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(6.7.2)  p(5)+p(12) 7+ (R a2 ... = 7{E=F) A2 (1 —a%) .2

{1—2)(1-2%)(1-23)..}*
{(1—27) (1—21) (1—22)...}7
A ) A2 (1=29).. P
These make (6.4.1) and (6.4.2) intuitive, and also provide proofs of the
congruences to moduli 52 and 72. Thus, if we assume (6.7.1), we have

p4)z+p(9)at+... x (1—25) (1 —219)...
5{(1-2%)(1-219). .}~ (I—2)(1-2%) ... {1—2)(1—2%)...)5
x
SA—my—ay.. (modd).

Hence (after what we have proved already) the coefficient of 25™+5 on the
left-hand side is a multiple of 5; and from this it follows that

P(26m+24)=0 (mod 52).
Similarly (6.7.2) leads to
p(49m+47)=0 (mod 72). N

Ramanujan never published a complete proof of (6.7.1) or (6.7.2); but
proofs have been found by Darling and Mordell.

The Rogers-Ramanujan identities

6.8. I come next to two formulae, the “Rogers-Ramanujan identities”,
in which Ramanujan had been anticipated by a much less famous mathe-
matician, but which are certainly as remarkable as any which even he ever
wrote down.

The Rogers-Ramanujan identities are

x x4 xm
(6.8.1) 1+1—x+(1—x)(1—x2)+“'+(1—x)(1-x2)...(1—xm)+'"
1
T (=2 (1=a%...(1—2% (1—27)...
and
x2 xﬁ x"l(‘m"‘l)
082 M+ i ma—a T i a—s asa
1

T (-7 .. (- (=2

The exponents in the denominators on the right form in each case two
arithmetical progressions with the difference 5. This is the surprise of the
formulae; the “basic series”” on the left are of a comparatively familiar type.
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The formulae have a very curious history. They were found first in 1894
by Rogers, a mathematician of great talent but comparatively little
reputation, now remembered mainly from Ramanuj an’s rediscovery of his
work. Rogers was a fine analyst, whose gifts were, on a smaller scale, not
unlike Ramanujan’s; but no one paid much attention to anything he did, and
the particular paper in which he proved the formulae was quite neglected.

Ramanujan rediscovered the formulae sometime before 1913. He had
then no proof (and knew that he had none), and none of the mathematicians
to whom I communicated the formulae could find one. They are therefore
stated without proof in the second volume of MacMahon’s Combinatory
analysis.

The mystery was solved, trebly, in 1917. In that year Ramanujan,
looking through old volumes of the Proceedings of the London Mathe-
matical Society, came accidentally across Rogers’s paper. I can remember
very well his surprise, and the admiration which he expressed for Rogers’s
work. A correspondence followed in the course of which Rogers was led to
a considerable simplification of his original proof. About the same time
I. Schur, who was then cut off from England by the war, rediscovered the
identities again. Schur published two proofs, one ‘of which is “com-
binatorial”’ and quite unlike any other proof known. There are now seven
published proofs, the four referred to already, the two much simpler proofs
found later by Rogers and Ramanujan and published in the Papers, and
a much later proof by Watson based on quite different ideas. None of these
proofs can be called both “simple” and ‘“‘straightforward”, since the
simplest are essentially verifications; and no doubt it would be unreasonable
to expect a really easy “proof. ' _

6.9. MacMahon and Schur showed that the theorems have a.simple
combinatorial interpretation. I take the first. We can exhibit a square m? as
1+8+58+...+(2m—1),

or in the manner shown by the black dots of (G;). If we now take any
partition of n—m?2 into m parts at most, with the parts in descending order,

. . - - - . o (] o [+
. . - . - Q [+] Q
&)
. . . [+] [+] [+] ( *
’ o

and add it to the graph, s shown by the circles of (G), where' m = 4 and
n = 42+ 11 = 27, we obtain a partition of » (here

27 =11+8+6+2)
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into parts without repetitions or sequences,” or parts whose minimal
difference is 2. The partitions of n of this type, associated with a particular
m, are enumerated by

am?

(l—z)(1—2%...(L—am)’

the general term of the series on the left in (6.8.1); and the whole series
-enumerates all such partitions of n.

