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Preface 

  

The birth of coding theory was inspired by a classic paper of 
Shannon in 1948. Since then a great deal of research has been 

devoted to finding efficient schemes by which digital information 

can be coded for reliable transmission through a noisy channel. 
Error-correcting codes are now widely used in applications such 
as returning pictures from deep space, design of registration 
numbers, and storage of data on magnetic tape. Coding theory is 
also of great mathematical interest, relying largely on ideas from 
pure mathematics and, in particular, illustrating the power and 
the beauty of algebra. Several excellent textbooks have appeared 

in recent years, mostly at graduate level and assuming a fairly 
advanced level of mathematical knowledge or sophistication. Yet 
the basic ideas and much of the theory of coding are readily 

accessible to anyone with a minimal mathematical background. 
(For a recent article advocating the inclusion of algebraic coding 
theory in the undergraduate curriculum, see Brinn (1984).) 

The aim of this book is to provide an elementary treatment of 
the theory of error-correcting codes, assuming no more than 
high school mathematics and the ability to carry out matrix 
arithmetic. The book is intended to serve as a self-contained 
course for second or third year mathematics undergraduates, or 
as a readable introduction to the mathematical aspects of coding 
for students in engineering or computer science. 

The first eight chapters comprise an introductory course which 
I have taught as part of second year undergraduate courses in 
discrete mathematics and in algebra. (There is much to be said 

for teaching coding theory immediately after, or concurrently 

with, a course in algebra, for it reinforces with concrete examples 
many of the ideas involved in linear algebra and in elementary 
group theory.) I have also used the text as a whole as a Master’s 
course taken by students whose first degree is not necessarily in 
mathematics. The last eight chapters are largely independent of 
one another and so courses can be varied to suit requirements. 
For example, Chapters 9, 10, 14, and 15 might be omitted by 

students who are not specialist mathematicians.



Vill Preface 

The book is concerned almost exclusively with block codes for 
correcting random errors, although the last chapter includes a 
brief discussion of some other codes, such as variable length 
source codes and cryptographic codes. The treatment throughout 
is motivated by two central themes: the problem of finding the 
best codes, and the problem of decoding such codes efficiently. 

One departure from several standard texts is that attention is 
by no means restricted to binary codes. Indeed, consideration of 
codes over fields of order a prime number enables much of the 

theory, including the construction and decoding of BCH codes, 
to be covered in an elementary way, without needing to work 
with the rather more complex fields of order 2” (h > 1). 

Another feature is the large number of exercises, at varying 
levels of difficulty, at the end of each chapter. The inclusion of 
the solutions at the end makes the book suitable for self-learning 
or for use as a reading course. I believe that the best way to 
understand a subject is by solving problems and so the reader is 

urged to make good attempts at the exercises before consulting 

the solutions. 

Finally, it is hoped that the reader will be given a taste for this 

fascinating subject and so encouraged to read the more advanced 
texts. Outstanding amongst these is MacWilliams and Sloane 

(1977); the size of its bibliography—nearly 1500 articles—is a 
measure of how coding theory has grown since 1948. Also highly 
recommended are Berlekamp (1968), Blahut (1983), Blake and 
Mullin (1976), Cameron and van Lint (1980), Lin and Costello 
(1983), van Lint (1982), McEliece (1977), Peterson and Weldon 
(1972), and Pless (1982). 

Salford 
February 1985 
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Notation 

  

For the reader who is unfamiliar with the notation of modern set 

theory, we introduce below all that is required in this book. 
A set is simply a collection of objects. In this book we shall 

make use of the following sets (among others): 
R: the set of real numbers. 

Z: the set of integers (positive, negative, or zero). 
Z,: the set of integers from 0 to n — 1 inclusive. 

The objects in a set are often called its elements or its 
members. If x is an element of the set S$, we write x e S, which is 

read ‘x belongs to S’ or ‘x belonging to S’ as the context requires. 
If x is not an element of S we write x¢éS. Thus 2¢€ Z but 4¢Z. 
Two sets are equal if they contain precisely the same elements. 

The set consisting precisely of elements x,,%,...,x, is often 

denoted by {x,,%.,...,x,}. For example, Z;= {0,1,2}. Also 

Z, = {0, 2,1} = {2, 1, 0}. 
If S is a set and P a property (or combination of properties) 

which elements x of S may or may not possess, we can define a 

new set with the notation 

{x «S| P(x)} 
which denotes ‘the set of all elements belonging to S which have 

property P’. For example, the set of positive integers could be 
written {x € Z|x >0} which we read as ‘the set of elements x 

belonging to Z such that x is greater than 0’. The set of all even 

integers can be denoted by {2n |ne€ Z}. 
A set T is called a subset of a set S if all the elements of T 

belong to S. We then say that ‘T is contained in S’ and write 
T cS, or that ‘S contains 7’ and write $a T. 

If S and T are sets we define the union S UT of S and T to be 

the set of all elements in either S or 7. We define the intersection 

ST of S and T to be the set of all elements which are members 

of both S$ and T. Thus 

SUT ={x|xeSorxeT}, 

SOT ={x|xeS and x eT}



Xl Notation 

If S and T have no members in common, we say that S and T are 

disjoint. 
The order or cardinality of a finite set S is the number of 

elements in S and is denoted by |S|. For example, |Z,,| =n. 
Given sets § and T we denote by (s,t) an ordered pair of 

elements where s eS and te T. Two ordered pairs (s,,¢,) and 
(S),) are defined to be equal if and only if s;=s, and t,=b. 
Thus if S = T = Z, (0, 1)4(1, 0). The Cartesian product of S and 
T, denoted by S x T, is defined to be the set of all ordered pairs 
(s,t) such that se S and te T. The product S$ x S is denoted by 
S*. Thus 

S? = {(s,, 8) | 5, € S, 5 € S}. 

If S and T are finite sets, then 

|S x T| = [S| -|T7| 
for, in forming an element (s, t) of S x T, we have |S| choices for 

s and |T| choices for ¢. In particular |S?| = |S|?. 
More generally we define the Cartesian product of n sets 

S,,S5,...,8, to be a set of ordered n-tuples thus: 

S, X S, Xx - XS, = {(51, 8, . oe ,5,)|5,;€8;,i=1,2,. ee jn}. 

Two ordered n-tuples (5,,5,...,5,) and (t,6,...,¢,) are 

defined to be equal if and only if s,=¢ for i=1,2,...,n. If 

S,;=S,=:::=S,=85, the product is denoted by S$”. For 
example, 

R?={(x,y,z)|xeR,yeR,zeR} 

is a set-theoretic description of coordinatized 3-space. If S is 
finite, then clearly 

S"| = |S|". 
Finally we remark that in this book we shall often write an 

ordered n-tuple (x1, %»,...,%,) simply as x,x,---X,.



1 Introduction to error-correcting codes 

  

Error-correcting codes are used to correct errors when messages 
are transmitted through a noisy communication channel. For 

example, we may wish to send binary data (a stream of Os and 1s) 
through a noisy channel as quickly and as reliably as possible. 
The channel may be a telephone line, a high frequency radio 

link, or a satellite communication link. The noise may be human 
error, lightning, thermal noise, imperfections in equipment, etc., 
and may result in errors so that the data received is different 
from that sent. The object of an error-correcting code is to 
encode the data, by adding a certain amount of redundancy to 

the message, so that the original message can be recovered if 

(not too many) errors have occurred. A general digital com- 

munication system is shown in Fig. 1.1. The same model can be 

used to describe an information storage system if the storage 
medium is regarded as a channel; a typical example is a 
magnetic-tape unit including writing and reading heads. 

          

Figure 1.1 

Noise 
1 Received Decoded 

Message Message Codeword vector message 
source ——> | Encoder | —————» | Channel | —————-» | Decoder | ——--—» User 

                              

Let us look at a very simple example in which the only 
messages we wish to send are ‘YES’ and ‘NO’. 

Example 1.2 
\ 

  
  

  

    

  
Message = YES Encoder: 00000 SS 01001 Decoder: YES 

YESorNO |7 >| YES=00000 | ———> oio0' |——»| o1001~ —-> | User 
NO=11111 00000= YES                   

  
        

Here two errors have occurred and the decoder has decoded the 

received vector 01001 as the ‘nearest’ codeword which is 00000 or 

YES.



2 A first course in coding theory 

A binary code is just a given set of sequences of Os and 1s 

which are called codewords. The code of Example 1.2 is 
{00000, 11111}. If the messages YES and NO are identified with 
the symbols 0 and 1 respectively, then each message symbol is 
encoded simply by repeating the symbol five times. The code is 
called a binary repetition code of length 5. This is an example of 

how ‘redundancy’ can be added to messages to protect them 

against noise. The extra symbols sent are themselves subject to 
error and so there is no way to guarantee accuracy; we just try to 

make the probability of accuracy as high as possible. Clearly, a 

good code is one in which the codewords have little resemblance 
to each other. 

More generally, a g-ary code is a given set of sequences of 
symbols where each symbol is chosen from a set F, = {A;, Ao, 
...,4A,} of q distinct elements. The set F, is called the alphabet 
and is often taken to be the set Z,={0,1,2,...,q—-1}. 
However, if g is a prime power (i.e. q=p” for some prime 

number p and some positive integer ) then we often take the 

alphabet F, to be the finite field of order gq (see Chapter 3). As 
we have already seen, 2-ary codes are called binary codes; 3-ary 
codes are sometimes referred to as ternary codes. 

Example 1.3. (1) The set of all words in the English language is 
a code over the 26-letter alphabet {A,B,..., Z}. 

(ii) The set of all street names in the city of Salford is a 
27-ary code (the space between words is the 27th symbol) and 
provides a good example of poor encoding, for two street names 
on the same estate are HILLFIELD DRIVE and MILLFIELD 

DRIVE. 
A code in which each codeword is a sequence consisting of a 

fixed number n of symbols is called a block code of length n. 
From now on we shall restrict our attention almost exclusively to 
such codes and so by ‘code’ we shall always mean ‘block code’. 

A code C with M codewords of length n is often written as an 

M Xn array whose rows are the codewords of C. For example, 
the binary repetition code of length 3 is 

000 

111. 

Let (F,)” denote the set of all ordered n-tuples a= aja): -- a, 
where each a;¢€ F,. The elements of (F,)” are called vectors or
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words. The order of the set (F,)” is gq”. A q-ary code of length n 
is just a subset of (F,)”. 

Example 1.4 The set of all 10-digit telephone numbers in the 

United Kingdom is a 10-ary code of length 10. Little thought 

appears to have been given to allocating numbers so that the 
frequency of ‘wrong numbers’ is minimized. Yet it is possible to 
use a code of over 82 million 10-digit telephone numbers (enough 

for the needs of the UK) such that if just one digit of any number 

is misdialled the correct connection can nevertheless be made. 

We will construct this code in Chapter 7 (Example 7.12). 

Example 1.5 Suppose that HQ and X have identical maps 
gridded as shown in Fig. 1.6 but that only HQ knows the route 

indicated, avoiding enemy territory, by which X can return safely 

to HQ. HQ can transmit binary data to X and wishes to send the 

route NNWNNWWSSWWNNNNWWN. This is a_ situation 

where reliability is more important than speed of transmission. 

Consider how the four messages N, S, E, W can be encoded into 

binary codewords. The fastest (i.e. shortest) code we could use is 

0 0O=N 

0O1=W 
C, = 

10=E 

11=S. 

Figure 1.6 
    

  

    
  

  

  

  

            
    

    

                         



4 A first course in coding theory 

That is, we identify the four messages N, W, E, S with the four 

vectors of (F,)*. Let us see how, as in Example 1.1, redundancy 
can be added to protect these message vectors against noise. 

Consider the length 3 code C, obtained by adding an extra digit 

as follows. 

000 

O11 

101 

110. 

This takes longer than C, to transmit but if there is any single 
error in a codeword, the received vector cannot be a codeword 

(check this!) and so the receiver will recognize that an error has 
occurred and may be able to ask for the message to be 

retransmitted. Thus C, has the facility to detect any single error; 
we Say it is a single-error-detecting code. 
Now suppose X can receive data from HQ but is unable to 

seek retransmission, i.e. we have a strictly one-way channel. A 

similar situation might well apply in receiving photographs from 
deep space or in the playing back of an old magnetic tape, and in 
such cases it is essential to extract as much information as 

possible from the received vectors. By suitable addition of two 
further digits to each codeword of C, we get the length 5 code 

00000 

01101 

10110 

11011. 

3= 

If a single error occurs in any codeword of C;, we are able not 

only to detect it but actually to correct it, since the received 
vector will still be ‘closer’ to the transmitted codeword than to 
any other. (Check that this is so and also that if used only for 
error-detection C3 is a two-error-detecting code). 

We have so far talked rather loosely about a vector being 
‘closer’ to one codeword than to another and we now make this
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concept precise by introducing a distance function on (F,)”, 
called the Hamming distance. 

The (Hamming) distance between two vectors x and y of (F,)” 
is the number of places in which they differ. It is denoted by 

d(x, y). For example, in (F)” we have d(00111, 11001) = 4, while 
in (F)* we have d(0122, 1220) = 3. 

The Hamming distance is a legitimate distance function, or 

metric, since it satisfies the three conditions: 

(i) d(x, y) =0 if and only ifx=y. 
(ii) d(x, y) =d(y,x) for all x, ye (F,)”. 

(iii) d(x, y) <d(x, z) + d(z, y) for all x, y,ze(F,)”. 

The first two conditions are very easy to verify. The third, 

known as the triangle inequality, is verified as follows. Note that 

d(x, y) is the minimum number of changes of digits required to 
change x to y. But we can also change x to y by first making 
d(x,z) changes (changing x to z) and then d(z,y) changes 
(changing z to y). Thus d(x, y) =d(x, z) + d(z, y). 

The Hamming distance will be the only metric considered in 
this book. However, it is not the only one possible and indeed 

may not always be the most appropriate. For example, in (Fi)° 
we have d(428, 438) = d(428, 468), whereas in practice, e.g. in 
dialling a telephone number, it might be more sensible to use a 
metric in which 428 is closer to 438 than it is to 468. 

Let us now consider the problem of decoding. Suppose a 
codeword x, unknown to us, has been transmitted and that we 

receive the vector y which may have been distorted by noise. It 
seems reasonable to decode y as that codeword x’, hopefully x, 

such that d(x’, y) is as small as possible. This is called nearest 
neighbour decoding. This strategy will certainly maximize the 
decoder’s likelihood of correcting errors provided the following 
assumptions are made about the channel. 

(i) Each symbol transmitted has the same probability p(<4) 
of being received in error. 

(ii) If a symbol is received in error, then each of the gq —1 
possible errors is equally likely. 

Such a channel is called a g-ary symmetric channel. The binary 

symmetric channel is shown in Fig. 1.7.



6 A first course in coding theory 

Figure 1.7 

  

  

1-p 
0 > 0 

1 —> 1 

sent 1-p received 

p is called the symbol error probability of the channel. 

If the binary symmetric channel is assumed and if a particular 

binary codeword of length n is transmitted, then the probability 
that no errors will occur is (1—p)”, since each symbol has 
probability (1 — p) of being received correctly. The probability 
that one error will occur in a specified position is p(1—p)""'. 
The probability that the received vector has errors in precisely 1 
specified positions is p‘(1 — p)"~‘. Since p <3, the received vector 
with no errors is more likely than any other; any received vector 

with one error is more likely than any with two or more errors, 
and so on. This confirms that, for a binary symmetric channel, 

nearest neighbour decoding is also maximum likelihood 
decoding. 

Example 1.8 Consider the binary repetition code of length 3 

000 

C={h 

Suppose the codeword 000 is transmitted. Then the received 
vectors which will be decoded as 000 are 000, 100, 010 and 001. 

Thus the probability that the received vector is decoded as the 
transmitted codeword 000 is 

(1—p)?+3p(1- py =(1—p)?(1 + 2p). 

Note that, by symmetry, the probability is the same if the 

transmitted codeword is 111. Thus we can say that the code C 
has a word error probability, denoted by P,,,(C), which is 
independent of the codeword transmitted. In this example, we 
have P.,,(C) = 1— (1 — p)*(1 + 2p) = 3p? — 2p3. 

In order to compare probabilities given by such polynomials in 

p, it is useful to assign an appropriate numerical value to p. For
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example we might assume that, on average, the channel causes 
one symbol in a hundred to be received in error, i.e. p = 0.01. In 
this case P.,,(C) = 0.000 298 and so approximately only one word 
in 3355 will reach the user in error. 

We will show in Chapter 6 that a very important class of codes, 

called linear codes, all have the property that the word error 
probability is independent of the actual codeword sent. For a 
general code, a brute-force decoding scheme is to compare the 
received vector with all codewords and to decode as the nearest. 
This is impractical for large codes and one of the aims of coding 
theory is to find codes which can be decoded by faster methods 
than this. We shall see in Chapters 6 and 7 that linear codes have 
elegant decoding schemes. 

An important parameter of a code C, giving a measure of how 
good it is at error-correcting, is the minimum distance, denoted 

d(C), which is defined to be the smallest of the distances 
between distinct codewords. That 1s, 

d(C) = min {d(x, y)|x, ye C, x#y}. 
For example, it is easily checked that for the codes of Example 

1.5, d(C,) =1, d(C) =2 and d(C;) = 3. 

Theorem 1.9 (i) A code C can detect up to s errors in any 
codeword if d(C) =s +1. 

(ii) A code C can correct up to ¢ errors in any codeword if 
d(C) =2t+1. 

Proof (i) Suppose d(C)2=s +1. Suppose a codeword x is 
transmitted and s or fewer errors are introduced. Then the 

received vector cannot be a different codeword and so the errors 

can be detected. 

(ii) Suppose d(C)=2t+1. Suppose a codeword x is trans- 
mitted and the vector y received in which ¢ or fewer errors have 

occurred, so that d(x, y) St. If x’ is any codeword other than x, 

then d(x’, y)=t+1. For otherwise, d(x’, y)<t, which implies, 
by the triangle inequality, that d(x, x')<d(x, y)+ d(x’, y) $21, 
contradicting d(C) =2t+1. So x is the nearest codeword to y 

and nearest neighbour decoding corrects the errors. 

{Note: The reader may find Remark 2.12 helpful in clarifying this 

proof. |
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Corollary 1.10 If acode C has minimum distance d, then C can 
be used either (i) to detect up to d — 1 errors, or (11) to correct up 
to |(d —1)/2| errors in any codeword. 

(|x| denotes the greatest integer less than or equal to x). 

Proof (i) d2s+1iffs<d-—1. (i) d=2t+1 iff t<(d—1)/2. 

For example, if d(C)=3, then C can be used either as a 
single-error-correcting code or as a double-error-detecting code. 
More generally we have: 

  

Number of errors Number of errors 

detected by corrected by 

d(C) C C 
  

T
O
N
 

On 
&
 

QW 
NO
 

=
 

na 
W
N
 F&F 
©
 

W
 

DN 
NO

 
KR 

&
 

©
 

OO
 

  

The following notation will be used extensively and should be 
memorized. 

An (n,M,d)-code is a code of length n, containing M 

codewords and having minimum distance d. 

Examples 1.11 (i) In Example 1.5, C, is a (2, 4, 1)-code, CG, a 
(3, 4, 2)-code and C; a (5, 4, 3)-code. 

(ii) The q-ary repetition code of length n whose codewords 
are 

(q-1) (q-1) Las (q-1) 

is an (n, gq, n)-code.
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Example 1.12 The code used by Mariner 9 to transmit pictures 
from Mars was a binary (32, 64, 16)-code, called a Reed—Muller 
code. This code, which will be constructed in Exercise 2.19, is 

well suited to very noisy channels and also has a fast decoding 
algorithm. How the code was used will be described in the 
following brief history of the transmission of photographs from 
NASA space probes. 

The transmission of photographs from deep-space 

1965: Mariner 4 was the first spaceship to photograph 

another planet, taking 22 complete photographs of Mars. Each 

picture was broken down into 200 x 200 picture elements. Each 
element was assigned a binary 6-tuple representing one of 64 

brightness levels from white (=000000) to black (=111111). Thus 
the total number of bits (i.e. binary digits) per picture was 

240 000. Data was transmitted at the rate of 83 bits per second 
and so it took 8 hours to transmit a single picture! 

1969-1972: Much improved pictures of Mars were obtained 

by Mariners 6, 7 and 9 (Mariner 8 was lost during launching). 

There were three important reasons for this improvement: 

(1) Each picture was broken down into 700 x 832 elements 
(cf. 200 x 200 of Mariner 4 and 400 x 525 of US commer- 
cial television). 

(2) Mariner 9 was the first spaceship to be put into orbit 
around Mars. 

(3) The powerful Reed—Muller (32, 64, 16)-code was used for 
error correction. Thus a binary 6-tuple representing the 
brightness of a dot in the picture was now encoded as a 

binary codeword of length 32 (having 26 redundant bits). 
The data transmission rate was increased from 84 to 

16200 bits per second. Even so, picture bits were 
produced by Mariner’s cameras at more than 100 000 per 
second, and so data had to be stored on magnetic tape 

before transmission. 

1976: Viking 1 landed softly on Mars and returned high- 
quality colour photographs. 

Surprisingly, transmission of a colour picture in the form of 
binary data is almost as easy as transmission of a black-and-white 
one. It is achieved simply by taking the same black-and-white
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photograph several times, each time through a different coloured 
filter. The black-and-white pictures are then transmitted as al- 

ready described and the colour picture reconstructed back on 
Earth. 

5 March 1979: High-resolution colour pictures of Jupiter and 
its moons were returned by Voyager 1. 

12 November 1980: Voyager 1 returned the first high- 

resolution pictures of Saturn and its moons. 

25 August 1981: Voyager 2 returned further excellent pic- 
tures of Saturn. 

And to come: 

24 January 1986: Voyager 2 passes Uranus. 

24 August 1989: Voyager 2 passes Neptune. 

Exercises 1 

1.1 

1.2 

1.3 

1.4 

1.5 

If the following message were received from outer space, 
why might it be conjectured that it was sent by a race of 
human-like beings who have one arm twice as long as the 
other? [Hint: The number of digits in the message is the 
product of two prime numbers. | 

0011000001 10001111111101100100110010011001011110001 
00100010010001001001100110 

Suppose the binary repetition code of length 5 is used for 

a binary symmetric channel which has symbol error 
probability p. Show that the word error probability of the 

code is 10p* — 15p* + 6p. 
Show that a code having minimum distance 4 can be used 
simultaneously to correct single errors and detect double 

errors. 
The code used by Mariner 9 will correct any received 
32-tuple provided not more than ... (how many?) errors 
have occurred. 

(i) Show that a 3-ary (3, M, 2)-code must have M <9. 
(ii) Show that a 3-ary (3, 9, 2)-code does exist. 

(iii) Generalize the results of (i) and (ii) to q-ary 
(3, M, 2)-codes, for any integer g =2.



2 The main coding theory problem 

  

A good (n,M,d)-code has small n (for fast transmission of 
messages), large M (to enable transmission of a wide variety of 
messages) and large d (to correct many errors). These are 
conflicting aims and what is often referred to as the ‘main coding 
theory problem’ is to optimize one of the parameters n, M, d for 
given values of the other two. The usual version of the problem 
is to find the largest code of given length and given minimum 
distance. We denote by A,(n, d) the largest value of M such that 
there exists a g-ary (n, M, d)-code. 

The problem is easily solved for d=1 and d =n, for all q: 

Theorem 2.1 (i) A,(n,1)=@q". (ii) Aj(n, n) = q. 

Proof (i) For the minimum distance of a code to be at least 1 
we require that the codewords are distinct, and so the largest 
q-ary (n, M, 1)-code is the whole of (F,)”, with M = q”. 

(ii) Suppose C is a q-ary (n,M,n)-code. Then any two 
distinct codewords of C differ in all n positions. Thus the symbols 
appearing in any fixed position, e.g. the first, in the M codewords 
must be distinct, giving M<q. Thus A,(n,n) <q. On the other 
hand, the q-ary repetition code of length n (see Example 
1.11(ii)) is an (n, gq, n)-code and so A,(n,n) =q. 

Example 2.2 We will determine the value A,(5, 3). The code C, 
of Example 1.5 is a binary (5, 4, 3)-code and so A,(5, 3) =4. But 
can we do better? To show whether there exists a binary 
(5,5,3)-code a brute-force method would be to consider all 

subsets of order 5 in (4)° and find the minimum distance of each. 
Unfortunately there are over 200 000 such subsets (see Example 
2.11(iii)), but, by using the following notion of equivalence, the 
search can be considerably reduced. We will return to Example 
2.2 shortly.
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Equivalence of codes 

A permutation of a set S={x,,%,...,X,} IS a one-to-one 

mapping from S to itself. We denote a permutation f by 

x; Xp... XX, 

1 1 L |. 

fm) FQ2)..- Flr) 

Definition Two q-ary codes are called equivalent if one can be 
obtained from the other by a combination of operations of the 
following types: 

(A) permutation of the positions of the code; 
(B) permutation of the symbols appearing in a fixed position. 

If a code is displayed as an M Xn matrix whose rows are the 
codewords, then an operation of type (A) corresponds to a 

permutation, or rearrangement, of the columns of the matrix, 
while an operation of type (B) corresponds to a re-labelling of 

the symbols appearing in a given column. 
Clearly the distances between codewords are unchanged by 

such operations and so equivalent codes have the same para- 
meters (n,M,d) and will correct the same number of errors. 
Indeed, under the assumptions of a g-ary symmetric channel, the 
performances of equivalent codes will be identical in terms of 
probabilities of error correction. 

Examples (i) The binary code 

00100 

00011 

11111 

11000 

is equivalent to the code C, of Example 1.5. (Apply the 
permutation 

0 1 

4 
1 0
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to the symbols in the third position of C and then interchange 
positions 2 and 4. Note that the codewords will be listed in a 
different order from that in Example 1.5). 

(ii) The ternary code 
012 

C=4120 

201 

is equivalent to the ternary repetition code of length 3. Applying 
the permutation 

0 1 2 

Lill 
201 

to the symbols in the second position and 

O 1 2 

Lvl 
1 2 0 

to the symbols in the third position of C gives the code 

00 0 

111. 

222 

Lemma 2.3 Any q-ary (n,M,d)-code over an_ alphabet 
{0,1,...,q—1} is equivalent to an (n, M,d)-code which con- 
tains the all-zero vector 0=00---0. 

Proof Choose any codeword x,x,-- +x, and for each x,;#0 apply 
the permutation 

/0 xi J 

1 J J for all 740, x; 

x, O J 

to the symbols in position 1. 

Example 2.2 (continued) We will show not only that a binary 
(5, M,3)-code must have M <4 but also that the (5, 4, 3)-code is 
unique, up to equivalence.
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Let C be a (5, M, 3)-code with M =4. Then by Lemma 2.3 we 
may assume that C contains the vector 0 = 00000, (replacing C by 
an equivalent code which does contain 0, if necessary). Now C 
contains at most one codeword having 4 or 5 1s, for if there were 

two such codewords, x and y say, then x and y would have at 

least 3 1s in common positions, giving d(x, y) 2 and contradict- 
ing d(C) =3. 

Since 0 € C, there can be no codewords containing just one or 
two ls and so, since M = 4, there must be at least two codewords 

containing exactly 3 1s. By rearranging the positions, if neces- 
sary, we may thus assume that C contains the codewords 

00000 

11100. 

00111 

It is now very easy to show by trial and error that the only 
possible further codeword can be 11011. 

We have thus shown that A,(5, 3) =4 and that the code which 
achieves this value is, up to equivalence, unique. 

Restricting our attention for the time being to binary codes, we 
list in Table 2.4 the known non-trivial values of A,(n,d) for 
n= 16 and d $7. This is taken from the table on P. 156 of Sloane 
(1982) which in turn is an updating of the table on P. 674 of 

  

  

Table 2.4 

n d=3 d=5 d=7 

5 4 2 — 
6 8 2 — 
7 16 2 2 
8 20 4 2 

9 40 6 2 
10 72-79 12 2 
11 144-158 24 4 

12 256 32 4 

13 512 64 8 
14 1024 128 16 
15 2048 256 32 
16 2560-3276 256-340 36-37 
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MacWilliams and Sloane (1977). Where the value of A,(n, d) is 
not known, the best available bounds are given; for example, the 

entry 72—79 indicates that 72 = A,(10, 3) <79. 
Many of the entries of Table 2.4 will be established during the 

course of this book (we have already verified the first entry in 
Example 2.2). In Chapter 16 we shall again consider Table 2.4 
and review the progress we have made. 

The reason why only odd values of d need to be considered in 
the table is that if d is an even number, then A,(n,d)= 
A,(n —1,d—1), a result (Corollary 2.8) towards which we now 
proceed. 

Taking F, to be the set {0,1}, we define two operations on 
(F,)". Let x=x,X,-+-x, and y=y,jy.---y, be two vectors in 

(F,)". Then the sum x + y is the vector in (F,)” defined by 

x+y= (x; + V1, X_ + yo, 22 0 Xp + y,), 

while the intersection x Ny is the vector in (/)” defined by 

xNy= (X11, %2Ye, ane > XnYn)- 

The terms x,;+y, and x,y; are calculated modulo 2 (without 

carrying); that is, according to the addition and multiplication 
tables 

+|0O 1 -| 0 1 

0;0 1 0; 90 0 
1/1 QO 1/0 1 

For example 11100+ 00111 = 11011 

and 1110000111 = 00100. 

The weight of a vector x in (f)”, denoted w(x), is defined to be 
the number of 1s appearing in x. 

Lemma 2.5 If x and ye (F)", then d(x, y)=w(x+y). 

Proof The sum x+y has a 1 where x and y differ and a 0 where 
x and y agree. 

Lemma 2.6 If x and ye (F)”, then 

d(x, y) = w(x) + w(y) — 2w(x Ny). 

Proof d(x, y) = w(x+ y) = (number of 1s in x) + (number of 1s
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in y)—2(number of positions where both x and y have a 
1) = w(x) + w(y) — 2w(xNy). 

Theorem 2.7 Suppose d is odd. Then a binary (n, M, d)-code 
exists if and only if a binary (n + 1, M, d + 1)-code exists. 

Proof ‘only if? part: Suppose C is a binary (n, M, d)-code, 
where d is odd. Let C be the code of length n + 1 obtained from 
C by extending each codeword x of C according to the rule 

—  (%1%- ++ X,0 — if w(x) is even 
K=Xj%)°° +X, PO K= . ; 

XyX_-°+ X,1 if w(x) is odd. 

Equivalently we can define 

K = XyXQ° Xn 

where x,,4; = 17, x;, calculated modulo 2. 
This construction of C from C is called ‘adding an overall 

parity check’ to the code C. 
Since w(X) is even for every codeword & of C, it follows from 

Lemma 2.6 that d(x, ¥) is even for all X, ¥ in C. Hence d(C) is 
even. Clearly d=<d(C)<d +1, and so, since d is odd, we must 
have d(C) =d +1. Thus C is an (n +1, M, d + 1)-code. 

‘if part: Suppose D is an (n+1,M,d+1)-code, where d is 

odd. Choose codewords x and y of D such that d(x, y)=d +1. 
Choose a position in which x and y differ and delete this from all 
codewords. The result is an (n, M, d)-code. 

Corollary 2.8 If d is odd, then A,(n+1,d+1)=A,(n, a). 
Equivalently, if d is even, then A,(n, d) = A,(n—1,d-—1). 

Example 2.9 By Example 2.2, A,(5,3)=4. Hence, by 
Corollary 2.8, A,(6,4)=4. To illustrate the ‘only if? part of 
Theorem 2.7 we construct below a (6,4, 4)-code from the 
(5, 4, 3)-code of Example 1.5. 

(5, 4, 3)-code (6, 4, 4)-code 

00000 000000 

01101 oieare «20011011 
10110 101101 

11011 110110
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The trial-and-error method of Example 2.2, which proved that 
a binary (5, M,3)-code must have M <4, would not be practical 
for sets of larger parameters. However, there are some general 

upper bounds on how large a code can be (for given n and d), 
which sometimes turn out to be the actual value of A,(n, d). The 
best known is the so-called ‘sphere-packing bound’, which we 

will prove after introducing a little more notation. 

Binomial coefficients 

If n and m are integers with 0<m <n, then the binomial coeffi- 

. n , 
cient ( ), pronounced ‘n choose m’, is defined by 

m 

(") = 
where m! =m(m — 1):-+3.2.1 for m>0 
and Q!=1. 

Lemma 2.10 The number of unordered selections of m distinct 

. ge . . [a 
objects from a set of n distinct objects is ( ) 

m 

Proof An ordered selection of m distinct objects from a set of n 
distinct objects can be made in 

n! 
nino Mo m+ lac 

ways, for the first object can be chosen in any of n ways, then the 
second in any of n—1 ways, and so on. Since there are 
m(m—1)::+:2.1=m! ways of ordering the m objects chosen, 
the number of unordered selections is 

n!} 

m!(n—m)!- 

Examples 2.11 (i) We illustrate the proof of Lemma 2.10 by 
listing the ordered and unordered selections of 2 objects from 4. 
Labelling the four objects 1, 2, 3, 4, the ordered selections of 2 

from 4 are (1,2), (1,3), (1,4), (2,1), (2,3), (2,4), @,1),
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(3, 2), (3,4), (4,1), (4, 2), (4,3). The number of them is 12= 
4.3 =4!/2!. 

The unordered selections of 2 from 4 are {1,2}, {1,3}, {1, 4}, 

{2,3}, {2,4}, {3,4}. Each unordered selection corresponds to 
2!=2 ordered selections and so the number of unordered 

_  , 4 4 
selections is 5191 ( ,) 6. 

Note that the unordered selections of m objects from a set $ 

are just the subsets of S of order m. 

(ii) Suppose a bet on a football pool is to be a selection 
(unordered) of 8 matches from a large number. The 8 matches 
are forecast to be draws (ties). A common plan is to select 10 
matches and to ‘choose any 8 from 10’. The number of bets 

required is (‘.) = 45. 

(iii) The number of different binary codes with M=5 and 

n=5 is (~~) = 201 376. Of course the number of inequivalent 

codes will be very much smaller than this. 

(iv) The number of binary vectors in (F,)” of weight i is ("), 

this being the number of ways of choosing i positions out of n to 
have 1s. For example, the vectors in (F,)* of weight 2 are 1100, 
1010, 1001, 0110, 0101, 0011. The one-to-one correspondence 

with the list of unordered selections in (i) above should be 
evident. 

We now introduce the notion of a sphere in the set (F,)”. 
Provided the analogy is not stretched too far, it can be useful to 
think of (F,)” as a space not unlike the three-dimensional real 
space which we inhabit. The distance between two points of (F,)” 
is of course taken to be the Hamming distance and then the 

following definition is quite natural. 

Definition. For any vector u in (F,)” and any integer r=0, the 
sphere of radius r and centre u, denoted S(u,r), is the set 
{v € (F,)” | d(u, v) <r}. 

Remark 2.12 Let us interpret Theorem 1.9(ii) visually. If
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d(C)22t+1, then the spheres of radius ¢ centred on the 
codewords of C are disjoint (i.e. they have no overlap). For if a 

vector y were in both S(x, t) and S(x’, t), for codewords x and x’ 
(see Fig. 2.13), then by the triangle inequality we would have 

d(x, x') <d(x, y)+ d(x’, y) St+t=2t, 

a contradiction to d(C) = 2t+ 1. 

ey 
So if t or fewer errors occur in a codeword x, then the received 

vector y may be different from the centre of the sphere S(x, fr), 
but cannot ‘escape’ from the sphere, and so is ‘drawn back’ to x 
by nearest neighbour decoding (see Fig. 2.14). 

—»~ 
Figure 2.13 Figure 2.14 

Lemma 2.15 A sphere of radius r in (F,)" (QSr<n) contains 
exactly 

(i) + (a-v+ Glare + (Yaar 
vectors. 

Proof Let u be a fixed vector in (F,)”. Consider how many 
vectors v have distance exactly m from u, where mn. The m 

positions in which v is to differ from u can be chosen in ( 
m 

ways and then in each of these m positions the entry of v can be 
chosen in gq — 1 ways to differ from the corresponding entry of u.
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Hence the number of vectors at distance exactly m from uw is 

(alc — 1)” and so the total number of vectors in S (u,r) is 

© Ge (anae Canoe 
Remark The numbers (”) are called binomial coefficients 

because of their role in the binomial theorem, which for any 
positive integer n states that 

(A+x)"=1+ ("x + (5 )x2+ seat ("x 

For x an integer, the binomial theorem follows from Lemma 2.15 

by taking x =q —1 and r=n, for S(u,n) is the whole of (F,)” 
and so contains q” = (1+ x)” vectors. 

Theorem 2.16 (The sphere-packing or Hamming bound) A 
q-ary (n, M, 2t + 1)-code satisfies 

m|(") + ("\a ~1)4..+4 ("\(a - 1y| <q", (2.17) 

Proof Suppose C is a q-ary (n,M,2t+1)-code. As we ob- 
served in Remark 2.12, any two spheres of radius ¢ centred on 
distinct codewords can have no vectors in common. Hence the 
total number of vectors in the M spheres of radius ¢ centred on 
the M codewords is given by the left-hand side of (2.17). This 
number must be less than or equal to qg”, the total number of 
vectors in (F,)”. 

For future reference, we re-state (2.17) for the particular case 
of binary codes. That is, any binary (n, M, 2t + 1)-code satisfies 

mii+(")+(C)+---+(") con (2.18) 

For given values of gq, n and d, the sphere-packing bound 
provides an upper bound on A,(n,d). For example, a binary 
(5, M, 3)-code satisfies M{1+5} =<2°=32, and so A,(5,3) <5. 
Of course, just because a set of numbers n, M, d satisfies the 

sphere-packing bound, it does not necessarily mean that a code
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with those parameters exists. Indeed we saw in Example 2.2 that 
there is no binary (5,5,3)-code and that the actual value of 
A,(5, 3) is just 4. 

Perfect codes 

A code which achieves the sphere-packing bound, i.e. such that 

equality occurs in (2.17), is called a perfect code. Thus, for a 
perfect t-error-correcting code, the M spheres of radius ¢ centred 

on codewords ‘fill’ the whole space (F,)” without overlapping. 
Or, in other words, every vector in (F,)” is at distance <¢ from 

exactly one codeword. 

The binary repetition code 

of length n, where n is odd, is a perfect (n,2,n)-code. Such 

codes, together with codes which contain just one codeword or 
which are the whole of (F,)”, are known as trivial perfect codes. 

The problem of finding all perfect codes has provided mathe- 
maticians with one of the greatest challenges in coding theory 
and we shall return to this problem in Chapter 9. We will 
conclude this chapter by giving, in Example 2.23, an example of 
a non-trivial perfect code. An alternative construction, as one of 

the family of so-called perfect Hamming codes, will be given in 
Chapter 8, while the present construction will be generalized in 
Exercise 2.15 to a class of binary codes known as Hadamard 

codes. 

The construction given here will be based on one of a family of 
configurations known as block designs, which we now introduce. 

Balanced block designs 

Definition A balanced block design consists of a set S of uv 
elements, called points or varieties, and a collection of b subsets 

of S, called blocks, such that, for some fixed k, r and A 

(1) each block contains exactly k points 
(2) each point lies in exactly r blocks 
(3) each pair of points occurs together in exactly A blocks. 
Such a design is referred to as a (b, uv, r,k, A)-design.
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Example 2.19 Take S={1,2,3,4,5,6,7} and consider the 

following subsets of S: {1,2,4}, {2,3,5}, {3,4,6}, {4,5, 7}, 

{5, 6,1}, {6, 7,2}, {7, 1, 3}. 
It is easily verified that each pair of elements of S occurs 

together in exactly one block. Thus the subsets form the blocks 
of a (7, 7, 3, 3, 1)-design. 

There is a simple geometrical representation of this design (see 
Fig. 2.20). The elements 1,2,...,7 are represented by points 

and the blocks by lines (6 straight lines and a circle). This is 
known as the seven-point plane, the Fano plane, or the projective 
plane of order 2. 

  
  

  

Fig. 2.20 The seven-point plane 

The elements of the set S of a block design are often called 
varieties because such designs were originally used in statistical 
experiments, particularly in agriculture. For example, suppose 
that we have v varieties of fertilizer to be tested on b crops and 
that we are particularly interested in the effects of pairs of 
fertilizers acting together on the same crop. By using a balanced 
block design, each of the b crops can be tested with a block of k 
varieties of fertilizer, in such a way that each pair of varieties is 
tested together a constant number A of times. Thus the design is 
balanced so far as comparison between pairs of fertilizers is 
concerned. 

Example 2.21 If we have 7 varieties of fertilizer (labelled 
1,2,...,7) and 7 crops, then, using the (7,7, 3,3, 1)-design of 

Example 2.19, we could treat the first crop with the block of
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varieties {1, 2,4}, the second crop with {2,3,5} and so on. The 
schedule can be.displayed as follows: 

  

  

Figure 2.22 

Blocks 

Bi B, Bs By, Bs Be B, 

(1 1 0 0 0 1 0 1 

2 1 1 0 0 0 1 0 

3 0 1 1 0 0 0 1 

Varieties 4 4 1 0 1 1 0 0 0 

5 0 1 0 1 1 0 0 

6 0 0 1 0 1 1 0 

7 0 0 0 1 0 1 1   
The 7 X 7 matrix of Os and 1s thus obtained is called an incidence 

matrix of the design. More formally we have: 

Definition The incidence matrix A ={a,| of a block design is a 
vu Xb matrix in which the rows correspond to the varieties 
X1,X),...,X, and the columns to the blocks B,, B,,..., B,, and 

whose 7, /th entry is defined by 

={" if x; € B; 
ai = , 

0 if x,é B; 

We now construct our example of a non-trivial perfect code. 

Example 2.23 Let A be the incidence matrix of Fig. 2.22 and let 
B be the 7 X7 matrix obtained from A by replacing all Os by 1s 
and all 1s by Os. Let C be the length 7 code whose 16 codewords 
are the rows a,,@,...,a, of A, the rows b,, b,,...,b, of B and 

the additional vectors 0 = 0000000 and 1= 1111111. Thus 

C=0000000=0 010110 0=a;, 100111 0=b, 

1111111=1 0010110=a 0100111=b, 

1000101=a, 0001011=a 101001 1=b, 

1100010=a 0111010=b, 110100 1=b, 

0110001=a,0011101=b1110100=b, 
101100 0=a,
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We will show that the minimum distance of C is 3, 1.e. that 

d(x, y)=3 for any pair of codewords x,y. By the incidence 
properties of the (7,7, 3,3, 1)-design, each row of A has exactly 

3 1s and any two distinct rows of A have exactly one 1 in 
common. Hence, by Lemma 2.6, 

d(a;,a,)=3+3-2.1=4  fori¥j. 

Since distances between codewords are unchanged if all Os are 

changed to 1s and all 1s to Os, we have also that 

d(b;,b;) =4 for iF]. 

It is clear that 

d(0,y) =3, 4 or 7 according as y=a,, b; or 1, 
J 

d(1,y) =3, 4 or 7 according as y=b,, a, or 0, 
and d(a;,b;) =7 fori=1,2,...,7. 

It remains only to consider d(a;,b;) for i~j. But a; and b, 
differ precisely in those places where a; and a, agree and so 

d(a;, b;) =7—- d(a;,, a;) =7-4=3. 

