T (x40
=x"YNx+y+n)

Which is the left side of (13a), as required.
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From this result it follows at once from (16) and (15) that
(20) An(xs ys _13 _1) = An—l(x’ y+ 19 —1’ 0) + An—l(x + 1: y; 0’ _'1)
= An—l(xa y + 1; "'1: 0) + An—l(y: x + 1, —1, 0)
=Ny Ny EDT :

LS

which is a well-known companion to (13). On the other hand, by (17)
xA(x, y; =2, 0) = A4,(x, y; —1, 0)—nd,_;(x+1,y; —1,0)
=x"'x+y+n"—nx+ DM x+y+n)!
or
21
Afx, y; =2,0)=x"(x + D+ DE+y+n) —nx(x+y+ n=1],

which is less well known.
Iteration of a form of (17), namely

XA (%, y; P — 1, @) = A(x, y3 P, @) — BAp-a(x + 1L,y p Qs
gives in the first place
©20x + DAL, ¥ P — 2, @) = (x + DALX, y5 P, )
- n(zx + 1)An—1(x + 1’ YD, ‘1)
+ n(n — DxA,-o(x +2,¥; , 9)-
Hence
X2(x + DA%, y; =3,0) =x"'(x + D= +y +n)
—nx+D7Ix+Dx+y+ n!
+nn—1x+2)"x(x+y+ )
or
(22) Ax,y;=3,0= x73x 4+ )72 x + )7 (> + D¥Hx+2)x+y+n
—nx(x+2)2x+ D+ y+ 1)
+nn—Dx*(x+Dx+y+ ny"~%].

Further development of this form of iteration, which is somewhat intricate, is

found in Problem 18.
The iteration of (17) as written is immediate; the result is

@ Awyipd= 3, (f)Re+ DAt Ry = 10

k=0
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Hence in the first place

(24) An(x9 s 0: 0) =
k=0

(Z)k!(x +RGx+k) x+y+n)y*

=(x+y+n+®, od=og=k;
that is,

k;) (Z)(x + Gy +n—kt=Y, (Z)k!(x +y+k)yrE
This is usually called Cauchy’s formula. Note that by (17)

x4 (x, y; —1,0) = 4,(x, y; 0,0) — nd,_,(x + 1, ; 0, 0);
that is,

x+y+nl=CG+y+n+a—nx+y+n+a

which is readily verified.
Next, by (23) and (20)

Afx,y;0, 1) =} (Z)k!(x + KA, _(x+k, y; -1, —1)
n —
-y (k)k!y o+ y + K+ y +npE
but A,(x, y; 0, —=1) = 4,(y, x; =1, 0) =y~ '(x + y + n)’, so that

(25) (x+y+n)”“=Z(Z)k!(x+y+k)(x+y+n)""".

Again, using (23) {
26) ggy

A 33 1,0 = 5 ({) 1x + Byt + ,330,0)

=Z(Z)k!(x+k)(x+y+n+a)""‘, of = oy = k!

=[x+y+n+a+pE]  Bx)=px)=ki(x+ k).
Noting that

t" -
expta=2a,,m=(1—t) t

exp 1) = 3 Bu(x) s = (1= 2L + 1(1 = )]

.
=

—

PP

L -
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it follows that

+1 »
exp tfe + f(x)]=(1 — 73 x+ (1 —x)F=), [(n 2 ) + x(n + I)Jt .

Hence (26) is the same as

6a) Y (Z)(x + Ry +n— kT

2

-3 (Z)k![(k * 1) + x(k + 1)](x Fy+ny,

Continuing the use of (23),

@) At =D = (A + ks 0 =D

=57 3 () B+ y + et

=y [x+y+n+ )T

and
@ 40y D=3 () A+ 30,0
=X (Z)ﬂk(x)[x +y+n+a+ o) *
=[X+y+n+a+B(x)+ﬂ(y)]n.
Note that

exp 1[o + B(x) + BO)] = (1 = [t + x(1 — HI[t + y(1 — 1)]
so that

e 0+ 40 =i (57) + 40 (f37) (7 )]

