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 POLYNOMIAL CODES OVER CERTAIN FINITE FIELDS*t

 I. S. REED AND G. SOLOMON:

 Introduction. A code is a mapping from a vector space of dimension m

 over a finite field K (denoted by Vfl%(K)) into a vector space of higher

 dimension n > m over the same field (Vn (K)). K is usually taken to be

 the field of two elements Z2, in which case it is a mapping of m-tuples of
 binary digits (bits) into n-tuples of binary digits. If one transmits n bits,
 the additional n - m bits are "redundant" and allow one to recover the

 original message in the event that noise corrupts the signal during trans-
 mission and causes some bits of the code to be in error. A multiple-error-

 correcting code of order s consists of a code which maps m-tuples of zeros
 and ones into n-tuples of zeros and ones, where m and n both depend on s,
 and a decoding procedure which recovers the message completely, assuming
 no more than s errors occur during transmission in the vector of n bits.

 The Hamming code [1] is an example of a systematic one bit error-correct-
 ing code. We present here a new class of redundant codes along with a

 decoding procedure.
 Let K be a field of degree n over the field of two elements Z2 . K contains

 2' elements. Its multiplicative group is cyclic and is generated by powers
 of a where a is the root of a suitable irreducible polynomial over Z2. We
 discuss here a code E which maps m-tuples of K into 2 -tuples of K.

 Consider the polynomial P(x) of degree m - 1

 P(x) = ao + alx + + amx1,

 where at E K and m < 2n. Code E is the mapping of the m-tuple (ao, a1,
 ... , am-i) into the 2'-tuple (P(O), P(a), P(a2), *... P(1)); this m-tuple
 might be some encoded message and the corresponding 2'-tuple is to be
 transmitted. This mapping of m symbols into 2' symbols will be shown to
 be (2' - m)/2 or (2n - m - 1)/2 symbol correcting, depending on
 whether m is even or odd.

 A natural correspondence is established between the field elements of

 K and certain binary sequences of length n. Under this correspondence,
 code E may be regarded as a mapping of binary sequences of mn bits into
 binary sequences of n2n bits. Thus code E can be interpreted to be a sys-
 tematic multiple-error-correcting code of binary sequences.

 * Received by the editors January 21, 1959 and in revised form August 26, 1959.
 t The work reported here was performed at Lincoln Laboratory, a technical

 center operated by Massachusetts Institute of Technology with the joint support
 of the Army, Navy and Air Force, under contract.

 I Staff members, Lincoln Laboratory, Massachusetts Institute of Technology,
 Lexington 73, Massachusetts.
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 POLYNOMIAL CODES OVER CERTAIN FINITE FIELDS 301

 One should note that the binary representation of code E allows in
 general for the correction of more than (2 - m - 1)/2 bits since each
 symbol of the code is represented by n consecutive bits. Hence when the
 binary errors are strongly correlated or occur in "bursts," this code may be
 more desirable than other more "efficient" multiple-error-correction codes.

 Finally, it should be mentioned that code E may be generalized to poly-
 nomials of the mth degree in several variables over K. Evidently, for K =
 Z2, such codes reduce to Reed-Muller codes [2].

 The code E. Consider the field K = Z2(a). This is the vector space over

 Z2 with basis 1, a, a2 a * n-l where a is the root of a suitable irreducible
 polynomial over Z2. The nonzero elements of K form a multiplicative
 cyclic group. Thus we may represent the elements of K in the order

 O3 X # X ... 2 f X 1 = 1

 where : is a generator of the multiplicative cyclic group.

 Let P(x) = ao + a1x + a2x2 + * + amaxm-1. The code E sends

 (ao, a, , .. am2 , am-l)
 --> (p(O), p(#)7 p(#2),.. ,p P(02) ), (1 )I)

 Upon receiving the message (P(O), P(3), I , P(1)), we may decode
 the message by solving simultaneously any m of the 2n equations,

 P(O) = ao

 P(3) = ao + a43 + a2f3 + + amiflm1

 P(j2) = ao + a 1f2 + a2f4 + ... + am, 2m-2

 P(1) = ao+a,+a2+ +am-,.

 We note that any m of these equations are linearly independent since

 the coefficient determinant for, say, P(ai), , ) P(am), is
 2 m-1

 1 a a1 ... a1

 2 m-1
 1a2 a2 ... a2

 2 m-1
 1am am ... am

 which is a Vandermonde determinant whose value is

 = Jj<ji (a, + aj) 5 0.

 Thus in the case of no errors in the received values of P ), we obtain

 ( ) determinations of (ao, * , a.-).
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 302 I. S. REED AND G. SOLOMON

 Any errors occurring in the values of P(*) will immediately disturb the
 unanimity of the values obtained for the an's. Indeed, for sufficiently small
 numbers of errors, by looking at the largest number of determinations for
 any (ao, ***, a,-) (the plurality of votes received by any m-tuple) we
 may detect the order of error made and correct it. We prove the following
 statement.