We have now shown that C is a (7, 16, 3)-code and since 

16{(;) +(;)) =” 
we have equality in (2.18) and so the code is perfect. 

The existence of a perfect binary (7, 16,3)-code shows that 
A,(7, 3) = 16 and so we have established another of the entries of 
Table 2.4. 

In leaving the code of Example 2.23 we note that it has the 
remarkable property that the sum of any two codewords is also a 
codeword! Interestingly, the (5, 4,3)-code of Example 2.2 has 
the same property. Such codes are called linear codes and play a 
central role in coding theory. We shall begin to study the theory 

of such codes in Chapter 5. 

Concluding remarks on Chapter 2 

(1) It is not recommended that the reader spends a lot of 
time on the unresolved cases in Table 2.4, for many man-hours 
have so far failed to improve on the current best bounds.
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However, the manner in which one entry, A,(15,5) = 256, was 
obtained (Nordstrom and Robinson 1967) might give some 
encouragement to the amateur. It was previously known only 

that 128 < A,(15, 5) <256 and this case was chosen by Robinson 
as an example of a problem which he posed to high school 
students in an introductory talk on coding theory. One of them, 
named Alan Nordstrom, accepted the challenge and, by trial 

and error, constructed a (15, 256,5)-code, the now-famous 
Nordstrom—Robinson code. A construction of this code will be 

given in Exercise 9.9. 

It might be felt that all optimal codes of moderate length 
should be obtainable by means of exhaustive computer searches. 
But an estimate of the time needed to find whether there exists, 

say, a binary (10, 73, 3)-code shows how difficult this would be. 
In fact, computer-aided searches have so far met with distinctly 
limited success; almost all the good codes known have arisen out 

of their discoverers’ ingenuity. 
(2) For binary codes, the sphere-packing bound turns out to 

be reasonably good for cases n22d+1. Unfortunately, it 
becomes very weak for n <2d, but in such cases there is a much 

sharper bound, due to Plotkin (1960), which will be derived in 

Exercises 2.20—22. [For some recent analogous results on ternary 

codes, see Mackenzie and Seberry (1984). For some bounds on 
binary (n,M,d)-codes with nv slightly greater than 2d, see 
Tietavainen (1980). | 

The reader who wishes to progress quickly to the main stream 
of coding theory, which is the theory of linear codes, need not 
dwell on the remaining remarks of this chapter for too long and 
may also leave Exercises 2.12 to 2.24 for the time being. 

(3) The parameters of a (b,v,r,k,A)-design are not inde- 

pendent, for they satisfy the following two conditions (see 
Exercise 2.13): 

bk =ur (2.24) 

r(k —1)=A(u — 1). (2.25) 

However, if five numbers b, vu, r, k, A satisfy (2.24) and (2.25), 
there is no guarantee that a (b,v,r,k,A)-design exists. For 
example it is known that there does not exist a (43, 43, 7,7, 1)- 

design.
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(4) A block design is called symmetric if v = b (and so also, 
by (2.24), k=r), and is referred to simply as a (uv, k, A)-design. 
There are two types of (uv, k, A)-design which will be of particular 
interest to us. 

(i) A finite projective plane is a symmetric design for which 
A=1. If we put k =n +1, then x is called the order of the plane. 
By (2.25), we then have v = n* +n +1, and so a projective plane 
of order n is a (n?+n+1,n+1,1)-design. Such a design exists 
whenever n is a prime power (see Exercise 4.7). 

Gi) A (4t—1,2t—1,t—1)-design is called a Hadamard 
design. 

We see that the (7,3, 1)-design of Example 2.19 is both a 
projective plane of order 2 and a Hadamard design with t = 2. 

(5) Further relations on the five parameters of a 
(b, v, r, k, A)-design have been found by making ingenious use of 
the incidence matrix. The best known is the very simple, but by 
no means obvious, result that 

u<b (2.26) 

obtained by the statistician R. A. Fisher in 1940. 
For the particular case of symmetric designs, the following 

fundamental theorem was proved by Bruck, Ryser and Chowla 

in 1950. 

Theorem 2.27 If a(v,k, A)-design exists, then 
(i) if vis even, k —A is a square 

(ii) if v is odd, the equation z? =(k — A)x* + (-1)©-V7Ay? 
has a solution in integers x, y, z not all zero. 

It is an unsolved problem to determine whether the necessary 
condition of Theorem 2.27, together with (2.24) and (2.25), form 
a set of sufficient conditions for the existence of a symmetric 
design. There are many parameters for which the existence of the 

design is undecided, a particularly interesting case being the 
projective plane of order 10, with parameters (v,k,A)= 
(111, 11, 1). 

For full details of these, and other, results on block designs the 
reader is referred to Anderson (1974) or Hall (1980). 

(6) A generalization of block designs to so-called ‘t-designs’ 
will be considered in Chapter 9.
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Exercises 2 

Questions should not be answered simply by referring to Table 
2.4. 
2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

2.10 
2.11 
2.12 

Construct, if possible, binary (n,M,d)-codes with the 

following parameters: (6, 2, 6), (3, 8,1), (4, 8, 2), (5, 3, 4), 

(8, 30, 3). (When not possible, show why not possible). 
Show that if there exists a binary (n, M,d)-code, then 
there exists a binary (n —1, M’, d)-code with M’=M/2. 
Deduce that A,(n, d) <2A,(n — 1, d). 
Prove that A,(3, 2)=q’ for any integer q >2. [Hint: See 
Exercise 1.5]. 
Let E,, denote the set of all vectors in (F,)” which have 
even weight. Show that E,, is the code obtained by adding 
an overall parity check to the code (F)"~!. Deduce that E,, 
is an (n, 2”~', 2)-code. 
Consider an entry to a football pool made by selecting 10 
matches at random from a total of 50 and ‘choosing any 8 

from 10’. Show that if exactly 8 of the 50 matches finish as 
draws, the odds against the above entry containing a 

winning line are greater than 10 million to 1. 
Show that if there is a binary (n, M, d)-code with d even, 
then there exists a binary (n, M, d)-code in which all the 

codewords have even weight. 

Show that the number of inequivalent binary codes of 
length n and containing just two codewords is n. 
Show that A,(8,5) =4 and that, up to equivalence, there 

is just one binary (8, 4, 5)-code. 
Show that any q-ary (n,q,n)-code is equivalent to a 
repetition code. 
Show that a q-ary (¢q + 1, M, 3)-code satisfies M = q?. 
Show that A,(8, 4) = 16. 
Listed below are the blocks of an (11,5, 2)-design. Use 
this to construct a binary (11, 24, 5)-code. 
{1,3, 4, 5, 9}, {2, 4,5, 6, 10}, {3, 5,6, 7, 11}, 
{1, 4, 6, 7, 8}, {2,5,7, 8, 9}, {3, 6, 8,9, 10}, 
{4,7,9, 10, 11}, {1, 5,8, 10, 11}, {1,2,6,9, 11}, 
{1,2,3, 7, 10}, {2,3,4, 8, 11}. 
[Remark: We see from Table 2.4 that A,(11,5) =24 and
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2.13 

2.14 

2.15 

2.16 

2.17 

2.18 

2.19 
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so the code constructed here is the largest binary double- 
error-correcting code of length 11. We shall prove this in 

Exercise 2.22(iv).] 
Show that the sphere-packing bound for a binary 

(11, M,5)-code gives only M <30. 
Show that the parameters of a (b, v,r, k, A)-design satisfy 

(i) bk = vr, (ii) r(k — 1) =A(vu — 1). [Hint for (i): Count in 
two ways the number of ordered pairs in the set {(x, B): x 
is a point, B is a block and x € B}.] 
Show that there do not exist (b, v, r, k, A)-designs with the 
parameters: (i) (12, 8, 6, 4, 3), (ii) (22, 22, 7, 7, 2). 

Show that if there exists a Hadamard (4¢ — 1, 2¢ — 1, t—1)- 
design, then A,(4t — 1, 2t — 1) = 8t. 
Let C be the binary code consisting of all cyclic shifts of 
the vectors 11010000, 11100100 and 10101010, together 

with 0 and 1. (A cyclic shift of a,a,---a, is a vector of the 
form 44,41 °° *4,€,;Q°+**a,_,.) Show that C is a (8, 20, 3)- 

code. When showing that d(C) =3, the cyclic nature of 
the code reduces the number of evaluations of d(x, y) 

20 
required from ( >) to -:: (how many?). 

[The (u|u+v) construction of Plotkin (1960).] Given 
uU=U,°--u,, and v=v,---U,, let (u| v) denote the vector 
U,***U,U,°*:U, Of length m+n. Suppose that C, is a 

binary (n, M,, d,)-code and that C, is a binary (n, M), d>)- 

code. Form a new code C;, consisting of all vectors of the 
form (u|u+v), where ue C,, veC,. Show that C, is a 
(2n, M,M,, d)-code with d = min {2d,, d,}. 
Prove that A,(16, 3) = 2560. [Hint: Use Exercises 2.16 and 
2.17.] 
Starting from the (4, 8,2) even-weight code (see Exercise 
2.4) and the (4, 2, 4) repetition code, apply Exercise 2.17 
three times to show that there exists a binary (32, 64, 16)- 
code. [Remark: The (2”, 2”*!, 2~')-codes, which may be 
constructed in this way for each positive integer m = 1, are 
called first-order Reed—Muller codes. | 

The aim of the next three exercises is to derive the so-called 
Plotkin bound.
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2.20 Show that if C is a binary (n, M, d)-code with n < 2d, then 

2.21 

2.22 

2.23 

2.24 

M< ne —n) if M is even 

~ (2d/(2d —n)—1_ if M is odd. 

(Hint: let C = {x,,X,...,X,,} and let T be the (5) xn 

matrix whose rows are the vectors x;+x,, 1<i<j<M. 

Estimate the number w(T) of non-zero entries of T in two 
ways, via rows and via columns. | 
Deduce from Exercise 2.20 that, if m <2d, then 

A,(n, d) <2|d/(2d —n)|. 

State the upper bounds this gives on A,(9,5) and on 
A,(10, 6). How can the bound on A,(9, 5) be improved? 
[Remark: As for this case, it happens in general that the 
above bound is good for d even, but is open to improve- 
ment for d odd; we make that improvement in the next 
exercise. | 
Show that 

(i) if d is even and n<2d, then 

A,(n, d) <2|d/(2d—-n)|, 

(ii) if dis odd andn<2d +1, then 

A,(n, d) <2|(d +1)/(2d+1-n)], 

(iii) if dis even, then A,(2d, d) =< 4d, 
(iv) if dis odd, then A,(2d+1,d)<4d + 4. 
(i) to (iv) are known collectively as the Plotkin bound. 
Show that the (32, 64, 16)-code of Exercise 2.19 is optimal. 
Generalize this result by proving that A,(2d,d)=4d 
whenever d is a power of 2. 
Show that if there exists a Hadamard (4¢ — 1, 2t —1,t— 1)- 
design, then A,(4t, 2t) = 8¢.





3 An introduction to finite fields 

  

To make error-correcting codes easier to use and analyse, it is 

necessary to impose some algebraic structure on them. It is 

especially useful to have an alphabet in which it is possible to 
add, subtract, multiply and divide without restriction. In other 
words we wish to give F, the structure of a field, the formal 
definition of which follows. 

Definition A field F is a set of elements with two operations + 
(called addition) and - (multiplication) satisfying the following 
properties. 

(i) Fis closed under + and -,i.e.a+banda-b are in F 
whenever a and Db are in F. 

For all a, b and c in F, the following laws hold. 

(ii) Commutative laws:a+b=b+a,a-b=b-a. 
(iii) Associative laws: (a+ b)+c=a+(b+c),a-(b:c)= 

(a-b)-c. 
(iv) Distributive law: a-(b+c)=a-b+t+a-c. 

Furthermore, identity elements 0 and 1 must exist in F satisfying 

(v) a+0=a for all ain F. 
(vi) a:1=a for all ain F. 
(vii) For any a in F, there exists an additive inverse element 

(—a) in F such that a + (—a) =0. 
(viii) For any a#0 in F, there exists a multiplicative inverse 

element a~' in F such that a-a7~* = 1. 

Notes 
(1) From now on we will generally write a - b simply as ab. 
(2) We can regard a field F as having the four operations +, —, 

- and +, where — and + are given by (vii) and (viii) 
respectively with the understanding that a—b=a+(-—b) 
and a + b, or a/b, =a(b“") for b40.
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(3) The reader who has done any group theory will recognize 

that a field can be more concisely defined to be a set of 
elements such that 

(a) itis an abelian group under +, 
(b) the non-zero elements form an abelian group under -, 
(c) the distributive law holds. 

(4) The following two further properties of a field are easily 
deduced from the definition. 

Lemma 3.1 Any field F has the following properties. 

(i) ad0=O0 for all ain F. 
(ii) ab =O0>a=0 or b =0. (Thus the product of two non-zero 

elements of a field is also non-zero.) 

Proof (i) We have a0=a(0+0)=a0+a0. Adding the addi- 
tive inverse of a0 to both sides gives 

0=a0+ (—a0) = a0+a0+ (—a0) =a0+0=<a0. 

Thus a0 = 0. 

(ii) Suppose ab=0. If a#0, then a has a multiplicative 
inverse and so b=1-b=(a~'a)b =a~'(ab)=a~'0=0. Hence 
ab=0>D>a=O0orb=0. 

Definition A set of elements with + and - satisfying the field 

properties (i) to (vil), but not necessarily (viii), is called a ring. 

Remark For convenience, we have defined a ‘ring’ to be a 
structure which should properly be called a ‘commutative (or 

abelian) ring, with an identity’. 
Familiar examples of infinite fields are the set of real numbers 

and the set of complex numbers. The set Z of integers is a ring 
but is not a field because, for example, 2 does not have a 
multiplicative inverse in Z. Another example of a ring which is 
not a field is the set F[x] of polynomials in x with coefficients 
belonging to a field F. This ring will be of importance in Chapter 
12. 

Definition A finite field is a field which has a finite number of 
elements, this number being called the order of the field. 

The following fundamental result about finite fields was proved
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by Evariste Galois (1811-32), a French mathematician who died 
in a duel at the age of 20. Galois is famous also for proving that 
the general quintic equation is not solvable by radicals. 

Theorem 3.2. There exists a field of order gq if and only if g is a 
prime power (i.e. g =p”, where p is prime and h is a positive 
integer). Furthermore, if g is a prime power, then there is, up to 
relabelling, only one field of that order. 

A field of order gq is often called a Galois field of order gq and is 
denoted GF(q). 

The proof of Theorem 3.2 may be found in one of the more 
advanced texts on coding theory or in books on abstract algebra. 

While we shall give a partial proof in Exercise 4.6, and shall give 
a brief description of fields of order p”, with h >1, in Chapter 
12, it is enough for almost all our purposes to consider only 
prime fields, those of order a prime number p. We shall see 
shortly that if p is prime, then GF(p) is just the set 
{0,1,...,p—1} with arithmetic carried out modulo p. But first 
we review modular arithmetic in general. 

Definition Let m be a fixed positive integer. Two integers a and 
b are said to be congruent (modulo m), symbolized by 

a=b(modm), 

if a — b is divisible by m, 1.e. if a= km + b for some integer k. 
We write a# b (mod m) if a and b are not congruent (modulo 

m). 
Every integer, when divided by m, has a unique principal 

remainder equal to one of the integers in the set Z,,= {0,1,..., 

m-—1}. It is easily shown that two integers are congruent 
(mod m) if and only if they have the same principal remainders 
on division by m. 

Examples 3=24(mod7), 13=-—2(mod5), 25#12(mod7), 

15= O(mod3), 15= O(mod5), 15# O(mod 2). 

Theorem 3.3 Suppose a=a'(modm) and b=b' (modm). 
Then 

(i) a+b=a'+b' (modm) 
(ii) ab=a'b’ (modm).
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Proof a=a'+km and b=b'+I/m for some integers k and I. 
Then (i) a+b=a'+b’+(k+l)m and so at+b=a'+ 
b'(modm) and (ii) ab=a'b'+(kb’'+a'l+klm)m and so 
ab =a'b' (mod m). 

Theorem 3.3 enables congruences to be calculated without 

working with large numbers. Note that if a=a’, then repeated 
use of (ii) shows’ that, for all positive integers 
n, a” =(a')" (mod m). 

Examples 3.4 (i) What is the principal remainder when 73 - 52 
is divided by 7? 

(ii) Determine whether (2'°)(14%°) + 1 is divisible by 11. 

Solution (i) 73=3(mod7) and 52=3(mod7). Hence, by 
Theorem 3.3(11), 73 -52=3-+-3=9=2(mod7). So the principal 
remainder is 2. (There is no need actually to multiply 73 by 52 
and divide the answer by 7.) 

(ii) Note that 2°=32=-1(mod1l). Also 147=3?=- 
2 (mod 11). Hence 

(21°)(14*) = (2°)3(37)*° = (- 1)°(—2)° 

= (—1)(2””) = (-1)(2?)* = (-1)(-1)* = —1 (mod 11). 

Thus (2!°)(14*°) + 1=0 (mod 11), i.e. the number is divisible 
by 11. 

Let us now try to give Z,, = {0,1,...,m—1} the structure of 

a field. We define addition and multiplication in Z,, by: a + b (or 
ab) =the principal remainder when a+b (or ab) is divided by 
m. 

For example, in Z,. we have 

8+4=0, 9+11=8, 3-4=0, 3:9=3. 

Theorem 3.3 shows that addition and multiplication in Z,, are 
well-defined and it is easily verified that the field properties (i) to 
(vii) are satisfied for any m (the additive inverse of a is m —a). 
Thus, for any integer m =2, Z,, is a ring. It is called the ring of 
integers modulo m. But for which values of m is field property 
(viii) satisfied? The following theorem gives the answer.
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Theorem 3.5 Z,, 1S a field if and only if m is a prime number. 

Proof First, suppose m is not prime. Then m=ab for some 
integers a and b, both less than m. Thus 

ab =0(modm), with a#0(mod m) and b #0(mod m). 

So, in Z,,, the product of the non-zero elements a and b is zero 
and so, by Lemma 3.1(ii), Z,, 1s not a field. 
Now suppose that m is prime. By the remarks preceding this 

theorem, to show that Z,, is a field it 1s enough to show that 
every non-zero element of Z,, has a multiplicative inverse. Let a 
be a non-zero element of Z,, and consider the m—1 elements 

la,2a,...,(m-—1)a. These elements are non-zero, for ia 

cannot have the prime m as a divisor if i and a do not. Also the 
elements are distinct from one another, for 

ia = ja> (i — j)a =0 (mod m) 

> m is a divisor of (i —/)a 

> m is a divisor of i —j, since m is prime 
and does not divide a. 

>i=j, since both i andjeé{1,2,...,m—1}. 

So, in Z,,, the m—1 elements la, 2a,...,(m-—1)a must be 

equal to the elements 1,2,...,m—1, in some order, and one of 

them, ja say, must be equal to 1. This j is the desired inverse of 
a. 

Examples 3.6 (1) GF(2)=Z,= {0, 1} with addition and multi- 
plication tables 

  

  

+|/0O1 - | 01 

0; 01 0) 00 

1110 1101 

(2) GF(3)=Z,= {0, 1,2} with tables 

012 012 
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(3) Z, is not a field by Theorem 3.5 (examination of the 
multiplication table of Z, shows that 2 does not have an inverse 
and so we cannot divide by 2 in Z,). However, while 4 = 2? is not 
prime, it is a prime power, and so the field GF(4) does exist, by 
Theorem 3.2. It can be defined as GF(4)={0,1,a,b} with 
tables 

    

+ Olab . Olab 

0 Ola b 0 0000 

1 10ba 1 Ola b 

a abol a Oabil 

b bail10 b Obla 

We shall meet this field in its natural setting in Example 12.2. 
(4) Z, and Zj, are not fields, nor is there any field of order 6 

or 10. 

(5) GF(11)= Z,, = {0,1,2,...,10} is a field. We can easily 
carry out addition, subtraction and multiplication (modulo 11) 
without using tables. But what about division? Remember, to 

divide a by b, we just multiply a by b~'. So how do we find b7'? 
The proof of Theorem 3.5 shows the existence of multiplicative 
inverses but not how to find them efficiently. Two methods for a 
general prime modulus m are described in Exercises 3.8 and 3.9. 
For a modulus as small as m = 11 it is easy to construct, by trial 
and error, a table of inverses, thus: 

x |) 123456789 10 
  

x7! | 164392875 10 

To illustrate the use of this table, we will divide 6 by 8 in the field 
GF(11). We have 

§=6:8'=6:7=42=9. 

We can give an immediate application of the use of modulo 11 
arithmetic in an error-detecting code. 

The ISBN code 

Every recent book should have an International Standard Book 

Number (ISBN). This is a 10-digit codeword assigned by the 

publisher. For example, a book might have the ISBN 

0-19-859617-0
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although the hyphens may appear in different places and are in 
fact unimportant. The first digit, 0, indicates the language 
(English) and the next two digits 19 stand for Oxford University 
Press, the publishers. The next six digits 859617 are the book 
number assigned by the publisher, and the final digit is chosen to 
make the whole 10-digit number x,x, - - - X,9 satisfy 

10 

>) ix;=0 (mod 11). (3.7) 
i=1 

The left-hand side of (3.7) is called the weighted check sum of the 
number X,X.°*-*X 9. Thus for the 9-digit number x,x,--: Xp 

already chosen, x, is defined by 

9 

= >) ix, (mod 11) 
to get the ISBN. i=l 

The publisher 1s forced to allow a symbol X in the final 
position if the check digit x,) turns out to be a ‘10’; e.g. 
Chambers Twentieth Century Dictionary has ISBN 0550-10206-X. 

The ISBN code is designed to detect (a) any single error and 
(b) any double-error created by the transposition of two digits. 
The error detection scheme is simply this. For a received vector 
yiy2°** Yio calculate its weighted check sum Y=) }°, iy,. If 
Ye0 (mod 11), then we have detected error(s). Let us verify that 
this works for cases (a) and (b) above. Suppose x = x,x, ++ + X49 iS 
the codeword sent. 

(a) Suppose the received vector y = y,y2-- + yo is the same as x 
except that digit x; is received as x;+a with a#0. Then 
Y= }2, i, = (} 0 ix,) + ja = ja (mod 11), since j and a 
are non-zero. 

(b) Suppose y is the same as x except that digits x, and x, have 
been transposed Then 

Y= > i= > iy +k —j)x,+ VU — k)x, 
=1 

= (k — j)(% —x,) #0 (mod 11), 

if k#j and x; F X,. 

Note how crucial use is made of the result (Lemma 3.1(ii)) that 
in a field, the product of two non-zero elements 1s also non-zero. 
This does not hold in Z,, in which, for example,
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2-5 =0 (mod 10), and this is why we work with modulus 11 rather 
than 10. We shall discuss some further codes based on modulo 11 
arithmetic in Chapters 7 and 11. 

The ISBN code cannot be used to correct an error unless we 

know that just one given digit is in error. This 1s the basis of the 
following party trick. 

Ask a friend to choose a book not known to you and to read 

out its ISBN, but saying ‘x’ for one of the digits. After a few 
seconds working you announce the value of x. For example, if 

the number read out is 0-201-1x-502-7, your working 1s: 

1-04+2:2+3-04+4-14+5°14+6-x+7:-54+8-04+9-24+10:7=0. 

Hence 6x + 4=0, and so 

x= =7-6'=7-2=14=3. 

Concluding Remark It is hoped that the reader is beginning to 
appreciate the power and versatility of finite fields, which the 
author believes to be among the most beautiful structures in 

mathematics. One remarkable property of any finite field, not 
needed in this book and so not proved here, is that all the 
non-zero elements can be expressed as powers of a single 
element, which is called a primitive element; i.e. there exists 

géGF(q) such that the non-zero elements of GF(q) are 
precisely 1,g,g°,...,g7-*, with g?-'=1. This result is by no 
means obvious, even if we restrict our attention to the case of 

prime fields. One application of this result is that in a large or 
complicated field a table of indices of the non-zero elements, 
with respect to a fixed primitive root, can be constructed, and 

this can be used, in the same way as logarithms, to carry out 

multiplication in the field. 

For an encyclopaedic volume on finite fields the reader is 
referred to Lid] and Niederreiter (1983). 

Exercises 3 

3.1 Find the principal remainder when 2” is divided by 7. Find 
the units digit of 31°. 

3.2 Show that every square integer is congruent (mod 4) to
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3.3 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

either 0 or 1. Hence show that there do not exist integers x 
and y such that x? + y* = 1839. ! 
Construct a table of multiplicative inverses for (i) GF(7), 
(ii) GF(13). 
(i) What is the minimum distance of the ISBN code? 

(ii) What proportion of books would you expect to have 
an ISBN containing the symbol X? 

Check whether the following are ISBNs. 

0-13165332-6 

0-1392-4101-4 

07-028761-4 

The following ISBNs have been received with smudges. 
What are the missing digits? 

()- 13-189 139-9 

0-02-3 2¢aps0-0 

Consider the code C of all 10-digit numbers over the 
10-ary alphabet {0,1,...,9} which have the property that 
the sum of their digits is divisible by 11; that 1s, 

10 

> x;=0 (mod 11}. 
i=1   

C= {rx "* 410 

Show that C can detect any single error. What would be 

the disadvantage of using this code for book numbers 
rather than the ISBN code? 

Let a be a non-zero element of GF(p), where p is prime. 
By considering the product of the p—1 elements 

la,2a,...,(p —1)a, prove that 

aP-'=1 (modp) (Fermat’s theorem). 

Deduce that a~'=a?~* (mod p). [Remark: for p large, a 
more efficient method of finding a~' is given in the next 
exercise]. 
The Euclidean algorithm is a well-known method of 

finding the greatest common divisor d of two integers a 
and b. It also enables d to be expressed in the form 

d=ax+by
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3.10 

3.11 

3.12 

3.13 

3.14 
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for some integers x and y. Show that the Euclidean 

algorithm can therefore be used to find the inverse of an 
element a#0 in the field GF(p), where p is prime. If you 
know the Euclidean algorithm, use it to calculate 
23-* (mod 31). 
Find a primitive element for each of GF(3), GF(7) and 
GF(11). 
Suppose F is a finite field. Given that we F and nis a 
positive integer, let naw denote the element ~+@a+---+ 
a (n terms). Prove that there exists a prime number p such 
that pa =0 for all we F. This prime number p is called 
the characteristic of the field F. 

Suppose p is a prime number. Show that (a+ b? =a’? + 

b? (mod p). [Hint: show that (") =0(mod p) if 1<is 

p-—1.] Deduce that a?=a(modp), for any integer a. 
(This gives an alternative proof of Fermat’s theorem, 

Exercise 3.8.) 
In the field GF(q), where q is odd, show that the product 
of all the non-zero elements is equal to —1. 

Show that in a finite field of characteristic p, 
(i) if p=2, then every element is a square 

(ii) if p is odd, then exactly half of the non-zero elements 
are squares.



4 Vector spaces over finite fields 

  

In addition to carrying out arithmetical operations within the 
alphabet of a code, it is also very useful to be able to perform 
certain operations with the codewords themselves. We have 
already benefited from this in making use of the ‘sum’ of two 
binary vectors to prove Lemma 2.6. 

Throughout this chapter we assume that q is a prime power 

and we let GF(q) denote the finite field of g elements. The 
elements of GF(q) will be called scalars. The set GF(q)" of all 
ordered n-tuples over GF(q) will now be denoted by V(n, q) 
and its elements will be called vectors. 

We define two operations within V(n, q): 

(i) addition of vectors: if x=(x,,%,...,x,) and y= 

(Y., Jaye Ps) E V(n, q); then 

x+y= (x, + y,,X_ + yo, oe Xp + y,) 

(ii) multiplication of a vector by a scalar: if 

x = (X1, X, se Xn) € Vin, q) and ae GF(q), 

then ax = (ax,, ax%,,..., aX,,). 

The reader should have no difficulty in verifying that V(n, q) 
satisfies the axioms for a vector space; i.e. that, for all u,v, we 

V(n, q) and for all a, b € GF(q), 

(i) u+veV(n,q) 
(ii) (u+v)+w=u+(v+w) 

(iii) the all-zero vector 0=(0,0,...,0)¢€V(n,q) and sat- 

isies u+ 0=0+u=—u. 

(iv) Given u=(Wj,W%,...,u,)€V(n,q), the element —u 
=(-W, —m&,..., —u,) € V(n, q) and satisfies u + (—u) 
= 0. 

(v) utv=vtu. 
(Properties (i)-(v) mean that V(n,q) is an ‘abelian 
group’ under addition).
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(vi) (Closure under scalar multiplication) av € V(n, q). 
(vii) (Distributive laws) a(u+v)=au-+av, (a+ b)u=aut 

bu. 
(viii) (ab)u=a(bu). 
(ix) lu=u, where 1 is the multiplicative identity of GF(q). 

A subset of V(n, q) is called a subspace of V(n, q) if it is itself 
a vector space under the same addition and scalar multiplication 
as defined for V(n, q). 

Trivially, the set {0} and the whole space V(n,q) are 
subspaces of V(n,q). A subspace is called non-trivial if it 
contains at least one vector other than 0. 

Theorem 4.1 A non-empty subset C of V(n, q) is a subspace if 
and only if C is closed under addition and scalar multiplication, 
i.e. if and only if C satisfies the following two conditions: 
(1) Ifx,yeC, thenx+yec. 
(2) IfaeGF(q) and xeC, then axeC. 

Proof It is readily verified that if C satisfies (1) and (2), then C 
satisfies all the axioms (i)—(ix) (with V(v, q) replaced by C) for a 
vector space. (To show that 0eC, choose any xeC; then, by 
(2), 0=OxeC. Property (2) also shows that if veC, then 
—veC, for —v=(—1)v.) 

Readers familiar with the theory of vector spaces over infinite 
fields, such as the real or complex numbers, will find that 
definitions and results generally carry over to the finite case, e.g. 
the following. 

A linear combination of r vectors V,, V2,...,V,in V(n,q) isa 

vector of the form a,v, +@v,+::-:+4,v,, where the a; are 

scalars. 

It is easily verified that the set of all linear combinations of a 

given set of vectors of V(n, q) is a subspace of V(n, q). 

A set of vectors {v,,v2,...,V,} is said to be linearly 

dependent if there are scalars a,,@,...,a,, not all zero, such 

that 
av,+@vy+°:::+a,v,=9. 

A set of vectors {V,, V2,...,V,} is called linearly independent if
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it is not linearly dependent; i.e. if 

QV, + @V,+°::+4av,=05>4,=aq=::-=4=0. 

Let C be a subspace of V(n, q). Then a subset {v,, v>,...,v,} 
of C is called a generating set (or spanning set) of C if every 
vector in C can be expressed as a linear combination of 

Vi, V2,..-,V,- 

A generating set of C which is also linearly independent is 
called a basis of C. 

For example, the set 

{(1,0,0,...,0),(0,1,0,...,0),...,(0,0,...,0,1)} 

is a basis of the whole space V(n, q). 

Theorem 4.2 Suppose C is a non-trivial subspace of V(n, q). 
Then any generating set of C contains a basis of C. 

Proof Suppose {v,,v2,...,V,} iS a generating set of C. 
If it is linearly dependent, then there are scalars a,,a,,...,4,, 

not all zero, such that 

QV, +@V,+°::+av,=0. 

If a; is non-zero then 
r 

vV,=—a;' Say; 
i=1,i4j 

and so v, is a linear combination of the other v;. Thus vy; is 

redundant as a generator and can be omitted from the set 

{V,,V2,...,V,} to leave a smaller generating set of C. In this 
way we can omit redundant generators, one at a time, until we 

reach a linearly independent generating set. The process must 

end since we begin with a finite set. 

Since any subspace C of V(n,q) contains a finite generating 
set (e.g. C itself), it follows from Theorem 4.2 that every 
non-trivial subspace has a basis. 

A basis can be thought of as a minimal generating set, one 
which does not contain any redundant generators. 

Theorem 4.3 Suppose {vj, V2,..., Vx} is a basis of a subspace C
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of V(n, q). Then 
(i) every vector of C can be expressed uniquely as a linear 

combination of the basis vectors. 

(ii) C contains exactly g* vectors. 

Proof (i) Suppose a vector x of C is represented in two ways 
as a linear combination of v,, V>,...,V,. [hat is, 

X=4,V,; t+ QVot-**+Qvy, 

and x= bi, + b,v> t+eeet b,V,. 

Then (a, — b,)v, + (@ — b2)v. +--+ + (a — by)v, =0. But the set 

{v,,V>,...,V,} is linearly independent and so a,—b,=0 for 
1=1,2,...,k;ie.a,=b,fori=1,2,...,k. 

(ii) By (i), the q* vectors U*_, av; (a,;€ GF(q)) are precisely 
the distinct vectors of C. 

It follows from Theorem 4.3 that any two bases of a subspace 
C contain the same number k of vectors, where |C| = q*, and this 
number k is called the dimension of the subspace C; it is denoted 
by dim (C). 

We have already exhibited a basis of V(n, q) having n vectors 
and so dim (V(n, q)) =n. 

Exercises 4 

4.1 Show that a non-empty subset C of V(n, q) is a subspace if 
and only if ax+byeC for all a,b ¢€GF(q) and for all 
KX, yeC. 

4.2 Show that the set E,, of all even-weight vectors of V(n, 2) 
is a subspace of V(n, 2). What is the dimension of E,,? 
[ Hint: See Exercise 2.4.] Write down a basis for E,,. 

4.3 Let C be the subspace of V (4, 3) having as generating set 
{(0,1,2,1), (4,0,2,2), (1,2,0,1)}. Find a basis of C. 

What is dim (C)? 
4.4 Let u and v be vectors in V(n, q). Show that the set {u, v} 

is linearly independent if and only if u and v are non-zero 
and v is not a scalar multiple of u. 

4.5 Suppose {x,,X.,...,x,} is a basis for a subspace C of 

V(n, q). Show that we get a basis for the same subspace C
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4.6 

4.7 

if we either 
(a) replace an x; by a non-zero scalar multiple of itself, 

or 
(b) replace an x; by x; + ax;, for some scalar a, with j ¥i. 

Suppose F is a field of characteristic p. Show that F can be 
regarded as a vector space over GF(p). Deduce that any 
finite field has order equal to a power of some prime 
number. 
From the vector space V(3, q), an incidence structure P, is 

defined as follows. 
The ‘points’ of P, are the one-dimensional subspaces of 

V(3, q). The ‘lines’ of P, are the two-dimensional sub- 
spaces of V(3, q). The point P ‘belongs to’ the line L if 
and only if P is a subspace of L. 

Prove that P, is a finite projective plane of order q. List 
the points and lines of P, and check that it has the same 
structure as the seven-point plane defined in Example 
2.19.





5 Introduction to linear codes 

  

Throughout this chapter, we assume that the alphabet F, is the 

Galois field GF(q), where qg is a prime power, and we regard 
(F,)" as the vector space V(n,q). A vector (%),%,...,%,) will 
usually be written simply as x,x,---x,. 

A linear code over GF(q) is just a subspace of V(n,q), for 
some positive integer n. 

Thus a subset C of V(n, q) is a linear code if and only if 
(1) u+veC, for all u and v in C, and 

(2) aueC, for allue C, ae GF(q). 
In particular, a binary code is linear if and only if the sum of 

any two codewords is a codeword. It is easily checked that the 
codes C,, C, and C, of Example 1.5, and the code C of Example 
2.23, are all linear. 

If C is a k-dimensional subspace of V(n,q), then the linear 
code C is called an [n,k]-code, or sometimes, if we wish to 
specify also the minimum distance d of C, an [n, k, d]-code. 

Notes (i) A q-ary [n,k, d]-code is also a q-ary (n, g*, d)-code 
(by Theorem 4.3), but, of course, not every (n, q*, d)-code is an 
[n, k, d]-code. 

(ii) The all-zero vector 0 automatically belongs to a linear 
code. 

(iii) Some authors have referred to linear codes as ‘group 
codes’. 

The weight w(x) of a vector x in V(n, q) is defined to be the 
number of non-zero entries of x. One of the most useful 

properties of a linear code is that its minimum distance is equal 
to the smallest of the weights of the non-zero codewords. To 
prove this we need a simple lemma. 

Lemma 5.1 If x and ye V(n, q), then 

d(x, y) = w(x —y).
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Proof The vector x—y has non-zero entries in precisely those 

places where x and y differ. 

Remark For q=2, Lemma 5.1 is the same as Lemma 2.5, 

bearing in mind that ‘plus’ is the same as ‘minus’ when working 

modulo 2. 

Theorem 5.2 Let C be a linear code and let w(C) be the 
smallest of the weights of the non-zero codewords of C. Then 

d(C) =w(C). 

Proof There exist codewords x and y of C such that d(C)= 
d(x, y). Then, by Lemma 5.1, 

d(C)=w(x—y)>w(C), 

since x — y is a codeword of the linear code C. 
On the other hand, for some codeword xe C, 

w(C) = w(x) = d(x, 0) = d(C), 

since 0 belongs to the linear code C. Hence d(C) =w(C) and 
w(C)=d(C), giving d(C) = w(C). 

We now list some of the advantages and disadvantages of 

restricting one’s attention to linear codes. 

Advantage 1 For a general code with M codewords, to find the 

minimum distance we might have to make (*) =4M(M -1) 

comparisons (as in Example 2.23). However, Theorem 5.2 
enables the minimum distance of a linear code to be found by 
examining only the weights of the M — 1 non-zero codewords. 

Note how much easier it is now to show that the code of 
Example 2.23 has minimum distance 3, if we know that it is 
linear. 

Advantage 2 To specify a non-linear code, we may have to list 
all the codewords. We can specify a linear [n, k]-code by simply 
giving a basis of k codewords.
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Definition A k Xn matrix whose rows form a basis of a linear 

[n, k]-code is called a generator matrix of the code. 

Examples 5.3 (i) The code C, of Example 1.5 is a [3, 2, 2]- 
01 1 

1011) 
(ii) The code C of Example 2.23 is a [7,4,3]-code with 

generator matrix 

code with generator matrix 

1111111 

1000101 

1100010 

0110001 

(iii) The qg-ary repetition code of length n over GF(q) is an 
[n, 1, n]-code with generator matrix 

[1 1---1]. 

Advantage 3 There are nice procedures for encoding and 
decoding a linear code (See Chapters 6 and 7). 

Disadvantage 1 Linear q-ary codes are not defined unless q is a 

prime power. However, reasonable q-ary codes, for g not a 

prime power, can often be obtained from linear codes over a 
larger alphabet. For example, we shall see in Chapter 7 how 
good decimal (i.e. 10-ary) codes can be obtained from linear 
11-ary codes by omitting all codewords containing a given fixed 

symbol. This idea has already been illustrated in Chapter 3, for 
the ISBN code can be obtained in such a way from the linear 
11-ary code 

10 
[ik -++Xi9 € V(10, 11): > ix; = 0}. 

i=1 

Disadvantage 2 The restriction to linear codes might be a 
restriction to weaker codes than desired. However, it turns out 

that codes which are optimal in some way are very frequently 

linear. For example, for every set of parameters for which it is 

known that there exists a non-trivial perfect code, there exists a
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perfect linear code with those parameters. Notice also how often 
the value of A,(n,d) in Table 2.4 is a power of 2. It is usually, 
though not always, the case that such a value of A,(n,d) is 
achieved by a linear code. 

Equivalence of linear codes 

The definition of equivalence of codes given in Chapter 2 is 
modified for linear codes, by allowing only those permutations of 

symbols which are given by multiplication by a non-zero scalar. 
Thus two linear codes over GF(q) are called equivalent if one 
can be obtained from the other by a combination of operations of 
the following types. 

(A) permutation of the positions of the code; 
(B) multiplication of the symbols appearing in a fixed position 

by a non-zero scalar. 

Theorem 5.4 Two k Xn matrices generate equivalent linear 
[n, k]-codes over GF(q) if one matrix can be obtained from the 
other by a sequence of operations of the following types: 

(R1) Permutation of the rows. 
(R2) Multiplication of a row by a non-zero scalar. 
(R3) Addition of a scalar multiple of one row to another. 
(C1) Permutation of the columns. 
(C2) Multiplication of any column by a non-zero scalar. 

Proof The row operations (R1), (R2) and (R3) preserve the 
linear independence of the rows of a generator matrix and simply 
replace one basis by another of the same code (see Exercise 4.5). 
Operations of type (C1) and (C2) convert a generator matrix to 
one for an equivalent code. 

Theorem 5.5 Let G be a generator matrix of an [n, k]-code. 
Then by performing operations of types (R1), (R2), (R3), (C1) 
and (C2), G can be transformed to the standard form 

[I | A], 
where J, is the k Xk identity matrix, and A is a k X(n—k) 
matrix.
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Proof During a sequence of transformations of the matrix G, 

we denote by g; the (i, j)th entry of the matrix under considera- 
tion at the time and by m%,%%,...,¥, and ¢),@,...,¢, the rows 

and columns respectively of this matrix. 

The following three-step procedure is applied for j=1, 
2,...,k in turn, the jth application transforming column c; into 
its desired form (with 1 in the jth position and Os elsewhere), 
leaving unchanged the first j — 1 columns already suitably trans- 
formed. Suppose then that G has already been transformed to 

  

“1 QO --- Q Qi oe Lin "] 

0 1 wee 0 8; eee Ban 

0 0 -:- 1 8-15 °° °° = 8j—-1,n 

0 0 oe 0 Bi coe Bin 

0 O eee O 8k e 8 Lkn _   
Step 1 If g,#0, go to Step 2. If g,=0, and if for some 
i>j,g,#0, then interchange r; and r;. If g; =0 and g,, =0 for all 
i >j, then choose h such that g,,#0 and interchange ¢, and ¢,. 
Step 2. We now have g,,#0. Multiply r; by gj". 
Step 3 We now have g,;,=1. For each of i=1,2,...,k, with 

i#j, replace r; by r; — g,r,. 
The column ¢; now has the desired form. 
After this procedure has been applied for ;=1,2,...,k, the 

generator matrix will have standard form. 

Notes (1) If Gcan be transformed into a standard form matrix 
G' by row operations only (this will be the case if and only if the 
first kK columns of G are linearly independent), then G’ will 
actually generate the same code as does G. But if operations 
(C1) and (C2) are also used, then G’ will generate a code which 
is equivalent to, though not necessarily the same as, that 
generated by G. The procedure described in the preceding proof 
is designed to give a standard form generator matrix for the same 
code whenever this is possible. 

(2) In practice, inspection of the generator matrix G will
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often suggest a quicker way to transform to standard form, as in 

Example 5.6(iii) below. 
(3) The standard form [J, | A] of a generator matrix is not 

unique; for example, permutation of the columns of A will give a 
generator matrix for an equivalent code. 

Examples 5.6 (i) See Example 5.3(i). Interchanging rows 
gives the standard form generator matrix 

F 0 1 

011 

for the code C,. 

(ii) We will use the procedure of Theorem 5.5 to transform 

the generator matrix of Example 5.3(11) to standard form. 