On the other hand the right-hand side enumerates partitions into numbers
6bm+1 and 5m+4. Hence (6.8.1) may be restated as a “combinatorial”
theorem: the number of partitions of n with minimal difference 2 is equal to
the number of partitions into parts 5m+1 and 5m+ 4. Thus when n = 9
there are 5 partitions of each type;

9, 8+1, 7T+2, 643, 5+3+1
of the first kind, and

9, 6+1+1+1, 44+4+1, 4+1+14+1+1+1,
1414+14+14+1+14+14+1+1

of the second. There is a similar combinatorial interpretation of (6.8.2).
These forms of the theorems are MacMahon’s (or Schur’s); neither Rogers
nor Ramanujan ever considered their combinatorial aspect. It is natural
to ask for a proof in which we set up, by “combinatorial” arguments, a
direct correspondence between the two sets of partitions, but no such proof
is known. Schur’s “‘combinatorial” proof is based, not on (6.8.1) itself,
but on a transformation of the formula which I will mention in a moment.?
It is not unlike Franklin’s proof of (6.2.1), but a good deal more complicated.

6.10. The proofs given ultimately by Rogers and Ramanujan are much
the same, but Rogers’s form is a little easier to follow.
We can write the right-hand side of (6.8.1) as

1 _I{(1—a25m) (1 _ 2FH2) (1 — gSmt3)}
I(1-z" ) (1= )}~ ~ (T—g)(l—af)(1-2%)...
and the numerator on the right can be transformed, by a standard formula
from the theory of the theta-functions, into

l—a?—a3 o421,
where the indices are the numbers

3(6n?tn) (n=0,1,2,..).

' Parts differing by 1.
* (6.10.1), with each side multiplied by (1 —z)(1-2?)....
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We have therefore to prove that
x4 1—a?—a84 a4l
(0.10.1) Iy o+ A T e e =2 .."

Similarly (6.8.2) is eqmvalent to
x? 28 l—g—2t+27+213—...
A B 1§ B ey v = oo

the indices in the numerator on the right being the numbers }(5n2 + 3n).

6.11. We use the auxiliary function
-]
(6.11.1) Gy, = Gyla,x) = 3, (~ 1)rairginGnil—kn(] _ gky2kn) Q|
n=0
where kis 0, 1, or 2 and

T gem) ey
00'—' 1: On = (l_x) (1—3}2)..(1"mn)

Thus
(6.11.2) G4 = (1 —a*)Cy—a%x3=k(1— a"xz")O + atet-2%(1 — akatk) O —

If a0 then @, = 0 for all z. Also

(6.11.3) Gz, 2) = 1—z—at+ 27+ 23—
and
(6.11.4) Gy, 2) = 1 —~22—23 4 2% - 211 —

are the series which occur in (6.10.2) and (6.10.1).
If the operator # is defined by

1f(a,2) = f(ax, ),

then
_(1-az)...(1-az”) 1—az®
(6.11.5) 1= M3y (e ~ 1—a o
and
_(1-aw)...(1—az™1) 1-—an
(6.11.6) 70 (=2).. (=&Y ~1=a o
Hence
(6.11.7y (1-2™C, = (1-a)9C,_;, (1—aa®)C, = (1—a)y0,,. N
and in particular N0y =Cy=1. ]

If kis 1 or 2, then

Gr— Gy = 3 (— 1)nainginntd-—kn{] _ qleg2hn _ g(] — ak-1z%k-1m} O '
= 0 ~
— a’f‘l( 1— a) + z ( — l)n aznx}n(5n+l)—kn{(1 — xk) + ak—lx(zk—l)n(]_ — axu)} 0”
n=1

o ak—l( 1-— a)”clo + ( 1-— a) § ( -1 )naznx}n(Sn-i-l)—kn{,’Cu_l + ak—lx(ﬂ:—l)nﬂan}’
n=1
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by (6.11.7). When we rearrange this series in terms of 4C,, 4Cy, ..., the’
coefficient of 5C,, is
( . 1)" (1 — a) {a2n+k—1x§1v(5n+1)+(k—1)n — a2n+2x}(n+1)(5n+6)—k('n+1)}
= (= 1) (1 — @) a2r+h—LgdnGntDHk—Dn{] _ g3—kp3-MEn+} .

Hence
Gk _ G*_l =(l-a) ak-1 § (— l)nuan}n(5n+1)+(k—1)n{1 —- aa—kx(s—k)(2n+l)} 7C,.
n=0
o
But G5 = T (— 1)ra2ngin@nid-G—ion{] _ g3-kpB-i0m} O
n=0

2]
and so 9G4 = 20 (— 1)nangin(GnDk—Dn{] _ g3-kp3-R)@n+D) (-
fn=

and therefore
(6.11.8)  Gp—Gyy=(1—0a)ab Gy, (k=1,2).