 Lemma. For s errors we can get at most S + m 1) determinations

 for a wrong m-tuple.
 Proof. We look upon the simultaneous solution of m equations as the

 intersection of m hyperplanes. The linear independence guarantees that
 they meet at only one point. To obtain more than one solution for any m-
 tuple, we would need more than m hyperplanes meeting at that point. For
 a wrong m-tuple, we can have at most s + m - 1 hyperplanes intersecting
 at a single wrong point, where s is the number of mistaken equations and
 where the remaining m - 1 equations are chosen from the 2' - s correct
 ones. Any more correct hyperplanes would determine the correct solution,
 i.e., a different point of intersection from the assumed wrong one. There-

 fore, there are at most ( + mm 1) determinations for any wrong value.

 Note that we get (2 s) determinations for the correct one, and a total

 Of (2) - (2 ) wrong determinations.

 Thus, by examining the vote received by the individual candidates
 (ao, . *, am-i), we may determine the correct message and the number s.

 Note that this is valid only when

 (2f- s) (s + m- 1

 or

 2 _ s > s + m- 1

 or

 2 _ m + 1
 s< 2

 The code will thus correct errors of order less than (2 -m + 1)/2. For
 m odd, we get corrections up to s = (2 - m - 1)/2, and detection at
 s = (2n _ m + 1)/2. For m even, we can correct up to s = (2n _ m)/2
 and not detect any further errors.
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 POLYNOMIAL CODES OVER CERTAIN FINITE FIELDS 303

 Translation of K into a binary alphabet. We represent the elements of

 K by n-tuples of zeros and ones, V.(Z2), and define a multiplication on
 V.(Z2) corresponding to the multiplication of K. We again note that the
 multiplicative group of K is generated by powers of O3. Let us consider an
 irreducible polynomial f which generates K over Z2. Suppose f(x) =
 Xn + ClXn-1 + ... + Cn-iX + Cn = 0, ci E Z2. Following N. Zierler [3],
 we associate the following finite difference equation

 an+k + clan-l+k + C2anf2+k + * + CnaO+k = 0

 where as C Z2 C

 Thus for any fixed f (giving rise to (cl, * C ,n) ) and arbitrary (ao,
 an-1)$(ai 0 for i = 0, 1, * , n - 1) we have a sequence

 ao al,) * *, an-r X an , an+l+, an+2, * ' '

 where the values of ai for i > n are determined by the above difference
 equation. Zierler has shown that for suitable irreducible f, the sequence

 (an) is periodic of period 2n - 1, i.e., a2n-1 = ao , a2n+m-1 = am and the
 2 1 sequences of length n obtained by translating the n-tuple (ao, a1,
 * , an-1) along the derived sequence are all distinct.

 Thus if we define

 3 = (ao , an-l)

 32 = (a1, ,an)

 m= (am-, .. , an+m-2)

 we have a multiplication table for the n-tuples. In other words, multiplica-
 tion of the elements is simply translation along this periodic sequence
 generated by f. Note too that the elements : satisfy the algebraic equations
 satisfied by corresponding elements in K. We have thus defined multiplica-
 tion on Vn(Z2) to make this correspond with the multiplication on K.

 We remark that the initial choice of /3 = (ao, ***, an-1) is arbitrary
 and there are 2- _ 1 such representations. There are of course many other

 ways of associating vectors with powers of /3. The referee has suggested
 another natural algebraic association of Vn(Z2) with K.

 We identify K with the ring of polynomials in x with coefficients in Z2,

 (i.e., Z2[x]) modulo the prime ideal generated by the irreducible f(x). Let
 f = (ao, a,, ... , an1) be a nonzero vector of Vn(Z2). We associate with
 the polynomial /(x) = a0 + aix + a2x2 + * * * an_lXn-1 mod f(x). Consider
 1(x)k mod f(x). This again is a polynomial of formal degree (n - 1). Let
 13k be the vector whose components are the n coefficients of this (n- 1)-
 degree polynomial. This establishes a one-one correspondence of Vn(Z2)
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 304 I. S. REED AND G. SOLOMON

 with K(if (0,.O. *, 0) is added to correspond to zero in K). While this
 may be a more natural choice, we prefer our first representation as the

 more suitable for computability.

 Example. Let n = 3, m = 3. K = Z2(a) where a is root of x3 + x +

 1 = 0. P(x) = bo + blx + b2x2.

 Code E: (bo, I, b2) -+ (P(O), P(a), P(), *a , P(a 6), P(1)).
 Binary translation of this code. To f(x) = x3 + x -+ 1 we associate the

 difference equation

 an, = an-2+ an-3 (for n = 3, 4,5,.**).

 Choose ao = 1, a, = 1, a2 = 0. Then

 {an)} = (1, 1, 0, 0 1, 0, 1, 1, 1, 0, 0, 1, 0, 1,* .

 {an has period 7, i.e., a7 = a0, a8 = a,.

 0 = (0, 0, 0)

 a= (1, 1, 0)

 a2 = (1, 0, 0)

 3= (0, 0, 1)

 4= (0, 1, 0)

 a5 = (1, ,1.)

 a= (0, 1, 1)

 1 = a7 = (1, 1, 1).

 The message (0, a, a') (P(O), P(a), P(a 2), * P(a6), P(1))
 translates into (via P(x) = ax + a3x2)

 (000110001)

 (0 0 O 0, 0 0 1, 1 1 0, 1 1 0O 1 1 1, 0 0 0,0 0 1, 1 1 1).

 This code is error correcting up to (23 - 3 - 1)/2 = 2 symbols.
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