1111111 T1iii11117 

1000101 cer 0111010 

1100010 0011101 

0110001 —)11000 14 

-10001017 
— 0111010 
ron 0011101 

(000101 14 

-10001017 
_ 0100111 
vee 0011101 

(000101 14 

-10001017 
____, 0100111 
ees 0010110 

L0001011- 

(iii) Consider the [6,3]-code over GF(3) having generator 
matrix 

    
000111 

011012). 

102011
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An obvious permutation of the columns gives the standard form 
generator matrix 

100011 

010112 

001211 

for an equivalent code. 

Exercises 5 

5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

Is the binary (11, 24,5)-code of Exercise 2.12 linear? 
(There is no need to examine any codewords). 
Exercise 4.2 shows that E,,, the code of all even-weight 
vectors of V(n,2), is linear. What are the parameters 

[n,k,d]| of E,,? Write down a generator matrix for E,, in 
standard form. 
Let H be an r Xn matrix over GF(q). Prove that the set 
C = {xeV(n,q)|xH7 =0} is a linear code. [Remark: we 
shall show in Chapter 7 that every linear code may be 
defined by means of such a matrix H, which is called a 
parity-check matrix of the code. ] 
(i) Show that if C is a binary linear code, then the code 

obtained by adding an overall parity check to C is 
also linear. 

(ii) Find a generator matrix for a binary [8, 4, 4]-code. 
Prove that, in a binary linear code, either all the code- 

words have even weight or exactly half have even weight 

and half have odd weight. 
Let C, and C, be binary linear codes having the generator 
matrices 

/+110 1001101 
loot and Go= 101010111. 

0010111 

List the codewords of C, and C, and hence find the 

minimum distance of each code. (Use Theorem 5.2.) 
5.7 Let C be the ternary linear code with generator matrix 

ew 

0112)
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5.8 

5.9 

5.10 

5.11 

5.12 
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List the codewords of C and use Theorem 5.2 to find the 

minimum distance of C. Deduce that C 1s a perfect code. 
Let B,(n, d) denote the largest value of M for which there 
exists a linear q-ary (n, M, d)-code (q is a prime power). 
Clearly the value of B,(n,d) is less than or equal to the 

value of A,(n,d), which was defined in Chapter 2. 
Determine the values of B,(8, 3), B.(8, 4) and B,(8, 5). Is it 

true that B,(n, d) = A,(n, d) for each of these cases? 
Exercise 2.3 shows that A,(3, 2) = q’ for any integer q >2. 
Show that, if g is a prime power, then B,(3, 2) = q’. 
Suppose [J, | A] is a standard form generator matrix for a 
linear code C. Show that any permutation of the rows of A 

gives a generator matrix for a code which is equivalent to 
C. 
Let C be the binary linear code with generator matrix 

1110000 

1001100 

1000011 

010101 0. 

Find a generator matrix for C in standard form. Is C the 
same as the code of Example 5.6(ii)? Is C equivalent to 
the code of Example 5.6(11)? 
Suppose C, and C, are binary linear codes. Let C; be the 
code given by the (u| u+v) construction of Exercise 2.17. 

Show that C; is linear. 

Deduce that B,(2d, d) = 4d when d is a power of 2.



6 Encoding and decoding with a linear code 

  

Encoding with a linear code 

Let C be an [n, k]-code over GF(q) with generator matrix G. C 
contains g* codewords and so can be used to communicate any 
one of q* distinct messages. We identify these messages with the 
q* k-tuples of V(k,q) and we encode a message vector u= 
U,U, +++ U, Simply by multiplying it on the right by G. If the rows 

of G arer,,W,...,¥,, then 
k 

uG = S ux; 
i=] 

and so uG is indeed a codeword of C, being a linear combination 
of the rows of the generator matrix. Note that the encoding 
function u->uG maps the vector space V(k,q) on to a k- 
dimensional subspace (namely the code C) of V(n, q). 

The encoding rule is even simpler if G is in standard form. 
Suppose G=[I,|A], where A=[a,] is a kX (n—k) matrix. 
Then the message vector u is encoded as 

K=UG =X XX Xn, 

where x; =u;, 1 Sik, are the message digits 

k 

and > G;U; , 1<isn-k, 
j=l 

are the check digits. The check digits represent redundancy which 
has been added to the message to give protection against noise. 

Example 6.1 Let C be the binary [7, 4]-code of Example 5.3(ii), 
for which we found in Example 5.6(ii) the standard form 
generator matrix 1000101 

0100111 

00101107 

0001011



56 A first course in coding theory 

A message vector (U,, Up, U3, U4) is encoded as 

(Uy, Up, U3, Ug, Uy + Uy + Uz, Up + Uz + Ug, Uy + Uy + Ug). 

For example, 

0000 is encoded as 0000000, 

1000 - 59 9 1000101, 

1110 - 9 - 1110100. 

For a general linear code, we summarize the encoding part of the 
communication scheme (see Fig. 1.1) in Fig. 6.2. 

    
  

Fig. 6.2 

Noise 
Message Y 

Message vector Encoder: Codeword C 
> _ aa ———enenmeemc hannel 

source U=U U5" U, U—>X = uG X=X1°"'Xp             
    

  

Decoding with a linear code 

Suppose the codeword x = x,x,--- x, is sent through the channel 
and that the received vector is y= y,y.°° + y,. We define the error 

vector e to be 

e=y—xX=e,e)'°-é,. 

The decoder must decide from y which codeword x was 
transmitted, or equivalently which error vector e has occurred. 
An elegant nearest neighbour decoding scheme for linear codes, 
devised by Slepian (1960), uses the fact that a linear code is a 
subgroup of the additive group V(n,q). The reader who is not 
familiar with elementary group theory should not be deterred as 
we shall not be assuming any prior knowledge of the subject 
here. 

Definition Suppose that C is an [n,k]-code over GF(q) and 
that a is any vector in V(n, q). Then the set a+ C defined by 

a+ C={a+x|xeC} 

is called a coset of C. 

Lemma 6.3 Suppose that a+C is a coset of C and that
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bea+C. Then b+C=atC. 

Proof Since bea+C, we have b=a+x, for some xe C. Now 

ifb+yeb+C, then 

b+y=(at+x)+y=a+(x+y)eat+C. 

Hence b+ Cca+C.On the other hand, ifa+zea+C, then 

a+z=(b—x)+z=b+(z—-x)eb+C. 

Hence a+Ccb+C, andsob+C=aC. 

The following theorem is a particular case of Lagrange’s 
well-known theorem for subgroups. 

Theorem 6.4 (Lagrange) Suppose C is an [n,k]-code over 
GF(q). Then 

(i) every vector of V(n, qg) is in some coset of C, 
(ii) every coset contains exactly g* vectors, 

(iii) two cosets either are disjoint or coincide (partial overlap is 
impossible). 

Proof (i) IfaeV(n,q), thena=a+0ea+C. 
(ii) The mapping from C to a+ C defined by 

x—a+t+x, 

for all xe C, is easily shown to be one-to-one. Hence |a+ C| = 

IC| =q*. 
(iii) Suppose the cosets a+ C and b+C overlap. Then for 

some vector v, we have ve(a+C)M(b+C). Thus, for some 

? C, 

%YS vV=at+x=bty. 

Hence b=a+(x—y)e€a+C, and so by Lemma 6.3, b+C= 
atc. 

Example 6.5 Let C be the binary [4,2]-code with generator 
matrix 1011 

G=() 10 i 

i.e. C = {0000, 1011, 0101, 1110}.
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Then the cosets of C are 

0000 + C = C itself, 
1000 + C = {1000, 0011, 1101, 0110}, 
0100 + C = {0100, 1111, 0001, 1010}, 

and 0010 + C = {0010, 1001, 0111, 1100}. 

Note that the coset 0001 + C is {0001, 1010, 0100, 1111}, which is 

the same as the coset 0100+ C. This could have been predicted 
from Lemma 6.3, since 0001 € 0100 + C. Similarly we must have, 

for example, 0111+ C =0010+ C. 

Definition The vector having minimum weight in a coset is 

called the coset leader. (If there is more than one vector with the 

minimum weight, we choose one at random and call it the coset 
leader. For example, in Example 6.5, 0001 is an alternative coset 
leader to 0100 for the coset 0100 + C). 

Theorem 6.4 shows that V(n,q) is partitioned into disjoint 

cosets of C: * 

Vin, q)= (0+ C)U(a, + C)U:+-U(a, +0), 

where s=g"”*—1, and, by Lemma 6.3, we may take 
0, a,,.. .., a, to be the coset leaders. 

A (Slepian) standard array for an [n, k]-code C is a q”~* x q* 
array of all the vectors in V(n, q) in which the first row consists 
of the code C with 0 on the extreme left, and the other rows are 

the cosets a; + C, each arranged in corresponding order, with the 
coset leader on the left. A standard array may be constructed as 
follows: 

Step 1 List the codewords of C, starting with 0, as the first row. 
Step 2 Choose any vector a,, not in the first row, of minimum 
weight. List the coset a, +C as the second row by putting a, 
under 0 and a, + x under x for each xe C. 

Step 3 From those vectors not in rows 1 and 2, choose a, of 
minimum weight and list the coset a, + C as in Step 2 to get the 
third row. 

Step 4 Continue in this way until all the cosets are listed and 
every vector of V(n, q) appears exactly once.
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Example 6.6 A standard array for the code of Example 6.5 is 

codewords — 0000 1011 0101 1110 

1000 0011 1101 0110 

0100 1111 0001 1010 

0010 1001 0111 1100 

t 
coset leaders 

Note that in a standard array, each entry is the sum of the 

codeword at the top of its column and the coset leader at the 

extreme left of its row. We now describe how the decoder uses 
the standard array. 
When y is received (e.g. 1111 in the above example), its 

position in the array is found. Then the decoder decides that the 
error vector e is the coset leader (0100) found at the extreme left 
of y and y is decoded as the codeword x = y — e (1011) at the top 
of the column containing y. 

Briefly, a received vector is decoded as the codeword at the 
top of its column in the standard array. 

The error vectors which will be corrected are precisely the 
coset leaders, irrespective of which codeword is transmitted. By 
choosing a minimum weight vector in each coset as coset leader, 
we ensure that standard array decoding is a nearest neighbour 
decoding scheme. . 

In Example 6.6, with the given array, a single error will be 
corrected if it occurs in any of the first 3 places (e.g. (a) below) 
but not if it occurs in the 4th place (e.g. (b) below). 

Message Codeword Channel Received Decoded Received 
+ noise vector word message 

(a) 01 — 0101 — ; 0101 — 0001 = 0101 — 01 

(b) 01 — 0101 — | 0101 —> 0100 — 0000 — 00 

Notes (1) In practice, the above decoding scheme is too slow 
for large codes and also too costly in terms of storage require- 
ments. A more sophisticated way of carrying out standard array 
decoding, known as ‘syndrome decoding’, will be described in 
Chapter 7. . 

(2) In Example (b) above, the message symbols 01 were 
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actually unaffected by noise and yet, after decoding, the wrong 
message 00 was received. This is an instance of more harm than 
good ensuing from the addition of redundancy. But in order to 
get a sensible measure of how good a code is, we must calculate 
the probability that a received vector will be decoded as the 
codeword which was sent. Since the error vectors which will be 
corrected by standard array decoding are the same whichever 
codeword is sent, this calculation is extremely easy for a linear 
code, as we now show. 

Probability of error correction 

For simplicity, we restrict our attention for the remainder of this 
chapter to binary linear codes. We assume that the channel is 
binary symmetric with symbol error probability p. We saw in 

Chapter 1 that the probability that the error vector is a given 

vector of weight i is p'(1—p)”"~“ and so the following theorem 

follows immediately. 

Theorem 6.7 Let C be a binary [n,k]-code, and for i=0, 
1,...,n let aw; denote the number of coset leaders of weight 1. 

Then the probability P.,..(C) that a received vector decoded by 

means of a standard array is the codeword which was sent is 
given by 

Pror(C) = » api(1—p)". 

Example 6.8 For the [4,2]-code of Example 6.6, the coset 
leaders are 0000, 1000, 0100 and 0010. Hence a=1, a, =3, 

Y= a,=a,=0, and so 

Poor(C) = (1 — p)* + 3p. — pp)? 
=(1—p)*( + 2p). 

If p=0.01, then P.,,,(C) =0.9897. The probability that a de- 
coded word is not the word sent, 1.e. the word error rate, is 

Por (C) =l]- Proorl(C), 

which, for p = 0.01, is 0.0103. 
Without coding, the probability of a 2-digit message being 

received incorrectly is 1 — (1 — p)? which, for p = 0.01, is 0.0199.
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So, for p = 0.01, we have nearly halved the word error rate at the 

expense of having to send two check symbols with every 2-digit 
message. 

Remark 6.9 If d(C) =2t+1 or 2t+2, then C can correct any t 
errors. Hence every vector of weight <t¢ is a coset leader and 

n , . 
SO a;= (") for 0<i St. But for i>t, the a; can be extremely 

difficult to calculate and are unknown even for some very 
well-known families of codes. One case for which there is no 
such difficulty is that of perfect codes; since the error vectors 
corrected by a perfect [n,k,2t+1]-code are precisely those 

. n . 
vectors of weight <t, we have a;= ( ‘) for OSi<t and a,;=0 

fori >t. 

A linear [n,k]-code C uses n symbols to send k message 
symbols. It is said to have rate R(C)=k/n. Thus the rate of a 
code is the ratio of the number of message symbols to the total 
number of symbols sent and so a good code will have a high rate. 

Example 6.10 Let us return to Example 1.5 and consider how a 
route can most accurately be communicated if we impose the 
condition that the rate of the code used must be at least 4, i.e. 

that there is time enough to send only as many check symbols as 

there are message symbols. We will assume the channel to be 

binary symmetric with p = 0.01. 
It might at first appear that we can do no better than to use the 

[4, 2]-code of Example 6.6, for which we found in Example 6.8 
that P.,, = 0.0103. It is not hard to see that this is the best we can 

do if we limit ourselves to using just four codewords, one for 

each possible message N, W, E or S. But consider the following 
Strategy. 

We first identify N, W, E and S with the message vectors 00, 

01, 10 and 11 and convert the route (e.g. NNWN---) to a long 
string of message symbols (00000100---). We then break the 
string into blocks of 4 and encode each block into a length 7 
codeword by means of the [7, 4]-code C considered in Examples 
2.23, 5.6 and 6.1. By Remark 6.9, since C is a perfect 
[7, 4, 3]-code, we have ay=1, a, =7 and a, =0 for i>1. (Note 
that there is no need to construct a standard array to find the a;
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in this case.) Hence 

P...(C) = 1—(1— p)’— 7p( — p)?® 
~0.002 if p =0.01. 

Thus the number of codewords (and hence messages) received 
in error after decoding with this [7, 4]-code is about one-fifth of 
the number received in error when using the best [4, 2]-code. 
And yet we are sending the information at a more efficient rate, 
for R(C) =4>4. 

One lesson to be learned from this example is that if we first 
represent our information by a long string of binary digits, we 
need not be too restricted in our choice of [n, k]-code, for we can 

just encode the message symbols k at a time. We shall see in 
Exercise 6.6 that by using a [23, 12]-code, which has rate >4, we 
can get the word error rate P.,, down to approximately 0.000 08. 

It is beginning to look as though we can make the word error 
rate as small as we wish by using a long enough code (but still 

having rate =4). Indeed it is a consequence of the following 
remarkable theorem of Shannon (1948) that, for a binary 
symmetric channel with symbol error probability p, we can 
communicate at a given rate R with as small a word error rate as 

we wish, provided R is less than a certain function of p called the 
capacity of the channel. 

Definition The capacity €(p) of a binary symmetric channel 
with symbol error probability p is 

€(p)=1+p log, p + (1—p) log, (1—p). 

Fig. 6.11 

?(p) 

  

0 1 1 p   
Theorem 6.12 (Shannon’s theorem; proof omitted) Suppose a
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channel is binary symmetric with symbol error probability p. 

Suppose R is a number satisfying R < €(p). Then for any e>0, 
there exists, for sufficiently large n, an [n,k]-code C of rate 
k/n = R such that P.,,(C) < e. 

(A similar result holds for non-binary codes, but with a 
different definition of capacity). 

The proof of this result may be found in van Lint (1982) or 
McEliece (1977). Unfortunately, the theorem has so far been 
proved only by probabilistic methods and does not tell us how to 
construct such codes. It should be borne in mind also that for 
practical purposes we require codes which are easily encoded and 
decoded and that this is less likely to be the case for long codes 
with many codewords. 

Example 6.13 It may be calculated that €(0.01) =0.92. Thus, 
for p = 0.01, even if we insist on transmitting at a rate of 7, we 
can, in theory, make P.,, as small as we wish by making n (and k) 
sufficiently large. 

Symbol error rate 

Since some of the message symbols may be correct even if the 

decoder outputs the wrong codeword, a more useful quantity 
might be the symbol error rate Py», the average probability that 
a message symbol is in error after decoding. A method for 
calculating P,,,.» IS given in Exercise 6.7, but it is more difficult to 

calculate than P.,, and is not known for many codes. Note also 

that the result of Exercise 6.9 shows that Shannon’s theorem 

remains true if we replace P,,, by Pimp. 

Probability of error detection 

Suppose now that a binary linear code is to be used only for error 
detection. The decoder will fail to detect errors which have 
occurred if and only if the received vector y is a codeword 
different from the codeword x which was sent, 1.e. if and only if 
the error vector e = y — x is itself a non-zero codeword (since C is 
linear). Thus the probability Pyadetee(C) that an incorrect code- 
word will be received is independent of the codeword sent and is 
given by the following theorem.
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Theorem 6.14 Let C be a binary [n, k]-code and let A; denote 
the number of codewords of C of weight i. Then, if C is used for 
error detection, the probability of an incorrect message being 
received undetected is 

P undetec(C) — x A,p'(1 —py. 

(Note that, unlike the formula of Theorem 6.7 for P.,,,(C), the 
summation here starts at i= 1). 

Example 6.15 With the code of Example 6.6, 

P undetec = P*(1 —p)+2p7(1 —p) 

= p?—p'. 

= 0.000 099 99 if p = 0.01, 

and so only one word in about 10 000 will be accepted with errors 
undetected. 

In the early days of coding theory, a popular scheme, when 

possible, was detection and retransmission. With only a mod- 
erately good code, it is possible to run such a scheme for several 
hours with hardly any undetected errors. The difficulty is that 
incoming data gets held up by requests for retransmission and 

this can cause buffer overflows. 
The retransmission probability for an [n, k]-code is given by 

P retrans =1- (1 —p)" - P undetec: 

For example, with the [4,2]-code of Example 6.6, if p =0.01, 
then P.errans = 9.04 and so about 4% of messages have to be 

retransmitted. This percentage increases for longer codes; e.g. if 
we used a [24, 12]-code, then P,..,,,, would be over 20%. 

A compromise scheme incorporating both error correction and 

detection, called ‘incomplete decoding’, will be described in 
Chapter 7. 

Concluding remark on Chapter 6 

The birth of coding theory was inspired by the classic paper of 
Claude Shannon, of Bell Telephone Laboratories, in 1948. In 

fact, this single paper gave rise to two whole new subjects. The
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first, information theory, is a direct extension of Shannon’s work, 

relying mainly on ideas from probability theory, and this will not 
be pursued here. The second, coding theory, relies mainly on 
ideas from pure mathematics and, while retaining some links 
with information theory, has developed largely independently. 

Exercises 6 

6.1 Construct standard arrays for codes having each of the 

6.2 

6.3 

6.4 

following generator matrices: 

1 0 101 10110 

G.=|5 i| G.= |) 1 i| Gs=|) 101 | 

Using the third array: 
(i) decode the received vectors 11111 and 01011, 

(ii) give examples of 
(a) two errors occurring in a codeword and being 

corrected, 

(b) two errors occurring in a codeword and not 
being corrected. 

If the symbol error probability of a binary symmetric 
channel is p, calculate the probability, for each of the 

three codes of Exercise 6.1, that any received vector will 

be decoded as the codeword which was sent. Evaluate 

these probabilities for p = 0.01. 
Now suppose each code is used purely for error 

detection. Calculate the respective probabilities that the 
received vector is a codeword different from that sent (and 
evaluate for p = 0.01). Comment on the relative merits of 
the three codes. 

We have assumed that, for a binary symmetric channel, 

the symbol error probability p is less than 4. Can an 
error-correcting code be used to reduce the number of 

messages received in error if (i) p =3, (ii) p >3? 
Suppose C is a binary [n, k]-code with minimum distance 
2t + 1 (or 2t +2). Given that p is very small, show that an 
approximate value of P.,,(C) is 

n 

((, + , ~ ai1)p™
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6.5 

6.6 

6.7 

6.8 

6.9 

A first course in coding theory 

where @,,, 1s the number of coset leaders of C of weight 

t+1. 
Show that if the perfect binary [7, 4]-code is used for error 
detection, then if p = 0.01, Pyndetec = 0.00 000 68 and about 

7% of words have to be retransmitted. 
[Hint: The codewords of such a code are listed in 

Example 2.23.] 
We shall see in Chapter 9 that there exists a perfect binary 
(23, 12, 7]-code, called the binary Golay code. Show that, 
if p=0.01, the word error rate for this code is about 
0.000 08. 
If standard array decoding is used for a binary [n, k]-code 
and the messages are equally likely, show that P,,,,, does 

not depend on which codeword was sent and that 

12 
Pomp = Em F; iP; 

where F; is the weight of the first k places of the codeword 
at the top of the ith column of the standard array, and P, is 
the probability that the error vector is in this ith column. 
Show that if p = 0.01, the code of Example 6.5 has 

Pymb = 0.005 3. 

Show that for a binary [n, k]-code, 

1 
poe S Pomp = Perr:



The dual code, the parity-check matrix, 
7 and syndrome decoding 

  

As well as specifying a linear code by a generator matrix, there is 

another important way of specifying it—by a parity-check matrix. 

First we need some definitions. 

The inner product u-v of vectors u=u,u,:--u, and v= 

U,U2--:v, in V(n,q) is the scalar (i.e. element of GF(q)) 
defined by 

U'V=H WVU, + UnU2++°* +Uy,v,. 

For example, in V(4, 2), (1001) - (1101) =0, 

(1111) - (1110) = 1, 

and in V(4, 3), (2011) - (1210) = 0, 

(1212) - (2121) =2. 

If u- v=0, then u and v are called orthogonal. 
The proof of the following lemma is left as a straightforward 

exercise for the reader. 

Lemma 7.1 For any u, v and w in V(n, qg) and A, uw € GF(q), 

(i) urv=v-eu 

(ii) (Au+pv)-w=A(u-w) + u(v: w). 

Given a linear [n, k]-code C, the dual code of C, denoted by 
C+, is defined to be the set of those vectors of V(n, q) which are 
orthogonal to every codeword of C, i.e. 

Ct={veV(n,qg)|v-u=0 forall ue Cy}. 

After a preliminary lemma, we shall show that C~ is a linear 
code of dimension n — k. 

Lemma 7.2 Suppose C is an [n,k]-code having a generator 
matrix G. Then a vector v of V(n, q) belongs to C* if and only if 
v is Orthogonal to every row of G; i.e. ve C'<vG!‘ =0, where 
G’ denotes the transpose of G.
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Proof The ‘only if? part is obvious since the rows of G are 

codewords. For the ‘if’ part, suppose that the rows of G are 
¥j,%,-...,¥, and that v-r; =0 for eachz. If uis any codeword of 

C, then u= ))*_, A,x; for some scalars A; and so 

k 

v-u=)> A(v-r, (by Lemma 7.1(ii)) 

= >) 1,0=0. 
i=1 

Hence vy is orthogonal to every codeword of C and so is in C~. 

Theorem 7.3 Suppose C is an [n, k]-code over GF(q). Then the 
dual code C* of C is a linear [n, n — k]-code. 

Proof First we show that C~ is a linear code. 
Suppose v,, v>€ C* and A, uw €e GF(q). Then, for all ue C, 

(Av, + MV>) -u=A(vV, > u) + L(V - U) (by Lemma 7.1) 

=A0+ n0=0. 

Hence Av, + uv, € C~, and so C~ is linear, by Exercise 4.1. 

We now show that C~ has dimension n —k. Let G =[g,,] be a 
generator matrix for C. Then, by Lemma 7.2, the elements of C~ 
are the vectors v= vU,U2: °° v,, satisfying 

> gjv;=0 fori=1,2,...,k. 
j=l 

This is a system of k independent homogeneous equations in n 

unknowns and it is a standard result in linear algebra that the 
solution space C~ has dimension n —k. For completeness we 
show this to be so as follows. 

It is clear that if codes C, and C, are equivalent, then so also 
are Cj and C;. Hence it is enough to show that dim(C*) = 
n — k in the case where C has a standard form generator matrix 

1 eee @) Ay cee Q n—k 

G= 

@) eee 1 Aki eee Ak.n—k
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Then 

Ct= {1 U>,...,U,)€ V(n, q) |v; 

n—k 

+ > 
j=1 

AjV_+; = 9, i=1,2,....k}. 

Clearly for each of the q”~* choices of (v,4,,...,U,), there is a 

unique vector (v,,U2,...,U,) in C+. Hence |C*| =q”"~* and so 

dim (C-)=n—k. 

Examples 7.4 It is easily checked that 
(i) if 

0000 

C= 1100 hen CLEC 
=Vo011 ” then =C. 

1111 

(ii) if 
000 

110 _ _ [900 

C=) or, > thence’ = ti 
101 

Theorem 7.5 For any [n, k]-code C, (C*)* =C. 

Proof Clearly Cc(C~)* since every vector in C is orthogonal 
to every vector in C*. But dim((C*)*)=n—-(n- 
k)=k=dimC, and so C=(C*)°-. 

Definition A _ parity-check matrix H for an [n, k]-code C is a 
generator matrix of C~. 

Thus H is an (n —k) Xn matrix satisfying GH’ = 0, where H™ 
denotes the transpose of H and 0 1s an all-zero matrix. It follows 
from Lemma 7.2 and Theorem 7.5 that if H is a parity-check 
matrix of C, then 

C= {xeV(n,q)|xH’? =0}. 

In this way any linear code is completely specified by a 
parity-check matrix.
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In Example 7.4(i), 1100 

oo 
is both a generator matrix and a parity-check matrix, while in 
(ii), [111] is a parity-check matrix. 

The rows of a parity check matrix are parity checks on the 
codewords; they say that certain linear combinations of the 
co-ordinates of every codeword are zero. A code is completely 
specified by a parity-check matrix; e.g. if 

y= ont f 

0011 

{(X1, Xo, X3, X4) € V(4, 2) |x, +x) = 0, x3 + x, = 0}. 

then C is the code 

The equations x, +x,=0 and x;+x,=0 are called parity-check 

equations . 

If H =[111], then C consists of those vectors of V(3, 2) whose 
coordinates sum to zero (mod2). More generally, the even 

weight code E,, of Exercise 5.2 can be defined to be the set of all 

vectors X,x,°- +x, of V(n, 2) which satisfy the single parity-check 
equation 

XytXt+-+++x, =0. 

The following theorem gives an easy way of constructing a 
parity-check matrix for a linear code with given generator matrix, 

or vice versa. 

Theorem 7.6 If G=[I,|A] is the standard form generator 
matrix of an [n, k]-code C, then a parity-check matrix for C is 

H = [—A* | I,-x]- 

Proof Suppose 

1 0 ayy GQ n—k 

G= : 
0 1 Ak Qk n—k 

Let 

—Ay, —Ayy 1 0) 

H=
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Then H has the size required of a parity-check matrix and its 

rows are linearly independent. Hence it is enough to show that 

every row of H is orthogonal to every row of G. But the inner 

product of the ith row of G with the jth row of H is 

O+---+0+(-a;)+0+---+0+4,+0+---+0=0. 

Example 7.7 The code of Example 5.6(ii) has standard form 
generator matrix 

101 

111 
G= , 

* 1110 
011 

Hence a parity-check matrix is 

1110 

H=]|0111| 

1101 

(Note that the minus signs are unnecessary in the binary case.) 

Definition A parity-check matrix H is said to be in standard 
form if H = [B | L,—x]: 

The proof of Theorem 7.6 shows that if a code is specified by a 
parity-check matrix in standard form H=[B|J,_,], then a 
generator matrix for the code is G = [J, | —B7]. Many codes, e.g. 
the Hamming codes (see Chapter 8), are most easily defined by 
specifying a parity-check matrix or, equivalently, a set of 
parity-check equations. If a code is given by a parity-check 
matrix H which is not in standard form, then H can be reduced 

to standard form in the same way as for a generator matrix. 

Syndrome decoding 

Suppose H is a parity-check matrix of an [n, k]-code C. Then for 
any vector y€ V(n, q), the 1 X (n —k) row vector 

S(y)=yH" 

is called the syndrome of y.



72 A first course in coding theory 

Notes (i) If the rows of H are h,,hy,...,h,_,, then S(y)= 
(y-h,,y-°hy,...,y-h,_,). 

Gi) S(y)=OSyeEC. 
(iii) Some authors define the syndrome of y to be the column 

vector Hy’ (i.e. the transpose of S(y) as defined above). 

Lemma 7.8 Two vectors u and v are in the same coset of C if 

and only if they have the same syndrome. 

Proof wu and v are in the same coset 

@ut+C=v+C 

@u-vec 

&(u-—v)H? =0 

©SuH! =vH' 

& S(u) = S(v). 

Corollary 7.9 There is a one-to-one correspondence between 
cosets and syndromes. 

In standard array decoding, if n is small there is no difficulty in 
locating the received vector y in the array. But if n is large, we 

can save a lot of time by using the syndrome to find out which 

coset (i.e. which row of the array) contains y. We do this as 
follows. 

Calculate the syndrome S(e) for each coset leader e and 

extend the standard array by listing the syndromes as an extra 

column. 

Example 7.10 In Example 6.5, 

1011 

G= oio1 

and so, by Theorem 7.6, a parity-check matrix is 

a= [10] 

~ £11014"
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Hence the syndromes of the coset leaders (see Example 6.6) are 

(0000) = 00 
S$(1000) = 11 
(0100) = 01 
(0010) = 10. 

The standard array becomes: 
    

            
coset leaders syndromes 

0000 1011 0101 #1110 0 0 

1000 0011 1101 0110 11 

0100 1111 0001 1010 01 

0010 1001 0111 #1100 1 0. 

The decoding algorithm is now: when a vector y is received, 
calculate S(y) =yH’ and locate S(y) in the ‘syndromes’ column 
of the array. Locate y in the corresponding row and decode as 
the codeword at the top of the column containing y. 

For example, if 1111 is received, $(1111)=01, and so 1111 
occurs in the third row of the array. 
When programming a computer to do standard array decod- 

ing, we need store only two columns (syndromes and coset 

leaders) in the computer memory. This is called a syndrome 
look-up table. 

Example 7.10 (continued) The syndrome look-up table for this 
code is 

  

  

syndrome z coset leader f(z) 

0 0 0000 

11 1000 

01 0100 

1 0 0010 
  

The decoding procedure is: 

Step 1 For a received vector y calculate S(y) = yH’.
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Step 2 Let z=S(y), and locate z in the first column of the 
look-up table. 
Step 3 Decode y as y— f(z). 

A first course in coding theory 

For example, if y=1111, then S(y)=01 and we decode as 
1111 — 0100 = 1011. 

Incomplete decoding 

This is a blend of error correction and detection, the latter being 
used when ‘correction’ is likely to give the wrong codeword. 
More precisely, if d(C) = 2t+ 1 or 2t +2, we adopt the following 
scheme whereby we guarantee the correction of St errors in any 
codeword and also detect some cases of more than ¢ errors. 

We arrange the cosets of the standard array, as usual, in order 

of increasing weight of the coset leaders, and divide the array 
into a top part comprising those cosets whose leaders have 
weights <t and a bottom part comprising the remaining cosets. If 

the received vector y is in the top part, we decode it as usual 

(thus assuming <¢ errors); if y is in the bottom part, we conclude 
that more than ¢ errors have occurred and ask for re- 

transmission. 

Example 7.11 Let C be the binary code with generator matrix 

  

  

ort 

oot 

A standard array for C is 

codewords— | 00000 10110 01011 11101)) 

10000 00110 11011 01101 

01000 11110 00011 10101 top part 

00100 10010 01111 11001 

00010 10100 01001 11111 

00001 10111 01010 11100)J 

11000 01110 10011 00101 bottom part 

10001 00111 11010 01100     
  

coset leaders
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If 11110 is received, we decode as 10110, but if 10011 is 

received, we seek re-transmission. Note that in this example, if a 
received vector y found in the bottom part were ‘corrected’, then 

owing to the presence of two vectors of weight 2 in each such 
coset, we would have less than an ‘evens’ chance of decoding y to 
the codeword sent; e.g. if 10011 is received, then, assuming two 
errors, the codeword sent could have been 01011 or 10110. 

An incomplete decoding scheme is particularly well-suited to a 
code with even minimum distance. For if d(C) = 2t+2, then it 
will guarantee to correct up to ¢ errors and simultaneously to 
detect any t+ 1 errors. 
When we carry out incomplete decoding by means of a 

syndrome look-up table, we can dispense with the standard array 
not only in the decoding scheme but also in the actual construc- 
tion of the table. This is because we know precisely what the 
coset leaders are in the top part of the array (namely, all those 
vectors of weight <t), while those in the bottom half are not used 
in decoding and so need not be found. In other words we just 
store the ‘top part’ of a syndrome look-up table as we now 

illustrate. 

Example 7.11 (continued) By Theorem 7.6, a parity-check 
matrix Is 10100 

HT = | 11010 }. 

01001 

Calculating syndromes of coset leaders via S(y) =yH’, we get 

(the ‘top part’ of) the syndrome look-up table thus (the second 
column was written down first): 
  

  

syndrome z coset leader f(z) 

000 00000 

110 10000 

O11 01000 

100 00100 

010 00010 

001 00001 
  

When a vector y is received, we calculate S(y) and decode if S(y) 
appears in the z column. If S(y) does not appear, we seek
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re-transmission. For example, (i) if y=11111, then S(y) = 010 
and so we decode as 11111 — 00010 = 11101. 

Gi) if y=10011, then S(y)=101, which does not appear in 
the table and so we conclude that at least 2 errors have occurred. 

We next consider an interesting non-binary code having a neat 

syndrome decoding algorithm which does not even require a 
look-up table. This is the decimal code promised in Example 1.4. 
Because 10 is not a prime power, the code will be derived from a 
linear code over GF(11), as was the ISBN code described in 
Chapter 3, but here the codewords satisfy two parity-check 
equations instead of just one. 

Example 7.12 Consider the linear [10,8]-code over GF(11) 
defined to have parity-check matrix 

qa[PPtriiint , 

112345678910] 

H is deliberately chosen not to have standard form here in order 

to get a nice decoding algorithm later. 

Let C be the 10-ary code obtained from this 11l-ary code by 
omitting all those codewords which contain the digit ‘10’. In 
other words, C consists of all 10-digit decimal numbers x= 
X4X_* + * Xz Satisfying the two parity-check equations 

10 10 

Si x%,=0 (mod11) and = » ix,=0 (mod 11). 
i=1 i=1 

It can be shown, e.g. via the inclusion—exclusion principle, that C 
contains 82644629 codewords, but we omit the proof of this 
here. The codewords of C can be listed by finding a generator 
matrix in standard form. To do this we first put H into standard 
form via elementary row operations. 

H sae ene o | 

"nr" 112345678 910 

ereneecen 

“(Dn 119987654321 
r,—(-1)r, 

_ 4 ee7eses 2 1 OF 

mmr 1324567891001
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Using Theorem 7.6, 

T 2 87] 

3.7 

46 

G= EF 5 5 

6 4 

7 3 

8 2 

= 914 

and so C= {(%,%,...,%g, 2X, +3x,+-:++9xg, 8x, + 7x, + 
-+++x)}, where x,,%),...,Xg run over the values 0,1,2,...,9 

and those words are omitted which give the digit ‘10’ in either of 
the last two coordinate places. 

      

We now describe an incomplete syndrome decoding scheme 

which will correct any single error and which will simultaneously 
detect any double error arising from the transposition of two 
digits of a codeword. 

Suppose x = (%1, X%2,...,X,9) is the codeword transmitted and 
y= (yy, y2,--- >No) is the received vector. The syndrome 

10 10 

(4, B)=yH™=(¥ yd iy) 
i= i=1 

is calculated (modulo 11). 
Suppose a single error has occurred, so that for some non-zero 

j and k, 

(1, y2 so Yio) = (x1, se » X15 Xj + kK, Xj41, se , X10). 

Then 
10 10 

A=S y=(Sx)+k =k (mod 11), 
i=1 i=1 

10 10 

B=)» iy,= (> ix) +jk=jk (mod 11). 
i=1 i=1 

So the error magnitude k is given by A and the error position / is 

given by the value of B/A. (The latter is calculated as BA~' as 
described in Chapter 3). Hence the decoding scheme is, after
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calculating (A, B) from y, as follows: 

(1) if (A, B)=(0,0), then y is a codeword and we assume no 
errors, 

(2) if A#0 and B#0, then we assume a single error which is 
corrected by subtracting A from the (B/A)th entry of y, 

(3) if A=0O or B=O but not both, then we have detected at 
least two errors. 

Case (3) always arises if two digits of a codeword have been 
transposed, for then A=0O and (as for the ISBN code) 
B#0. 

For example, suppose y = 0610271355. We calculate that A =8 
and B=6. Hence B/A =6-:8 !=6:7=42=9, and so the 9th 
digit should have been 5-8 = —3 =8. 

Remarks on Example 7.12 (1) Note how much faster is this 
decoding scheme than the brute-force scheme of comparing the 
received vector with all codewords. There is no need to store a 
list of codewords in the memory of the decoder, nor is there even 

any need to store a syndrome look-up table. 

(2) The fact that we are able to correct any single error gives 
an indirect proof that the minimum distance of the code is at 
least 3. We will see in Example 8.8 that the minimum distance 
could have been deduced directly by inspection of the parity- 
check matrix H. 

(3) Some further decimal codes will be discussed in Chapter 
11. 

Exercises 7 

7.1. Prove Lemma 7.1. 

7.2 Prove that if E, is the binary even weight code of length n, 

then E;, is the repetition code of length n. 
7.3. Give a very simple scheme for error detection with a linear 

code, making use of the syndrome. 
7.4 For a binary linear code with parity-check matrix H, show 

that the transpose of the syndrome of a received vector is 
equal to the sum of those columns of H corresponding to 
where the errors occurred.
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7.5 

7.6 

7.7 

7.8 

7.9 

7.10 

7.11 

Construct a syndrome look-up table for the perfect binary 
[7, 4, 3]-code which has generator matrix 

1000111 

0100110 

0010101 

000101 1. 

Use your table to decode the following received vectors: 

0000011, 1111111, 1100110, 1010101. 

Let C be the ternary linear code with generator matrix 

b 11 | 

2011) 

(a) Find a generator matrix for C in standard form. 
(b) Find a parity-check matrix for C in standard form. 
(c) Use syndrome decoding to decode the received 

vectors 2121, 1201 and 2222. 

Using the code of Example 7.12, decode the received 

vector 0617960587. 

Example 7.12 shows that A,)(10,3) = 82644629. Prove 
that A,,(10, 3) < 10°. Prove also that A,,(10, 3) = 11°. 
Show that the decimal code 

10 

{G2 cee , X10) E (Fio)"° > Xj 

i=1 

10 

=(0 (mod 10), >) ix, =0(mod 10)} 
i=1 

is not a single-error-correcting code. 
Suppose a certain binary channel accepts words of length 7 
and that the only kind of error vector ever observed is one 

of the eight vectors 0000000, 0000001, 0000011, 0000111, 
0001111, 0011111, 0111111, 1111111. Design a binary 
linear [7, k|-code which will correct all such errors with as 
large a rate as possible. 

Suppose C is a binary code with parity-check matrix H. 

Show that the extended code C, obtained from C by
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adding an overall parity-check, has parity-check matrix 

— — 

0 
0 

ee
l | 

0 
1 1---1] 1 
       



S The Hamming codes 

  

The Hamming codes are an important family of single-error- 

correcting codes which are easy to encode and decode. They are 
linear codes and can be defined over any finite field GF(q) but, 
for simplicity, we first restrict our attention to the binary case. 

A Hamming code is most conveniently defined by specifying its 

parity-check matrix: 

Definition Let r be a positive integer and let H be an 
rX (2”—1) matrix whose columns are the distinct non-zero 
vectors of V(r,2). Then the code having H as its parity-check 
matrix is called a binary Hamming code and is denoted by 
Ham (r, 2). 

(We shall later generalize this to define Ham(r,q) for any 
prime power q.) 

Notes (i) Ham(r, 2) has length n =2’ —1 and dimension k = 
n—r. Thus r=n—K 1s the number of check symbols in each 
codeword and is also known as the redundancy of the code. 

(ii) Since the columns of H may be taken in any order, the 
code Ham (r, 2) is, for given redundancy r, any one of a number 
of equivalent codes. 

1 (i =2:H= Examples 8.1 (i) r 101 

By Theorem 7.6, G =[111], and so Ham (2, 2) is just the binary 
triple repetition code. 

(ii) r=3: a parity-check matrix for Ham (3, 2) is 

0001111 

H=|}011001 1}. 

1010101 

Here we have taken the columns in the natural order of 

increasing binary numbers (from 1 to 7). To get H in standard 

‘ol
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form we take the columns in a different order: 

0111100 

H=|101101 0}. 

1101001 

Hence, by Theorem 7.6, a generator matrix for Ham (3, 2) is 

1000011 

0100101 

00101107 

0001111 

G= 

It is easily seen that Ham (3,2) is equivalent to the perfect 
[7, 4, 3]-code of Example 5.6 (and Examples 2.23 and 5.3). We 
show next that all the binary Hamming codes are perfect. 

Theorem 8.2 The binary Hamming code Ham (r, 2), for r=2, 

(i) isa [2”—1, 27-1 -r]-code; 
(ii) has minimum distance 3 (hence is single-error-correcting); 

(iii) is a perfect code. 

Proof (i) By definition, Ham (r,2)* is a [2”—1,r]-code and 
so Ham (r, 2) is a [2”— 1, 2” — 1 —r]-code. 

(ii) Since Ham(r,2) is a linear code, it is enough, by 
Theorem 5.2, to show that every non-zero codeword has weight 
23. We do this by showing that Ham (r, 2) has no codewords of 
weight 1 or 2. 

Suppose Ham (r, 2) has a codeword x of weight 1, say 

x=00---010-:-0O (with 1 in the ith place). 

Since x is orthogonal to every row of the parity-check matrix H, 
the ith entry of every row of H is zero. Hence the ith column of 
H is the all-zero vector, contradicting the definition of H. 

Now suppose Ham (r, 2) has a codeword x of weight 2, say 

x=0---010---010---0O (with 1s in the ith and jth places). 

Denoting the sth row of H by [h,,h,.---h,,], we have, since x is
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orthogonal to each such row, 

h, +h; =9 (mod 2) fors=1,2,...,7; ? 

h, =h, (mod 2) fors=1,2,...,r. 
that is 

Hence the ith and jth columns of H are identical, again 
contradicting the definition of H. 

Thus d(Ham (r, 2))=3. On the other hand, Ham (r, 2) does 
contain codewords of weight 3. For example, if the first three 
columns of H are 

000 

000 
011 
101 

then the vector 11100---0 is orthogonal to every row of H and 
so belongs to Ham (r, 2). 