The sequel to (26) is worth examining because of a new complication. This is

derived as follows; first

45,732, = T ({)A0u-ilx +731,0)

Then by (26) -
A, x+ky;1,0)=[x+y+n +oc‘+ B(x + k)]

—k\, ke js K
=Z("j )(x+y+n+oc) ijlx +j+ k)

n—k
=[x+y+n+a+pEI  +k(x+y+ntata)

f 1.6 MULTINOMIAL ABEL IDENTITIES

Sec. 1.6 Multinonial Abel Identities 23 i

and, finally, by writing @)= %(2) = (@ + &), y(x) = kBu(x), Bilx; 2) =
[B) + B)F,

(29) !
Ax, y; 2, 0)=[x+y+n+oc+,3(x;2)]"+ x+y+n+a2) + 907 i

All of these results, and a little more, are summarized in Table 1.2, The reader
is reminded that additional results appear in the problems.

TABLE 1.2 ABEL IDENTITIES

A%, v, p,9)= ,,Zo (Z) (x +EY+2(y + n— k)yr—r+a

p a Adx, ¥, 9)

-3 0 x73x+1)72(x +2)7 ' (x + 12(x + 2)(x + y + n)"
— nx(x + 2)(x + )(x + y + )=t
+nn— Dx*(x + D + y + n)*-2]
X720+ DTG+ D&+ y + 1) — nx(x + p + nyr-1]
xx+y+ny
G+y+n+ay
[x+y+n+a+ )
[x+y+n+a+Bix; 2+ x+y+n+a@)+ v
Gy D+ y + -t
xxty+n+ B :
XMty +n+ Bl +Ix+y+nt o+ YN}
x+y-+ntat+Bx)+LO)r
x+y+nta+ B+ By;
+x+y+n+ a2 +y()r
x+y+nt+a+Bx;2F
+lx+y+n+ o)+ yx) + Bly; 21
+ x4y +n+ o2+ Bx; 2) + y(y)Pr
+ x4y +n+a@3) +y&x) + yO)P

!
)
|
NN —=—~oc0o0ocoo

N
(8]

Notation. o* = o, = k!
N v k+j—1
[ = otu(j) = (e + - -+ + )% (j terms) = ( )k!

k
B =Bux) = k! (x + k)
Bee N =Bulx; ) =[B) + -+ + B ( terms)
Y=y =k kl(x+k)

Multinomial extensions of three of the binomial Abel identities appeared in
i Hurwitz (1902). They are probably the most significant of the wide range of
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possibilities, some of which are now examined. Write
(B0)  Auk1sver T3 Das oo P) = X (5 Kty oo i) T1 G+ K2
j=

for the multinomial extension of (14); (n; ky, ..., k) is the multinomial
coefficient nl/k,! -+ k!, with ky + -+ k,, = n. Then, first, by the basic re-
currence for multinomial coefficients, namely

Jk)y=Mm—1;ky— 1L ks, ki)
+ =1k ks =1 ksy o k) + 0
+(n—13ky o k=L Kjaqseees k) + 0
+ =1k kg ke — 1),

(31) (n; kyy ...

the correspondent to (16) is found to be

An(xl"-"xm;pl’"'9pm)=An-1(x1+1:x23""xm;p1+1’p2"":pm)
+An—1(x1:x2+1, x3,...,xm;
P1s P2+ 1, P3sees Pm)
+---
+ Ay (X4 ooy X+ 15 Py ey Pt D)

Next separation of a factor x; -+ ky in 4,, as in the derivation of (17), leads to

(32)
An(xb"',xm;pla"'apm)=x1An(x11"‘1xm;p1 - 1: p2:""pm)
1A, (X1 + 1, X5, oy X3 Pis + o+ 5 Pr)-

~

Hence the multinomial companion to (23) is

(33) Af(X1yees X} Prs e Pu) = 3. (Z>k!(x1+k)x

An—k(x1+k9x2a-",xm;p1—1’p2""’pm)'

Turn now to the first of Hurwitz’s multinomial extensions, which is an
extension of (13), that is, of

A(x, y; —1,00 =3 (Z)(x + Ry +n—k)F=xTx+y +n)

A derivation by iteration, quite different from that of Hurwitz, is as follows.