6.12. If now

H, = Hya,) = Gula, 2)

(1—a)(l1—ax)(1—ax?)...
(so that H, = 0), then (6.11.8) becomes

‘ Hy—Hy_y = a¥-9Hg 4.
In particular

and so
(6.12.2) . H, =nHy+ay*H,.

Suppose now that H, = 1+cia+ca?+...,
where the coefficients depend on 2 only. Substituting into (6.12.2), we
obtain
l4ca+cya%+... = l+cax+c0?2% + . i +a(l +ciaa? + ca®rt+ ...
Hence, equating coefficients,
1 2% xt
A=y TTog%r ST %

1 _ Zn—D) .
an o ==z (1—2%) ... (1—a")
and hence

G,la, ) _ _ a a?x?
l-a li—ax)..._Hz(-a’m)—1+1—x+(1—x)(1——x2)
(I—a)(

a®x8
S vy g pr SRS
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Also ‘
Gl(a‘: x) _ ax
(1—0’)(1_“33)-.. —Hl(a"x) ?HZ(a:w)—‘ 1+n
a%‘ a3x9

Tl a-a)  I-a)(I-a) A -2

Finally, putting @ =z in these two formulae, and using (6.11.4) and
(6.11.3), we obtain (6.10.1) and (6.10.2).

This proof is elementary, and reasonably simple; but it is undeniably
rather artificial. It is a “‘verification’’; we wverify that the series (6.11.1)
satisfies a functional equation, and the argument gives no explanation of
our choice of this particular series.

6.13. There is another proof by Rogers which seems to assume a little
more but is really more illuminating.*
We shorten our formulae by writing

z, =1—2" &x,!=m2;...2,,

and begin by expanding the function
0
f(@) = II(1 +az")

in powers of a. The function satisfies

fla) = (1+ax)f(az).

Substituting a power series in a for f(a), and equating coefficients, we find.
without difficulty that

gUn+1)
z, !

n

f(a)_.1+ a+~—a2+ .+ ar+....

Replacing a by ae® and ae‘“’, and multiplying the resulting series, we
find that

(6.13.1) &(x,0,a) = H(1+2ax”cos0+a3x2")
2! 2, !

n(ﬁ)

ﬂ

_1+2

! The argument of §§ 10-12, if regarded as a proof of (6.10.1), assumes nothing, though
some knowledge of theta-functions is required to identify (6.8.1) and (6.10.1). In
the proof here we use formulae from the theory of theta-functions in the proof.




96 . Ramanujan’s work on partitions

where
n{n+1)
(6.13.2) B9 _ = P (1 +-2m 9% 008 20+ 21— Tn¥n-1 9ybcosdf+..
2n! x oyt Tpi1 Tp+1%n+e
fnTn-10 P gunt g 2n0)
xn+1xn+2 * Zan
B, .10 ain+?
(6.13.3) 2"“(' ) ' (2 c08 6+ 922 6os 30
Topga!  Tpl¥pys! Tnto
+-2nZnl 906008 50+ ... +—nn=12 F1_ opnint) gog (2n+1) 0).
ZTni2¥ni3 i Ln+2%n48 -+ Tant1

Finally, we replace @ in (6.13.1) by 21, and use a standard formula from
the theory of the theta-functions, viz.

D(x, 0, z7) = II(1 + 22" cos O + 2271)

_ 1+ 2 cos 0+ 2a# cos 20 + 22% cos 36 + ...
(—2)(1—2%) (1—-29)...

We thus obtain

1 4 2zt cos 6 + 2zt cos 20 + 2x% cos 20 + ... 1 (0)
-2 (1= (01— ... = +2 2, !

(6.13.4)

6.14. If we replace B,(0), in (6.13.4), by its explicit expression (6.13.2)
or (6.13.3), and rearrange the right-hand side as a trigonometrical series,
we obtain an equality between two convergent trigonometrical series. Such
an equality must be an identity, the coefficients of cosn8 in the two series
being the same. It follows that we may replace

1, 2c086,"2co826, 2cos 36, ...

by any numbers for which the series remain convergent.

If we replace
) 1, 20820, 2cos40,..., 2c082n0, ...

by 1, —(1+2), z(1+22), ..., (— 1)rainin—1(1 4 g7), ..,
and all the odd cosines by 0, then B,,(6) becomes
xnxn

!
‘tfn- 'xmn+1){1_x_ﬂx(1+x),+ L5142 —... -
X, le,! L1 Ln+1%n+4a

(6.14.1) B, =

+(- 1)nnh—1"1_xmsn—1)(1 +xn)}
d btai Zn+1%n42 - Ton

and we obtain

_1—a?—234a® 4l

T (-2 (1-29)..’

Ba />’4

x“z +..