(iii) To show Ham (r, 2) is perfect, it is enough to show that 
equality holds in the sphere-packing bound (2.18). With ¢=1, 
n=2'—1 and M=2"~’, the left-hand side of (2.18) becomes 

(1 + (")) =2"-"(1+n)=2"-"(1 +2’ - 1) =2’, 

which is equal to the right-hand side of (2.18). 

Decoding with a binary Hamming code 

Since Ham (r,2) is a perfect single-error-correcting code, the 
coset leaders are precisely the 2”(=n + 1) vectors of V(n, 2) of 
weight <1. 

The syndrome of the vector 0---010---0 (with 1 in the jth 
place) is (0---010---0)H", which is just the transpose of the 
jth column of H. 

Hence, if the columns of H are arranged in order of increasing 
binary numbers (i.e. the jth column of H is just the binary 

representation of j), then we have the following nice decoding 
algorithm. 

Step 1 When a vector y is received, calculate its syndrome 

S(y) = yH".
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Step 2 If S(y) =0, then assume y was the codeword sent. 
Step 3 If S(y) #0, then, assuming a single error, S(y) gives the 
binary representation of the error position and so the error can 

be corrected. 

0001111 

For example, withH =}; 0110011], 

1010101 

if y= 1101011, then S(y) = 110, indicating an error in the sixth 
position and so we decode y as 1101001. 

Extended binary Hamming codes 

The extended binary Hamming code Ham/(r,2) is the code 
obtained from Ham (r, 2) by adding an overall parity-check. 

As in the proof of Theorem 2.7, the minimum distance is 
increased from 3 to 4. Also, by Exercise 5.4, the extended code 
is linear and so Ham (r, 2) is a [2’, 2” —1—r, 4]-code. 

We shall see in Exercise 8.4 that the extended code Ham (7, 2) 
is no better than Ham (r, 2) when used for complete decoding. In 
fact, it is inferior since an extra check digit is required for each 
codeword, thus slowing down the rate of transmission of infor- 
mation. However, having minimum distance 4, Ham (r, 2) is 
ideally suited for incomplete decoding, as described in Chapter 7, 

for it can simultaneously correct any single error and detect any 

double error. 
Let H be a parity-check matrix for Ham (r,2). By Exercise 

7.11, a parity-check matrix H for the extended code may be 
obtained from H via 

H—>H= H 

    [11 --- 11 

The last row gives the overall parity-check equation on code- 

words, i.e. X,) +X t+ ++ +X,4,=0. 

If H is taken with columns in increasing order of binary
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numbers, there is a neat incomplete decoding algorithm, illus- 
trated for r = 3 below, to correct any single error and at the same 
time detect any double error. 

Example 8.3 Ham (3,2) has the parity-check matrix 

00011110 

01100110 

101010107 

11111111 

The syndrome of the error vector 00---010---0 (with 1 in the 
jth place) is just the transpose of the jth column of H. The 
incomplete decoding algorithm is as follows. Suppose the re- 
ceived vector is y. The syndrome S(y)=yH" is calculated. 
Suppose S(y) = (5;, 52, 53, 54). Then 

(i) if s,;=0 and (s,, 55,53) =0, assume no errors, 

(ii) if s,=0 and (s,, 5,,5,;) 40, assume at least two errors have 

occurred and seek retransmission, 

(iii) if s,=1 and (5s;,52,53;)=0, assume a single error in the 
last place, 

(iv) if s,=1 and (s;, 5), 53) 40, assume a single error in the jth 
place, where j is the number whose binary representation is 

(51, Sp, $3). 

H= 

A fundamental theorem 

Before defining Hamming codes over an arbitrary field GF(q), 
we establish a fundamental relationship between the minimum 

distance of a linear code and a linear independence property of 
the columns of a parity-check matrix. This result will also be 

important in later chapters. 

Theorem 8.4 Suppose C is a linear [n, k]-code over GF(q) with 
parity-check matrix H. Then the minimum distance of C is d if 
and only if any d—1 columns of H are linearly independent but 

some d columns are linearly dependent. 

Proof By Theorem 5.2, the minimum distance of C is equal to
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the smallest of the weights of the non-zero codewords. Let 
X= X,xX,-°-x, be a vector in V(n,q). Then 

xe CO&xH' =0 

© x,H, + xH, + .e + x,,H,, = 0, 

where H,, H.,...,H,, denote the columns of H. 

Thus, corresponding to each codeword x of weight d, there is a 

set of d linearly dependent columns of H. On the other hand if 
there existed a set of d — 1 linearly dependent columns of H, say 
H,,, H,,,...,H then there would exist scalars x,,x; , td—1? 2 ino7 * 8 8? 

x not all zero, such that iq-1? 

x;,Hi, + x;,Hi;, +:-+-4X, H, = 0. 
ld-1" td-1 

But then the vector x=(0---0x,;0---Ox,0---Ox,,_,0---0), 
having Xj, in the ijth position for j=1,2,...,d—1, and Os 

elsewhere, would satisfy xH’ =0 and so would be a non-zero 

codeword of weight less than d. 

Theorem 8.4 not only provides a means of establishing the 
minimum distance of a specific linear code when H is given, but 
also provides a means of constructing the parity-check matrix to 

provide a code of guaranteed minimum distance. We concentrate 
here on the case d =3, leaving a discussion of the general case 
until Chapter 14. 

q-ary Hamming codes 

In order that C be a linear code with minimum distance 3, we 

require that any two columns of a parity-check matrix H be 
linearly independent. Thus the columns of H must be non-zero 
and no column must be a scalar multiple of another (cf. Exercise 

4.4). For fixed redundancy r, let us try to construct an [n,n — 

r,3]-code over GF(q) with n as large as possible by finding as 
large a set as possible of non-zero vectors of V(r, q) such that 
none is a scalar multiple of another. 

Any non-zero vector v in V(r,q) has exactly g —1 non-zero 
scalar multiples, forming the set {Av| A © GF(q), A 40}. In fact, 
the g’—1 non-zero vectors of V(r,q) may be partitioned into 
(q” —1)/(q —1) such sets, which we will call classes, such that 
two vectors are scalar multiples of each other if and only if they
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are in the same class. For example, in V(2,3), with vectors 
written as columns, these classes are 

Ui): G)b {Cao} AG) G)F ame 1G) 
By choosing one vector from each class we obtain a set of 
(q’ — 1)/(q —1) vectors, no two of which are linearly dependent. 
Hence, by Theorem 8.4, taking these as the columns of H gives a 

parity-check matrix for a [(q’—1)/(q —1), (q’—1)/(q -—1)-r, 
3]-code. This code is called a q-ary Hamming code and is 
denoted by Ham (r, q). 

Note that different parity-check matrices may be chosen to 

define Ham (r,q) for given r and qg, but any such matrix may 
clearly be obtained from another one by means of a permutation 
of the columns and/or the multiplication of some columns by 
non-zero scalars. Thus the Hamming codes are linear codes 

which are uniquely defined, up to equivalence, by their 
parameters. 

An easy way to write down a parity-check matrix for 

Ham (r, q) is to list as columns (e.g. in lexicographical order) all 

non-zero r-tuples in V(r, q) with first non-zero entry equal to 1. 

This must work because within each class of g—1 scalar 
multiples there is exactly one vector having 1 as its first non-zero 

entry. 

Examples 8.5 (i) A parity-check matrix for Ham (2, 3) is 

b 11 

1012) 

(ii) A parity check matrix for Ham (2, 11) is 

So1234s678910 

1012345678910) 

(iii) A parity-check matrix for Ham (3, 3) is 

0000111111111 

0111000111222). 

1012012012012
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Theorem 8.6 WHam(r,q) is a perfect single-error-correcting 
code. 

Proof Ham (r,q) was constructed to be an (n, M, 3)-code with 
n =(q’ —1)/(q —1) and M =q"~’. With t=1, the left-hand side 
of the sphere-packing bound (2.17) becomes 

q’"(1+n(q—-1))=q" "1 +q’ —1) 
=q", 

which is the right-hand side of (2.17), and so Ham(r,q) is a 
perfect code. 

Corollary 8.7 If q is a prime power and if n = (q’ — 1)/(q — 1), 
for some integer r 22, then 

A,(n, 3)=q"”. 

Thus, if g is a prime power and d=3, then the main coding 
theory problem, that of finding A,(n, 3), is solved for an infinite 
sequence of values of n. In particular, we have now established a 
further entry of Table 2.4, namely A,(15, 3) = 2"! = 2048. 

Decoding with a g-ary Hamming code 

Since a Hamming code is a perfect single-error correcting code, 
the coset leaders, other than 0, are precisely the vectors of 

weight 1. The syndrome of such a coset leader is 

S(0---0b0---0)=(0---0b0---0)H? = bH/, 

t 
jth place 

where H; denotes the jth column of H. 

So the decoding scheme is as follows. Given a received vector 
y, calculate S(y)=yH’. If S(y)=90, assume no errors. If 
S(y) #0, then S(y)=5H/ for some b and j and the assumed 
single error is corrected by subtracting b from the jth entry of y. 

For example, suppose g = 5 and 

011111 

H=|) o1oaat
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Suppose the received vector is y = 203031. Then S(y) = (2, 3)= 
2(1, 4) and so we decode y as 203034. 

Shortening a code 

Shortening a code can be a useful device if we desire a code of 
given length and minimum distance and if we know of a good 
code with greater length and the same minimum distance. 

Suppose C is a q-ary (n, M, d)-code. Consider a fixed coor- 
dinate position, the jth say, and a fixed symbol A of the alphabet. 
Then, if we take all the codewords of C having A in the jth 
position and then delete this jth coordinate from these code- 
words, we will get a code C’ of length nm —1 with, in general, 
fewer codewords but the same minimum distance. C’ is called a 
shortened code of C. 

If C is a linear [n, k, d]-code, and if the deleted symbol is 0, 

then the shortened code C’ will also be linear; C’ will be an 

[n —1,k —1,d']|-code, where d’ will in general be the same as d 
(it may occasionally be greater than d). If C has parity-check 
matrix H, then it is easy to see that a parity-check matrix of C’ is 
obtained simply by deleting the corresponding column of H. 

Example 8.8 Let us have another look at the [10, 8]-code over 
GF (11) considered in Example 7.12. This was defined to have 
parity-check matrix 

wafer 

112345678910 

and it now follows instantly from Theorem 8.4 that this code has 

minimum distance at least 3, for clearly any two columns of H 
are linearly independent. In fact, we see that it is a doubly 
shortened Hamming code, for H is obtained from the parity- 

check matrix of Ham (2,11), as given in Example 8.5(ii), by 
deleting the first two columns. This doubly shortened Hamming 
code has two practical advantages over Ham (2, 11); first, it has 
an even simpler decoding algorithm, as described in Example 
7.12, and, secondly, it not only corrects any single error but also 

detects any double error created by the transposition of two 

digits. On the other hand, Ham (2, 11) has far more codewords 

than its doubly shortened version.
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The 11-ary [10, 8, 3]-code of Example 8.8 is optimal in that the 
number of its codewords is equal to the value of A,,(10, 3) (see 
Exercise 7.8), a result which is generalized in Exercise 8.10. 
While shortening an optimal code will certainly not in general 
produce an optimal code, it is interesting to note a recent result 
of Best and Brouwer (1977) that the triply shortened binary 
Hamming code is optimal; thus 

A,(2’ —s,3)=2%-"-5 for s =1,2,3, 4. (8.9) 

For s =1, (8.9) merely states the optimality of Ham (r, 2), of 
which we are already aware, while for s =2, 3 and 4, (8.9) tells 

us that three successive shortenings of Ham(r,2) are also 
optimal. The result was proved by the use of linear program- 

ming, a technique which has been used to great effect recently in 
obtaining improved upper bounds on A,(n,d) for a number of 
cases. For a good introduction to the method, see Chapter 17 of 
MacWilliams and Sloane (1977). 

Taking r =4 in (8.9) gives the values of A,(14, 3), A,(13, 3) 
and A,(12,3) as shown in Table 2.4. However, if Ham (4, 2) is 
shortened four times, the resulting (11, 128,3)-code is not 
optimal, for we see from Table 2.4 that there exists a binary 
(11, 144, 3)-code. 

Concluding remarks on Chapter 8 

(1) Hamming codes were discovered by Hamming (1950) and 
Golay (1949). 

(2) For simplicity, we began this chapter by introducing only 

the binary Hamming codes. In a sense some of that material was 

made redundant by the treatment of g-ary Hamming codes, 

which included the case g = 2; for example, Theorem 8.2 is just a 
particular case of Theorem 8.6. However, the discussion of the 
extended Hamming code is applicable only to the binary case, for 
we cannot in general add an overall parity-check to a g-ary code 
in such a way as to guarantee an increase in the minimum 
distance. This is because Lemma 2.6 and hence Theorem 2.7 do 
not have suitable analogues for non-binary codes. 

(3) By Theorem 8.4, we can construct the parity-check 
matrix of a g-ary linear code of redundancy r and minimum
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distance d by finding a set of (column) vectors of V(r,q) such 
that any d—1 of them are linearly independent. As we have 
seen, it is easy to write down such a set of N vectors for d =3 of 
any size N we wish up to a maximum value of (q’ — 1)/(q — 1). 

For d = 4 also, it is easy enough to construct a set of vectors of 

V(r,q), any d—1 of which are linearly independent, simply by 
writing down vectors of V(r, q), one at a time, each time making 

sure that the new vector is not a linear combination of any d —2 
earlier ones. However, this approach is a little naive for d= 4, 
for we are likely to run out of choices for the new vector at a 
relatively early stage. In fact, the problem of finding the 
maximum possible number of vectors in V(r,q) such that any 
d —1 are linearly independent is extremely difficult for d= 4 and 
very little is known except for cases r=4. The problem is of 
much interest in other branches of mathematics, namely in finite 
geometries and in the theory of factorial designs in statistics. We 
shall return to it in Chapter 14. 

We can at least use the above-mentioned naive approach to 
get a lower bound on the maximum size of a code for given 
length and minimum distance. This is the Gilbert bound (also 
called the Gilbert-Varshamov bound), discovered independently 
by Gilbert (1952) and Varshamov (1957). 

Theorem 8.10 Suppose gq is a prime power. Then there exists a 
q-ary [n, k|-code with minimum distance at least d provided the 
following inequality holds: 

> (q- 1y(" | ‘) <q”. (8.11) 

Proof Suppose q, n, k and d satisfy (8.11). We shall construct 
an (n —k) Xn matrix H over GF(q) with the property that no 
d—1 columns are linearly dependent. By Theorem 8.4, this will 
establish the theorem. Put r=n—k. Choose the first column of 
H to be any non-zero r-tuple in V(r, q). Then choose the second 
column to be any non-zero r-tuple which is not a scalar multiple 
of the first. Continue choosing successive columns so that each 
new column is not a linear combination of any d—2 or fewer 
previous columns. There are gq —1 possible non-zero coefficients
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and so when we come to try to choose the ith column, those 
r-tuples not available to us will be the 

n@=14("\aq-y+('5')q- 
fee ed (5 )(4 — 1) 

linear combinations of d—2 or fewer columns from the i —1 

columns already chosen. Not all of these linear combinations 
need be distinct vectors, but even in the worst case, where they 

are distinct, provided N(Z) is less than the total number q’ of all 
r-tuples, then an ith column can be added to the matrix. Thus, 

since (8.11) holds, we will reach a matrix H having n columns, as 
required. 

The following is an immediate consequence of Theorem 8.10. 

Corollary 8.12 If q is a prime-power, then 

A,(n,d)= q“, 

where k, is the largest integer k satisfying 

a<a"/(S@-0("7')). 
Corollary 8.12 gives a general lower bound on A,(n, d) when q is 
a prime-power and is the best available for large n (see, e.g., 
Chapter 17, Theorem 30 of MacWilliams and Sloane 1977). 
However, for specific values of g, n and d one can usually do 
much better by constructing a good code in some other way. For 
example, taking g = 2, n = 13 and d =5, Corollary 8.12 promises 
only the existence of a binary (13, M,5)-code with M = 16, 
whereas we see from Table 2.4 that the actual value of A,(13, 5) 
is 64. We shall construct such an optimal binary (13, 64, 5)-code 
in Exercise 9.10. 

For a weaker version of the Gilbert-Varshamov bound, but 

one which applies for any size g of alphabet, see Exercise 8.12.
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Exercises 8 

8.1 Write down a parity-check matrix for the binary [15, 11]- 

8.2 

8.3 

8.4 

8.5 

8.6 

Hamming code. Explain how the code can be used to 

correct any single error in a codeword. What happens if 

two or more errors occur in any codeword? 
With the code of Example 8.3, use an incomplete decod- 
ing algorithm to decode the following received vectors. 

11100000, 01110000, 11000000, 00110011. 

Show that the code of Examples 2.23, 5.3(ii) and 5.6(ii) is 
a Hamming code. 
Suppose C is a binary Hamming code of length n and that 
C is its extended code of length n+1. For a binary 
symmetric channel with symbol error probability p, find 
Pror(C) and Pror(C) in terms of p and n, and show that, 

surprisingly, Pro(C) = Pror(C). 

(i) Write down a parity-check matrix for the 7-ary 
[8, 6]-Hamming code and use it to decode the re- 
ceived vectors 35234106 and 10521360. 

(ii) Write down a parity-check matrix for the 5-ary 
[31, 28]-Hamming code. 

Use Theorem 8.4 to determine the minimum distance of 

the binary code with generator matrix 

a 11007 

1010 

0110 

LL 1111 

1101 

0101 

L 1001.       
8.7 Let C, be the code over GF(5) generated by 

12403 

02141}. 

20314
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Let C, be the code over GF(3) generated by 

120210 

201201). 

111212 

Find a parity-check matrix for each code and determine 
the minimum distance of each code. 

8.8 Use Theorem 8.4 to construct a [6, 3, 4|-code over GF(5). 
8.9 Let R, denote the rate of the binary Hamming code 

Ham (r, 2). Determine lim,_,.. R,. 

8.10 Prove that if g is a prime power and if 3Sn <q +1, then 

A,(n,3)=q"’. 

8.11 (The ‘football pool problem’) Suppose there are ¢ football 
matches and that a bet consists of forecasting the outcome, 
home win (1), away win (2) or draw (X), of each of the t¢ 
matches. Thus a bet can be regarded as a ternary f-tuple 
over the alphabet {1, 2, X}. 

The ‘t-match football pool problem’ is the following. 

‘What is the least number f(t) of bets required to 
guarantee at least a second prize (i.e. a bet having at most 
one incorrect forecast)?’ 
(a) (i) By using Hamming codes over GF(3), find the 

value of f(t) for values of t of the form (3’ — 1)/2 
for some integer r=2; 1.e. for t=4, 13, 40, 

121,.... 
(ii) Enter in the coupon below a minimum number 

of bets which will guarantee at least 3 correct 
forecasts in some bet. 

  

  

  

  

Arsenal Luton 

Coventry Ipswich 

Liverpool Chelsea 

Watford Everton                             
  

(b) Show that 23 =f(5) <27. 
[Remark: It was shown by Kamps and Van Lint 
(1967) that f(5) = 27, the proof taking ten pages. The 
value of f(t) is unknown for t>5 except for values 
13, 40, 121, etc., covered by part (a). For some
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recent work on the bounds for f(6), f(7) and f(8) see 
Fernandes and Rechtschaffen (1983), Weber (1983), 
and Blokhuis and Lam (1984).] 

8.12 (A weaker, but more general, version of the Gilbert— 
Varshamov bound). Prove that, for any integer g =2, 

Ana) =a"/(S @-1(")). 
[Remark: When q is a prime power, this bound is much 

inferior to that of Corollary 8.12. For example, it guar- 

antees the existence of a binary (13, M,5)-code having 
only M=8, compared with M=16 given by Corollary 
8.12 and a largest possible value of M of 64.]





9 Perfect codes 

  

We recall from Chapter 2 that a q-ary t-error-correcting code of 

length n is called perfect if the spheres of radius ¢ about 
codewords fill the space (F,)” with no overlap; thus a q-ary 
(n, M,2t+1)-code is perfect if and only if the sphere-packing 

condition 

M\1 +(q-Int+(q- 17(3) $eet(q- 1y(")| =g" (9.1) 

is satisfied. 
Apart from being the best codes for their n and d, perfect 

codes are of much interest to mathematicians, largely because of 
their associated designs and automorphism groups. 

The problem of finding all perfect codes was begun by M. 
Golay in 1949 but not completed until 1973 (and then only in the 
case of prime-power alphabets) by J. H. van Lint and A. 
Tietavainen. Before giving their final result (Theorem 9.5) we 
review the perfect codes we already know of and describe two 

new ones. 
The trivial perfect codes were defined in Chapter 2 to be 

binary repetition codes of odd length, codes consisting of a single 
codeword, or the whole of (F,)”. 

In Chapter 8 we defined the perfect g-ary Hamming codes with 

arameters _» 
P (n, M, d) = ((q’ —1)/(q —-1), g"~", 3), 
for any integer r =2 and any prime power q. 

Note that the Hamming parameters satisfy (9.1) for any 
positive integer gq and, while it is conjectured that there do not 

exist any codes having these parameters for q not a prime-power, 
this is known to be the case only for g=6 and r=2 (see 
Theorem 9.12). 

A natural approach in looking for further perfect codes was 
first to seek solutions of (9.1) in integers g, M, n and f¢; 1.e. 

to find g, n and t such that )ii_o (q — 1y(") is a power of g. A
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limited search by Golay (1949) produced only three feasible sets 
of parameters (n, M,d) other than the above-mentioned. These 
were (23, 2'7,7) and (90, 2”8,5) with g=2 and (11, 3°,5) with 
q =3. 
[Remark: A computer search carried out by van Lint in 1967 
showed that these are the only further solutions of the sphere- 
packing condition with n = 1000, t= 1000 and q = 100.] 

In his 1949 paper, Golay was concerned only with linear codes. 
He exhibited generator matrices, which he presumably had found 

by trial and error, for codes having the parameters (23, 2’, 7) 
and (11, 3°,5), and he also showed that a linear [90, 78, 5]-code 
over GF(2) could not exist. Remarkably, he did all this, together 
with generalizing the Hamming codes from those over GF(2) to 
those over any prime field, in less than one page! 

Before describing the two perfect Golay codes, we give a 
proof, based on that of Golay, of the non-existence of a linear 

code having the third feasible set of parameters. 

Theorem 9.2 There does not exist a binary linear [90, 78, 5]- 
code. 

Proof Suppose H were a parity-check matrix for a binary 

(90, 78, 5]-code. Then H is a 12 x 90 matrix, whose columns we 
denote by H,, H,,..., Hoo. By Theorem 8.4, any four columns 

of H are linearly independent and so the set 

X = {0, H,, H) + H, | 1<i<90,1<j<k <90} 

90 
is a set of 1+90+( ) distinct column vectors. But 1+ 90+ 

90 
() =2" and so X is precisely the set V(12, 2) of all binary 

12-tuples. Hence the number of vectors of odd weight in X is 2’ 
(see e.g. Exercise 2.4 or Exercise 5.5). We now calculate this 
number in a different way. Suppose m of the columns of H have 
odd weight, so that 90—m of them have even weight. As in 
Lemma 2.6, w(H; + H,) = w(H,) + w(H,) — 2w(H; 1 H,), and so 
w(H, + H,) is odd if and only if exactly one of w(H;) and w(H,) 
is odd. Thus another expression for the number of vectors of odd 
weight in X is m + m(90 —m). Hence 

m(91 —m)=2"!
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and so both m and 91—™m are powers of 2. This is clearly 
impossible for any integer m and so the desired linear code 
cannot exist. 

Remark The non-existence of a non-linear (90, 2’8, 5)-code will 

be demonstrated in Theorem 9.7. 

The binary Golay (23, 12, 7]-code 

We present here the binary Golay code, as did Golay in his 1949 
paper, by exhibiting a generator matrix. This is a little unsatis- 
factory in that it is not clear where the matrix has come from, but 

it should at least satisfy the reader that the code exists (it will be 
defined in a more natural way, as a cyclic code, in Chapter 12). 
Following the treatment of Pless (1982) and MacWilliams and 
Sloane (1977), we give a different, though equivalent, generator 
matrix from that given by Golay in order to facilitate the 
derivation of the code’s properties and particularly its minimum 
distance. 

By Theorem 2.7 and Exercise 5.4, the existence of a 
(23, 12, 7]-code C implies the existence of a [24, 12, 8]-code C 
and vice versa. It turns out to be advantageous to define the 

extended Golay code C first. 

Theorem 9.3 The code G;, having generator matrix G = [J,2| A] 

=[1 011111111111) 

  be 
is a [24, 12, 8]-code. 

  

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

110 

101 

011 

111 

110 

100 

000 

001 

010 

101 

011 

11 

11 

1 0 

0 0 

0 0 

01 

1 0 

01 

11 

1 0 

0 1 

1000 1 0 

000101 

0 0 

01 

10 

01 

11 

10 

01 

11 

11 

1 0 

01 

11 

1 0 

01 

11 

11 

11 

1 0 

0 1 

11 

11 

1 0 

0 0 

1000 

000 1)  
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Proof We are required to show that d(G,,)=8, and by 
Theorem 5.2 it is enough to show that every non-0 codeword has 

weight at least 8. The above generator matrix has been chosen so 
that this can be done without having to list all 2'* codewords. We 
proceed by a sequence of four lemmas. 

Lemma l= G54 = Gog, 1.€. Gog is Self-dual. 

Proof It is readily checked that u-v=0Q, or equivalently that 

w(uly) is even, for every pair of (not necessarily distinct) rows 
u and v of G. (The amount of checking involved here can be 
much reduced by observing that each of rows 3 to 12 of matrix A 

can be obtained from the second row by means of a cyclic shift of 
the last 11 coordinates. For, by symmetry arguments, it is then
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Proof We write a codeword x=x,x,--+%,4 as (L|R) where 
L=x,°++X,2 is the left half of x and R= x,3--:x,, is the right 

half of x. Suppose x is a codeword of G,, of weight 4. Then one 
of the following cases occurs. 

Case 1 w(L)=0, w(R)=4. This is impossible since we see 
from the generator matrix G that 0 is the only codeword 
with w(L) = 0. 

Case 2. w(L)=1, w(R) =3. If w(L) =1, then x is one of the 
rows of G, none of which has w(R) = 3. 

Case 3. w(L)=2, w(R) =2. If w(L)=2, then x is the sum of 
two rows of G, but it is easily seen that no sum of two 
rows of A has weight 2. 

Case 4 w(L)=3, w(R)=1. It would be tedious to check that 
the sum of any three rows of G has w(R)>1. But by 
using Lemma 2 we can avoid this. For if w(R) = 1, then 
x must be one of the rows of [A | J], none of which has 
weight 4. 

Case 5 w(L)=4, w(R) =0. Again by looking at the generator 
matrix [A | J] we see that 0 is the only codeword having 
w(R) = 0. 

Theorem 9.3 now follows immediately from Lemmas 3 and 4. 

The binary Golay code G,3 is obtained from G,, simply by 
omitting the last coordinate position from all codewords. G,,; is 
thus a (23,2'*,7)-code whose parameters satisfy the sphere- 
packing condition 

23 23 
i.e. {1423 4 (*) + (=) } = 2", 

So G3 1s a perfect code. 

Remark ‘The omission of any other fixed coordinate from G,, 

(this process is called puncturing) would also give a (23, 2'*, 7)- 
code and it happens that any such punctured code is equivalent 

to Go3. 

The ternary Golay [11, 6, 5]-code 

With just a little trial and error it is not difficult to make use of 
Theorem 8.4 and to construct the parity-check matrix of an 
[11, 6, 5]-code over GF(3) (see Exercise 9.3).
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However, to bring out the similarities of the binary and ternary 
Golay codes, we exhibit a generator matrix for a ternary 
[12, 6, 6]-code G,., which may be punctured to get the perfect 
ternary Golay code G,, with parameters [11, 6, 5]. 

Theorem 9.4 The ternary code G,, having generator matrix 

1 0111111] 

1 0 101221 

1 110122 

1 121012 

0 1 122101 

Lo 17112210 

G=[I,| A]= 

      
is a [12, 6, 6|-code. 

Proof This is left to Exercise 9.2. 

Are there any more perfect codes? 

It was conjectured for some time that the Hamming codes 
Ham (r,q) and the Golay codes G,; and G,, were the only 
non-trivial perfect codes. However, in 1962, J. L. Vasil’ev 

constructed a family of non-linear perfect codes with the same 
parameters as the binary Hamming codes. Then Schénheim 
(1968) and Lindstrém (1969) gave non-linear codes with the same 
parameters as Hamming codes over GF(q) for any prime power 
q. 

The conjecture was weakened to: ‘any non-trivial perfect code 

has the parameters of a Hamming or Golay code’. The proof of 

this, for g a prime power, was finally completed by Tietévdinen 

(1973) following major contributions by van Lint (see van Lint 
(1975)). Thus we have the following result, which was also 
proved independently by Zinov’ev and Leont’ev (1973). 

Theorem 9.5 (van Lint and Tietaévdinen) A non-trivial perfect 
q-ary code, where q is a prime power, must have the same 

parameters as one of the Hamming or Golay codes.
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The proof of Theorem 9.5 is rather complicated and the 
details, which may be found in MacWilliams and Sloane (1977), 
are omitted here. One important ingredient of the proof is 

Lloyd’s theorem, which we also state without proof, which gives 
a further necessary condition on the parameters for the existence 

of a perfect code. The binomial coefficient (* | in the following 
m 

is defined by 

pth Ue eane’ 

m! 
  if m is a positive integer 

=] if m = 0. 

Theorem 9.6 (Lloyd (1957)) If there exists a perfect (n, M, 2t + 
1)-code over GF(q), then the polynomial L,(x) defined by 

x-1 L¢sy= > (rg ("7 *)("—*) 

has ¢ distinct integer roots in the interval 1=x <n. 
Using Lloyd’s theorem, it was shown that an unknown perfect 

code over GF(q) must have t=11, gq <8 and n < 485. However, 
by the computer search mentioned earlier, the only parameters 
in this range satisfying the sphere-packing condition are those of 
trivial, Hamming or Golay codes and also the parameters 

(n, M, d) = (90, 2”, 5) with gq =2. [Remark: It has been shown 
by H. W. Lenstra and A. M. Odlyzko (unpublished) that the 
computer search can be avoided by tightening the inequalities. | 

We have already established the non-existence of a linear 

(90, 2’8, 5)-code. The non-existence of a non-linear code with 
these parameters follows from Lloyd’s theorem, for with t=2 
and n = 90, 

L(x) =0 if and only if x?—91x +2048 =0 

and this equation does not have integer solutions in x. 
We give below a self-contained proof of this non-existence, 

avoiding Lloyd’s theorem, and relying only on a simple counting 

argument. We first give a simple definition.
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Definition If u and v are binary vectors of the same length, 
then we say that u covers v if the 1s in v are a subset of the 1s in 
u. In other words, 

ucoversv if andonlyif uNv=v. 

For example 111001 covers 101000. 

Theorem 9.7 There does not exist a binary (90, 278, 5)-code. 

Proof Suppose, for a contradiction, that C is a (90, 278, 5)-code. 
By Lemma 2.3, we may assume that 0 ¢€ C. Then every non-zero 
codeword in C has weight at least 5. Let Y be the set of vectors 

in V(90, 2) of weight 3 which begin with two 1s. Clearly |Y| = 88. 
Since C is perfect, each vector y of Y lies in a unique sphere 
S(x, 2) of radius 2 about some codeword x. Such a codeword x 
must have weight 5 and must cover y. 

Let X be the set of all codewords of C of weight 5 which begin 
with two 1s. We will count in two ways the number of ordered 

pairs in the set 

D = {(x, y)| xe X,y € Y, x covers y}. 

By the previous remarks, each y in Y is covered by a unique x in 
X and so 

ID| =|Y| =88. 

On the other hand, each x in X (e.g. 1111100---0) covers 
exactly three ys in Y _ (111000-:-0,110100---0 and 
110010---0), and so 

ID| =3|X1. 
Hence 3 |X|=88, giving |X| = 88/3, which is a contradiction, 
since |X| must be an integer. Thus a (90, 278, 5)-code cannot 
exist. 

t-designs 

The counting argument, which will be generalized in Exercise 

9.5(b), of the proof of Theorem 9.7 is reminiscent of that used in 
proving the relations (2.24) and (2.25) for block designs (see
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Exercise 2.13). This is not just a coincidence, for we can 

associate with any perfect code a certain design called a t-design. 

Definition A t-design consists of a set X of v points, and a 

collection of distinct k-subsets of X, called blocks, with the 

property that any ¢t-subset of X is contained in exactly A blocks. 
We call this a t-(v, k, A) design. 

Thus 2-designs are the same as balanced block designs, which 
were defined in Chapter 2. 

Definition A Steiner system is a t-design with A=1. A t-— 
(v,k,1) design is usually called an S(t, k, v). 

For example, the Fano plane of Example 2.19 is an S(2, 3, 7). 
The following theorem shows how Steiner systems can be 

obtained from perfect codes. 

Theorem 9.8 (Assmus and Mattson 1967) If there exists a 
perfect binary t-error-correcting code of length n, then there 
exists a Steiner system S(t +1, 2¢+1,7). 

Proof This is left to Exercises 9.4(b) and 9.5. 

Assmus and Mattson (1969) later gave an important sufficient 
condition on a code, which is not necessarily perfect, for the 

existence of associated f-designs. For the details, see 

MacWilliams and Sloane (1977, Chapter 6) or Assmus and 
Mattson (1974). Many new 5-designs have been obtained in this 
way. [Remark: it was a long-standing conjecture that f-designs 
having t=6 did not exist; however the discovery of a 6-design 
has recently been announced by Magliveras and Leavitt (1983). ] 

Remaining problems on perfect codes 

Theorem 9.5 leaves the following problems unresolved. 

Problem 9.9 Find all perfect codes having the parameters of the 
Hamming and Golay codes. 

It was observed after the definition of the g-ary Hamming 

codes in Chapter 8 that any linear code with the Hamming
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parameters is equivalent to a Hamming code. But the problem of 
finding all non-linear codes with these parameters appears to be 
very difficult and is unsolved. It is believed that there are (at 
least) several thousand inequivalent perfect binary codes with the 

parameters (15, 2"',3). For supporting evidence see Phelps 
(1983). 

However, the two perfect Golay codes are unique, i.e. any 
code with the parameters of a Golay code must be equivalent to 
a Golay code. This was proved by Pless (1968) in the restriction 
to linear codes (see also Exercise 9.3 for the ternary case). For 
unrestricted codes, the uniqueness of G,3 was proved by Snover 
(1973), while that of both G,; and G,, was demonstrated by 
Delsarte and Goethals (1975). 

Problem 9.10 Find all perfect codes over non-prime-power 
alphabets. 

It is conjectured that there are no non-trivial perfect codes 
over non-prime-power alphabets. The best result to date is the 
following theorem of Best (1982), the proof of which is too 
involved to include here. For an outline, see Best (1983). 

Theorem 9.11 For t=3 and t#6 or 8, the only non-trivial 
perfect t-error-correcting code over any alphabet is the binary 
Golay code. 

It is likely that the cases t=6 and t=8 (and possibly even 
t=2) will be settled fairly soont, but for t=1, the problem 
appears to be extremely difficult. We have already observed that 
the parameters 

(n, M, d)=((q’ — 1)/(q — 1), 4”"", 3) 

satisfy the sphere-packing condition for integers gq and r 2. For 

q a prime-power, these are the parameters of the Hamming 

codes, but for g not a prime power, very little is known about the 
existence or otherwise of codes having these parameters; only in 
the smallest case, g =6, r=2, is the problem resolved, as we 

now describe. 
The possible existence of a 6-ary (7,6°,3)-code was first 

+ Cases t = 6, 8 have now been settled by Y. Hong (Ph.D. Dissertation, 
Ohio State University, 1984).
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considered explicitly by Golay (1958) and answered in the 
negative by Golomb and Posner (1964), who reduced the 
problem to one from recreational mathematics, posed by Euler 
in 1782 and solved in 1901, as follows. 

Theorem 9.12 There does not exist a 6-ary (7, 6°, 3)-code. 

Proof Suppose, for a contradiction, that C is a (7, 6, 3)-code 
over the alphabet K = {1, 2,3, 4, 5, 6}. Consider the 6° vectors of 

length 5 obtained by deleting the last two coordinates of each 
codeword of C. These must be precisely the 6° distinct vectors of 

(F)°, for if two of these 5-tuples were the same, then the 
corresponding two codewords in C would be distance at most 2 
apart. Hence there are 6* codewords of C beginning with any 
fixed triple. If we now take those 36 codewords of C beginning 
with 111 and then delete these first three positions, we will have 
a (4, 67, 3)-code, which we denote by D. By the same argument 
as above, the 36 ordered pairs given by deleting any two fixed 
coordinates from the codewords of D will be precisely the 36 
distinct ordered pairs in (F)*. Hence, if a codeword (ijkl) of the 
code D is identified with an officer whose rank is i and whose 
regiment is j and who stands in the kth row and /th column of a 
6 X 6 square, we have a solution to the following problem: 

Euler’s ‘36 officers problem’ (1782) ‘There are 36 officers, one 

from each of 6 ranks from each of 6 regiments. Can these officers 

be arranged in a 6 X 6 square so that every row and every column 

of the square contains one officer of each rank and one officer of 
each regiment? 

It was conjectured by Euler that the answer is ‘no’, and this 
was proved to be the case (by exhaustive search) by Tarry 
(1901). For a fairly short, self-contained proof, see Stinson 
(1984). 

Hence a 6-ary (7, 6°, 3)-code cannot exist and Theorem 9.12 is 

proved. 

Remark The ‘36 officers problem’ is equivalent to a problem 
concerning mutually orthogonal Latin squares, a topic whose 
connection with codes is the subject of the next chapter, where it 

will be seen why the method of proof of Theorem 9.12 cannot be
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used to rule out the existence of g-ary (q + 1, q7~', 3)-codes for 
values of qg other than 6. 

Concluding remarks 

(1) The Golay codes have been constructed in a number of 
different ways, most naturally as cyclic codes (see Chapter 12) or 
as quadratic residue codes. A less obvious, but neat elementary 
construction is given in van Lint (1982). 

(2) A number of special algorithms have been devised for 

decoding G,3 and G,,, some of them making ingenious use of the 
properties of the associated 5-design. Among these are 
Berlekamp’s (1972) algorithm, Goethals’ (1971) majority logic 
algorithm, and Gibson and Blake’s (1978) method using ‘miracle 
octad generators’. 

(3) The probability of error correction when using G,3 was 
found in Exercise 6.6. By Exercise 9.1, there is no advantage in 
using G,, rather than G,3 for complete decoding. 

Exercises 9 

9.1 (Generalization of Exercise 8.4) Suppose C is a perfect 
binary linear code of length n and that C is its extended 

code. Prove that, for a binary symmetric channel, 

Prort(C) = Peorr(C). 
| Hint: Use the Pascal identity for binomial coefficients, 

Ce )= (+2) for n=i>1.| 
9.2 Prove Theorem 9.4; i.e. show that d(G,,) = 6. [Hint: Show 

that Gi} = G,, so that [—A7? | J] is also a generator matrix 
for G,,. Then use the fact that if w(x) <5, then either 
w(L) <2 or w(R) S2, where x = (L| R)]. 

9.3. Use Theorem 8.4 to construct G,,; 1.e. find 11 vectors of 

V(5, 3) such that any 4 of them are linearly independent. 

Furthermore show that this can be done in essentially only 
one way, thus proving the uniqueness of G,, as a linear 
[11, 6, 5]-code. [Hint: Show first that, up to equivalence,
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9.4 

9.5 

9.6 

9.7 

9.8 

9.9 

we may assume that H =[J;| A], where 

111107 
x * * GC * 

* Oo * * 

* oO * * * 

b>
 lI 

=
 

Se 
pe 

i 
pe
 

x 

    QO * * * * 

and the asterisks represent non-zero entries. ] 
(a) Show that if y is a vector in V(23,2) of weight 4, 

then there exists a unique codeword x of weight 7 in 
G,3 which covers y. Deduce that the number of 
codewords of weight 7 in G,; is 253. 

(b) Let M be a matrix whose columns are the codewords 
of weight 7 in G53. Show that M is the incidence 

matrix of a design which has 23 points, 253 blocks, 7 
points in each block, and such that any 4 points lie 
together in exactly one block; thus we have con- 
structed a Steiner system S(4, 7, 23). 

Show that if there exists a perfect binary ¢t-error-correcting 
code of length n, then 

(a) there exists a Steiner system S(¢ +1, 2t+ 1,7); 

n-l ei 
(b) ("Gar is an integer fori=0,1,...,¢. 

[Remark: Putting n = 90, t=2 and i =2 in part (b) is 
the case considered in proving Theorem 9.7. ] 

Construct a Steiner system S(5, 8,24) from the extended 
binary Golay code G»,. 

Show that the number of codewords of weight 3 in the 
Hamming code Ham (r, 2) is (2” — 1)(2”~' — 1)/3. 
Show that the number of vectors of weight 5 in the ternary 
Golay code is 132. 

We shall construct the Nordstrom—Robinson (15, 256, 5)- 

code N,, in the following steps. 

(i) Show that if the order of the coordinates of the 
binary Golay code G,, is changed so that one of the 
weight 8 codewords is 1111111100---0, then G,, 

has a generator matrix having its first 8 columns as
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shown below. 

  

‘ 1 7] 

1 0 1 

1 1 

1 1 

1 1 

G- 0 1 1 

11 

0 

0 

0 0 

0 

L 0 |   
[Hint: Since G,, is self-dual, (a) the first seven 

columns of G must be linearly independent and (b) 
the codeword 1111111100---0 is orthogonal to 
every codeword. | 

(ii) Show that the total number of codewords of Gy, 

whose first eight coordinates are one of 00000000, 
10000001, 01000001, 00100001, 00010001, 00001001, 
00000101 or 00000011 is 256. 

(iii) Take these 256 codewords and delete the first 8 
coordinates of each of them. Show that the resulting 

code is a (16, 256, 6)-code. This is the extended 
Nordstrom—Robinson code Ng. 

(iv) Puncture N,, (e.g. delete the last coordinate) to get 

the (15, 256, 5)-code Ns. 
[Remark: N,, and N,; are non-linear codes. They are 

both optimal, cf. Table 2.4.] 
Construct from N,;5 a (12, 32, 5)-code. [This code is called 
the Nadler code, having originally been constructed in 
another way by Nadler (1962). The Nadler code is both 
optimal (see Chapter 17, §4 of MacWilliams and Sloane 
1977) and unique (Goethals 1977). | 

(i) Show that there does not exist a binary linear
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(13, 64,5)-code. [Hint: Suppose C is a_ binary 
[13, 6, 5]-code with generator matrix 

it 1100000000 
G, G, } 

Show that G, generates an [8,5,3]-code, whose 

parameters violate the sphere-packing condition. | 
(ii) Deduce that there is no linear code with the 

parameters of the Nordstrom—Robinson code. 
(iii) Can the non-existence of a [12,5,5]-code (i.e. a 

linear code with the parameters of the Nadler code) 
be proved by the method of (i)?