S — T —————— !

e T — 52

B

;t
|
|
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First
y 4,y +2; =1,0 =) x+y+z+n)

=2 (Z)(y + Ry vy +z+n— k)T
=2 (Z)(x + RNy (" ; k)(y + )yt

x(z+n—k—jyrt
=Y (n;k,j,n—k =+ B +5)7

x(z+n—k—jyr ki ;
or
Afx, y,z; =1, =1,0) =(xy) " (x+ y +z + n)"
Repetitions of the procedure lead to the Hurwitz identity: 1

(B4  ALxg ...

with x =) + x5 + - + X,
The second of Hurwitz’s extensions is that of

Xy =1, =1, 000, =1,0) = (x3%; *** X) " X (x + 1),

An(x,y;0,0)=(x+y+n+a)”, akEtxk=k!
Then, as before,

A, y+z+4;0,0=[x+y+z+n+a2)]

=y (Z)(x+ Ky +z+a+n—kr*

= (Z)(x + Ry (n ; k)(y +)Ez+n—k—jy
. = A4,x, y,2;0,0,0).
The general result is clearly (again x = x; + x; + *** + X)

(35) A(Xgs s X3 0y nr O) = [x + 1+ afm — 1)]"

= k;o (Z) (x + n)" o (m — 1),

where, of course, as in (29) and Table 1.2

exp to(m) = (exp to)" = (L — ) ™™ = ;Z‘o (m + II: - 1) o

so that o(m) = k!(m + k — DYk!(m — D) = (m + k — DY(m — D!,

i3
1
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The third of Hurwitz’s extensions is that of
Afx,y; —1, 1) =071+ y x+y+n)h
This follows from (34) and the recurrence (31) and reads
36)  A(xy---s 1) = (xyxp X)X+ 1)

Now return to the first Abel binomial identity A,(x, y; —1, 0). Then

Xms =1, —1, .05

A,,(x,y+z+<x;L—1,0)=x_‘(x+y+z+<x+n)"

=y (Z)(x + k) (y+z+at+n— k) *

-3 (e + ("7 o+

x (z4+n—k—jr*7
= A x,y,2z; —1,0,0).
Repetitions lead to (again x = x; + + Xm)

37 A(Xgyeves Xms —1,0,...,0) = xy [x + o(m — 2) + n]"

Note that (37) and (33) imply (35). Also, by (33) and (35)

(39)
A(%1seer X L0)= Z()k'(x1+k)A,, (i K Xas e en X
0,0,...,0
=5 (2)pisobs-+ n — om = 07
=[x+n+am—1)+ B(x)]".
Similarly
(39)

[x + n +a(m — 1) + (x)) + B(x2)T"s
[x + 7+ a(m — 1) + B(x,)
+ B(x2) + B(x3)]",

‘,1)= [x+ " +a(m _ 1) + ﬂ(x1)+ e
+ BGem)T"

A,,(x,,...,x,,,;l, ,0,...,0).=
A% oes Xms L 1 1,0,..,,0) =

S ————— o o T A T e e
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Note that

exp 1[ACxy) + -+ + BCe)] = H exp 1A(x;)

=1-n7n ﬁlp +(1- Del,

exp (o — 1) + flxg) + -+ BGe)] = (L = = DT [+ (1 - Ox],
=1 7

i which, of course, imply expressions for the coefficients of the exponential

generatmg functions 1 have not taken space to write out.
As a final example of the use of (33)

g

F (40) : .

AXgy oo s X3 1, =1, .00, = 1) =Z (Z)ﬂk(xnl)An—k(X;_+ K, Xgs - res X
0: _1, —1, )
Z ( )ﬂk(xl)(xz Cx,) "1 + myt

=(%g *t* X)) [x + 0+ Bx)]"

PROBLEMS
:, 1. Generalizing Example‘ 3, write ] |
fio= i L
Show that S

@ = 3 (- (Z) £

4 . ’ \'
= - = |
" ,
l i) = 322'1 (= (Z)'SA(X)';
that is, o
"21% ;: k‘f"f: )k“(n) n- (1 - x)l:] \

.