(6.142) 1+ 5o+ 24
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where the right-hand side is the same as in (6.10.1). On the other hand,
if we replace

-

2¢086, 2c0830, ..., 2cos(2n+1)46, ...

by (1-2), —(1—=23), ..., (—1)rainr®-1(]1 — g2n+l),
and the even cosines b;r 0, then B,,,;(6) becomes
(6.14.3)

P! x<"+1)’{1 L R T QY PP S T ) S

! Tpig n+2¥ni8

132n+1 =
Tl Ty !

+(=1) Cp¥p_q---%y Zin@nt+1)(] — x2n+1)} .
ZTn12%nss -+ Pant1

Multiplying by 2%, we obtain

l—z—ztta"+a® ...

T (l-2)(1=2?)(1—28)...°

where the right-hand side is the same as in (6.10.2). It remains to prove
that the series on the left in (6.14.2) and (6.14.4) are the same as in (6.10.1)
and (6.10.2).

(6.14.4) By Boay
24! 2!

6.15. We can do this by evaluating f, in an elementary manner. But
before doing this T observe that the substitutions of § 6.14 correspond to
linear analytical transformations. Thus if # = e~% then

f " e-20% 008 6.2 008 206 . df = f ® e~20%18{cos (2n— 1) 0 + cos (2n + 1) 6} d6

= \/ (%7]’8) {e-§(2n—1)2a + e—%(2n+1)aa} = 4( %773) . d:*""""”(l +am),

Hence the first substitution of § 6.14 corresponds to the result of (i) replacing
0 by 0+ m and (ii) operating with

J (3) w“*J‘w e~ 2% cos 8 ,..do.
70 — :

Similarly it may be verified that the second is the result of (i) replacing
6 by 6+ 3w and (ii) operating with

_.A/(%)x— fw 2% gin 26 ... dO.

6.16. We now write
(6 16 1) ﬂ = xZn! xn(n+1)7 '3 — x2n+1! xn+1? ¥
o Tz, e Pl T g ! an+1
and prove that

(6.16.2) Yon =Znls Yonir = Tapale -
HR ) 7
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We shall then have

3 .
(6 16. 3) ﬂz = xM"+1)xn+1xn+2 cos Lapy ﬂ2n+1 = gln+) Lpt1 % o Lont1s

and it may be verified at once that the series on the left of (6 14.2) and
(6.14.4) reduce to the Rogers-Rama,nu]a,n series.
To prove (6.16.2) it is enough to prove that

(6.16.4) Yon+1 = Tnt1V2n>  Vonize = Yont1e
Now \
X, %, 1,
Von =1 ——x(l +x) +_ni—_1_x5(1 +22) — T2 (] 4g8) ...
Lpt1 xn+1wn+2 xn+1xn+2 Lpn+3
@ X @, x, 2, x,
= (1_.x_L) —wz——”—(l P ot 1)+x7 n¥n—1 (1——x5—"—2)—-
Zn1 Tp1 Tpte Tp+1%n+a Tpis
1 Z, X, %,
=—(l—g)—22—2 (1—2%) +27 — 221 (1 —af)=...
Tat1 Lpi1%nt2 xn+1xn+2xn+3
72n+1
?
wn+1
and
Yonir = (1 —2) ——"-2%(1—28) Tl (] g9)
Tpig Zni+2¥nis
Ly O ALy
__ﬁ_ﬂ_l_f_'.ixu(l —27) +..
xn+2xn+3xn+4
x, @ X, X, X X,
= 1—x(1+x n )+x5 n (1+a:2 & 1)—:2:12 nn-l (1+x3 " 2)+...
Tnto Tt Tnts Tpra¥nis LTy,
@ X, 12 L1 T
= 12 (] ) 4 2R g5(1 4 o®) — — 1Tl 4121 4g3) ..,
n+2 wn+2wn+3 xn+2xn+3xn+4
= Yon+a-

These are the relations required.
The equations (6.16.2) are

(I—2™) (1—2m1)
(1 — xn+1) (1 — x‘YH-2)

=(1—-2)(1—2?)...(1—2")

1-
(6.16.5) 1— —1———n+—1x(1+ )+ a5(1+2%)— ...

and ’

_an e gm—1
(6.16.6) (1—2)— 1—1-—x2(1 x3)+(§1_xﬁ+)a)(tlfxn+)a)

= (1—2z)(1—2%)... (1 —2a™1).

27(1 —25)—...