10 Codes and Latin squares 

  

The main aim of this chapter is to show how codes can be 
constructed from certain sets of Latin squares and vice versa. In 
particular, we shall completely solve the ‘main coding theory 
problem’, over any alphabet, for single-error-correcting codes of 
length 4. 

Latin squares 

Definition A Latin square of order q is a q Xq array whose 
entries are from a set F, of q distinct symbols such that each row 
and each column of the array contains each symbol exactly once. 

Example Let F,= {1,2,3}. Then an example of a Latin square 
of order 3 is 

123 

231 

3 1 2. 

Latin squares, like balanced block designs (see Chapter 2), can 
be used in statistical experiments. 

Example 10.1 Three headache drugs 1, 2, 3 are to be tested on 
subjects A, B, C on three successive days M, T, W. One 

possible schedule is 

N
N
 

A M W 

A 1 3 

B 1 3 

C 1 2. 3.z 

But in addition to testing the effect of different drugs on the same 
subject, we also want to have some measurement of the effects of 
the drugs when taken on different days of the three-day period. 
So we would like each drug to be used exactly once each day, i.e.
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we require a Latin square for the schedule, e.g. 

M T W 

A 1 2 3 

B 2 3 #1 

C 3 1 2. 

Theorem 10.2 There exists a Latin square of order q for any 
positive integer q. 

Proof We-can take 12--:q as the first row and cycle this round 
once for each subsequent row to get 

123--: q 

234-:. ql 

345---q12 

qi2-:-- q-tl. 

Alternatively, the addition table of Z, is a Latin square of order 
q. 

Mutually orthogonal Latin squares 

Definition Let A and B be two Latin squares of order q. Let a, 
and b, denote the i, jth entries of A and B respectively. Then A 
and B are said to be mutually orthogonal Latin squares (abbre- 
viated to MOLS) if the q* ordered pairs (a,,5,),i,j=1, 
2,..-,Q, are all distinct. 

In other words, if we superimpose the two squares to form a 
new q Xq square with ordered pairs as entries, then these q? 
ordered pairs are all distinct. 

Example 10.3 The Latin squares 

123 123 

A=23 1 and B=312 

312 231 

form a pair of MOLS of order 3, for when superimposed they give
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the array 

(1,1) (2,2) (3,3) 

(2,3) (3,1) (,2) 

(3,2) (1,3) (2,1). 

Application Suppose three headache drugs, labelled 1, 2, 3, 
and three fever drugs, also labelled 1, 2, 3, are to be tested on 

three subjects A, B, C on three successive days M, T, W. As in 

Example 10.1, we shall use a Latin square of order 3 for the 
headache drug schedule and another one for the fever drug 
schedule. Since each subject takes a headache drug and a fever 
drug each day we have the opportunity of observing their 
combined effect. Can we test each of the 9 combinations of 
headache drug/fever drug exactly once? Yes, by using the above 
pair of MOLS. 

M T W 

A (1,1) (2,2) @,3) 

B (2,3) (3,1) (1,2) Here (i,j) denotes 
C (3,2) (1,3) (2,1) (headache drug 1, fever drug /). 

Example 10.4 There does not exist a pair of MOLS of order 2, 

for if F, = {1, 2}, then the only Latin squares of order 2 are ; ; and 

21 
12 and these are not mutually orthogonal. 

Optimal single-error-correcting codes of length 4 

Over an arbitrary alphabet F,, let us consider the ‘main coding 
theory problem’ for codes of length 4 and minimum distance 3; 
i.e. the problem of finding the value of A,(4, 3). First we find an 
upper bound. 

Theorem 10.5 A,(4,3) <q’, for all q. 

Proof Suppose C is a q-ary (4, M,3)-code and let x = x,.%5x3x, 
and y=y,)y3y, be distinct codewords of C. Then 

(x1, X) ¥ (y, 2), for otherwise x and y could differ only in the last
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two places, contradicting d(C) =3. Thus the M ordered pairs 
obtained by deleting the last two coordinates from C are all 
distinct vectors of (F,)* and so we must have M <q’. 

Example 10.6 For q=3, the bound of Theorem 10.5 is 

attained, for the Hamming code Ham (2, 3) is a (4, 9, 3)-code: 

0000 

0112 

0221 

1011 

1120 

1202 

2022 

2101 

221 0. 

Note that the ordered pairs in any two fixed coordinate positions 
are precisely the distinct vectors of (F;)*. The argument of the 
proof of Theorem 10.5 shows that this must be so. 

Remark For q24, the bound of Theorem 10.5 is a big 
improvement on the sphere-packing bound, which gives only that 

A,(4, 3) <q*/(4q — 3). 

Our next task is to determine those values of g for which a 
q-ary (4, q”, 3)-code exists. Since the q* ordered pairs starting off 
the codewords of such a code are distinct, such a code must have 

the form 

{(i, J, aij» b;;) | (i,j) € (F,)°}. 

We now demonstrate the connection between such codes and 

pairs of mutually orthogonal Latin squares. 

Theorem 10.7 There exists a q-ary (4, g*, 3)-code if and only if 
there exists a pair of MOLS of order q. 

Proof We will show that a code 

C = {(i, j, ai; b;;) | (i,j) € (F,)7}
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is a (4, q*, 3)-code if and only if A = [a,] and B = [b,| form a pair 
of MOLS of order q. 

As in the proof of Theorem 10.5, the minimum distance of C is 
3 if and only if, for each pair of coordinate positions, the ordered 
pairs appearing in those positions are distinct. Now the q* pairs 
(i, a,;) are distinct and the q* pairs (j, a,) are distinct if and only if 
A is a Latin square. The q* pairs (i, b,) are distinct and the q? 
pairs (j, 5,;) are distinct if and only if B is a Latin square. Finally 
the q* pairs (a,;,b,) are distinct if and only if A and B are 
mutually orthogonal. 
Theorem 10.7 shows that A,(4,3)=q’ if and only if there 

exists a pair of MOLS of order q. We shall show (in Theorem 
10.12) that such a pair of MOLS is easily constructed for three 

quarters of all cases, or more precisely, whenever g =0, 1, or 
3 (mod 4). 

Theorem 10.8 If g is a prime power and q #2, then there exists 
a pair of MOLS of order gq. 

Proof Let F, be the field GF(q) = {Ao, A1,...,A,-1}, where 
Ay = 0 (if g is prime, we may take A; =i for each i). Let uw and v 
be two distinct non-zero elements of GF(q). Let A=[a,] and 
B =[b,] be q x q arrays defined by 

ai = A; + uA; and bi; = A; + vA,. 

(The rows and columns of A and B are indexed by 0,1,...,q—- 

1.) We first verify that A and B are Latin squares. If two 
elements in the same row of A are identical, then we have 

A; + UA, = A; + UA ;:, 1.€. LA, = LA;-, 

implying that j =j’, since u#0. Similarly, if two elements in the 
same column of A are identical, then we have 

A; + LA, = A; + LA,;, 1.€. A; = Ai"; 

implying that i =i'. Thus A, and similarly B, are Latin squares. 
To show that A and B are orthogonal, suppose on the contrary 
that (4,,, b;) = (@;;, bj), 1.e. assume that the same ordered pair 
appears twice in the superposition of the squares. Then 

A; + pA; = Aj + wd; 

and A, t+ VA, = Ay + vA),
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which on subtraction implies that 

(u— v)A; = (UVa, 
Since u# v, we have j =j’ and, consequently, i =i’. 

Remark Notice how the important field property of being able 
to cancel non-zero factors was used in the above proof. A similar 
construction using Z,, where n is not a prime, would fail to give a 
pair of MOLS. 

Example 10.9 With GF(3)={0,1,2}, the construction of 
Theorem 10.8 gives, taking u =1, v =2, 

012 021 

A=12 0 and B=102 

201 21 0. 

The corresponding (4,9,3)-code, given by Theorem 10.7, is 
precisely the Hamming code as displayed in Example 10.6. 

We next describe a construction which yields pairs of MOLS of 
order g for many more values of q. 

Theorem 10.10 If there exists a pair of MOLS of order m and 
there exists a pair of MOLS of order n, then there exists a pair of 
MOLS of order mn. 

Proof Suppose A,, A, is a pair of MOLS of order m and B,, B, 
is a pair of MOLS of order n. 

Denote the (i, /)th entry of A, by a) (k=1,2) 
and the (i, j)th entry of B, by b&) (k=1, 2). 

Let C, and C, be the mn X mn squares defined by 

C, = (af, B, Xai, By) ++: (at), B,) 

(aS, B,) 

(ami, Be) (arm Bx) 

where (a{*), B,) denotes an n Xn array whose r,sth entry is 
(a), b®) for r,s=1,2,...,n. 

In other words, C, is obtained from A, by replacing each entry
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a of A, by the n Xn array (a, B,), where 

(a, B,) = (a, bYP)(a, bY) - - (a, bY?) 

(a, b) 

(a,b) «+» (a, b®). 
It is a straightforward exercise to verify that C, and C, are Latin 
squares and that they are mutually orthogonal. 

Example 10.11 

012 012 . of 
_ _ is a pair o 

A;=120 and A,=201 MOLS of order 3. 
201 12 0 

0123 0123 

1032 _ 2301 = isa pair of 

B=, 301 and B= 3210 MOLS of order 4. 

3210 1032 

The construction of Theorem 10.10 gives the following pair of 
MOLS of order 12 in which the entries are ordered pairs from 
the Cartesian product F, x F, = {00, 01, 02, 03, 10, 11, 12, 13, 20, 

21, 22, 23}. (We could relabel these elements as the integers 
1,2,...,12 if we wished). 

00 01 02 03: 10 11 12 13; 20 21 22 23 

01 00 03 02 : ! 
02 03 00 01 | ! 
03 02 01 00! ! 

10 11 1213! 20 ' 00 
11 

C= 49
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00 01 02 03: 10 | 20 
02 03 00 01! ! 
03 02 01 00: 

01 00 03 02: 

20 ‘00 ' 10 

Q= ! ! 

10 20 ‘ 00 

It should be clear to the reader how to complete the remaining 
entries in the above squares. 

The construction of Theorem 10.10 can be repeated any 
number of times. For example, we can get a pair of MOLS of 
order 60 by taking the pair of MOLS of order 12 constructed in 

Example 10.11 together with a pair of MOLS of order 5 as given 
by Theorem 10.8. The following result tells us precisely for which 
values of g a pair of MOLS of order gq can be constructed by this 
method. 

Theorem 10.12 If q =0, 1 or 3 (mod 4), then there exists a pair 
of MOLS of order q. 

Proof Suppose gq =0, 1 or 3 (mod 4). Then gq is either odd or is 
divisible by 4. Hence, if gq =p*#'p®---p” is the prime factoriza- 
tion of gq, where p,,p.,...,p, are distinct primes and 

h,, hn, ...,h, are positive integers, then p”>3 for each i. Thus, 
by Theorem 10.8, there exists a pair of MOLS of order p* for 
each i. Repeated application of Theorem 10.10 then gives a pair 

of MOLS of order p{'p%?- + +p” =. 

Theorem 10.12 leaves cases q=2(mod4), i.e. g=2,6, 
10, 14,..., unresolved. It was shown in Example 10.4 that there
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does not exist a pair of MOLS of order 2. A pair of MOLS of 
order 6 is equivalent to a solution of Euler’s ‘36 officers 
problem’. As we saw in Chapter 9, Euler’s conjecture that no 
such pair exists was proved by Tarry. Euler conjectured further 

that there does not exist a pair of MOLS of order q for any 
gq =2 (mod 4). For such g =10, he could not have been further 
from the truth, though it was not until 1960 that his conjecture 
was finally disposed of in the following result. 

Theorem 10.13 (Bose, Shrikhande and Parker (1960)). There 
exists a pair of MOLS of order g for all q except g = 2 and g = 6. 

The proof of Theorem 10.13 for cases g =2 (mod 4) is rather 
complicated and is omitted here. 

Corollary 10.14 A,(4, 3) =q? for all q #2, 6. 

Proof This is immediate from Theorems 10.5, 10.7, and 10.13. 

Finally we find the values of A,(4, 3) for g =2 and g =6. It is 
a very easy exercise to show that A,(4, 3) =2 (see Exercise 2.1), 
while the following gives the value of A,(4, 3). 

Theorem 10.15 A,(4, 3) = 34. 

Proof ‘The arrays 

123456 123456 
214365 345612 
346512 214365 

A=435621 ™ 8651243 
562143 436521 
6512134 5621134 

form a pair of Latin squares which are as close to being 
orthogonal as is possible. They fail only in that (a¢5, b¢5) = 

(4;3, 5,3) and (a¢6, Dg6) = (414, 514). Thus the code 

{(i, J, aij, 7) | (i,j) E (Fo)*, (i,j) # (6, 5) or (6, 6)} 

is a (4, 34, 3)-code.
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Now if there existed a (4, 35, 3)-code C over K, then C would 

have the form 

{(i,j, Gi; » b;;) | (i,j) € (F)’, (i, J) # (io, jo)} 

for some (ig, jo). After a little thought, the reader should be able 
to show that the partial 6 x 6 arrays A =[a,;] and B =[b,], each 
having the (i, jo)th entry missing, can be completed to Latin 
squares which must be mutually orthogonal. This contradicts 

Tarry’s non-existence result. 
Summarizing our results concerning A,(4, 3), we have 

Theorem 10.16 A,(4,3)=q’, for all q 42, 6, 

A,(4, 3) =2, 

A,(4, 3) = 34. 

Remark We now see why the non-existence of a perfect g-ary 
(q +1, q?~', 3)-code cannot be proved by using the method of 
proof of Theorem 9.12 except when g = 6. 

In the remainder of this chapter, we generalize some of the 
earlier results. First we give a generalization of the bound of 
Theorem 10.5, due to Singleton (1964). 

Theorem 10.17 (The Singleton bound) 

A,(n,d)=<q" 4"). 

Proof Suppose C is a q-ary (n, M, d)-code. As in the proof of 
Theorem 10.5, if we delete the last d — 1 coordinates from each 

codeword (i.e. puncture C d—1 times), then the M vectors of 
length n — d +1 so obtained must be distinct and so M <q”~4*!, 

Sets of t mutually orthogonal Latin squares 

Definition A set {A,, A>z,...,A,} of Latin squares of order q is 
called a set of mutually orthogonal Latin squares (MOLS) if each 
pair {A;, A;} is a pair of MOLS, for 1 <i<j St. 

Theorem 10.18 ‘There are at most g — 1 Latin squares in any set 
of MOLS of order q.
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Proof Suppose A,,A>2,...,A;, 1s a set of t MOLS of order gq. 

The orthogonality of two Latin squares is not violated if the 
elements in any square are relabelled. So we can relabel the 
elements of each square so that the first row of each A, is 
12---q. Now consider the ¢ entries appearing in the (2, 1)th 
position of the ¢ Latin squares. None of these entries can be a 1, 
since 1 already appears in the first column of each A;. Also, no 
two of these entries can be the same, because for any two of the 
A,, the pairs (1, 1), (2,2),...,(qg,q) already appear in the first 
row of the corresponding superimposed matrix. Hence we must 
have t=q—1. 

Definition If aset of g — 1 MOLS of order g exists, it is called a 

complete set of MOLS of order q. 

Theorem 10.19 If gq is a prime power, then there exists a 
complete set of g — 1 MOLS of order gq. 

Proof Consider the field GF(q)= {Ao,A1,...,Ag-1} where 
Ayg=0. Let A,,A2,...,Ag-, be qXq arrays, with rows and 

columns indexed by 0,1,...,q—1, in which the (i, /)th entry of 
A, is the element of GF(q) defined by 

a!) =), + AyA;. 

It follows exactly as in the proof of Theorem 10.8, that 
A,,A2,...,A,g—, form a set of MOLS of order gq. 

Remark It is not known whether there exist any complete sets 
of MOLS of order q when q is not a prime power. Surprisingly, a 
complete set of MOLS of order gq 23 is equivalent to a 
projective plane of order qg (see e.g. Ryser (1963), p. 92 for a 
proof of this). Thus one approach towards finding a projective 
plane of order 10 (the lowest-order unsolved case, as mentioned 
in Chapter 2) is to try to find a set of 9 MOLS of order 10. 
However, no-one has yet succeeded in finding even a set of 3 
MOLS of order 10. 

Theorem 10.20 A q-ary (n, q*, n — 1)-code is equivalent to a set 
of n —2 MOLS of order gq.
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Proof Asin Theorem 10.7, an (n, q*,n — 1)-code C over F, has 
the form 

{(i, J; a), a\?), ae) a\r—?)) | (i,j) € (F,)°}. 

It is left as an exercise for the reader to show that d(C) =n — 1 if 
and only if A,,A2,...,A,-2, where A, = [a], form a set of 
MOLS of order q. 

Corollary 10.21 A,(3, 2) =q? for all q. 

Proof A (3, q*,2)-code is equivalent to a single Latin square of 
order g, which exists by Theorem 10.2. The Singleton bound 

shows that such a code is optimal. 

Corollary 10.22 If g is a prime power and n <q + 1, then 

A,(n,n—1)=q’. 

Proof This is immediate from Theorems 10.17, 19 and 20. 

For other connections between Latin squares and error- 
correcting codes, see Dénes and Keedwell (1974). 

Exercises 10 

10.1 Construct a pair of orthogonal Latin squares of order 7. 

10.2 Use a pair of MOLS of order 3 and the construction of 
Theorem 10.10 to construct a pair of MOLS of order 9. 

10.3. Using the field GF(4) as defined in Example 3.6(3), 

construct a set of three MOLS of order 4. 

10.4 Show that the dual of the Hamming code Ham (2, q) is a 
(q +1, q*,q)-code. List the codewords of (Ham (2, 5))* 
and hence construct a set of four MOLS of order 5. 

10.5 Define f(qg) to be the largest number of Latin squares in a 

set of MOLS of order qg. On the basis of results stated in 

this chapter, write down all the information you can 
about the values of f(n) for 3<n < 20; i.e. give values of 
f(n) where known, otherwise give the best upper and 
lower bounds you can. 

10.6 Show that A9(5, 4) = 400.



A double-error-correcting decimal code 
1 1 and an introduction to BCH codes 

  

In Chapter 3 we met the ISBN code, which is a single-error- 
detecting decimal code of length 10. Then in Example 7.12 we 

constructed a single-error-correcting decimal code of length 10. 

Our first task in this chapter will be to construct a double-error- 
correcting decimal code of length 10 and to determine an efficient 
algorithm for decoding it. As before, the code will really be a 
linear code defined over GF(11). 

We shall then generalize this construction to a family of 
t-error-correcting codes defined over finite fields GF(q), where 
2t+1<q. These codes are particular examples of BCH codes 
(BCH codes were discovered independently by Hocquenghem 
(1959) and by Bose and Ray-Chaudhuri (1960)) or Reed- 
Solomon codes. 

We shall see that the decoding of these codes depends on 
solving a certain system of simultaneous non-linear equations, for 
which coding theorists have devised some clever methods of 
solution. Surprisingly, such a system of equations was first solved 
by Ramanujan (1912) in a seemingly little-known paper in the 

Journal of the Indian Mathematical Society. We shall present 
here a decoding algorithm based on Ramanujan’s method, which 
is easy to understand and makes use of the method of partial 
fractions which the reader will very likely have met. 

Historical Remark In 1970, N. Levinson wrote an expository 
article entitled ‘Coding Theory—a counterexample to G. H. 
Hardy’s conception of applied mathematics’, in which he showed 
how theorems from number theory play a central role in coding 

theory, contrary to Hardy’s (1940) view that number theory 
could not have any useful application. It is of particular interest, 
therefore, to see a result of Hardy’s great protegé, Ramanujan, 
also finding an application in coding theory. Incidentally, perhaps 

contrary to popular belief, Ramanujan was not completely 
unknown before his discovery by Hardy. He had already
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published three papers, all in the above-mentioned journal, 
before he first wrote to Hardy in January, 1913. It is the third of 
these papers, published in 1912, which is of interest to us here. It 
was just two pages long and gave neither references nor any 
motivation for solving the given system of equations. 

Some preliminary results from linear algebra 

We shall construct a code of specified minimum distance d by 
constructing a parity-check matrix H having the property that 

any d—1 columns of H are linearly independent (see Theorem 

8.4). The following well-known result concerning the deter- 
minant of a Vandermonde matrix enables us to make this 
construction in a natural way. The determinant of a matrix A will 
be denoted by det A. 

Theorem 11.1 Suppose a,,a,,...,a, are distinct non-zero ele- 

ments of a field. Then the so-called Vandermonde matrix 

m4 doe 17 

Qa, a> oee a, 

A=] at az-::.@ 

pay as,' tee ay" |     
has a non-zero determinant. 

Proof By subtracting a, Xrowi from row(i+1) for i=1 to 
r —1, we have 

    

Bl 1 ae 1 7) 

O a-a, vee a, — a, 

0 a(a,—4a,) *** 4,(a,—4a)) 
det A = det 

0 a3(a2 — 41) “++ ay(a, — a) 

}0 a3-*(ay — a4) +++ a7 *(a, — ay) | 

1 1... 17 

a> a3 eee a, 

= (a, — a,)(a3 — a,)-++(a,—a,) det | a3 a3 

e6.8
@ 

Q
 

“
N
 

    as? a, +++ ar?)
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The matrix in this last expression is again of Vandermonde type 
and if we similarly subtract a, X rowi from row (i+ 1) for i=1 to 
r —2, and then take out factors, we get 

det A = (a, — a,)(@3 — a4) ++ + (@, — @))(@3 — a2) ++ + (@, — a2) 

1 lee. 1 

xdet} “> “470° & 

a’? eee qa’ 

Repeating the process until the determinant becomes unity, 

det A = (a, — a,)(43 — 4,) ++ + (a, — 4) 

(a; — a2) ++ (a, — ap) 

(a, —a,4)X1 

= I] (a; — a;). 
i>j 

Hence detA is non-zero, since the a; are distinct non-zero 

elements of a field. [Remark: the reader who is familiar with the 
method of proof by induction should be able to shorten the 
length of the above proof. ] 

The following is another standard result from linear algebra; 

its converse is also true, but will not be needed. 

Theorem 11.2 If A is an rXr matrix having a non-zero 
determinant, then the r columns of A are linearly independent. 

Proof Suppose A is an rXr matrix such that det A +0. 
Suppose, for a contradiction, that the columns ¢,,¢,...,¢, of A 

are linearly dependent. Then some column of A can be expressed 
as a linear combination of the other columns, say 

r 

C = S a;C;. 

i=] 

iF] 

Then replacing column c¢; by ¢; — ).7_; a,¢; gives a matrix B whose 
itj 

determinant is equal to that of A and which also has an all-zero 
column. Thus det A = det B = 0, giving the desired contradiction.



128 A first course in coding theory 

A double-error-correcting modulus 11 code 

We are now ready to construct our double-error-correcting 

decimal code. The code will consist of those codewords of the 
single-error-correcting code of Example 7.12 which satisfy two 

further parity-check equations. A similar code was considered by 
Brown (1974). 

Example 11.3 Let C be the linear [10,6]-code over GF(11) 
defined to have parity-check matrix 

L1a.--- 1 
12 3--- 10 

™=1 4 2232... 10 | 
1 23 33 --- 10° 

As usual, if we desire a decimal code rather than one over 

GF(11), we simply omit those codewords containing the symbol 

10 so that our decimal code is 

10 

D= [xen ++ X19 € (Fio)”” > x; 
i=1 

10 10 10 

=> i= > Px,=> Fx, =0 (mod 11)| 
i=] p=] i=1 i= i= 

where F,yg= {0,1,2,..., 9}. 
Note that any four columns of H form a Vandermonde matrix 

and so, by Theorems 11.1 and 11.2, any four columns of H are 

linearly independent. Thus, by Theorem 8.4, the code C (and 
hence also D) has minimum distance 5 and so is a double-error- 

correcting code. 

Remark The 11-ary code C contains 11° codewords and so is 

optimal by the Singleton bound (Theorem 10.17). The decimal 
code D does not achieve the Singleton bound of 10° but 
nevertheless contains over 680 000 codewords. 

We next construct a syndrome decoding scheme which will 

correct all double (and single) errors in codewords of C. 
Suppose x=xX,X,°°'X,9 is the transmitted codeword and 

Y= )1¥2°** Yio IS the received vector. We calculate the syndrome
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of y 10 10 10 10 

(S,, 55, $3, Sy) =yH? = (> Yi» » LY, > i*y,, >» ?y;). 
i=1 i=] i=] 

Suppose two errors of magnitudes a and Db have occurred in 
positions i and j respectively. Then 

at+b=S, (1) 

ai + bj = S, (2) 

ai? + bj? = S$, (3) 

ai? + bj? = Sy. (4) 

We are required to solve these four equations for the four 
unknowns a, b, i, j and at first sight this looks rather difficult as 

the equations are non-linear. However, we can eliminate a, b 
and / as follows. 

i X (1) — (2) gives b(i — j) = iS, — S, (5) 

i x (2) — (3) gives bj(i —j) = iS, — S; (6) 
i X (3) — (4) gives bj7(i — j) = iS; — Sy. (7) 

Comparing (6)? with (5) x (7) now gives 

(iS, — $3)? = (iS, — S,)(iS; — S4), 

which implies that 

(SS — $,S;)i7 + (S,S, — S,S3)i + $3 — S,S, = 0. (8) 

It is clear that if a, b and i were eliminated from (1) to (4) in 
similar fashion, then we would get the same equation (8) with i 
replaced by j. Thus the error locations 7 and j are just the roots of 
the quadratic equation (8). Once i and j are found, the values of 
a and Db are easily obtained from (1) and (2). 

Let P = S$—S,S;, O = S,S, — S,S3 and R = S$ — S,S,. Note that 
if just one error has occurred, say in position i of magnitude a, 
then we have 

S,=a, S,=ai, S,;=ai* and S,=ai? 

andso P=Q=R=0. 

Thus our decoding algorithm is as follows. 
From the received vector y, calculate the syndrome S(y) = (S,, 
S>, 53, S,) and, if this is non-zero, calculate P, Q and R.
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(i) If S(y) =0, then y is a codeword and we assume no errors. 
(ii) If S(y)#0 and P=Q=R= 0, then we assume a single 

error of magnitude S, in position S,/S,. 

(iii) If P4O and R40 and if Q* —4PR is a non-zero square in 
GF(11), then we assume there are two errors located in 
positions i and j of magnitudes a and b respectively, where 

__-Q+V(Q?—4PR) 
  i,j > P (9) 

b = (iS, — So)/( — j) (10) 
and a=S,—b. (11) 

(iv) If none of (1), (ii) or (iii) applies, then we conclude that at 
least three errors have occurred. 

Notes (1) It does not matter which way round we take i and j 
in (9); we need not insist, for example, that i<j. 

(2) As usual, all arithmetic is carried out modulo 11, division 
being carried out with the aid of the table of inverses as in 
Example 7.12. We need further here a table of square roots 
modulo 11. By first calculating the squares of the scalars as 
shown below 

x | 12345678910 

wel] 149533594 1 
  

we may take the table of square roots to be 

x | 1 3459 

Vx | 15243 

  

We could equally well use the negative of any of these square 
roots; the presence of the ‘+’ in (9) shows that it does not matter 
which of the two roots is taken. Note that if, in (9), QO? — 4PR is 
not a square (i.e. it is one of 2, 6, 7, 8, 10), then at least three 

errors must have occurred. 

A class of BCH codes 

Let us now consider how the code of Example 11.3 might be 

generalized. Generalizing the construction of the code to a 
t-error-correcting code of length n over GF(q) is very easy
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provided 
2t+1<n<q—l. 

Generalizing the decoding algorithm is less straightforward but 

can nevertheless be done in an ingenious way. 

The codes defined below belong to the much larger class of 
BCH codes. By restricting our attention to these easily defined 
codes we can demonstrate in an elementary way the essential 

ingredients of the important error-correction procedure for the 
more general BCH codes. 

We will assume for simplicity that g is a prime number, so that 
GF(q) = {0,1,...,q—1}, but there is no difficulty whatsoever 
in adapting the results to the general prime-power case. 

Let C be the code over GF(q) defined to have the parity-check 

matrix 

4. 1 od eee 1 
1 2 3 +s ON 

H=|1 2% 3% «++ n? |, 

    4 Ja—-2 34-2 tee n@-2 

where d =n <q — 1. That is, 

C= frye, V0, 9) > #x,=0 for j=0,1,...,d-2} 
i=1 

Any d—1 columns of H form a Vandermonde matrix and so 
are linearly independent by Theorems 11.1 and 11.2. Hence, by 

Theorem 8.4, C has minimum distance d and so is a q-ary 
(n,q”~**!, d)-code. Since C meets the Singleton bound 
(Theorem 10.17), we have proved 

Theorem 11.4 If q is a prime-power and if d=<n <q — 1, then 

A,(n, d) — qr att, 

From now on we will assume that d is odd, so that d=2t+1 

and H has 2t¢ rows. Let us try to generalize the decoding 
algorithm of Example 11.3. 

Suppose the codeword x= x,x,--:x, 1S transmitted and that 
the vector y=y,y2--- y, 1S received in which we assume that at 

most ¢ errors have occurred. Suppose the errors have occurred in
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positions X,,X,,...,X, with respective magnitudes 

m,,M,,...,m, (if e<t¢t errors have occurred, we just assume 

that m..,=M,4.=:-::=m,=0). From the received vector y we 

calculate the syndrome 

(S, So, a) So) =yH"', 

i.e. we calculate 

S= > yi t= >) m,Xt! 
i= i=1 

forj7=1,2,..., 2t¢. 

Thus, to find the errors, we must solve for X; and m, the 

following system of equations 

my, + my, +:---+Mm, = §, 

m,X, + m,X> +eeet m,X, = §, 

mX% + m,X% +eee+ m,X? = §, > (11.5) 

  m,Xt-t+ m,X2-1+ 7 ee + m,X2-} = Sor) 

This is precisely the system of equations solved by Ramanujan in 
1912 and we follow exactly his method of solution below (for 

t = 3, the equations are too complicated to eliminate 2¢ — 1 of the 
unknowns as we did for the case t = 2). 

Consider the expression 

my, Mp» m, 
    

  

0) = + freed . 1 0.) = 7x61 -x,0 1— X,6 ) 

Now i =m (1+ X0 +.X20?+---) 1— X60 
and so 

o(8) = (m, +m,+++++m,) + (MX, + m2X, +--+ +m,X,)0 

+ (m, Xf + M2X3 + +++ +m,X?)0? +---. 

By virtue of equations (11.5), we get 

p(8) = S, + S,6 + S307 +--+ +S,,07 7-1 +---, (2) 

Reducing the fractions in (1) to a common denominator, we have 

A,+A,0+A367+-+-+A,0'"! 3 

1+ B,6+ B,67+---+Be (3) 
  p(8) =
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Hence 

(S,+S,0 + 8,67 +---)(1+B,0+ B,67+---+B,6') 

=A,+A,0+A,07+---+A,0"). 

Equating like powers of 0 we have: 

A,=S8, ) 

A, = S5 + S,B, 

A; = S3 + SB, + S,B, > (11.6) 

  A, = S, + S,1B, + S,>B, +eeet S,B,-4 J 

0) = S44 + SB, + S,-,B, + ze + S,B, 

0) = S49 + 5,413, + SB, + 7. + SB, 

(11.7) 

Q = S>, + S5,-,B, + S>,-7B> + ee + S,B,. 

Since S,,55,...,55, are known, the ¢ equations (11.7) enable 

us to find B,, B,,...,B,, and then A,,A,,...,A, are readily 

found from equations (11.6). 
Knowing the values of the A; and B;, we can split the rational 

function of (3) into partial fractions to get 

Pi P2 Pi 0) = + +++ + . 
9(9) 1-—q,0 1-4q,0 1—q,0 

Comparing this with (1), we see that 

  

m,= Pp, xX, =q) 

M2 = P2 X2 = qr 

Mm, = Pr X,= 4: 

and the system (11.5) is solved. 

Remark 11.8 The polynomial 

o(0)=1+8B,0+ B,0*+---+B,6' 

= (1 — X,0)(1 — X28) +++ (1— X,8) 

is what coding theorists call the error-locator polynomial; its 
zeros are the inverses of the error locations X,, X5,...,X,. The
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polynomial 

w(0) = A,+A,0++--+A,0! 

is what coding theorists call the error-evaluator polynomial. 
Once we have found the error locations, we can use the 

evaluator polynomial to calculate the error magnitudes. 

Let us illustrate the above method by an example. 

Example 11.9 Consider the 3-error-correcting code over 
GF (11) with parity-check matrix 

  

rid 1 --- 17] 

12 3 --: 10 

12? 3% --- 10° 

12? 33 +--+ 10°] 

1 2* 3*--- 10¢ 

212° 3 --+ 10%   
Suppose we have received a vector whose syndrome has been 
calculated to be 

(S;, S>, 53, S45 Ss, Se) = (2, 8, 4, 5, 3, 2). 

Assuming at most 3 errors, in positions X,, X2, X3 of respective 
magnitudes m,, m2, m3 we have 

m, m, m, _— A,+A,0+A;6? 

1-—X,0 1-— X,0 1— X30 1+ B,0 + B,6? + B03’ 

    p(8) = 

where, by 11.6 and 11.7, the A; and B; satisfy 

A,=2 

A,=8+ 2B, 

A,=4+ 8B, + 2B, 

O=5+4B, + 8B, + 2B, 

0=3+5B,+ 4B, + 8B, 

0=2+3B,+ 5B, + 4B. 

Solving first the last three equations for B,, B, and B, gives
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B,=5, B,=10, B,=8, A; =2, A,=7 and A, =9. Therefore 

2+76+967 

1+560+ 1007 + 863° 
  p(9) = 

To split this into partial fractions we must factorize the de- 
nominator. Because there is only a finite number of field 

elements, the simplest way to find the zeros of the denominator 

is by trial and error. In this case we find that the zeros are 4, 5 
and 9. The error positions are the inverses of these values, i.e. 3, 

9, and 5, and we now have 

2+70+ 967 (8) = =T39* oso tog (1-30)1-50)4-90) 1-360 1-S5@A@ 1-986 

Now m, is given by multiplying through by 1—36 and then 
putting 30 =1, i.e. 0=37'=4, to get 

— 247-4494 | 
(1-5-4) -9-4) 

The reader familiar with partial fractions may recognize this 
method as a ‘cover-up’ rule. Similarly, m, is obtained from the 
left-hand side of (1) by ‘covering up’ the factor 1—56 and 

putting @=5~'=9. This gives m,=2 and similarly we get 
m;=7. Thus the error vector is 

004020007 0. 

    
  

4.   

My, 

Notes (1) If the number of errors which actually have oc- 
curred is e, where e <t, then m,,,;=™m.42=°::=m,=0 so that 

o(0@) becomes 

A, +A,0+-++-+A,0°"' 

1+ B,O+---+B,0° 
  

We therefore require a solution of equations (11.7) for which 

Be) = Berg = °° = B, = 0. 

It will not be obvious from the received vector, nor from the 

syndrome, what the number e of errors is, but if e<t, then only 

the first e equations of (11.7) will be linearly independent, the 
remaining t—e equations being dependent on these. So when 
solving the system (11.7) we must find the maximum number e of
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linearly independent equations and put B,,,= B.4.=-:-=B,= 

0. 
For example, suppose in Example 11.9 that the syndrome has 

been found to be (5, 6, 0,3, 7,5). Then equations (11.7) become 

6B, + 5B3,=8 

3B, + 6B3= 4 

7B, + 3B, = 6. 

Eliminating B, from the last two equations gives 

3B, +8B;,=4 

which is just a scalar multiple of the first. So we put B,=0 and 
solve the first two equations for B, and B, to get B,=5 and 
B,=5. We then have A, =5 and A, =9. So 

5 +96 

(9) = 7564562” 

which gives, on splitting into partial fractions, 

2 1 3 

1-@ 1-50 
  

Thus we assume that there are just two errors, in position 1 of 

magnitude 2, and in position 5 of magnitude 3. 

(2) When the error-locator and error-evaluator polynomials 
o(@) and w(@) (defined in Remark 11.8) have been found, and 
the error locations X,, X,,...,X, determined, then, as we saw in 

Example 11.9, the error magnitudes are given by 

w(x; ye XE) 
  

J 

[| GQ - x77) forj=1,2,...,e. (11.10) 

‘Fi 
This is why w(@) is called the error-evaluator polynomial. 
We now summarize the general algorithm. 

Outline of the error-correction procedure (assuming <t 
errors) 

Step 1 Calculate the syndrome (S,, S;,..., S3,) of the received 
vector.
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Step 2 Determine the maximum number of equations in system 

(11.7) which are linearly independent. This is the number e of 
errors which actually occurred. 

Step 3 Set B11, Bes2,..., B, all equal to zero and solve the 
first e equations of (11.7) for B,, B,,..., B.. 

Step 4 Find the zeros of the error locator polynomial 

1+ B,6+B,0*+---+B.6° 

by substituting each of the non-zero elements of GF(q). 
Step 5 Find A,,A,,...,A, from system (11.6) and find each 

error magnitude m, by substituting X;' in the error-evaluator 

polynomial A, + A,60+---+A,0°~' and dividing by the product 

of the factors 1 — X,X;* fori=1,2,...,e with i4j. 

Notes (1) If in Step 3 we solve the system (11.7) by reducing 
to upper triangular form, then we can automatically carry out 
Step 2 at the same time. 

(2) The above procedure is essentially that used by coding 
theorists today, although Ramanujan’s consideration of partial 

fractions is not used explicitly. 
(3) The computations involved in the above scheme may all 

be performed very quickly with the exception of Step 3, in which 
we are required to solve the matrix equation 

  

Ky Sy S3 ses S. VP B. | r—S.41 | 

S» S3 S4 7 Se+1 B.-, —S.42 

S3 = 

| Se Se+1 Se+2 see Sre—1 | |B, _ — $2 2           
For example, if we were to solve the system by inverting the 

e Xe matrix, then the number of computations needed would be 

proportional to e*. This might be reasonable for small rt, but if we 
need to correct a large number of errors we require a more 
efficient method of solution. Various refinements have been 

found which greatly reduce the amount and complexity of 
computation. 

Note that the e x e matrix above is not arbitrary in form, but 

has the property known as ‘persymmetry’; that is, the entries in 

any diagonal perpendicular to the main diagonal are all identical.
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Berlekamp (1968) and Massey (1969) were able to use this 
additional structure to obtain a method of solving the equations 
in a computationally much simpler way. This involved converting 

the problem to one involving linear-feedback shift registers; 
details may be found in Peterson and Weldon (1972), 
MacWilliams and Sloane (1977) or Blahut (1983). An alternative 
algorithm (see same references) involves the clever use of the 
Euclidean algorithm for polynomials. This algorithm is perhaps 
easier to understand than the Berlekamp—Massey algorithm, 

though it is thought to be less efficient in practice. 
(4) Since we require that n <q — 1 in constructing the above 

codes, it may look as though the methods of this chapter have no 

applicability to binary codes. However, binary BCH codes 
indeed exist and are extremely important. A binary BCH code 

may be defined by constructing a certain matrix whose entries 
belong to a field of order 2” and then converting this to a 
parity-check matrix for a binary code by identifying each element 
of GF(2") with a binary h-tuple (written as a column vector) in a 
natural way. These BCH codes are discussed extensively in 

several of the standard texts on coding theory. It is hoped that 
for the reader who wishes to study BCH codes further, the above 

treatment will facilitate his understanding of the more general 
case. 

Concluding remarks 

(1) Apart from the ISBN code, modulus 11 decimal codes are 

now widely used, mainly for error detection rather than correc- 

tion. One of the earliest uses was in the allocation of registration 

numbers to the entire population of Norway in a scheme devised 

by Selmer (cf. 1967). Selmer’s code, defined in Exercise 11.6, 
satisfies two parity-check equations and is designed to detect all 

single errors and various types of commonly occurring multiple 
errors. Before devising his code, in order to ascertain which 

psychological errors occurred most frequently, Selmer analysed 
the census returns of 1960 for the population of Oslo. In this 
census, the public had filled in the date of birth themselves, and 
comparison of these entries with those in the public register had 

revealed about 8000 inconsistencies, which were on record in 

Oslo. Selmer actually received only 7000 of these; the remaining
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thousand were people who had also written their name incor- 
rectly and so belonged to another file! 

(2) For a survey of various types of error-detecting decimal 
codes, see Verhoeff (1969). This includes, in Chapter 5, the first 
example of a pure decimal code which detects all single errors 
and all transpositions. 

(3) In 1970, Goppa discovered codes which are an important 
generalization of BCH codes, and whose decoding can be carried 
out in essentially the same way. McEliece (1977) asserts that ‘it is 
fairly clear that the deepest and most impressive result in coding 

theory is the algebraic decoding of BCH-—Goppa codes’. It has 
been the aim of this chapter to give the essential flavour of this 

result assuming nothing more than standard results from first- 
year undergraduate mathematics. 

Exercises 11 

11.1 Using the code of Example 11.3, decode the received 
vector 1204000910. 

11.2 Find a generator matrix for the [10, 6]-code of Example 
11.3. 

11.3. For the code of Example 11.9, find the error vectors 
corresponding to the syndromes 

(1,7,5,2,3,10) and (9,7,7, 10,8, 3). 

11.4 Suppose we wished to give each person in a population of 
some 200 000 a personal identity codeword composed of 
letters of the English alphabet. Devise a suitable code of 
reasonably short length which is double-error-correcting. 

11.5 When decoding a BCH code of minimum distance 2¢ + 1, 
suppose the error locations are found to be 
X,,X,...,X,. Show that the error magnitude m, in 

position X; is given by 

m, = —X,w(X;"")/0'(X;"), 

where w(@) is the error-evaluator polynomial and o'(@) 
denotes the derivative of the error-locator polynomial 
o(@). 

11.6 Every person in Norway has an 11-digit decimal registra- 
tion number x,x,--:x,,;, where x,x,---Xx, is the date of
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birth, x7XgX¥9 iS a personal number and xX,9 and x,, are 

check digits defined by 

X10 = —(2Xo + 5X8 + 4x, + 9x6 + 8X5 + X4 + 6x3 +7X> + 3x4) 

(mod 11) 

and 

X41 = — (2X49 + 3X9 + 4x. + 5x4 + 6X6 + 1X5 

+ 2x4 + 3x3 + 4x, + 5x,) (mod 11). 

Write down a parity-check matrix for the code (regarded 
as a code over GF(11)). If the code is used only for error 
detection, will all double errors be detected? If not, 

which double errors will fail to be detected?
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Cyclic codes form an important class of codes for several reasons. 
From a theoretical point of view they possess a rich algebraic 

structure, while practically they can be efficiently implemented 

by means of simple devices known as shift registers. Further- 

more, many important codes, such as binary Hamming codes, 

Golay codes and BCH codes, are equivalent to cyclic codes. 

Definition A code C is cyclic if (i) C is a linear code and (ii) any 
cyclic shift of a codeword is also a codeword, i.e. whenever 
Ajoa,°°-a,—-;, 18 in C, then so ts a4,_,do@, +++ a,_>. 

Examples 12.1 (i) The binary code {000, 101,011,110} is 
cyclic. 

(ii) The code of Example 2.23, which we now know as the 
Hamming code Ham (3, 2), is cyclic. (Note that each codeword 
of the form a; is the first cyclic shift of its predecessor and so is 
each b;.) 