Each of them reduces; when n— o0, to

l—z—22+25+27—... = (1—-2) (1 —2>N1-2?)...,
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Euler’s identity; and the argument of this section gives a particularly
simple proof of the identity. We shall be led to the formulae (6.16.5) and
(6.16.6) in a different manner later,*

6.17. It follows from (6.12.2), or may‘ be verified directly, that

a%xt
F(a) = Hye,2) = 1+;— st - o=t

satisfies the functional equation
F(a) = F(ax)+axF(ax?).

From this it follows that
Fla) Flaz®) ax
ﬁwm)‘1+“”pmm"1+l+a2me)
F(aa?)
~ 140 a2f at
I T TN R
In particular
1422 @ K1)

1+ 14 1+...  F(z)
_ (=29 (1=a7)... 0 =a%) (1=29)...
T @T—z)(1—a% ... (1—2%) (1—2%)...
_1-a?—a34a+all—
- l_x__x4+x7+w13_

is a quotient of elliptic theta-functions, which may be evaluated for certain
special values of x. This formula is the key to Ramanujan’s evaluations of
the continued fraction for special values of z, Whlch I quoted iy my first
lecture.

NOTES ON LECTURE VI

This lecture contains a good deal of the substance of Hardy and Wright, ch. 19,
and there is inevitably a certain amount of repetition; but the account here is
naturally less systematic. There is nothing in Hardy and Wright corresponding to-
§§ 6.13-16.

§ 6.2. See Hardy and Wright, § 19.11, or MacMahon, Combinatory analysis, ii,
21-23. Franklin’s proof was first published in Comptes rendus, 92 (1881), 448-450,

Both Hardy and Wright and MacMahon give other examples of graphlcal’
proofs.

§6.3. For a more rigorous proof that F(x) enumerates p(n), see Hardy and
Wright, § 19.3. . X

§§ 6.4-5. .Compare Hardy and Wright, § 19.12, where however there is no proof
of (6.4.2). There are alternative proofs of (6.4.1) and (6.4.2), and a proof of (6.4.3),
in no. 30 of the Papers. Darling (3) gave further proofs of (6.4.1) and (6.4.2).

I See Lecture VIL §7.8.
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There are interesting remarks on the parity of p(n) in MacMshon’s paper 2. Mac-
Mahon does not prove any general theorem, but gives recurrence congruences (mod 2)
by which it is possible to calculate the parity of p(n), for quite large n, very quickly.
Thus he proves, in ‘about five minutes work’, tltat »(1000) is odd.

One of the standard proofs of {6.5.1) is reproduced in Hardy and Wright, § 19.9.

§§ 6.6-7. Ramanujan’s proofs of the congruences for moduli 5% 7%, and 112 are
contained in an unpublished manuscript now in the possession of Prof. Watson.
Darling (2) gave a proof of (6.7.1), and Mordell (1) much shorter proofs of both
(6.7.1) and (6.7.2).

The references relevant to the work of Chowla, Gupta, Kreémar, Lehmer, and
Watson are S. Chowla (1); Gupta (1, 2, 3); Kreémar (1); D. H. Lehmer (1, 3); and
Watson (24).

§ 6.8. Rogers (1): the identities are formulae (1) and (2) of § 5. Rogers also
anticipated ‘Hélder’s inequality’ (and is quoted by Holder), but without writing
it in the standard form or recognising its fundamentel importance. See Hardy,
Littlewood, and Poélya, Inequalities, 25 and 311.

Roger’s two later proofs are in his papers 2 and 4: the latter contains the proof
given in §§ 6.10-6.12, the former that given in §§ 6.13-6.16.

For Ramanujan’s own proof see no. 26 of the Papers. Schur’s two proofs appeared
in Berliner Sitzungsberichte (1917), 301-321, and Watson’s in Watson (3).

Ramanujan does not seem to have stated the formulae explicitly in his letters to
me, but formulae IX, (4)-(7), of his first letter depend upon them. See Lecture I,
formulae (1.10)-(1.12); Papers, xxvii; and Watson (4). Ramanujan proposed the
formulae as a problem in Journal Indian Math. Soc. 6 (1914), 199; see Papers, 330.

§ 6.9. See Hardy and Wright, § 19.13, and MacMahon, Combinatory analysis, ii,
33-36.

§§ 6.10-6.12. See Hardy and Wright, § 19.14. The theta-function formulae required
at the beginning of the proof are proved in §§ 19.8-19.9 (Theorems 355 and 356).

§ 6.13. The expansion of f(a) in powers of a goes back to Euler. The theta-function
formula is proved in Hardy and Wright, § 19.8, or in any of the standard treatises
on elliptic funections.

§6.17: See Lecture I, formulse (1.10)-{1.12). Proofs were given by Watson (4).
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