(iii) The binary linear code {0000, 1001, 0110, 1111} is not 
cyclic, but it is equivalent to a cyclic code; interchanging the third 
and fourth coordinates gives the cyclic code {0000, 1010, 

0101, 1111}. 
(iv) Consider the ternary Hamming code Ham (2,3) with 

1011 

0112 
Exercise 5.7, we see that the code is not cyclic. But is Ham (2, 3) 
equivalent to a cyclic code? The answer will be given in Example 
12.13 (see also Exercise 12.22). 

generator matrix |. From the list of codewords found in 

When considering cyclic codes we number the coordinate 
positions 0,1,...,n—1. This is because it is useful to let a 

vectOr doa,:-:a,-, in V(n,q) correspond to the polynomial 

Agtayxt-++-t+a,_,x" 7}.
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Polynomials 

From now on we will denote the field GF(q) by F,, or simply by 

F (with g understood). We denote by F[x] the set of polynomials 
in x with coefficients in F. If f(x)=fot+fix+---+f,+.” is a 
polynomial with f,,40, then m is called the degree of f(x), 
denoted deg f(x). (By convention the degree of the zero polyno- 
mial is —%.) The coefficient f,, is then called the leading 
coefficient. A polynomial is called monic if its leading coefficient 

is 1. 

Polynomials in F[x] can be added, subtracted and multiplied in 
the usual way. F[x] is an example of an algebraic structure 
known as a ring, for it satisfies the first seven of the eight field 
axioms (see Chapter 3). Note that F[x] is not a field since 
polynomials of degree greater than zero do not have multiplica- 

tive inverses. Observe also that if f(x), g(x)eF[x], then 

deg (f(x)g(x)) = deg f(x) + deg g(x). 

The division algorithm for polynomials 

The division algorithm states that, for every pair of polynomials 

a(x) and b(x) #0 in F[x], there exists a unique pair of polyno- 
mials q(x), the quotient, and r(x), the remainder, such that 

a(x) = q(x)b(x) + r(x), 
where deg r(x) < deg D(x). 

This is analogous to the familiar division algorithm for the ring 
Z of integers. The polynomials g(x) and r(x) can be obtained by 
ordinary long division of polynomials. 

For example, in F[x], we can divide x° +x +1 by x7+x+1 as 

follows. 

x+1 
  

x?7+x4+1 x3 +x + 1 

xet+x74+x 
  

x? +] 

x7+x+ 1 

Xx
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Hence x7+x+1=(x+1)(x?+x+1)+x is the desired expres- 
sion of x7 +x+1 as g(x)(x*+x4+1)+7r(x). 

The ring of polynomials modulo f(x) 

The ring F[x] of polynomials over F is analogous in many ways 

to the ring Z of integers. Just as we can consider integers modulo 
some fixed integer m to get the ring Z,, (see Chapter 3), we can 
consider polynomials in F[x] modulo some fixed polynomial f(x). 

Let f(x) be a fixed polynomial in F[x]. Two polynomials g(x) 
and h(x) in F[x] are said to be congruent modulo f(x), 
symbolized by 

g(x) = h(x) (mod f(x), 
if g(x) — h(x) is divisible by f(x). 

By the division algorithm, any polynomial a(x) in F[x] is 
congruent modulo f(x) to a unique polynomial r(x) of degree 
less than deg f(x); r(x) is just the principal remainder when a(x) 
is divided by f(x). 

We denote by F[x]/f(x) the set of polynomials in F[x] of 
degree less than degf(x), with addition and multiplication 
carried out modulo f(x) as follows. 

Suppose a(x) and b(x) belong to F[x]/f(x). Then the sum 
a(x) + b(x) in F[x]/f(x) is the same as the sum in F[x], because 
deg (a(x) + b(x)) < deg f(x). The product a(x)b(x) in F[x]|/f(x) 
is the unique polynomial of degree less than deg f(x) to which 
a(x)b(x) (as a product in F[x]) is congruent modulo f(x). 

For example, let us calculate (x + 1)? in E[x]/(x7+x +1). We 
have 

(x +1)? =x?2+2x4+1=x%°+1=x (modx?+x +41). 

Thus (x + 1)? =x in B[x]/(x* +x +1). 
Just as Z,, is a ring, so also is F[x]/f(x); it is called the ring of 

polynomials (over F) modulo f(x). 
If f(x) € F,[x] has degree n, then the ring F,[x]/f(x) consists of 

polynomials of degree <n — 1. Each of the n coefficients of such 
a polynomial belongs to F, and so 

[Fy [x ]/f (x) | =q". 

Example 12.2. The addition and multiplication tables for F[x]/
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(x? +x +1) are easily found to be: 

  

    

+ 0 1 x 1+x 0 1 x 1+x 

0 0 1 x i1+x 0 |0 O 0 0 

1 1 Q iI+x x 1 j0 1 x 1+x 

x x 1+x O 1 x 10 x 14+x 1 

lT+x!i1l+x x ] 0 1+xl0 1+x 1 x 

We see that this is more than just a ring. Every non-zero element 

has a multiplicative inverse and so F[x]/(x* +x +1) is actually a 
field. In fact, we have precisely the field of order 4 given in 
Example 3.6(3), with x and 1+.x corresponding to a and b 
respectively. 

It is certainly not the case that F[x]/f(x) is a field for any 
choice of f(x); consider, for example, the multiplication table of 

F[x]/(x?2 +1) (see Exercise 12.2). The special property of f(x) 
which makes F[x]/f(x) a field is that of being ‘irreducible’, which 
we now define. 

Definition A polynomial f(x) in F[x] is said to be reducible if 
f(x) =a(x)b(x), where a(x), b(x)eF[x] and dega(x) and 
deg b(x) are both smaller than deg f(x). If f(x) is not reducible, 
it is called irreducible. 

Just as any positive integer can be factorized uniquely into a 

product of prime numbers, any monic polynomial in F[x] can be 
factorized uniquely into a _ product of irreducible monic 
polynomials. 

The following simple observations are often useful when 
factorizing a polynomial. 

Lemma 12.3 

(i) A polynomial f(x) has a linear factor x —a if and only if 
f(a) =0. 

(ii) A polynomial f(x) in F[x] of degree 2 or 3 is irreducible if 
and only if f(a) ¥0 for all a in F. 

(iii) Over any field, x” —1=(« —1)(x""14+x"-74---+x41) 
(the second factor may well be further reducible). 

Proof (i) If f(x) =(x —a)g(x), then certainly f(a) =0. On the 
other hand, suppose f(a) =0. By the division algorithm, f(x) =
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q(x)(x —a)+r(x), where degr(x)<1. So r(x) is a constant, 
which must be zero since 0 = f(a) = r(a). 

(ii) A polynomial of degree 2 or 3 is reducible if and only if it 
has at least one linear factor. The result is now immediate from 
(i). 

(iii) By (i), x —1 is a factor of x” —1 and long division of 
x” —1 by x —1 gives the other factor. 

Example 12.4 (i) Factorize x*-—1 in E[x] into irreducible 
polynomials. 

(ii) Factorize x*— 1 in F[x] into irreducible polynomials. 

Solution By 12.3(iii), x7 —1= (x —1)(x?+.x +1) over any field. 
(i) By 12.3(ii), x7 +x +1 is irreducible in E[x]. 
(ii) By 12.3(i), in [x], x — 1 is a factor of x7 +x +1, and we 

get the factorization x° — 1 = (x —1)?. 

The finite fields GF(p"), h>1 

The property in Fix] of a polynomial being irreducible cor- 
responds exactly to the property in Z of a number being prime. 

We showed in Theorem 3.5 that the ring Z,, is a field if and only 
if m is prime and the following may be proved in exactly the 
same way. 

Theorem 12.5 The ring F[x]/f(x) is a field if and only if f(x) is 
irreducible in F[x]. 

Proof This is left to Exercise 12.3. 

Although we do not show it here, it can be shown that for any 

prime number p and for any positive integer h, there exists an 
irreducible polynomial over GF(p) of degree h. This result, 
together with Theorem 12.5, gives the existence of the fields 
GF(p") for all integers h =>1. As we remarked in Theorem 3.2, 

these are essentially the only finite fields. 

Back to cyclic codes 

Returning from our excursion to look at fields of general order, 

we now fix f(x) =x” — 1 for the remainder of the chapter, for we
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shall soon see that the ring F[x]/(x” — 1) of polynomials modulo 
x" —1 is the natural one to consider in the context of cyclic 
codes. For simplicity we shall write F[x]/(x" —1) as R,, where 
the field F = F, will be understood. 

Since x” =1(modx”"—1), we can reduce any polynomial 
modulo x” — 1 simply by replacing x” by 1, x”*! by x, x"t? by x? 
and so on. There is no need to write out long divisions by x” — 1. 

Let us now identify a vector aoa,---a,_,; in V(n, q) with the 

polynomial 

a(x) =agtayxt+-+++a,_ x") 

in R,,. We shall simultaneously view a code as a subset of V(n, q) 

and as a subset of R,. Note that addition of vectors and 

multiplication of a vector by a scalar in R, corresponds exactly to 

those operations in V(n,q). Now consider what happens when 
we multiply the polynomial a(x) by x. In R,,, we have 

X + A(X) =aox + a,x? +++++4,_4x" 

=A,-~ +x +°+++a,_.x""', 

which is the vector a, d9°-+-:d,-2. Thus multiplying by x 

corresponds to performing a single cyclic shift. Multiplying by x” 
corresponds to a cyclic shift through m positions. 

The following theorem gives the algebraic characterization of 

cyclic codes. 

Theorem 12.6 A code C in R, is a cyclic code if and only if C 
satisfies the following two conditions: 

(i) a(x), b(x)EeCDa(x)+ D(x) EC, 
(ii) a(x)e€Candr(x)eER, Sr(x)a(x) eC. 
[Note that (ii) does not just say that C must be closed under 
multiplication; it says that C must be closed under multiplication 
by any element of R,,. The reader who is familiar with ring theory 
will recognize that Theorem 12.6 says that cyclic codes are 

precisely the ‘ideals’ of the ring R,,.] 

Proof Suppose C is a cyclic code in R,,. Then C is linear and so 
(i) holds. Now suppose a(x)e€C and r(x)=ntnxt+---+ 
r,-1x""'€R,,. Since multiplication by x corresponds to a cyclic 

shift, we have x - a(x) eC and then x - (xa(x)) = x7a(x) € C and
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so on. Hence 

r(x )a(x) = roa(x) + Hxa(x) +-++ +7, _4x""1a(x) 

is also in C since each summand is in C. Thus (ii) also holds. 
Now suppose (i) and (ii) hold. Taking r(x) to be a scalar, the 

conditions imply that C is linear. Taking r(x) = x in (ii) shows 
that C is cyclic. 

We now give an easy way of constructing examples of cyclic 

codes. 
Let f(x) be any polynomial in R, and let (f(x)) denote the 

subset of R,, consisting of all multiples of f(x) (reduced modulo 
x" —1), Le. 

(f(x)) = (refx) | r(x) € Ra}. 

Theorem 12.7 For any f(x) €R,, the set (f(x)) is a cyclic code; 
it is called the code generated by f(x). 

Proof We check conditions (i) and (ii) of Theorem 12.6. 
(i) If a(x)f(x) and b(x)f(x) € (f(x)), then 

a(x )f(x) + b(x)f(x) = (a(x) + b(x)) f(x) € (f(x). 
(ii) If a(x)f(x) € (f(x)) and r(x) € R,,, then 

r(x)(a(x)F(x)) = (rw )a(x))f(x) € (Fx)). 

Example 12.8 Consider the code C=(1+x7) in R, (with 
F = GF(2)). Multiplying 1 + x* by each of the eight elements of 
R, (and reducing modulo x*—1) produces only four distinct 
codewords, namely 0,1+.x,1+.x? and x + x’. Thus C is the code 

{000, 110, 101, 011} of Example 12.1(i). 

We next show that the above easy way of constructing cyclic 
codes is essentially the only way, 1.e. any cyclic code can be 

generated by a polynomial. (In the terminology of ring theory, 
this says that every ideal in R,, is a ‘principal ideal’.) 

Theorem 12.9 Let C be a non-zero cyclic code in R,,. Then 
(i) there exists a unique monic polynomial g(x) of smallest 

degree in C, 

(ii) C= (g(x)), 
(iii) g(x) is a factor of x” — 1.
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Proof (i) Suppose g(x) and h(x) are both monic polynomials 
in C of smallest degree. Then g(x) — h(x) eC and has smaller 
degree. This gives a contradiction if g(x)#h(x), for then a 
suitable scalar multiple of g(x) — h(x) is monic, is in C, and is of 
smaller degree then deg g(x). 

(ii) Suppose a(x)eC. By the division algorithm for F[x], 
a(x) = q(x)g(x)+r(x), where degr(x)<deg g(x). But r(x)= 
a(x) — q(x)g(x) eC, by the properties of a cyclic code given in 
Theorem 12.6. By the minimality of deg g(x), we must have 
r(x) =0 and so a(x) € (g(x)). 

(iii) By the division algorithm, 

x" —1=q(x)g(x) + r(x), 
where deg r(x) < deg g(x). But then r(x) = —q(x)g(x) (mod x” — 
1), and so r(x) € (g(x)). By the minimality of deg g(x), we must 
have r(x) =0, which implies that g(x) is a factor of x” — 1. 

Definition Ina non-zero cyclic code C the monic polynomial of 

least degree, given by Theorem 12.9, is called the generator 

polynomial of C. 
Note that a cyclic code C may contain polynomials other than 

the generator polynomial which also generate C. For example, 

the code of Example 12.8 is generated by 1+’, but its 
generator polynomial is 1+ x. 

The third part of Theorem 12.9 gives a recipe for finding all 
cyclic codes of given length n. All we need is the factorization of 
x” — 1 into irreducible monic polynomials. 

Example 12.10 We will find all the binary cyclic codes of length 
3. By Example 12.4(i), x7 -1=(x« + 1)(x?+x+1), where x +1 
and x? +x +1 are irreducible over GF(2). So, by Theorem 12.9, 
the following is a complete list of binary cyclic codes of length 3. 

  

  

Generator Corresponding 

polynomial Code in R3 Code in V(3, 2) 

1 all of R; all of V(3, 2) 

x+1 {0O,1+x,x+x7,1+x7} {000, 110, 011, 101} 
x°+x4+1 {0O,1+x+x’} {000, 111} 
x°-1=0 {0} {000} 
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Lemma 12.11 Let g(x)=g9+ gix +---+8,x" be the generator 

polynomial of a cyclic code. Then gg is non-zero. 

Proof Suppose go=0. Then x”~'g(x) =x~‘g(x) is a codeword 
of C of degree r — 1, contradicting the minimality of deg g(x). 

By definition, a cyclic code is linear. It would be handy if 
immediately from the generator polynomial g(x) we could 
deduce the dimension of the code and also write down a 

generator matrix. The next theorem shows that we can do both. 

Theorem 12.12 Suppose C is a cyclic code with generator 

polynomial 

B(x) =Bot aixt-- ter’ 

of degree r. Then dim (C) = —r and a generator matrix for C is 

go 81 82 °°° g, 0 0---0 1] 

O 8o 8:1 82 °°" Sr O--- 0 

G=| 0 0 8 §1 §2 °°" Sr 

Bo 0 
| 0 O--: 0 go g Bocce gy |     

Proof The n-—r rows of the above matrix G are certainly 

linearly independent because of the echelon of non-zero g,s with 
Os below. These n —r rows represent the codewords g(x), xg(x), 
x*g(x),...,x"-’~'g(x), and it remains only to show that every 
codeword in C can be expressed as a linear combination of them. 

The proof of Theorem 12.9(1i) shows that if a(x) is a codeword of 

C, then 

a(x) = q(x)g(x) 
for some polynomial q(x), and that this is an equality of 

polynomials within F[x], not requiring any reduction modulo 
x"—1. Since dega(x)<n, it follows that degqg(x)<n-r. 
Hence 

q(x)8(X) = (Got GX +00 + nape") 8 (x) 
= Go8(X) + q1X8(x) +2 + In —riX" "18 (x); 

which is the desired linear combination.
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Example 12.13 Find all the ternary cyclic codes of length 4 and 
write down a generator matrix for each of them. 

Solution Over GF(3), the factorization of x*—1 into ir- 
reducible polynomials is 

x4*—1=(x -1)(e3 +47 4x41) = -1)% +1)? +1). 

So there are 2?=8 divisors of x*—1 in E[x], each of which 
generates a cyclic code. By Theorem 12.9, these are the only 

ternary cyclic codes of length 4. The codes are specified below by 

their generator polynomials, and the corresponding generator 

matrices are given by Theorem 12.12. Note that neither of the 

two-dimensional codes has minimum distance 3 and so the 

ternary Hamming [4, 2, 3]-code is not cyclic, thus answering the 

question posed in Example 12.1(iv). 

  

  

  

    

Generator polynomial Generator matrix 

iB _ 
-1 1 0 O 

x-1 O-1 1 O 

| 0 O-1 JL 

(1 10 0 
x+1 0 1 1 0 

| O 0 1 1 

4 (1 01 0 
L909 10 1 

(x —1)(x +1) =x°-1 “to 7 
| O-1 0 LJ 

(x —1)(x* +1) =x°-x*+x-1 [-1 1-1 1] 

(x +1)(x? +1) =x°+x74+x41 fi 11 1] 

x*-1=0 [0 0 0 9) 
  

The check polynomial and the parity-check matrix of a 

cyclic code 

The generator matrix of a cyclic code as given by Theorem 12.12 
is not in standard form. Our usual method of writing down a
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parity-check matrix from the standard form of G (via Theorem 
7.6) is therefore not appropriate for cyclic codes. However, there 

is a natural choice of parity-check matrix for a cyclic code. This is 

closely related to the so-called ‘check polynomial’, which we 

define first. 
Let C be a cyclic [n, k|-code with generator polynomial g(x). 

By Theorem 12.9, g(x) is a factor of x” — 1 and so 

x" —1=g(x)h(x), 

for some polynomial h(x). Since g(x) is monic, so also is h(x). 
By Theorem 12.12, g(x) has degree n — k and so h(x) has degree 
k. This polynomial h(x) is called the check polynomial of C. The 
reason for this name is apparent from the following theorem. 

Theorem 12.14 Suppose C is a cyclic code in R,, with generator 
polynomial g(x) and check polynomial h(x). Then an element 
c(x) of R,, is a codeword of C if and only if c(x)h(x) = 0. 

Proof First note that, in R,, g(x)h(x) =x” —1=0. 
Hence c(x) € C>c(x) = a(x)g(x), for some a(x) eER,, 

> c(x)h(x) = a(x)g(x)h(x) 
=a(x)-0 

= 0. 

On the other hand, suppose c(x) satisfies c(x)h(x) =0. By the 
division algorithm, c(x) = q(x)g(x) + r(x), where deg r(x) <n — 
k. Then c(x)h(x)=0 implies that r(x)h(x)=0, ie. 
r(x)h(x) =0(modx”"—1). But deg(r(x)h(x))<n-kK+k=n, 
and so r(x)h(x)=0 in F[x]. Hence r(x) =0, and then c(x) = 

q(x)g(x) €C. 
In view of Theorem 12.14 and the fact that dim ((h(x))) = 

n—k=dim(C*), we might easily be fooled into thinking that 
h(x) generates the dual code C~. In general this is not so. The 
point is that the product of c(x) and h(x) being zero in R,, is not 
the same thing as the corresponding vectors in V(n,q) being 
orthogonal. In the next theorem, however, we see that the 
condition c(x)h(x)=0 in R, does imply some useful or- 
thogonality relations which lead to a natural choice of parity- 
check matrix.
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Theorem 12.15 Suppose C is a cyclic [m,k]-code with check 

polynomial 

h(x) =hhbthyxt--++h,x*. 

    

Then 
(i) a parity-check matrix for C is 

mh, hy» *** My 0 0--- 07 

O hy My-1-++ ho O--- 0 

H= Lo , 

Lo . O 
LO--- Oh, hye: ho 

(ii) C+ is acyclic code generated by the polynomial 

h(x) =h, +hy_yx t+ + t+hoxt. 

Proof (i) By Theorem 12.14, a polynomial c(x)=co+c,x + 
-+++c,_,x""' is a codeword if and only if c(x)h(x) = 0. Now for 
c(x)h(x) to be zero, then in particular the coefficients of 
x*,x*t1) x"! must all be zero, i.e. 

Coh, + C,h,_1 + - es + c,No = 0 

c,h, + Ch, 3 ++-+++ Cp 44M = 0 

Cyh—K—1Mk a + C,—1No = (), 

Thus any codeword coc, -:-c,_; of C is orthogonal to the vector 

h,h,,***h .0O0---0 and to its cyclic shifts. So the rows of the 

matrix H given in the statement of the theorem are all codewords 

of C*. We have already observed that h(x) is monic of degree k 
and so h,=1; thus the echelon of 1s with zeros below in H 

ensures that the rows of H are linearly independent. The number 

of rows of H is n —k, which is the dimension of C+. Hence H is 

a generator matrix of C*, i.e. a parity-check matrix for C. 
(ii) If we can show that h(x) is a factor of x” — 1, then it will 

follow from Theorem 12.12 that (h(x)) is a cyclic code whose 

generator matrix is the above matrix H, and hence that (h(x)) = 
C*. We observe that h(x)=x*h(x7'). Since h(x~*)g(x7’) 
=(x7')"—1, we have x*h(x7!)x"-*g(x7!) =x"(x-" —- 1) =1- 
x", and so A(x) is indeed a factor of x” — 1.
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Remarks (i) The polynomial h(x) =x*h(x7!)=h, +hy_.x + 
-+hox* is called the reciprocal polynomial of h(x); i 

coefficients are those of h(x) in reverse order. 
(ii) We may regard h(x) as the generator polynomial of C+, 

though strictly speaking, in the non-binary case, one ought to 
multiply it by the scalar hg! to make it monic. 

(iii) The polynomial h(x~1) =x”-*h(x) is a member of Ce, 

We have not yet discussed the minimum distance of cyclic 
codes. There are some classes of cyclic codes for which useful 

lower bounds on the minimum distance are known. For example, 
cyclic BCH codes can be constructed to have ‘designed minimum 
distance’ while there are codes called quadratic residue codes 
which satisfy a ‘square root bound’. These codes and bounds are 
well treated in several of the more advanced texts. We con- 

centrate here on finding the minimum distances of two particu- 
larly interesting cyclic codes, namely the two Golay codes. Our 
methods, while aimed directly at the codes in hand, nevertheless 
provide some insights into the more general methods. 

The binary Golay code 

In Chapter 9, we proved the existence of a perfect binary 
[23, 12, 7]-code G,, by exhibiting a generator matrix. We now 

show that this Golay code can be constructed in a more natural 

way as a cyclic code. The only knowledge we shall assume in 

advance is the factorization of x**—1 over GF(2). [There is a 
clever method of finding the factors of x”—1 over GF(q) in 
general (see, for example, Chapter 7, §5, of MacWilliams and 
Sloane (1977)) but we shall not dwell on this here. Alternatively 
one may find the factors by consulting tables (see, e.g., the same 
reference for a list of factors of x” — 1 over GF(2) for n <63).] 

We begin then with the factorization 

S— P(x — De txt x9 + 9° 4+ x44-x74+1) 

X (xt + xP +474 494+ x°4+% 41): 

= (x — 1)gi(x)g2(x), say. 
Let C, be the code (g,(x)) and let C, be the code (g,(x)). By 
Theorem 12.12, C, is a [23, 12]-code. The object of the next few 
pages is to show that the minimum distance of C;, is 7.
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We observe that the polynomials g,(x) and g,(x) are recipro- 
cals of each other, and so C, is equivalent to C,;. Remarkably, the 

knowledge that x7? — 1 = (x — 1)g,(x)g,(x), where g,(x) denotes 
the reciprocal of g,(x), is all we need to show that d(C,) = 7; we 
do not actually need to know what g,(x) is. 

Remark 12.16 Although we do not show it here, x? —1 has a 

factorization over GF(2) of the form (x — 1)g,(x)g,(x), where 
(g,(x)) and (g,(x)) are equivalent codes, whenever p is a prime 
number of the form 8m +1. If p is of the form 8m —1 we also 

have g.(x) = ,(x). For example, 

x?’—-1=(*- 1)? 4x41) 4+2x74+1) 

and x? —1= (x — 1)g(x)g(), 

where g(x) =14+x°4+ x8 4+ x79 + xP 4x8¥4x¥., 

In view of Remark 12.16, we prove the next two lemmas for p 

equal to a general odd prime number rather than just for p = 23. 

We will denote the vector 1 +x +x*+---+.x?7! consisting of all 
1s by 1. Note that if x? — 1 = (x — 1)g,(x)g,(x), then g,(x)g.(x) = 
1. 

Lemma 12.17 Suppose that x? —-1=(x —1)g,(x)g.(x) over 
GF(2), and that (g,(x)) and (g,(x)) are equivalent codes. Let 
a(x) be a codeword of (g;(x)) of odd weight w. Then 
(i) w*2p 

(ii) if also go(x) =2,(x), then w7-w+12p. 

Proof (i) Since (g(x)) is equivalent to (g,(x)), there is some 
codeword b(x) in (g,(x)) also of weight w. Now a(x)b(x) is a 
multiple of g,(x)g.(x) =1, and so a(x)b(x) =0 or 1. Since w is 
odd, we have a(1)b(1) = w - w=1 mod (2), and so we must have 
a(x)b(x)=1+x+---+x?"'. But a(x)b(x) has at most w? 
non-zero coefficients and so w*= p. 

(ii) If g,(x)=2,(x), then the codewords of (g,(x)) are just 
the reciprocals of the codewords of (g,(x)). In particular we may 

take b(x) to be a(x~') in the proof of (i) to get 

a(x)a(x7")=1+x4+x74+---4+ P71, 

But w of the w? terms in the product a(x)a(x~') are 1 and so the 
maximum weight of a(x)a(x~') is w*-w +1.
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Corollary 12.18 If, with the hypotheses of Lemma 12.17, it is 

also known that the minimum distance d of (g,(x)) is odd, then 
d satisfies the square root bound 

d=vp, 

while if also g,(x) = g,(%), this can be improved to 

d*—-d+12=2p. 

By Lemma 12.17(i1), our [23, 12]-code C, has no words of odd 
weight less than 7, because 5? —5 +1< 23. There is an ingenious 
way of showing that C,, and more generally any so-called 
quadratic residue (QR) code (we do not define OR codes here, 

but simply remark that C, is an example of such a code), must 
have odd minimum distance and therefore must satisfy the 
square root bound. The argument, which involves showing that 
an extended OR code has a transitive automorphism group, is 
beyond the scope of the present book. As our main aim is merely 
to find the minimum distance of the Golay code C,, the following 
lemma will suffice. 

Lemma 12.19 Suppose p is an odd prime number and that, over 
GF(2), x? -1=(x —1)g,(x)g,(x). Let a(x) be a codeword of 
(2,(x)) of even weight w. Then 
(i) w=0(mod 4) 

(ii) w#4 unless p =7. 

Proof (i) As in the proof of Lemma 12.17, we have 
a(x)a(x~') =0 or 1. Since a(x) has even weight, a(1) = 0, and so 
a(x)a(x~') = 0. Suppose a(x) = x +x%+--++x, Then 

a(x)a(x~') = S > x*-4 =0) 

in R,. Of the w* summands, w are equal to 1 (the terms with 
i=j), and these sum to 0(mod2). So the remaining w?— w 
terms x“~%(i4#j) must cancel each other out in pairs. Now if 
xe = yk then x9-*=x"-*, and so the terms must actually 

cancel four at a time. Thus 

w* —w =0 (mod 4) and so w =0 (mod 4). 

(ii) Suppose w = 4. Without loss of generality (via a suitable
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cyclic shift), suppose a(x)=1+x'+x/+.x*, where i, j, k are 
distinct and 1<i,j,k<p. Then (1+x'+x/+x*)\(14+x7%+ 
xJ+x7*)=0. 

Thus the six sets {i,—-i}, {j,-j}, {k,-k}, {i-j,j-i}, 
{i-—k,k—i} and {j-—k,k—j} must split into three matching 
pairs, under congruence modulo p. By symmetry there is no loss 

in assuming / is congruent to one of —j, j-—iorj—k. 

Case 1 Suppose i=j—k (mod p). Then k =j —i gives a second 
match and so the third match must be given by j= +(i — k). But 
1=j—k and j=i-—k implies 2k =0(modp), which is a con- 
tradiction since p is an odd prime. Likewise, i=j—k and 

j =k —i implies 2i =0 (mod p), which is again a contradiction. 
Case 2 Suppose i=-—j (mod p). Since Case 1 has been ruled 

out, we must have k=i-—k or k=j—k and as the two 

possibilities are essentially the same, we may assume k =i —k, 
i.e. 1=2k. The third match is then given by i —-j=j —k, which 
implies k = —31=—6k. Thus 7k =0(modp), which is a con- 
tradiction unless p = 7. 

Case 3 Suppose i=j —i(modp). To avoid the cases above, we 
may assume the remaining matches are given by j/=k —j and 
k =i—k. But then k = 2) = 41 = 8k, again giving 7k =0 (mod p). 

Remark We observed in Remark 12.16 that x’ — 1 has the form 
(x — 1)g(x)g(x), where g(x) =x°+x+4+1. Since (g(x)) contains 
words of weight 4, the exclusion of case p = 7 in Lemma 12.19(i1) 
is essential. 

We have now reached our goal: 

Theorem 12.20 Let G3 be the binary cyclic code in R,3 with 

generator polynomial g(x)=14+x74+x44+ x54 x64 x04 x11, 
Then G3 is a perfect [23, 12, 7]-code. 

Proof We have already observed that 

x —1= (x — 1)g(x)g (x). 

By Lemma 12.17, the minimum odd weight w of G;; satisfies 
w?—w +1223, which implies that w=7. By Lemma 12.19, G,, 
can have no words of even weight <8. As g(x) is a codeword of
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weight 7, we have d(G,3) = 7. Since 

23 23 
241423 + ( )+( )fa2, 

2 3 

the sphere-packing condition (9.1) is satisfied and so Gy3 is 
perfect. 

The code G,; is called the binary Golay code. It is equivalent 

to the Golay code as defined in Chapter 9 (cf. the remarks 

following Problem 9.9). 

The ternary Golay code 

We now show that the ternary Golay code G,;, may also be 

constructed as a cyclic code. Our starting point is the factoriza- 

tion of x!'— 1 over GF(3): 

xP =a 1? 42x47 - 0 4x? -DO-— xP +x? -x- 1) 

= (x — 1)g,(*)g2(x), say. 

Note that g(x) = —x°g,(x~') and so (g,(x)) and (g,(x)) are 
equivalent [11, 6]-codes. We shall show that the code (g;(x)) has 
minimum distance 5. 

Theorem 12.21 Let C be the ternary code (g,(x)) in R,,, where 
g(x) =x°+x4-x3+x7-1. Let D be the subcode of C 
generated by (x — 1)g,(x). Let a(x) =ay + a,x +--+ + ayox"° bea 
codeword of C of weight w. Then 

(i) a(x) e€D if and only if Dj2 a; =0, 
(ii) if a(x)eéD, then w =0(mod 3), 

(iii) if a(x)éD, then w =2 (mod 3), 
(iv) if a(x)¢éD, then w=4, 
(v) w#3, 
(vi) d(C)=5. 

Proof (i) Given that a(x) is in C and so is a multiple of g,(x), 
have 

“ee a(x) € D a(x) is a multiple of (x — 1) 

©Sa(1) =0 
10 

& D>, a, =0. 
i=0
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(ii) First observe that, since a? = 1 (mod 3) for each non-zero 
coefficient a;, we have w = ), a? (mod 3). By Theorem 12.15(ii), 
the dual code D* of D is generated by the reciprocal polynomial 
of g.(x), which happens to be precisely —g,(x). Thus D*= 
(2,(x)) = (—g,(x)) =C. So D is contained in D+, which means 
that D is self-orthogonal, i.e. the inner product of any two 

vectors of D is zero. In particular, if a(x) eD, then the inner 
product of a(x) with itself is zero, i.e. )} a? =0 (mod 3). Thus 
a(x)€« D> w=0(mod 3). 

(iii) By Theorem 12.12, D is a code of dimension 5. Also D is 
contained within the 6-dimensional code C. Since 1=1+x+ 
--++ x1 is in C but not in D, C is the disjoint union of the three 
cosets D,1+ D and —1+D. Thus any codeword a(x) of C 
which is not in D 1s of the form 

a(x) = d(x) +1, 

for some codeword d(x) =dy+d,x+-+-+d,x%eD. 

Hence w(a(x)) = >, (d; +1)? 

2s (§ a?) + 11+ (> d,) 

= 1 (by (i) and (ii) 

(iv) Suppose a(x)¢€D. Now a(x)a(x~') is a multiple of 
g,(x)g.(x)=1. By (i), a(1) 40, and so a(x)a(x~')= +1. Thus 
a(x)a(x~') has weight 11. But at most w? coefficients of 
a(x)a(x~') are non-zero and so w72 11. Hence w= 4. 

(v) Suppose, for a contradiction, that w=3. Then, by a 
suitable cyclic shift, and multiplication by —1 if necessary, we 
may suppose a(x) =1+.x' +’. By (ii) and (iii), a(x) must be in 
D and so, by (i), we must actually have a(x) =1+.x'+-’. Also, 
a(x) € D implies that a(x)a(x~') is a multiple of 

(x — 1)gi(x)g.(x) =x" -1=0 

in R,,. Thus 

(d+x'+x/)\(14+x7'+x7)=0, 

giving xit+x tx t+x7 txt +x =0,
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Since i and j are distinct and non-zero we must have i = —j =i — 
j(mod11), which implies that 27=0O(mod11), which is a 
contradiction. 

(vi) It follows from (ii)-(v) that d(C)=5 and since g,(x) 
itself has weight 5, d(C) =S. 

The [12, 6, 5]-code C of Theorem 12.21 is called the ternary 
Golay code. It is a perfect code because 

11 
341 +2-11 +2(~ | = 3", 

and it is equivalent to the ternary Golay code defined in Chapter 
9. 

Hamming codes as cyclic codes 

We will show that the binary Hamming codes discussed in 
Chapter 8 are equivalent to cyclic codes. The proof will be 
incomplete in the sense that we shall assume results previously 
stated, but left unproved, in the text. 

Theorem 12.22 The binary Hamming code Ham (r, 2) is equiv- 
alent to a cyclic code. 

Proof Let p(x) be an irreducible polynomial of degree r in 
Fx]. Then, by Theorem 12.5, the ring E[x]/p(x) of polynomials 
modulo p(x) is actually a field of order 2”. As was mentioned in 
Chapter 3, every finite field has a primitive element and so there 

exists an element a of Fx]|/p(x) such that E[x]/p(x) = {0, 1, a, 
aw?,...,a@7~*}. Let us now identify an element ay + a,x + a,x? + 
-++>+a4,_,x"~! of E[x]/p(x) with the column vector 

ao 

ay 

a, 

and consider the binary r X (2’ — 1) matrix 

H=[1 a@ a?--- a? 77]. 

Let C be the binary linear code having H as parity-check matrix
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Since the columns of H are precisely the distinct non-zero vectors 
of V(r,2), C is a Hamming code Ham(r, 2). Putting n =2’—1 
we have 

C= {fifi + fr-1€ Vn, 2) | fot fiat: ++ +f"? = 0} 

= {f(x) eR, |f(@) = 0 in F[x]/p(x)}. (12.23) 
If f(x) eC and r(x) eR,, then r(x)f(x) € C because r(a) f(a) = 
r(~)-0=0. So, by Theorem 12.6, this version of Ham (7, 2) is 
cyclic. 

Definition If p(x) is an irreducible polynomial of degree 7 such 
that x is a primitive element of the field F[x]/p(x), then p(x) is 
called a primitive polynomial. 

Theorem 12.24 It p(x) is a primitive polynomial over GF(2) of 
degree r, then the cyclic code (p(x)) is the Hamming code 

Ham (7, 2). 

Proof If p(x) is primitive, then (12.23) implies that 

Ham (r, 2) = (f(x) € R, [f(x) =0 in Flx}/p(x)} 
= (p(x)). 

Example 12.25 The polynomial x°+x+1 is irreducible over 

GF(2) and so E[x]/(x° +x + 1) is a field of order 8. Also, x is a 
primitive element of this field, for 

BJx]/(x? +x +1) 

={0,1,%, x7, x =xt 1 xtHx? tx, we Hx?+x4+1, x8 =x? +1}. 

Thus a parity-check matrix for a cyclic version of the Hamming 

code Ham (3, 2) is 

1001011 

H=j010111 O}, 

0010111 

wherein the columns represent 1, a, a*,..., a@° as described in 

the proof of Theorem 12.22, with a= x. 
Since x°+x+1 is a primitive polynomial, it is a generator 

polynomial for Ham (3,2) and so, by Theorem 12.12, a gener-
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ator matrix for the code is 

1101000 

0110100 

0011010) 

0001101 

Remarks (1) It can be shown that there exists a primitive 
polynomial of degree r for any r. 

(2) We saw in Example 12.13 that the ternary Hamming code 
Ham (2,3) is not equivalent to a cyclic code. However, 
Ham (r,q) is equivalent to a cyclic code if r and g—1 are 
relatively prime (see, e.g., Blahut (1983), Theorem 5.5.1). 

Concluding remarks on Chapter 12 

(1) Cyclic codes were first studied by Prange (1957). Interest 
was further stimulated by the theorem of Bose and Ray- 

Chaudhuri (1960) which gave lower bounds on the minimum 
distance for a large class of cyclic codes. It was quickly 
discovered that almost every special linear code previously 

discovered (e.g. Hamming, Golay, Reed—Muller) could be made 

cyclic. 
(2) For a comprehensive treatment of the theory of cyclic 

codes, see, e.g., MacWilliams and Sloane (1977). For details of 
the practical implementation of cyclic codes, including the 
associated circuitry, see, e.g., Blahut (1983) or Lin and Costello 

(1983). 

Exercises 12 

12.1 Is each of the following codes (a) cyclic, (b) equivalent to 
a cyclic code? 
(i) the binary code {0000, 1100, 0110, 0011, 1001} 

(ii) the binary code {00000, 10110, 01101, 11011} 
(iii) the ternary code {0000, 1122, 2211} 
(iv) the qg-ary repetition code of length n 
(v) the binary even-weight code E,, 
(vi) the ternary code {x € V(n, 3) | w(x) =0 (mod 3)}
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12.2. 

12.3 
12.4 

12.5 

12.6 

12.7 

12.8 

12.9 

12.10 

12.11 

12.12 

12.13 

12.14 

A first course in coding theory 

(vii) the ternary code 

{een -+ +x, €V(n,3)| > x; =0 (mod 3)| 
i=1 

Write out the multiplication table for F[x]/(x? +1). 
Explain why F[x]/(x? + 1) is not a field. 
Write out a proof of Theorem 12.5. 
Show that an irreducible polynomial over GF(2) of 
degree =2 has an odd number of non-zero coefficients. 
To verify that a polynomial p(x) is irreducible, why is it 
enough to show that p(x) has no irreducible factor of 
degree <} deg p(x)? 
List the irreducible polynomials over GF(2) of degrees 1 
to 4. Construct a finite field of order 8. 
Suppose p is a prime number. 
(i) Factorize x? —1 into irreducible polynomials over 

GF(p). 
(ii) Factorize x?~'—1 into irreducible polynomials over 

GF(p). 
Factorize x° — 1 into irreducible polynomials over GF(2) 
and hence determine all the cyclic binary codes of length 
5. 
Let g(x) be the generator polynomial of a binary cyclic 
code which contains some codewords of odd weight. Is 
the set of codewords in (g(x)) of even weight a cyclic 
code? If so, what is the generator polynomial of this 
subcode? 

Suppose x” —1 is the product of ¢ distinct irreducible 
polynomials over GF(q). How many cyclic codes of 
length n over GF(q) are there? 
Given that the factorization of x’—1 into irreducible 
polynomials over GF(2) is (x —1)@?+x4+1)(Q? 42x74 
1), determine all the cyclic binary codes of length 7. Give 
a name or a concise description of each of these codes. 

Factorize x?— 1 over GF(3). How many ternary cyclic 
codes of length 8 are there? 

Write down a check polynomial and a parity-check matrix 

for each of the ternary cyclic codes of length 4 (see 

Example 12.13). 
Let h(x) be the check polynomial of a cyclic code C. Is 
(h(x)) equal to C+? Is (h(x)) equivalent to C+?
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12.15 

12.16 

12.17 

12.18 

12.19 

12.20 

12.21 

12.22 

Suppose C is a binary cyclic code of odd length. Show 
that C contains a codeword of odd weight if and only if 1 
is a codeword of C. 
Suppose a generator matrix G of a linear code C has the 
property that a cyclic shift of any row of G is also a 
codeword. Show that C is a cyclic code. 

Show that 2 is a primitive element of GF(11). Deduce 
that the [10,8]- and [10, 6]-codes over GF(11) of Ex- 
amples 7.12 and 11.3 respectively are equivalent to cyclic 
codes. 
Let G3, be the cyclic Golay code defined in the text. 

Prove that any two vectors in G,3 of even weight have 

inner product equal to zero. Hence prove that the 

extended Golay code G,,, obtained by adding an overall 

parity-check to G3, is self-dual. 
Determine which of the irreducible polynomials over 
GF (2) of degree 4 (found in Exercise 12.6) are primitive. 
Hence write down a generator polynomial for the binary 

Hamming code of length 15. Find the check polynomial 
for this code. Write down the corresponding parity-check 
matrix (using Theorem 12.15) and check that its columns 
are precisely the non-zero vectors of V(4, 2). 
Let g(x) be the generator polynomial of a cyclic binary 

Hamming code Ham (r, 2), with r=3. Show that ((x - 
1)g(x)) is a cyclic [2’ — 1, 2” —r —2, 4]-code. 
An error vector of the form x’+ x‘! in R, is called a 
double-adjacent error. Show that the code ((x — 1)g(x)) 
of Exercise 12.20 is capable of correcting all single errors 
and all double-adjacent errors. 
Let C be a [gq +1, 2, g]-code over GF(q), where gq is odd. 
Show that C cannot be cyclic. Deduce that the Hamming 
code Ham (2, qg) is not equivalent to a cyclic code when q 
is odd.





13 Weight enumerators 

  

If C is a linear [n, k]-code, its weight enumerator is defined to be 
the polynomial 

We(z) = >, Az’ 
i=0 

=Apjp tA ,zZ+-°:+A,z", 

where A, denotes the number of codewords in C of weight i. 
Another way of writing W-(z) is 

Welz) = Dd 2”™. 
xEC 

Examples 13.1 (i) Let C be the binary even-weight code of 
length 3; i.e. C= {000, 011,101,110}. Its dual code C* is 

{000, 111}. The weight enumerators of C and C~ are 

W-(z) =1+ 32" 

W oi(z) = 1427. 

(ii) The code C = {00, 11} is self-dual and so 

We(z) = Wei(z) =14 2%. 

We have already seen (Theorem 6.14) that knowledge of the 

weight enumerator of a code enables us to calculate the 
probability of undetected errors when the code is used purely for 
error detection. 

The main result of this chapter is a remarkable formula of 

MacWilliams (1963), which enables the weight enumerator of 

any linear code C to be obtained from the weight enumerator of 
its dual code C~. 

For simplicity we shall prove this result, known as the 
MacWilliams identity, only for binary codes (Theorem 13.5), 
although the general result will be stated afterwards (Theorem 
13.6). 

The following three lemmas are required only for the proof of
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the MacWilliams identity. The less mathematically minded 
reader, who is happy to accept the validity of the formula 
without proof, may skip these lemmas, and also the proof of 
Theorem 13.5, without any great loss; the subsequent examples 

and exercises make use only of the formula and not of its proof. 

Lemma 13.2 Let C be a binary linear [n, k]-code and suppose y 
is a fixed vector in V(n, 2) which is not in C*. Then x- y is equal 
to 0 and 1 equally often as x runs over the codewords of C. 

Proof Let A={xeC|x-y=0} 

and B={xeC|x-y=1}. 

Let u be a codeword of C such that u-y=1 (u exists since 
yéC+). Let u+ A denote the set {u+x|xeA}. Then 

ut+AcB, 

for if xe A, then (u+x)-y=u-ry+x-y=1+0=1. 
Similarly 

utBcaA. 

Hence 

|A| = |u+A| <|B| =|u+ Bl S<|Al. 

Hence |A| = |B| and the lemma is proved. 

Lemma 13.3 Let C be a binary [n,k]-code and let y be any 
element of V(n, 2). Then 

(" ifye C+ 
—7}\xy — 

& (-1) 0 ifyé Ct xEC 

Proof If yeC~*, then x- y= 0 for all xe C, and so 

> (-)*¥=|C|-1=2*. 
xeEC 

If yé C+, then by Lemma 13.2, as x runs over the elements of C, 
(—1)*¥ is equal to 1 and —1 equally often, giving 

d (-1""=0. 
xeC
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Lemma 13.4 Let x be a fixed vector in V(n, 2) and let z be an 
indeterminate. Then the following polynomial identity holds: 

DS z”O(-1)*¥ = (1 — zy" + zy" ™, 
ye V(n,2) 

Proof 
1 1 

Sy z”0)(-1)*¥ = 2 SS: . ZU tA HIN — EDI Hn 
ye V(n,2) =0 y2=0 yn=0 

1 1 n 

=> > (eco) 
y,=90 n=0 

“(2 0) 
=(1-—z)"(1 +z)", 

1 . . 1 +Z if Xx; = 0 
; J(—1Wx = . since 2 2 1) { 2. ifx,=1 

Theorem 13.5 (The MacWilliams identity for binary linear 
codes) If Cis a binary [n, k]-code with dual code C+, then 

  

1 1-—z Welz) =5 (14 zy'We(; : =). 

Proof We express the polynomial 

f= (Sayre) 
xeC \yeV(7,2) 

in two ways. 

On the one hand, using Lemma 13.4, 

F(z)= 2X (L=z)P (1+ zy" 
xEC 

=(1+z)" > (- ~ zy 
xeC 1+2z 

  

  ~assrw(ts3}
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On the other hand, reversing the order of summation, we have 

fz)= » 2¥0(S (-1)*) 
yeV(n,2) xEC 

= >) z”2* (by Lemma 13.3) 
yeC" 

= 2*W ¢.(2). 

Equating the two expressions for f(z) establishes the result. 

The proof of the following more general result is similar to that 

of Theorem 13.5, using generalized versions of the preceding 

lemmas, but we omit the details. 

Theorem 13.6 (The MacWilliams identity for general linear 
codes) If C is a linear [n, k]-code over GF(q) with dual code 
C~, then 

W ¢+(z) = 7 [1+(q- DW pe) 

Remark If C is a binary [n, k]-code, then, since the dual code 

of C* is just C, we can write the MacWilliams identity in the 
(often more useful) form: 

W-(z) = 
  

  

1 1—z 
sae (1 +2)'Wes(—). (13.7) 

Examples 13.8 We apply Theorem 13.5 to the codes of 
Examples 13.1. 

(i) We have W-(z) =1+ 3z*. Hence, by Theorem 13.5, 

  W(z) =4(1 + 2)W.(—] 

=4[(1+z)+3(1-zy(1+z)] 
=14+ 23, 

as already found directly from C~. 
Let us interchange the roles of C and C~ in order to check the
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formula (13.7). We have 

(14+ zPWe-(- . =) =H(1 42) +(1—2)] 

=1+ 32’, 

  

which is indeed W,(z). 
(ii) We have W-(z) =1+ 2’. Hence 

  

Woi(z) = 301 + 2)°We( = r =) 

=s[(1 +2)? + (1-2) 
=1+ 2%. 

Thus W¢:(z) = W-(z), as we expect, since C is self-dual. 

For the very small codes just considered, the use of the 

MacWilliams identity is an inefficient way of calculating their 
weight enumerators, which can be written down directly from the 
lists of codewords. But suppose we are required to calculate the 

weight enumerator of an [n, k]-code C over GF(q) where k is 
large. To enumerate all g* codewords by weight may be a 
formidable task. However, if k is so large that n —k is small, 

then the dual code C~ may be small enough to find its weight 
enumerator, and then the MacWilliams identity can be used to 
find the weight enumerator of C. 

For example, the binary Hamming code Ham (r, 2) has dimen- 
sion 2’ —1—r, and so the number of codewords in Ham (r, 2) is 
271". a large number even for moderately small values of r. 
But the dual code has only 2’ codewords and, as we shall soon 

see, it has a particularly simple weight enumerator. From this, 

the weight enumerator of Ham (r, 2) itself is easily determined. 
First we look at a particular case. 

Example 13.9 Let C be the binary [7, 4]|-Hamming code. Then 
the dual code C~* has generator matrix 

0001111 

0110011}. 

1010101
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When we compute W-:(z) directly, by listing the codewords, we 
find, surprisingly, that each of the non-zero codewords has 
weight 4 (the next theorem shows this to be no isolated 
phenomenon, as far as the Hamming codes are concerned). Thus 

Woi(z) =14+72%4, 

and so the weight enumerator of C itself is, by equation (13.7), 

4[((1+z)’+70 —z)4(14+2z)3]) =14+72°4+ 724+ 2’. 

Theorem 13.10 Let C be the binary Hamming code Ham (r, 2). 
Then every non-zero codeword of C+ has weight 2’~*. 

Proof Let 

h, hy hy. es Ain 

H= Me _ Mat "22 sf" Man 

h, hy hy se hyn 

be a parity-check matrix of C where the rows of H are denoted 
by h,,h,,...,h,. Then a non-zero codeword ¢ of C* is a vector 

of the form c= ))7_, A,;h; for some scalars A,,A,,..., A,, not all 
zero. We will find the weight of ¢ by finding the number n,(c) of 
zero entries of ¢ and then subtracting n,(c) from the length n. 
Now c has a zero in its jth position if and only if j7_, AA, =0, 

i.e. if and only if ij_,Ax,;=0, where (x,x.---x,)’ is the jth 
column of H. Since C is a Hamming code, the columns of H are 
precisely the non-zero vectors of V(r, 2) and so n,(c) is equal to 
the number of non-zero vectors in the set 

>» AXi — of, 

i=] 

X= frye -+x,€ V(r, 2) 
  

i.e. No(e) = |X| —1. 
It is easy to see that X is an (r — 1)-dimensional subspace of 

V(r, 2) (e.g. view X as the dual code of the [r, 1]-code which has 
generator matrix [A,A,::-:A,], so that dim(X¥)=r-—1, by 
Theorem 7.3). Hence 

|X|=2’-1 andso nyo(e) =2" 1-1.
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(Note that n,(c) is independent of the choice of non-zero 
codeword c in C*). Thus 

w(c) =n —n(c) = 2’ —1-(27-'- 1) 

= 2771, 

Corollary 13.11 The weight enumerator of the binary Ham- 
ming code Ham (7, 2), of length n = 2’ — 1, is 

1 
> [(A4+z)*4+n(1 — 27)" Y?71 — z)]. 

Proof This is a straightforward application of the MacWilliams 
identity which is left to Exercise 13.5. 

Probability of undetected errors 

Suppose we wish to find Pyndetec(C) for a binary [n, k]-code C. 
By Theorem 6.14, we have 

Punaetee(C) = 2, Ap‘(1— py" 

=(1— p)" > A(2-), 

Since 

and since Ay = 1, we have 

Pandetec(C) = (1 -py"|We(=?-) — | (13.12) 

If we know W((z), then we can find Pyjgete(C) by means of 
equation (13.12). If we know only W<.(z) to start with, then we 
could use the MacWilliams identity (13.7) to calculate W.(z) and 
then use equation (13.12). Alternatively, we could use the 
formula derived in Exercise 13.9, which gives Pndetec(C) directly 

in terms of W..(z), and thereby avoid the intermediate calcula- 
tion of W-(z).
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Exercises 13 

13.1 

13.2 

13.3 

13.4 

13.5 

13.6 

13.7 

Suppose C is a binary linear code of length n which 
contains the vector 11 - -- 1 consisting of all 1s. Show that 

A; =A, -i, 

fori=O0,1,...,n. 

Find the weight enumerator of the code whose generator 
matrix is 

10011 

01001 

00101 

(a) directly, 
(b) by using the MacWilliams identity. 
Let C be the binary [9,7]-code having the generator 
matrix _ O17 

01 

10 

L 10 

11 
11 

- 11.       
Let )}?_) A,z' denote the weight enumerator of C. Use the 

MacWilliams identity to find the values of Ag, A,, A, and 

A3. Show that C contains the vector consisting of all 1s 
and hence, or otherwise, determine the full weight 
enumerator of C. 

Using the result of Example 13.9, write down the weight 
enumerator of the extended binary Hamming code of 

length 8. 

Prove Corollary 13.11. 
Find the number of codewords of each of the weights 0, 
1, 2, 3 and 4 in the binary Hamming code of length 15. 
Let C be a binary linear code and let Cy denote the 
subcode of C consisting of all codewords of C of even 

weight. Show that 

W (Zz) = 2[We(z) + We(-z)].
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13.8 

13.9 

13.10 

13.11 

13.12 

13.13 

Let C be a binary linear code and let C be the extended 

code obtained from C by adding an overall parity check. 

Show that 

W ez) =3[(1 + z)We(z) + 1 — z)We(-z)]. 

Suppose C is a binary [n, k]-code. Prove that 

  

P undetec(C) = Wel - 2p) ~ (1 —p)”. Qn-k 

Let G,, be the extended binary Golay code defined in 

Theorem 9.3. Notice that the vector consisting of all 1s 

belongs to G,, (add all the rows of G together). Using 
properties of G,, found during the proof of Theorem 9.3, 
show that 

W o,(Z) = 1+ 75928 + 2576z"? + 759z'° + 277. 

Let G,3 be the cyclic binary code defined in Theorem 
12.20, and let G,, be its extended code. Using results 

from Chapter 12, including Exercise 12.18, determine the 

weight enumerator of G),. 
Use either Exercise 13.10 or 13.11, together with Exer- 

cise 9.4(a), to determine the weight enumerator of the 

binary Golay code G3. 
For each of the two constructions given of the [24, 12]- 
Golay code (in Chapters 9 and 12), the tricky part of 
showing that d(G,,)=8 is to show that there are no 
codewords of weight 4. Assuming only the easily proven 

facts that G,, 1s self dual, that G,, contains 1, and that 

every codeword has weight divisible by 4, use the 
MacWilliams identity to show that A, = 0.
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In Chapter 2 we discussed the ‘main coding theory problem’. 
This was the problem of finding A,(n, d), the largest value of M 
for which there exists a qg-ary (n, M,d)-code. In the present 
chapter we shall consider the same problem restricted to linear 
codes. If gq is a prime power, we denote by B,(n, d) the largest 
value of M for which there exists a linear (n, M,d)-code over 
GF(q). (The function B,(n,d) was briefly introduced in Exer- 
cises 5.8 and 5.9). Clearly B,(n,d) is always a power of g, and 
B,(n,d)<A,(n,d). We shall refer to the problem of finding 
B,(n,d) as the main linear coding theory problem, or MLCT 
problem for short. 

If we regard the values of g and d as fixed, we may state the 

problem as follows. 

MLCT problem (Version 1) For given length n, find the 
maximum dimension k such that there exists an [n, k, d]-code 

over GF(q). (Then, for this k, B,(n, d) = q*). 

Recall that the redundancy r of an [n, k, d]-code is just n —k 
(the number of check symbols in a codeword). An alternative 
version of the MLCT problem 1s: 

MLCT problem (Version 2) For given redundancy r, find the 
maximum length nm such that there exists an [n,n —r, d]-code 

over GF(q). 

Solving Version 1 for all ” is equivalent to solving Version 2 
for all 7, because in either case we then know exactly those 
values of m and k for which an [n,k,d]-code exists. The 
equivalence of the two versions will be made explicit in Theorem 
14.3. 

It turns out that Version 2 provides the more natural ap- 
proach. The key to this approach, which was touched upon in
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Concluding Remark 3 of Chapter 8, is given in the next theorem. 
But first we make some definitions. 

Definitions An (n,s)-set in V(r,q) is a set of n vectors in 
V(r,q) with the property that any s of them are linearly 
independent. 

We denote by max, (7, q) the largest value of n for which there 
exists an (n,s)-set in V(r, q). An (n,s)-set in V(r, q) which has 
n=max,(r,q) is called optimal. The packing problem for 
V(r, q) is that of determining the values of max, (7, q) and the 
optimal (7, s)-sets. 

The packing problem was first considered by Bose (1947) for 
its statistical interest and later (1961) for its connection with 
coding theory, which is given by the following theorem. 

Theorem 14.1 There exists an [n,n —r,d]-code over GF(q) if 
and only if there exists an (n, d — 1)-set in V(r, q). 

Proof Suppose C is an [n,n —r,d]-code over GF(q) with 
parity-check matrix H. Then, by Theorem 8.4, the columns of H 

form an (n,d — 1)-set in V(r, q). On the other hand, suppose K 
is an (n, d — 1)-set in V(r, q). If we form an r Xn matrix H with 
the vectors of K as its columns, then, again by Theorem 8.4, H is 

the parity-check matrix of an [n,n —r]-code whose minimum 
distance is at least d. 

Corollary 14.2. For given values of qg, d and r, the largest value 
of n for which there exists an [n,n —r,d]-code over GF(q) is 

max,_; (7, q). 

So the MLCT problem (Version 2) is the same as the packing 
problem of finding max,_, (7, q). We now show that the values 

of B,(n, d) are also given by the solutions to this problem. 

Theorem 14.3 Suppose max,_;(r—1,q)<n<max,_,(r,q). 
Then B,(n, d)=q"". 

Proof Since n<max,_,(r7,q), there exists an [n,n —r, d]-code 
over GF(q), and so B,(n,d)=q"~’. If B,(n,d) were strictly 
greater than q”~”, then there would exist an [n,n —r+1, d]- 
code, implying that n < max,_, (r — 1, qg), contrary to hypothesis.
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Let us pause to outline our plan of campaign for the remainder 
of this and the next chapter. We shall consider the MLCT 
problem for increasing values of the minimum distance d. The 
cases d=1 and d =2 are easily dealt with in Exercise 14.2. We 
will therefore consider first the problem for d = 3 and will solve it 
for all values of g and r. We will then consider the case d= 4, 
solving the MLCT problem for g=2 and giving the known 
results for g>2. For cases of d greater than 4, very little is 

known in the way of general results, at least not until d reaches 

its maximum value for given redundancy 7, which is d=r-+1. 
We will consider this very interesting case in Chapter 15. 

The MLCT problem for d=3 (or Hamming codes revisited) 

Theorem 14.4 For given redundancy 7, the maximum length n 
of an [n,n—r,3]-code over GF(q) is (q’—1)/(q—1); ive. 

max,(r, g) = (q” — 1)/(q — 1). 

Proof By Corollary 14.2, the required value of 7 is max, (r, q), 
the largest size of an (n, 2)-set in V(r, q). Now a set S of vectors 
in V(r, q) is an (n, 2)-set if and only if no vector in S is a scalar 
multiple of any other vector in S. As we saw in the construction 
of g-ary Hamming codes in Chapter 8, the qg’—1 non-zero 
vectors of V(r,q) are partitioned into (q’ — 1)/(q —1) classes, 
each class consisting of g — 1 vectors which are scalar multiples of 
each other. Thus an (n,2)-set of largest size is just a set of 

(q’ — 1)/(q — 1) vectors, one from each of these classes. 

The optimal [n,n —r,3]-codes with n =(q’—1)/(q—1) are 
just the Hamming codes Ham (r, q) defined in Chapter 8. The 

solution to MLCT problem (Version 1) follows immediately from 
Theorems 14.3 and 14.4: 

Theorem 14.5 B,(n,3)=q"", where r is the unique integer 
such that (q¢”!—1)/(q¢ —1)<n <(q’ —1)/(q — 1). 

Remarks (1) It is easy to express B,(m,3) as an explicit 
function of g and n (see Exercise 14.3). 

(2) To construct a linear (n, M,3)-code with M=B,(n, 3), 
one simply finds the least integer 7 such that n <(q’ — 1)/(q — 1) 
and writes down, as a parity-check matrix, n column vectors of
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V(r, q) such that no column is a scalar multiple of another. Such 
a parity-check matrix can always be obtained by deleting columns 
from the parity-check matrix of a Hamming code Ham(r, q). 
Thus the best linear single-error-correcting codes of given length 
are either Hamming or shortened Hamming codes. 

Before proceeding to the case d= 4, we remark that it will be 
advantageous to view an (7,5)-set not only as a set of vectors in 

the vector space V(r,q), but also as a set of points in the 

associated projective geometry PG(r—1,q), which we now 
define. 

The projective geometry PG(r — 1, q) 

With the vector space V(r, q)= {(a1, a2,...,a,)|a, € GF(q)}, 
we associate a combinatorial structure PG(r — 1, q) consisting of 
points and lines defined as follows. 

The points of PG(r —1,q) are the one-dimensional subspaces 
of V(r,q). The lines of PG(r—1,q) are the two-dimensional 
subspaces of V(r, q). The point P is said to belong to (or lie on) 
the line L if and only if P is a subspace of L. PG(r—1,q) is 
called the projective geometry of dimension r — 1 over GF(q). 

Each point P of PG(r—1,q), as a subspace of V(r,q) of 
dimension 1, is generated by a single non-zero vector. So, if 

a=(a,,a,,...,a,)€P, then 

P = {AalA € GF(q)}. 

In practice, we identify the point P with any non-zero vector it 

contains. In other words, we take the points of PG(r —1,q) to 

be the non-zero vectors of V(r,q) with the rule that if a= 
(a,,@,...,a,) and b=(b,,b,,...,b,) are two such vectors, 

then 
a=b in PG(r —1, q) if and only if a= Ab in V(r, q), 

for some non-zero scalar A. 
We now list some elementary properties of PG(r — 1, q). 

Lemma 14.6 In PG(r-—1,q), 
(i) the number of points is (q’ — 1)/(q — 1), 

(ii) any two points lie on exactly one line, 
(iii) each line contains exactly g + 1 points, 
(iv) each point lies on (q’* — 1)/(q — 1) lines.
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Proof (i) Since each of the g’ — 1 non-zero vectors in V(r, q) 
has g—1 non-zero scalar multiples, the number of points of 
PG(r — 1, q) is (q’ —1)/(q — 1). 

(ii) If a and b are distinct points of PG(r —1,q), then the 
unique line through them consists of the points Aa + ub, where A 
and mu are scalars not both zero. 

(iii) In (ii), there are g*—1 choices for the pair (A, u), but 
since we are identifying scalar multiples, the number of distinct 

points on the line is (q*— 1)/(q — 1) =q +1. 
(iv) Let t be the number of lines on which a given point P 

lies. Let X denote the set {(Q, L)|Q is a point #P, L is a line 
containing both P and Q}. We count the members of X in two 
ways. For each of the (g” — 1)/(q — 1) — 1 choices for Q, there is 
a unique line L containing P and Q. Thus 

|X| =(q4’ —-I/(q-1)-1=(q’ -9)/(q- 1). 

On the other hand for each of the ¢ lines through P, there are, by 

part (iii), g points Q other than P lying on L. Thus 

|X| = tq. 
Equating the two expressions for |X| gives t = (q’~'—1)/(q — 1). 

Definition The projective geometry PG(2,q) is called the 
projective plane over GF(q). It follows from Lemma 14.6 that 
PG(2, q) is a symmetric (q7+q+1,q +1, 1)-design, so that it is 
a projective plane as defined in Chapter 2. 

Examples 14.7 (i) The simplest projective plane is PG(2, 2). 
This contains 7 points labelled 001, 010, 100, 011, 101, 110, 111, 

001 

010 100 

  
  

011 110 101 

Fig. 14.8. The projective plane PG(2, 2).
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and 7 lines as shown in Fig. 14.8. This shows that PG(2, 2) is the 
same as the 7-point plane of Example 2.19. 

(ii) The 6 points of PG(1,5) are 01, 10, 11, 12, 13 and 14, 

and there is just one line consisting of all 6 points. The points 
could equally well be labelled 03, 10, 22, 12, 21, and 41, say, 

because in PG(1, 5), 01 = 03, 11 =22, 13 =21 and 14=41. 

Remarks (1) The points of PG(r—1,q) can be uniquely 
labelled by making the left-most non-zero coordinate equal to 1. 

(2) If qg=2, the points of PG(r—1,2) are labelled by the 
non-zero vectors of V(r, 2). 

Definition A set K of n points in PG(r—1,q) is called an 
(n, s)-set if the vectors representing the points of K form an 

(n,5)-set in the underlying vector space V(r, q). 

Remarks (1) Two advantages of working in PG(r—1,q) are 
that (a) some neat counting arguments may then be used to 
obtain upper bounds on max,(7,q) and (b) many optimal 
(n,s)-sets turn out to be natural geometric configurations. 

(2) An (n,2)-set in PG(r—1,q) is just a set of n distinct 
points of PG(r—1,q). So we may describe a Hamming code 

Ham (r, q) as a code having a parity-check matrix H whose 
columns are the distinct points of PG(r—1,q). Of course, 
different representations of these points as vectors will give rise 
to different, but equivalent, codes. For example (cf. Example 
14.7(i1)), Ham (1, 5) may be defined to have parity-check matrix 

011111 

H=l oi 

or, equally well, 

012124 H=| |. 
302211 

The MLCT problem for d=4 

The maximum length of an [n,n —,r,4]-code, for given r, is 

equal to the value of max; (r,q), the largest size of an (n, 3)-set 
in V(r, q) (or in PG(r — 1, q)).
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An (n, 3)-set in the plane PG(2, q) is usually called an n-arc, 
while an (n, 3)-set in PG(r — 1, q), for r>3, is called an n-cap. 

Since three points of PG(r—1,q) are linearly dependent if 
and only if they are collinear (i.e. they lie on the same line), we 
may describe an n-arc/n-cap as a set of n points, no three of 
which are collinear. 

The problem of determining the values of max; (r,q), first 
considered by Bose (1947), was quickly solved for g = 2, for all r, 
and for r=4, for all g. But, despite having received much 
attention since, the problem has been solved only for the 
additional pairs (r, qg) = (4,3) and (5,3). The known values of 
max; (r, q) are listed in Fig. 14.9. 

  

max; (r,2) =2’7! (Bose 1947) 

q+1, q odd 
= B 1947 

max; (3, 4) (3 + 2, g even (Bose ) 

    
q*>+1,  qodd_ (Bose 1947) 4,q)=| : 

maxs (4, 4) q*+1,  qeven (Qvist 1952) 

max; (5, 3) = 20 (Pellegrino 1970) 

max; (6, 3) = 56 (Hill 1973) 
  

Fig. 14.9. The known values of max; (r, q). 

We now prove the more straightforward of these results. 

The determination of max; (r, 2) 

Here we are concerned with finding optimal binary linear codes 
with d=4. The following general theorem shows that we may 
obtain such codes from optimal codes of minimum distance 3 by 
the simple device of adding an overall parity-check. 

Theorem 14.10 Suppose d is odd. Then there exists a binary 
[n, k, d|-code if and only if there exists a binary [7 + 1, k, d + 1]- 
code. 

Proof The proof of Theorem 2.7 is valid in the restriction to
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linear codes. This is because an ‘extended’ linear code (i.e. the 
code obtained from a linear code by adding an overall parity- 
check) is also linear (see Exercise 5.4). 

Corollary 14.11 Suppose d is even. Then 
(i) B.n,d)=B,(n —-1,d—1) 

(ii) max,_,(r, 2) =max,_,(r —1,2) +1. 

Proof 
(i) is immediate from Theorem 14.10. 

(ii) m<max,y_,(r,2)@there exists a binary 
[n,n —r, d]-code 

<> there exists a binary 
(7 —-1,n —r,d— 1]-code 

$n —-1smax,_>(r— 1, 2) 

©n<max,_>(r—1,2)+1. 

Corollary 14.12 max, (r,2)=2""!. 

Proof By Theorem 14.4, max, (r, 2) = 2’ — 1. Hence 

max; (r,2) =(2” '—1)+1=2"71. 

The optimal binary code with d=4 and redundancy r is the 
extended Hamming code Ham (r — 1,2). As we saw in Chapter 

8, a parity-check matrix for this code is 

0 

_ H : 
H= oP 

where H is a parity-check matrix for Ham (r — 1, 2), so that the 
columns of H are just the points of PG(r—2,2) (i.e. the 
non-zero vectors of V(r — 1, 2)). 

The columns of H form an optimal 2’~!-cap in PG(r — 1, 2). It 

consists of the points of PG(r —1,2) not lying in the subspace 
{(x,,...,X,)|x,=0}. Geometrically, it may be described as the 
complement of a hyperplane.
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The determination of max; (3, q) 

First we give some examples of good linear codes with d = 4 and 

redundancy 3. We then prove that these codes are optimal by 

showing that there cannot exist such codes of greater length. 

Theorem 14.13 Let a,,a2,...,a,-,; be the non-zero elements 

of GF(q). 

1 1-:-- 1 10 

(i) The matrix H=| a, a, --- ajz_, 0 0 

ai az +: az_,01 

is the parity-check matrix of a [q+1,q-—2,4]-code. 

Equivalently, the columns of H form a (q+1)-arc in 

PG(2, q). 
(ii) If gq is even, then the matrix 

1 1--» 1 100 

H* = |a, a2 +--+ aj-, 910 

ai, az ++: az_,001 

is the parity-check matrix of a [q+2,q-—1,4]-code. 
Equivalently, the columns of H* form a (q+2)-arce in 
PG(2, q). 

Proof (i) It is enough to show that any three columns of H are 

linearly independent. Any three of the first g — 1 columns of H 
form a Vandermonde matrix, and so are linearly independent by 
Theorems 11.1 and 11.2. For any three columns which include 
one or both of the last two columns, the determinant may be 
expanded about these last columns to get again the determinant 

of a Vandermonde matrix. 
(ii) We have shown in the proof of part (i) that any three 

columns of H* are linearly independent, with the possible 
exception of three of the form 

1 1 0 

a;|,|4;|, and } 1}. 

a*| | a? ) i J 

The determinant of the matrix A formed by these three columns
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is equal to a; — as. Since q is even, GF(q) has characteristic 2 (cf. 
Exercise 4.6). Hence, by Exercise 3.12, a7 — a+ = (a; —a,)*. Since 
a;#a;, det A is non-zero. 

g +1, if g is odd 
14 ’ = | 1 } 

Corollary 14 max; (3, 7) gq +2, if g is even. 

Remark The (qg+1)-arc formed by the columns of A in 
Theorem 14.13 is the conic {(x, y, z) € PG(2, q)| yz =x?}. 

We now show that the codes/arcs given in Theorem 14.13 are 

optimal. 

Theorem 14.15 
(i) For any prime power q, max; (3,q)<q +2. 

(ii) If g is odd, then max; (3,q)<q +1. 

First proof (i) Let H be a standard form parity-check matrix 
for an [n,n — 3, 4]-code C over GF(q), with n = max; (3, q): 

a; Ay °*°° an—3 1 0 0 

H= b, b, 7. b,,-3 0 1 0) . 

Ci Co oe Cn-3 0) 0) 1 

Since any three columns of H are linearly independent, the- 
determinant formed by any three columns must be non-zero. 

From the non-vanishing of the determinant formed by any two of 

the last three columns and one of the first n — 3 columns, we find 

that the a;s, b;s and c;s are all non-zero. Multiplying the ith 
column by a;' for i=1,2,...,n—3, we have that C is 
equivalent to a code in which the a;s are all 1. Thus we may 
assume that 

1 1-:--. 1 100 

A= b, b, ++: b,-,3 910 5 

Cy C> eee Cn—3 001 

where the b,s and c;s are non-zero. As the determinant formed 

by the last column and two of the first n — 3 columns is non-zero, 
the 5;s must be distinct non-zero elements of GF(q). Hence 
n—-3<q-—1landsonsq+2.
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(ii) (Adapted from Fenton and Vamos, 1982). Now suppose 
q is odd. Suppose, for a contradiction, that a [¢ +2, q—1,4]- 
code C exists. Then, as in (i), we may assume that C has a 
parity-check matrix 

11-:.; 1 100 

H= |b, b2--:+ b,-,01 0 

Cy C2 *** Cg-y 001 

where b,,b2,...,6,-, are the distinct non-zero elements of 

GF(q) and similarly c,,c2,...,¢,-,; are also the distinct non- 

zero elements of GF(q) in some order. The non-vanishing of 
determinants of the form 

111 

det | b; 5; 0 

c; c; 0 

implies that the elements b,cy', bocy',...,bg-,¢7+, are distinct 
and so they too are the non-zero elements of GF(q) in some 

order. Hence, by Exercise 3.13, all three of the products []?=;' b,, 

II?= c;, and []#=} (b;c;"*) are equal to —1. But then 
q-1 

{I (bc; ") = (I b,)( TL c) =(-1)(-1)'=1. 
i=1 

Since 1 4 —1 if g is odd, this gives the desired contradiction. 

Second proof (geometric) (i) Suppose K is an a»-arc in 
PG(2,q) of maximum size n = max; (3, q). Let P be a point of 
K. By Lemma 14.6(iv), there are g + 1 lines through P and every 

point of K lies on one or other of them. But on none of these 
lines can there be more than one point of K besides P (by 
definition of an n-arc, no three points of K are collinear). Thus 
n=1+(q¢+l)=q+t2. 

(ii) Now suppose q is odd. Suppose, for a contradiction, that 
K is a (q + 2)-arc in PG(2, q). Then if P is any point of K, each 
of the g +1 lines through P must contain exactly one further 

point of K. This means that every line in PG(2,q) meets K in 
either 2 or 0 points (but never in 1). Now let Q be any point of 
PG(2, qg) lying outside K. Through Q there pass q + 1 lines and 
each point of K lies on one (and only one) of them. So if ¢ of
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these lines meet K in two points, then |K|=2t, contradicting 
|K| =q +2 being odd. 

Remark The author feels that the attractiveness of the above 
proofs merits the inclusion of both. The geometric proof has two 
important advantages: (1) it generalizes to give upper bounds on 
max; (r,q) for larger values of r; (2) it does not assume specific 
properties of the field GF(q), and so gives the same upper bound 
on the size of n-arcs in any projective plane of order q. 

Corollary 14.14 and Theorem 14.15 give 

Theorem 14.16 (Bose 1947) 

max, G,q= {4 if Is odd 

qt+2 if g 1s even. 

Remark It has been shown by Segre (1954) that, for g odd, 
every (q +1)-arc in PG(2,q) is a conic. This implies that the 
optimal [g + 1, g — 2, 4]-code is unique, up to equivalence. For g 

even, optimal (g + 2)-arcs in PG(2, q) are not in general unique, 
and a classification is unknown. 

The determination of max, (4, q), for q odd 

As we shall adopt a geometric approach here, we introduce a 
little more terminology concerning the projective geometry 
PG(r—1,q). In defining PG(r—1,q) from the vector space 
V(r, q), recall that the points and lines in PG(r — 1, q) are the 1- 
and 2-dimensional subspaces respectively of V(r, q). More gener- 
ally we define a ¢t-space in PG(r—1,q) to be a (¢+1)- 
dimensional subspace of V(r, q). Thus a 0-space is a point and a 

1-space is a line. A 2-space is called a plane and an (r — 2)-space 
in PG(r — 1, q) is called a hyperplane. Note that the dimension t 
of a ¢t-space in PG(r—1,q) is always one less than the 
corresponding vector space dimension. 

We usually identify a ¢-space in PG(r —1,q) with the set of 
points it contains. The number of points in a f-space is 
(q’*' — 1)/(q — 1), since a (t + 1)-dimensional subspace of V(r, q) 
contains g‘t!—1 non-zero vectors, each of which has g-1
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non-zero scalar multiples. A ¢-space is just a copy of PG(¢, q) in 
so far as the incidence properties of its subspaces are concerned. 

In particular, a cap in PG(r — 1, q) must meet a (¢ — 1)-space in 
at most max; (¢, g) points, bearing in mind that any subset of a 
cap is also a cap. 

We may now derive an upper bound on max; (4, qg), for q odd. 

Theorem 14.17 If g is odd, then max; (4, q) <q?+1. 

Proof Suppose K is an n-cap in PG(3, gq) of maximum size. Let 

P, and P, be any two points of K and let L be the line on which 

P, and P, lie. Since no three points of K are collinear, L contains 

no other point of K. Through the line L there pass g + 1 planes 
(Exercise 14.4), and each point of K, other than P, and P,, lies 

on one and only one of these planes. Since g is odd, it follows 
from Theorem 14.15(ii1) that no plane can contain more than 
gq +1 points of K. In particular, a plane through L can contain at 
most g — 1 points in addition to P, and P,. Hence 

n=2+(g+1)(¢q —1)=q7+1. 

We next show that (q?+1)-caps exist in PG(3,q), when q is 
odd. 

Theorem 14.18 Suppose g is odd and let b be a non-square in 
GF(q). Then the set 

O = {(x, y,z, w) € PG(3, g)| zw = x? — by} 

is a (q*+1)-cap in PG(3, q@). 

Proof Since b is a non-square, the only point of Q having z = 0 

is (0,0,0,1). Each of the remaining points may be represented 
by a vector having z = 1, and so we may write 

O = {(0, 0, 0, 1), (x, y, 1, x” — by”) | (x, y)e V(2, g)}. (14.19) 

This shows that |Q| = g*+1. We must show that no three points 
of Q are collinear. Clearly (0,0,0,1) cannot be collinear with 

two other points of Q because there is only one point of Q of the 
form (x,y, 1, *) for any given pair (x, y). Now let a, = (x1, yy, 1, 
xi — by?) and a, = (xo, y2, 1, x5 — by3) be any two points of Q, 
other than (0, 0, 0,1). Suppose, for a contradiction, that the line
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joining a, and a, contains a third point of Q. Then, for some 
non-zero scalar A, a, + Aa, € Q, i.e. the point (x, y,z,w) =(x,+ 
AX2, V1 t+ Ayo, L+A, x7 — by? + Axs — Aby5) satisfies zw =x? — by?. 
This condition implies, after some cancellation, that 

Ax? + Ax3 — Aby? — Aby3 = 2Ax,x2 — 2Aby,)>. 

Since A 40, it follows that 

(x1 — x2)" = b(y, — y2)"s 

which is impossible since b is a non-square. 
Putting Theorems 14.17 and 14.18 together gives 

Theorem 14.20 If q is odd, then max; (4, g) = q* +1. 

Example 14.21 Take gq =3 and b=~—1 in Theorem 14.18. By 
(14.19), a 10-cap in PG(3,3) is formed by the columns of the 

matrix 0000111222 
0012012012 
0111111111 
1011122122 

Thus H is the parity-check matrix of a ternary [10, 6, 4]-code 
which is of greatest length for d =4 and r= 4. 

H= 

Remarks (1) The set Q of Theorem 14.18 is an example of an 
elliptic quadric. For qg odd, any elliptic quadric is a (q7 + 1)-cap, 
and conversely (Barlotti 1955) any (q7+1)-cap is an elliptic 
quadric. This implies that the optimal [q? + 1, g* — 3, 4]-code is 
unique, up to equivalence. 

(2) For g=2", with h>1, it is also true that max, (4,q)= 
gq? +1, but the proof is a little trickier and is omitted here. 

The values of B,(n, 4), for n=<q?+1 

By means of Theorem 14.3, we can instantly translate our results 
concerning max; (r, q) for r = 2 and 3 into results about B,(n, 4). 

Theorem 14.22 If qg is odd, then 

nS for 4<n<qg+1 q an.4) =| 
a(n, 4) gq’ * = forg+2<n<q’* +1.



The main linear coding theory problem 189 

If g is even, then 

B,(n,4)= 
q’ > = for 45n<q+2 

q’* = forg+3<n<q* +1. 

Remarks on max; (r, g) for r=5 

For r = 3 and r = 4 the packing problem for caps in PG(r — 1, q) 

was fairly easy to solve because of the existence of natural 
geometric configurations (conics in PG(2, q) and elliptic quadrics 

in PG(3,q)) which are optimal caps. But in PG(r—1,q) for 
r=5, large caps do not appear to arise in such a natural way and 
so the packing problem is much more difficult. As we see from 
Table 14.9, the only known values of max; (r,q) for g#2 and 
r=5 are max;(5,3)=20 and max; (6,3) =56. (For a coding- 
theoretic proof of the second result, wherein the uniqueness of 
the optimal ternary [56, 50, 4]-code is also demonstrated, see Hill 
(1978).) 

It is easy to construct 20-caps in PG(4, 3) (Exercise 14.9) but 
hard to show that 20 is the largest size possible. By contrast, it is 

rather difficult to describe a 56-cap in PG(5, 3), but a short proof 
of the maximality of 56 has been given by Bruen and Hirschfeld 

(1978) (cf. Exercise 14.11). In the next dimension up for g =3, 
the best known bounds are 

112 = max; (7, 3) $ 163, 

suggesting that the problem of finding optimal caps in PG(6, 3) is 
far from solution. 

Concluding remarks on Chapter 14 

(1) We have mentioned that the problem of determining 
max, (7, q) was first considered by Bose (1947). Much of the 
subsequent work has been carried out by the Italian school of 
geometers led by Segre, Barlotti and Tallini. 

For a survey of the known results concerning max, (7, q) and 
similar functions, see Hirschfeld (1983). For a comprehensive 
coverage of the theory of projective geometries over finite fields, 

see Hirschfeld (1979 and Volume 2, to appear). 
(2) For recent results concerning max, (r,q) for g=3 and 

s<r<15, see Games (1983).
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(3) There seems to be little pattern to results concerning 
max,_, (r, q) for fixed values of d greater than 4. However, when 
d takes its maximum value for given r, that is d=r+1, an 
interesting pattern once again emerges. This case is the subject of 

the next chapter. 

(4) Another version of the MLCT problem is to find, for 
given g, mn and k, the maximum value of d for which there exists 

an [n, k, d|-code over GF(q). In the case of binary linear codes, 
Helgert and Stinaff (1973) give a table of such values (or bounds 
when the values are not known) for k <n <127. For a com- 
prehensive update of this table, incorporating many improve- 
ments by various authors, see Verhoeff (1985). 

Exercises 14 

14.1 Is it true that B,(n,d) is always equal to the highest 
power of 2 less than or equal to A,(n, d)? 

14.2 Show that (i) B,(n, 1) =q", (ii) B,(n, 2) =q""". 
14.3. Show that B,(n, 3) =q'"loeatra—n FDI 
14.4 Show that in PG(3, q) the number of planes containing a 

given line is q + 1. 
14.5 Which code is the optimal [n,n —5,5]-code having 

n = max, (5, 3)? 
14.6 Specify a [26, 22, 4]-code over GF(5). 
14.7 Pinpoint where the proofs of Theorems 14.17 and 14.18 

fail when gq is even. 

14.8 Devise a syndrome-decoding algorithm for a [g?+1, q* — 
3, 4]-code over GF(q) (q odd), which will correct any 
single error and detect any double error. 

14.9 Given the 10-cap of Example 14.21, construct a 20-cap in 
PG(4, 3). 

14.10 Show that, in PG(m,q), the number of (¢ + 1)-spaces 
containing a given f-space is (q” ‘—1)/(q-—1). In 
PG(5, 3), state (i) how many planes contain a given line, 
(ii) how many 3-spaces contain a given plane, (iii) how 
many 4-spaces contain a given 3-space. 

14.11 Given that max; (5,3)=20, show that max; (6, 3) <56. 
[ Hint: Use parts (1), (ii) and (iii) of Exercise 14.10.] 

14.12 State the values of B,(n, 4) for 4<n <112.
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In the previous chapter we considered the problem of finding 
linear codes of maximum length for given redundancy r and 

given minimum distance d. Particular attention was paid to the 
cases d <4. In this chapter we consider the problem when d is as 
large as possible for given redundancy r. The following theorem 
shows that this is the case d=r+1. 

Theorem 15.1. An [n,n -—r, d|-code satisfies d=r+1. 

Proof 1 This is just the Singleton bound applied to linear codes. 
Theorem 10.17 states that any q-ary (n,M,d)-code satisfies 
M <q"~“*'. So, in particular, an [n,n —r,d]-code over GF(q) 
satisfies g’~-"<q"~4*!, whence d<r+ 1. 

Proof 2 Suppose C is an [n,n — r, d]-code and let G =[I,_, | A] 
be a standard form generator matrix of C. Since A has r 

columns, those codewords which are rows of G have weight 
<r +1. The result follows by Theorem 5.2. 

Definition An [n,n—r,r+1]-code (i.e. a linear code of re- 
dundancy r whose minimum distance is equal to r + 1) is called a 
maximum distance separable code, or MDS code for short. 

By Theorem 14.1, the maximum length of an [n,n —r,r+1]- 
code over GF(q) is equal to the value of max, (7, q), the largest 
size of an (n,r)-set in V(r,q). We recall that an (n,1r)-set in 
V(r, q) is a set of n vectors such that any r of them are linearly 
independent. Equivalently, an (n,7r)-set in V(r, q) is a set of n 
vectors such that any r of them form a basis for V(r, q). 
MDS codes were first studied explicitly by Singleton (1964), 

although the problem of finding max, (r,q) had already been 
studied as a problem in statistics (Bush 1952) and as a problem in 
geometry (Segre 1955, 1961). (In the geometrical context, an
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(n,r)-set, regarded as a subset of PG(r—1,q), is called an 
n-arc. This agrees with the usage of the term n-arc for an 
(n, 3)-set in PG(2, q) already met in Chapter 14.) 

MacWilliams and Sloane (1977) introduce their chapter on 
MDS codes as ‘one of the most fascinating in all of coding 

theory’. The problem of determining the values of max, (7, q) is 

a particularly attractive one for two reasons. Firstly, the problem 
is equivalent to a surprising list of combinatorial problems; no 
fewer than six different interpretations are given in MacWilliams’ 
and Sloane’s book, while yet another is given in Fenton and 
Vamos (1982). Secondly, although a complete solution to the 

problem seems inaccessible at present, the known results suggest 

a tantalizingly simply stated conjecture: 

Conjecture 15.2. If 2<r<q, then 

max, (r,q)=qt1 

(except that max; (3, g) = max,_,(q¢—1,q)=q +2 if qg =2"). 

Note that the conjecture has already been proved for r=2 
(Theorem 14.4) and for r=3 (Theorem 14.16). Before consider- 
ing the conjecture further let us dispose of the rather uninterest- 
ing cases outside the range to which it applies. For redundancies 

0 and 1, MDS codes exist of any length n over any field GF(q) 
(for r=0, V(n, q) is an [n, n, 1]-code, while for r = 1, the matrix 

1 

[h-1 : 

1 

generates an [n,n — 1, 2]-code). Cases r>q are covered by the 
following theorem. 

Theorem 15.3 If r=q, then max, (r,qg) =r+1. Any MDS code 
of redundancy r =q is equivalent to a repetition code of length 
r+. 

Proof The repetition code of length r + 1 is an [r+1,1,7r+1]- 
code with generator matrix [1 1--- 1]. Hence 

max, (7,q)2rt+1.
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Also, it is clear that any [r+ 1,1,7+1]-code is equivalent to a 
repetition code. 

Now suppose r=q and suppose for a contradiction that 

max, (r,g)=r+2. Then there exists an [7 +2,2,7+1]-code C 
over GF(q). This code C must be equivalent to a code having 
generator matrix 

1011-:::1 G=| | 
O1a,a,°-::a, 

In order that any linear combination of the rows of G has weight 
at least r+1, the as must be distinct non-zero elements of 

GF(q). This implies that r <q — 1, contrary to hypothesis. 

Remark It follows from Theorem 15.3 and the preceding 
remarks that the only binary MDS codes are V(n, 2), the even 
weight codes E,,, and repetition codes. So this chapter is really of 
interest only for codes over GF(q) with gq >2. 

From now on we assume that r lies in the range 2r<q and 
return to our consideration of Conjecture 15.2. Our first task will 

be to show that there exist MDS codes which meet the 

conjectured values of max, (7, q) in all cases. 

Theorem 15.4 Suppose 2=r<q. Let @,,a2,...,a@,_-, be the 
non-zero elements of GF(q). Then the matrix 

Td 1 +s 1°10 
a, a, +--+ az-, 90 

H=| % % 77° 4-100 

00 

ay ay +++ ag, OL     
is the parity-check matrix of an MDS [q+1,q+1-,7,r+1]- 
code. Equivalently, the columns of H form a (q+1)-arc in 
PG(r-1, q). 

Proof This is exactly the same as the proof of Theorem 

14.13(i), for the determinant of a matrix formed by any r 
columns of H is equal to the determinant of a Vandermonde
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matrix and so is non-zero. Thus any 7 columns of H are linearly 
independent. 

Corollary 15.5 If 2<r<q, then max, (7,q)=q +1. 

As we saw in Theorem 14.13(ii), in the case where g is even 
and r = 3, we may add the further column 

0 

1 

0 

to the matrix H of Theorem 15.4 to get an MDS code of length 

gq +2. Such a trick will not work for r > 3. However, we see from 
Conjecture 15.2 that the case g even and r= q — 1 also seems to 
be special. Indeed there exists an MDS code of length q +2 in 
this case too. This fact will follow from the very useful result that 
the dual code of an MDS code is also MDS, thus implying that 

the roles of dimension and redundancy are interchangeable in so 
far as the existence of MDS codes is concerned. In order to show 

this duality, we first reformulate our problem in terms of 
matrices having every square submatrix non-singular. 

Definitions A square matrix is called non-singular if its columns 
are linearly independent, or equivalently, if it has a non-zero 

determinant (cf. Theorem 11.2). 
Given any matrix A, a t Xt square submatrix of A isatxt 

matrix consisting of the entries of A lying in some ¢ rows and 

some ¢ columns of A. 

For example, if 

Ay, @12 413 Ay4 

A = 1@o1, A272 Ar3 Arg |, 

Az, A302 33 434 

oe 23) and as a4] 

Az. A33 Az; A34 

are examples of 2 X 2 square submatrices of A. 

then 

Theorem 15.6 Suppose C is an [n,n — r]-code with parity-check
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matrix H =[A? |-.]. Then C is an MDS code (i.e. d(C) =r +1) 
if and only if every square submatrix of A is non-singular. 

Proof By Theorem 8.4, C is an MDS code if and only if any r 
columns of H are linearly independent, i.e. if and only if any 
r Xr submatrix of H is non-singular. Let us interpret this last 
condition on H as a condition on A’. Suppose B is an r Xr 
submatrix of H obtained by choosing some r columns of H. 

Suppose ¢t of the chosen columns are from A’ and r —t of them 
from [,. If we expand det B about the last r — ¢ columns, we end 
up with 

det B = +det B’, 

where B’ is the ¢ X t matrix obtained by taking the r X ¢ matrix 
consisting of the ¢ chosen columns of A’ and then deleting the 
r — t rows corresponding to where the chosen columns of J, have 
1s. To illustrate this point suppose 

QA,,; Ax, a3, 1000 

Ay Ann An 0100 

A143 A453 23,0010] 

Ay, An, A3, 0001 

If B is the 4 X 4 submatrix of H consisting of columns 1, 3, 5 and 
6, then 

a1, a3, 0 O 

det B= det | 2 %2 1} det [as in = det B’. 
QA13 A33 0 1 QAy4 A3x4 

Ay, Az, 0 O 

Returning to the general case, it follows that B is non-singular 

if and only if the corresponding square submatrix B’ is non- 
singular. It is clear that any t X t square submatrix B’ of A’ (for 

any ¢t with 1<t<r) arises from some r X r submatrix B of H in 
this way, and so the result follows. 

Corollary 15.7 The dual code of an MDS code is also MDS. 

Proof The code C with parity-check matrix [A7 | I] is MDS 
<A’ has the property that every square submatrix is non- 

singular
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<A has the same property (since the determinant of any square 

matrix is equal to the determinant of its transpose) 
the code C+ with parity-check matrix [J,_,| —A] is MDS. 

It follows from Corollary 15.7 that generator matrices and 
parity-check matrices of MDS [n, k]-codes serve also as parity- 
check matrices and generator matrices respectively of MDS 

[n,n — k]-codes. 

Corollary 15.8 There exists an MDS [n, k]-code over GF(q) if 
and only if there exists an MDS [n, n — k]-code over GF(q). 

Corollary 15.9 Suppose q=2", h>1. Then there exists a 
[q +2,3,q]-code over GF(q). Equivalently, there exists a (q + 
2)-arc in PG(q — 2, q). 

Proof By Theorem 14.13(ii), there exists a [q¢+2,q-1,4]- 
code over GF(q). By Corollary 15.7, its dual code is a 
[q + 2, 3, q|-code. 

Combining the results of Corollaries 14.14, 15.5 and 15.9, we 

have 

Theorem 15.10 If 2<r<q, then max,(r,qg)=q+1. If also 
gq = 2" and r =3 or q —1, then max, (r,q)=q +2. 

The known results concerning Conjecture 15.2 

Theorem 15.10 shows that the conjectured values of max, (r, q) 
are all lower bounds. The conjecture was shown to be true for 

r=2 and r=3 in Theorems 14.4 and 14.16. We mention without 

proof that, by geometric methods, the conjecture has also been 

proved for r = 4 and r=5, for all g (Segre 1955 and Casse 1969). 

Using the duality result of Corollary 15.8, the truth of the 
conjecture for r<5 implies its truth also for r in the range 
q—-3<r<q (see Exercises 15.2 and 15.3). [This last result was 
first proved in a different way by Thas (1968), who also showed 

(1968, 1969) that the conjecture is true for g odd in the ranges 
q>(4r-9) and gq -—3>r>q—4Vq —5/4]. 

Following MacWilliams and Sloane (1977), we show the results
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graphically in Fig. 15.11, which neatly illustrates the symmetry 
between dimension k and redundancy r. 

The broken line n=kK+r=gq +1 in Fig. 15.11 is the conjec- 
tured bound above which no MDS code is known to exist. The 

heavy line represents an upper bound given by repeated applica- 

tion of the recursive bound 

Max, +4 (r + 1, q) S max, (r, q) + 1 

(see Exercise 15.5), starting at max;(5,q)=q+1 (thus 
max,(6,qg)<q+2, max,(7,q)<q+3,...,max,(r,qg)<q+ 
r—4 for r=6). The region marked with a question mark is 
therefore the ‘grey’ area where the existence of MDS codes is 
undecided. . 

Finally we mention that the conjecture has been verified by 

exhaustive search for g<11, for all r (Maneri and Silverman 

  

  

  

  

    
6 ee eee e@ 

5 eeeeee 

4 eeeeee 

3 ee.8e8 ee @ 

2 eeeee @ 

1 eee ee e@ © 0 © 0 fe -o-—e--~ 

0 123 45 6... . q-4 q-iqqt+t 

  

k 

Fig. 15.11. Values of k, r for which a [k +r,k]-MDS code exists. @ 
means MDS code exists for all g. O means MDS code exists if and only 
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1966 and Jurick 1968) and so the smallest undecided case is 
max, (6, 13) = 14 or 15. 

Concluding remarks on Chapter 15 

(1) The Reed-Solomon codes described in Chapter 11 are 
MDS codes; they are shortened versions of the codes defined in 
Theorem 15.4. Since MDS codes meet the Singleton bound, 
Theorem 15.4 enables Theorem 11.4 to be improved to 

Theorem 15.12 If q is a prime power and if d<n<q +1, then 

A,(n, d) = B,(n, d)=q"~@"". 

(2) One remarkable property of an MDS [n, k]-code C over 
GF(q) is that its weight enumerator is completely determined by 
the values of n, k and qg and does not depend on the code C 
itself. This fact is a little less surprising when one considers the 
MacWilliams identity. Let 

WA(z)=1+ > Azz! 
i=n—k+1 

be the weight enumerator of C. Since C~ is also MDS and hence 
has minimum distance k + 1, the coefficients of z,z*,...,z* on 
the right-hand side of the MacWilliams identity (Theorem 13.6) 
must all be equal to zero, giving k equations in the k unknowns 
Ay-k+1>+-++,A4, (we also have the equation 1+ )7_,-.4,A4;= 
q*). It turns out that these equations have a unique solution. 
Exercise 15.6 gives an illustration of this. In fact it is possible to 
derive the formulae 

A=("\aq- D> (-1y(' j ‘arth (45.13) 

for the A,s in terms of n, d and q, though this derivation is a little 

complicated (see e.g. Chapter 11 of MacWilliams and Sloane, 

1977) and is not included here. 

(3) Theorem 15.6 enables the MDS codes existence problem 
to be posed in elementary terms, independently of any terminol- 

ogy from coding theory or geometry. In view of Theorem 15.10, 

Conjecture 15.2 may be simply stated as follows.



MDS codes 199 

Conjecture 15.14 Any rXk matrix over GF(q) with 2<r, 
k <q and having the property that any square sub-matrix is 
non-singular satisfies 

r+k<xqtl1 

except for case q> and r OF = . pt f 2" and r or k =3 

From an earlier remark, the smallest possible counter-example 

isa6X9 or 7X8 matrix over GF(13). 

Exercises 15 

15.1 

15.2 

15.3 

15.4 

15.5 
15.6 

15.7 

Consider the matrix 

16251 

A=/]143 3 6 

15515 

over GF(7). Check that every square submatrix of A is 
non-singular. Hence write down generator matrices for 

[8, 3] and [8, 5] MDS codes over GF(7). 
Show that if max, (7, q)=q+1, then max,,._,(q¢+2- 
r,qv=qrtil. 
Suppose g =2",h>1. Assuming known results about 
max, (7, q) for r <4, show that max,-;(¢—1, q)=q +2. 
Given that GF(8)= {0, a,=1, a5, a@3,...,4@,}, write 

down a parity-check matrix for an [n, n — 7, 8]-code over 
GF(8) with n = max, (7, 8). 
Prove that max,,, (r+ 1, q) S max, (7, g) +1. 
Use Theorem 13.6 to find (a) the weight enumerator of 
an [8, 3, 6]-code over GF(7) and (b) the weight enumera- 
tor of an [8,5, 4]-code over GF(7). Check your answers 
by using the formulae (15.13). 
For each integer k =2, specify an [n, k,n —k + 1]-code 
over GF(11) having n as large as possible.





Concluding remarks, related topics, 
1 6 and further reading 

  

The main aims of this final chapter are to review the progress 
made in the earlier chapters and to mention some related topics, 
with suggestions for further reading. 

The treatment presented in the book has been motivated 

mainly by two recurring themes: 

(1) the problem of finding codes which are optimal in some 
sense; 

(2) the problem of decoding such codes efficiently. 

This has led to a rich interplay with several well-established 

branches of mathematics, notably algebra, combinatorics, and 

geometry. 
With regard to optimal codes, the main emphasis has been on 

finding values of A,(n,d), the largest size M of an (n, M, d)- 
code over an alphabet of gq letters. jn the case of binary codes, 
we gave in Table 2.4 the state of knowledge regarding values of 
A,(n,d) for small n and d. We now consider this table again 
(Table 16.1), for d<5, in order to indicate those places in the 
text where results have been proved. 

Remarks 16.2 (1) All of the bounds in Table 16.1 have been 
proved in the text or exercises with the exceptions of (i) the 
upper bounds obtained by linear programming methods and (ii) 
the lower bounds for d=3 and n=9, 10, and 11. A rather 

complicated construction of an (11, 144,3)-code was given by 
Golay (1954). Successive shortenings of this code give codes with 
parameters (10, 72, 3), (9, 38, 3) and (8, 20, 3). For a long time it 

was believed that the (9,38, 3)-code was optimal, but recently 
Best (1980) found a (9, 40, 3)-code (despite a publication of 1959 
which claimed that 39 was an upper bound on A,(9, 3)!). 

(2) It is conjectured that the Plotkin bound is always attained 
in the range dSn=<2d+1. Indeed it has been shown by 
Levenshtein (1964) that there exist codes which meet the Plotkin
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Table 16.1 

Values of A,(n, d) 

n d=3 d=5 

3 R 2 P — 
4 R* 2 P — 

5 SH 4 P R 2 P 
6 SH 8 P R* 2 P 
7 H 16 S R** 2 P 
8 G 20 L, E, 4 P 

9 B 40 EB; SD 6 P 
10 G 72-79 L SD 12 P 
11 G 144-158 E, D 24 P 
12 SH 256 L, SNR 32 L, 
13 SH 512 E, SNR 64 E, 
14 SH 1024 EB, SNR 128 E, 
15 H 2048 S NR 256 EB, 
16 Ey 2560-3276 L, NR* 256-340 L,     
  

Key to Table 16.1 

Lower Bounds 
If C is a given code, then: 
Cr 

SC 

Qe
 
Is
 

oe
s 

NR: 

denotes the code obtained from C by adding an extra zero 

coordinate, 

denotes a code obtained by shortening C, possibly more 
than once, i.e. use FE; (below) in the form A,(n —1,d)= 

5A,(n ’ d). 

repetition code (Example 1.11). 
Hamming code (Theorem 8.2). 
Best (1980). 
Golay (1954); for alternative constructions see 

MacWilliams and Sloane (1977, Chapter 2, §7). A 
(20, 8, 3)-code is also constructed in Exercise 2.16. 
a (u| u+v)-construction (see Exercise 2.18). 
see Exercise 2.8. 

constructed from a Hadamard design (Exercise 2.12). 
Nordstrom—Robinson code (Exercise 9.9). 

Upper Bounds 
P: Plotkin bound (Exercise 2.22).
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Key to Table 16.1 (Contd.) 

S: | sphere-packing bound (Theorem 2.16). 
L: linear programming bound (L,: see Best et al. (1978) or 

MacWilliams and Sloane (1977); L,: see Best (1980)). 
E,: A,(n,d)<2A,(n — 1, d) (Exercise 2.2). 

  

bound provided certain Hadamard matrices of order m <n exist, 
for m =0 (mod 4). [A Hadamard matrix of order m is an m X m 
matrix of +1s and —1s such that HH’ = ml (over the field of real 
numbers). It is easy to associate a Hadamard design with a 
Hadamard matrix and we have already seen how such designs 
give rise to optimal codes (see Exercises 2.15 and 2.24)]. An 
introduction to Hadamard configurations may be found in 
Anderson (1974). A proof of Levenshtein’s theorem may be 
found in Chapter 2 of MacWilliams and Sloane (1977). It is also a 
well-known conjecture that Hadamard matrices of order m exist 
for all positive integers m =0 (mod 4). This conjecture is known 

to be true for m <264 and so the Plotkin bound is indeed tight 
for n = 264 (in the range 2d +12=n). 

(3) Values of A,(n, d) found in the text but outside the range 
of Table 16.1 include: 

A,(23, 7) = 4096 (Theorem 11.3 or 12.20) 

A(n, 3) =2"~-", whenever n = 2’ — 1 (Corollary 8.7). 

As well as considering optimal binary codes, much attention 

has also been given in this text to optimal g-ary codes for general 
q. For example: in Chapter 8 we showed that, for a prime power 
q, A,(n,3)=q"" for any n of the form (g’—1)/(g—1); in 
Chapter 9 we showed that A,(11, 5) = 3°; in Chapter 10 we found 
the values of A,(4,3) for general gq; and in Chapter 15 we 
showed that A,(n,d)=q"~“t' if q is a prime power and 
d=xn<xqtl. 

Finally, the problem of finding optimal linear codes over 
GF(q) was considered in Chapters 14 and 15. 

A topic not covered in this text is that of asymptotic bounds, 

applicable when n is large. However, much research has been 
devoted to closing the gap between the best-known asymptotic 
lower and upper bounds, which are currently an asymptotic
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version of the Gilbert-Varshamov lower bound (cf. Theorem 
8.10) and an upper bound, obtained by linear programming 
methods, due to McEliece et al. (1977). Good accounts of this 

topic may be found in MacWilliams and Sloane (1977) and van 
Lint (1982). 

We now give brief descriptions of some types of code not 
previously discussed in this text. 

Burst-error correcting codes 

The codes we have considered to date are designed to correct 

random errors (e.g. for a binary symmetric channel). It often 
happens that we need a code for a channel which does not have 
random errors but which has errors in bursts, i.e. several errors 

close together. There are some linear cyclic codes which are well 

adapted for burst-error correcting, two important families being 

Reed-Solomon codes and Fire codes. An alternative procedure is 
to scramble the order in which the digits are transmitted, the 

scrambling occurring over a length of several blocks. Then at the 

receiving end the order is changed back to the original sequence. 
This change-back will break up any bursts of errors, leaving 

errors scattered in a pseudo-random way over several blocks, so 

that they fall within the capacity of random-error correcting 
codes. The interleaving of codes is one way of carrying out this 
procedure. 

For a good account of burst-error correcting codes, see 
Peterson and Weldon (1972) or Dornhoff and Hohn (1978). 

Convolutional codes 

Convolutional codes are powerful error-correcting codes which 
were introduced by Elias in 1955. They are unlike the codes we 

have already considered in that message symbols are not broken 

up into blocks for encoding. Instead check digits are interleaved 
within a long stream of information digits. For example, for rate 
3, one might have the information input x,x,x3--- encoded as 

X4X4X2X7X4X3..., Where each check digit x; is a function of 

X4,X2,...,X; which is found by means of a feed-back shift 

register. The decoding is done one digit at a time using the 

previously received and corrected digits.
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Mathematicians tend to be less interested in convolutional 
codes because the mathematica] theory is nothing like as well 
developed as for block codes. Convolutional codes are also 
intrinsically more difficult. Despite this, such codes have been 

extensively used in practice. For example, NASA has been using 

convolutional codes in deep-space applications since 1977 (from 
1969 to 1976, NASA’s Mariner-class spacecraft had used a 
Reed-Muller (32, 6]-block code, as mentioned in Chapter 1). 

Chapters on convolutional codes are included in the books by 
Blahut (1983), McEliece (1977), Peterson and Weldon (1972), 
and van Lint (1982). 

Cryptographic codes 

Cryptographic codes have little in common with error-correcting 
codes, for their aim is the concealment of information. The last 

decade has seen an explosion of interest in such codes following 
the invention of the concept of the public-key cipher system by 

Diffie and Hellman (1976). Such a system makes use of a 
one-way trapdoor function. This is an encrypting function which 
has an inverse decrypting function; but if only the encrypting 
function is known, it is computationally infeasible to discover the 
decrypting function. This means that a person R can publish his 
encrypting algorithm (e.g. in a directory) so that any member of 
the public can send messages to R in complete secrecy, for only 
R knows his own decrypting algorithm. Such a_ public-key 
system thus overcomes the weakness of a traditional cipher 
system which requires the secret delivery of a ‘key’ in advance of 

sending a secret message. 

Rivest et al. (1978) found an elegant way to implement the 
Diffie-Hellman system by using prime numbers and a simple 
consequence of Fermat’s theorem (Exercise 16.1). Their method 
relies on the facts that 

(a) there are computer algorithms for testing primality which 
are extremely fast (e.g. a few seconds for a 100-digit number), 
while 

(b) all known algorithms for factorizing composite numbers 

are extremely slow (e.g. if is a 200-digit number obtained by 
multiplying two 100-digit prime numbers, the fastest of today’s
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computers, using the best-known algorithm, would take millions 

of years to find the prime factors of 7). 

THE RIVEST-SHAMIR-ADLEMAN (R-S-A) 
CRYPTOSYSTEM 

Let us assume that all messages are encoded as large decimal 
numbers (e.g. via A = 01, B =02,..., Z =26). The purpose here 
is not to encrypt the message but merely to get it in the numeric 
form necessary for encryption. 

A subscriber R chooses two large prime numbers p and q, each 

about 100 digits long, and calculates n = pq. He then finds two 

numbers s and ¢ such that 

st =1(mod (p — 1)(q - 1)), 

i.e. st=r(p —1)(q —1) +1, for some integer r. 
R publishes the numbers 7 and s but keeps the numbers p, q, 

and t secret. He also publishes the encryption algorithm, which is 
simply: 

‘encipher a message number x as y = x* (modn)’. 

To decipher the received message y, R simply calculates 
y'(modn). This gives the original message x because, using 
Exercise 16.1, we have 

yi =x =x'P-DG-Dt1= y (mod n). 

Remarks (i) A long message number must be broken into 
blocks, so that each block represents a number smaller than n. 
The blocks are then enciphered separately. 

(ii) Even if m is an enormous number, say 200 digits, a 
message can be enciphered or deciphered very efficiently, using 
less than one second of computing time. 

(iii) A subscriber R can construct (privately) his key numbers 
P, qd, ", s and ¢t very quickly with a computer. It takes a few 

seconds to generate a pair of random prime numbers p and gq, 
each having about 100 digits. Then, for a random choice of s, the 

Euclidean algorithm provides a very fast method of calculating ¢ 
such that st = 1 (mod (p — 1)(q —1)). 

(iv) The deciphering procedure is secret because ¢ is known 
only to R. To find ¢ from n and s requires knowledge of p and q.
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This in turn requires factorizing n, which we have already 
remarked to be computationally infeasible (by known methods). 

An illustration of an R-S—A cryptosystem in which p and q 
are small prime numbers, so that the code may easily be broken, 
is given in Exercise 16.2. 

Interesting expository articles on cryptographic codes are 
Gardner (1977) and Sloane (1981). For a comprehensive treat- 
ment of cipher systems in general, Beker and Piper (1982) is 

recommended. 

Variable-length source codes 

In order to illustrate the ideas here, let us consider the problem 
of transmitting English text over a binary symmetric channel as 

quickly and as reliably as possible. This can be carried out by 
applying two codes in series. First a source code encodes the text 
into a long string of binary digits. For reliability, this binary data 
is then broken into blocks of length k and each block encoded 
into a codeword of length m by means of an error-correcting 

[n, k]-code. Decoding of the two codes is, of course, done in 
reverse order. 

In choosing the source code we are not concerned with the 

error-correcting aspects. Our main aim is to encode the source 
alphabet as economically as possible. If letters in the source 
alphabet occur with differing frequencies, we can best do this by 

using a variable-length source code. 
We now give three examples of source codes for our alphabet 

of 27 letters (‘A’ to ‘Z’ and ‘space’). 

ASCII CODE (AMERICAN STANDARD CODE FOR 
INFORMATION INTERCHANGE) 

Computers are usually constructed internally to handle only Os 
and 1s. A source code is therefore required to translate each 
typed character into a binary vector. A common such code is the 
ASCII code. This has 128 = 2’ codewords representing letters of 
the alphabet (upper and lower case), digits 0 to 9, and assorted 
other symbols and instructions. Each codeword is a binary vector 
of length 7 together with an overall parity check (so that any
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ASCII Morse Huffman 

Character Probability code code code 

space 0.185 9 01000001 space 000 
A 0.064 2 10000010 01 0100 
B 0.012 7 10000100 1000 0111111 

C 0.021 8 10000111 1010 11111 
D 0.031 7 10001000 100 01011 
E 0.103 1 10001011 0 101 
F 0.020 8 10001101 0010 001100 

G 0.015 2 10001110 110 011101 
H 0.046 7 10010000 0000 1110 
I 0.057 5 10010011 00 1000 

J 0.000 8 10010101 0111 0111001110 
K 0.004 9 10010110 101 01110010 
L 0.032 1 10011001 0100 01010 
M 0.019 8 10011010 11 001101 
N 0.057 4 10011100 10 1001 
O 0.063 2 10011111 111 0110 

P 0.015 2 10100000 0110 011110 
Q 0.000 8 10100011 1101 0111001101 

R 0.048 4 10100101 010 1101 
S 0.051 4 10100110 000 1100 
T 0.079 6 10101001 1 0010 
U 0.022 8 10101010 001 11110 

V 0.008 3 10101100 0001 0111000 
W 0.0175 10101111 011 001110 
x 0.001 3 10110001 1001 0111001100 
Y 0.016 4 10110010 1011 001111 

Z 0.000 5 10110100 1100 0111001111 
  

Fig. 16.3. Codes for the English alphabet. 

single error may be detected). In other words, the ASCII code 
is the binary even-weight code of length 8. Those codewords 

representing upper case letters are shown in Fig. 16.3. 
For other applications, a fixed-length code such as the ASCII 

code may be uneconomical. 

MORSE CODE 

This is a variable-length code which takes advantage of the high 
frequency of occurrence of some letters, such as ‘E’, by making 
their codewords short, while very infrequent letters, such as ‘Q’,
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are represented by longer codewords. The Morse code is given in 
Fig. 16.3, where the Os may be read as dots and the 1s as dashes. 
Although the Morse code may appear to be a binary code, it is in 
fact a ternary code, having the symbols dot, dash, and space. A 

space has to be left between letters (and at least two spaces 

between words), for otherwise the code cannot be uniquely 
decoded; for example, the message 01000110 can mean either 
LEG or RUN unless spaces are inserted between letters. This 
drawback means that the Morse code is rarely used nowadays. 

HUFFMAN CODES 

Suppose a source alphabet has N letters a,,a,,...,a), and that 

the probability of occurrence of a; is p;. Then if each a; 1s 

encoded into a word of length /;, the average word-length of the 

code is )™, pil. 
Huffman coding is an ingenious way of matching codewords to 

source symbols so that 

(a) the code is uniquely decodable, i.e. when any string of 
source symbols has been encoded into a string of binary 

digits, it is always clear where one codeword ends and the 
next one begins, and 

(b) the average word-length is as small as possible. 

While omitting the details of how Huffman codes may be 
constructed, we give an example of such a code for the English 
alphabet in Fig. 16.3. From the given probabilities, it may be 
calculated that the average word length is 4.1195. This gives a 
saving of nearly 18% on the best fixed-length code we could have 

used, in which all codewords have length 5 (any fixed-length code 
is clearly uniquely decodable). The reason why a Huffman code 
is uniquely decodable is that no codeword is a prefix of any other 
codeword, i.e. if x;x.-+:.x, is any codeword, then there is no 

codeword of the form xX,X.°-:X,X,41°°°*X, for any m>n. 

For a good account of Huffman source coding, the reader is 
referred to McEliece (1977), Jones (1979), or Hamming (1980). 

Exercises 16 

16.1 Suppose p and q are distinct prime numbers. Prove that 
for any integers x and r, 

x’@—-N4G-)+1 = x (mod pq)
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16.2 

16.3 

16.4 

16.5 

A first course in coding theory 

(Hint: Use Fermat’s theorem: ‘if x#0(modp), then 
x?-!=1(mod p)’ (cf. Exercise 3.8).] 
Suppose a person’s published encryption algorithm reads: 
‘Convert your message to a large decimal number via the 

code A=01, B=02,..., Z =26, space = 00. Break this 

number into blocks of length 4. Encipher each block x 
into the 4-digit block y = x*®° (mod 2813)’. 

Find the decryption algorithm for the above code and 

hence (with the aid of a pocket calculator) decipher the 

following intercepted message: 

2385 0593 0736 0209 1671 2595 2026 2418. 

In the R-S—A cryptosystem, explain how messages can 

be ‘signed’ to prevent forgeries. 
Consider a source alphabet a@,, a5, a3, a, with probabil- 

ities of occurrence 4, 4, 3, ¢ respectively. Which of the 
following source codes are (a) uniquely decodable, (b) 
prefix-free? 

  

  

Source Code Code Code Code 

letter DP: A B C D 

ay 0.5 0 00 0 0 

a, 0.25 1 01 10 01 

a, 0.125 00 10 110 011 

a, 0.125 11 11 111 0111 
  

For those codes which are uniquely decodable, calculate 
the average word-length. 
Use the Huffman code of Fig. 16.3 to decode the message 

00101110101000101100101011.



  

Solutions to exercises 

  

  

Chapter 1 

1.1 

1.2 
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|Remark: Pictures have actually been transmitted from 
Earth into outer space in this way. Two large prime 

numbers were used so that a much more detailed picture 

could be sent. It is reasonable to expect that a civilized 

recipient of such a message would be able to work out how 
to reconstruct the picture, since factorization of a number 

into prime factors is a property independent of language 

or notation. | 
If either OOOOO or 11111 1s sent, then the received vector 

will be decoded as the codeword sent if and only if two or 
fewer errors occur. So the probability that the received 

vector 1S corrected to the codeword sent is 

(1-p)y+50—p)*p+ Jaa — p)°p* 

= 1-—10p*+ 15p* — 6p”, 

whence the word error probability is 10p° — 15p* + 6p?.
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1.3 

1.4 

1.5 

A first course in coding theory 

Suppose d(C) = 4. If a received vector y has distance <1 
from some codeword, we decode as that codeword. If y 

has distance at least 2 from every codeword, we seek 

re-transmission. This scheme guarantees the simultaneous 
correction of single errors and detection of double errors. 
Note that C could also be used either as a single-error- 

correcting code or as a triple-error-detecting code, but not 

both simultaneously (why not?). 
|(16 — 1)/2] =7. 
Suppose C is a q-ary (3, M,2)-code. Then the M ordered 
pairs obtained by deleting the third coordinate of each 
codeword must be distinct (if two such pairs were identi- 
cal, then the corresponding codewords of C would differ 
only in the third position, contradicting d(C)=2). So 
M <q’. 

A 3-ary (3, 9, 2)-code is 

00 0 101 202 

O11 112 21 0. 

022 120 221 

More generally it is easily shown that {(a,b,a+ 
b)| (a,b) €(F,)’}, where F, = {0,1,...,q—1} anda+b 
is calculated modulo q, is a qg-ary (3, q*, 2)-code. 

Chapter 2 

2.1 

2.2 

(i) {000000, 111111}. (ii) (4%). (iii) Add overall parity- 
check to (F)°. (iv) Not possible. Suppose C were a 
(5,3, 4)-code. There is no loss in assuming 00000 is a 
codeword. But then the other two codewords each have at 

least four 1s, which implies that they differ in at most 2 
places. (v) Not possible. A binary (8, M, 3)-code satisfies 
the sphere-packing bound, M(1+8)<2°, which implies 
that M <= 28. 

Suppose C is a binary (n, M,d)-code. Partition the code- 
words of C into two disjoint sets, those ending with a 0 
and those ending with a 1. One or other of these sets 
contains at least M/2 of the codewords. Take this set and 

delete the last coordinate to get an (n — 1, =M/2, d)-code
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2.3 
2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

2.10 

(this is called a shortened code of C). Taking M = A,(n, d) 
gives A,(n — 1, d) =4A,(n, d). 
Immediate from Exercise 1.5. 
Let C be the code obtained from (F)""' by adding an 
overall parity check. Every codeword of C has even weight 
and so CC E,,. Since every vector of E,, may be obtained 
from one in (F,)""' in this way, we have C=E,. Thus 
|E, | =|(B)""1|=2"-1. (6B)! has minimum distance 1, 
and so E, has minimum distance 2. 

50 10 5 

(3)/('5) >” 
Let C be a binary (n, M, d)-code with d even. Delete a 
suitable coordinate from all codewords to get an (n — 
1, M,d —1)-code and then add an overall parity check (cf. 
proof of Theorem 2.7). 
Any such code is equivalent to {00---0,11---100-- - 0}, 
where the number of 1s in the second word is one of 
1,2,...,n. 

Suppose C is a binary (8, M,5)-code, with M = 4. We may 
assume O00000000eEC. At most one codeword has 
weight = 6, for two words of weight = 6 could differ in at 
most four places. So C has at least two codewords of 
weight 5. Up to equivalence, we may assume these are 
11111000 and 11000111. It is now easy to show that the 

only further codeword possible is 00111111. 
Let C be an (n, g, n)-code over F, = {1,2,...,q} and let 
A be a matrix whose rows are the codewords of C. Since 
d(C)=n, the g elements of any column of A must be 
distinct and so must be precisely the symbols 1,2,...,q 
in some order. For each column of A a suitable permuta- 
tion of the symbols may be performed to give 

2... 

A=** : 
q 4 ce G. 

Apply either the sphere-packing bound or an argument 
similar to that of Exercise 1.5 (i.e. the words formed by 
deleting the last two coordinates must be distinct).
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2.11 

2.12 

2.13 

2.14 

2.15 

2.16 

2.17 

A first course in coding theory 

By Corollary 2.8 and Example 2.23, we have 

A,(8, 4) = A,(7, 3) = 16. 

Take as codewords the 11 rows of an incidence matrix of 

the design, the 11 vectors obtained by interchanging all Os 
and 1s, the all-O vector, and the all-1 vector. The minimum 

distance may be shown to be 5 by an argument similar to 
that used in Example 2.23. A binary (11, M,5)-code 
satisfies 11 

mit +114 ( ) | <2", 

and so M 21/67, which implies M = 30. 
(i) Following the hint: for each of the u choices of x 

there are r choices of B: for each of the b choices of 
B there are k choices of x. So the number of pairs in 
the set is ur = bk. 

(ii) Let y be a fixed point. Count in two ways the number 
of ordered pairs in the set 

{(x, B): x is a point, B is a block, x ¥y and both 

x andy eB}. 

(i) Condition (ii) of the previous exercise is not satisfied. 
(ii) Immediate from Theorem 2.27(i). 
Easy generalization of the argument of Example 2.23, 
Exercise 2.12. 
Straightforward check (just 34 comparisons of codewords 
are required: 11010000 with 19 others, then 11100100 with 
11 others, then 10101010 with 3 others, and finally 0 with 
1). 
Since (u, | u, +v,) =(u,|u,+v>) if and only if (uw, v,) = 
(u,, V2), the number of codewords in C; is M,M). 

Let a=(u|u+v) and b=(u’|u’'+v’) be distinct code- 
words of C3. 

If v=v’, then d(a, b) = 2d(u, u’) = 2d,. 

If v#v’, then d(a, b) =d(u, u’) + d(u+v,u’'+v’) 

=w(utu’)+w(u+vt+u'+t+v’) 

=d(u+u’,0)+d(u+u',v+v’) 

2 d(0,v+Vv’) (by the triangle 
inequality) 

= d(v, v’)=d).
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2.18 

2.19 

2.20 

2.21 

2.22 

2.23 

2.24 

Let C, be the (8, 128, 2)-code E, (see Exercise 2.4) and let 
C, be the (8, 20, 3)-code of Exercise 2.16. Apply Exercise 
2.17 to get a (16, 2560, 3)-code. 
C, = (4, 8, 2)-code, C, = (4, 2, 4)-code > 

C; = (8, 16, 4)-code. 

C, = (8, 16, 4)-code, C, = (8, 2, 8)-code > 

C; = (16, 32, 8)-code. 

C, = (16, 32, 8)-code, C, = (16, 2, 16)-code > 
C; = (32, 64, 16)-code. 

Since w(x; + x;) = d(x;, x;) 2d, we have 

w(T)=4M(M — 1)d (1) 

Suppose 3M — t, codewords have 1 in the jth position, so 
that 3M + ¢, codewords have 0 in the jth position. Then the 
number of 1s in the jth column of T is 

GM —t)3M +t) =@M) — 
_ {0 )? if M is even 

~~ l@M)?-1 if M is odd, 

since t7 = (3)° if M is odd. Hence 

iM?n if M is even —j4 

w(T)s Gar 1)n if Mis odd 2) 

(1) and (2) give the required result. 
If A,(n, d) is even, the result is immediate. If A,(n, d) is 
odd, use [2x] <2|x| +1. 

The result gives A,(9,5)=<10 and A,(10,6)=<6. The 
former bound can be improved via Corollary 2.8 and the 

latter bound; thus A,(9, 5) = A,(10, 6) <6. 
(i) was shown in Exercise 2.21. (ii) follows from (i) and 
Corollary 2.8. (iii) By (i), A,(2d—-—1,d)<2d. Hence 
A,(2d, d)<4d by Exercise 2.2. (iv) follows from (iii) and 
Corollary 2.8. 
The (32, 64, 16)-code is optimal by Exercise 2.22 (ili). The 
generalization follows from the Remark in Exercise 2.19 
and Exercise 2.22 (ili). 
Immediate from Exercises 2.15 and 2.22(iii).
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Chapter 3 

3.1 270 = (23)°2? = 1°92 = 4 (mod 7). 
3100 = (3*)* = 1° = 1 (mod 10). 

3.2 x=0, 1,2 or 3(mod4)>x*=0, 1, 0 or 1 (mod 4) 

3.3 

3.4 
3.5 
3.6 

3.7 

3.8 

3.9 

respectively. Hence x* + y*=0, 1 or 2 (mod 4), but 
1839 = 3 (mod 4). 
x: 123456 123 45 6789 10 11 12 

x-':14523 6 17910811253 4 612 

(i) 2, (ii) 7. 
Yes, No, No. 

(i) 1-04+2-14+3-34+4-14+5x+6-94+7-1+ 
8-3+9-94+10-9=0 (mod 11)5>5x+7=0> 
5x =45x=4-57'=4-953. 

(ii) The number is 00232xy800, where we see that each 
of x, y is O, 8 or 9. For the number to be an ISBN, we 

require 6x + 7y =7, i.e. y=1+7x. Nowx=O05y= 

lx=8>y=2;x=9>D>y=9. Sox=y=9. 

Suppose x; -°*-:Xj9 1s the codeword sent and y, --- yi) the 

vector received. If a single error has occurred of mag- 
nitude a, then V2, y, = (X72, x;) + a =a (mod 11). So the 
error is detected. Unlike the ISBN code, any transposition 
of two digits will go undetected, for then )) y; = Yi x; =0. 
la,2a,...,(p—1)a are distinct (modp), for 
ia = ja (mod p) >i =] (mod p) (multiplying both sides by 
a~'). So la,2a,...,(p—1)a are congruent to the ele- 
ments 1,2,...,p—1 in  some_- order. Hence 

la-2a:--::: (p —-1)a=1-2----(p—1)(modp) and so 
(p — 1)! a?-*=(p—1)! (mod p). Multiplying through by 
the inverse of (p — 1)! gives a?~'=1 (mod p). 
a+0 > gcd(a, p)=1. By the Euclidean algorithm, 1 
=ax+py for some integers x and y. Hence 

ax =1(mod p) and so x =a™. 31=1-23+8; 23=2-8+ 
7;8=1-7+1. So1=8-1-7=3-8—23=3:-31-4- 23. 
Hence —4-23=1 (mod 31) and so 237! = —4=27. 
2, 3, 2 (other answers possible). 
Let 1 be the multiplicative identity element of F. The field 
elements ni for n =1,2,3,... cannot all be distinct, since 

F is finite. So /1=m1 for some 0<m<lJ, whence (/— 
m)1=0. This implies that n1 = 0 for some integer n. Let p
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3.12 

3.13 

3.14 

be the smallest positive integer such that p1 = 0. Then p is 
prime because p = rs, with 1<r,s<p, >pl=(ri)(sl)= 
0 >r1=0 or s1=0 (by Lemma 3.1 (ii)), contradicting 
the minimality of p. Finally, if we F, then pw=a+t 
aA+t---+ta=a(1+1+-::+1)=a(p1)=a0=0. 

(") =p!/i!(p—i)!. If ie {1,2,...,p—1}, then the nu- 

merator p! is divisible by p, whereas the denominator 

i! (p —i)! is not. Hence 6 =(0 (mod p). By the binomial 

theorem, p 

(a+bp=> (\aibe~ =a? + b? (mod p) 
i=0 

For the last part, use induction on a. 

In the product, each element x will cancel with its inverse, 

except when x =x7'. Now x =x '@x*=106(4-1)(a+ 
1)=0@x=1o0rx=-1. 

(i) =v >@-yPax-y?=0> 
x-y=05x=y. 

So the squares of the non-zero elements are precisely 
the distinct non-zero elements (in some order). 

(ii) Hint: show that if a #0, then x* =a has either 2 or 0 
solutions. 

Chapter 4 

4.1 

4.2 

Show that this single condition holds if and only if both 
conditions (1) and (2) of Theorem 4.1 hold. 
Suppose x,yéF,, so that w(x) and w(y) are even 
numbers. By Lemma 2.6, w(x+y)=w(x)+w/(y)- 
2w(x My) = an even number. So x+ ye E, and hence E,, is 
a subspace. By Exercise 2.4, |E,,| =2"~' and so dim (E,,) = 
n—1. 

The rows of 
100-:-:--01 

010---01 

00:---011 

form a basis (other answers are possible).
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4.3 

4.4 

4.5 

4.6 

4.7 

A first course in coding theory 

(1, 2,0, 1) =2(0,1,2,1)+(,0,2,2). So {(0,1,2,1), 
(1,0, 2, 2)} is a basis and dim (C) =2. 
Show that {u, v} is linearly dependent if and only if either 
u Or Vv is zero or V is a Scalar multiple of u. 
In each case show that the new set is still both a spanning 
set and a linearly independent set. 
In F, let n denote the element 1+1+---+1(n1s). Then 
the subset {0,1,...,p-—1} of F may be regarded as the 
field GF(p), since addition and multiplication are carried 
out modulo p. It follows at once that F is a vector space 
over GF(p), all the axioms following immediately from 

the field properties of F and GF(p). If the vector space F 
over GF(p) has dimension h, then it follows, as in the 
proof of Theorem 4.3, that |F| =p”. 
We omit the proof of the general result here, as it will be 
given in Chapter 14. The points of P, are {000, 100}, 
{000, 010}, {000, 001}, {000, 110}, {000, 101}, {000, 011}, 
and {000,111}. The lines are {000, 100, 010, 110}, 

{000, 100, 001, 101}, etc. That this 7-point plane is the 

same as that of Example 2.19 may be seen from Fig. 14.8, 
wherein a vector x stands for the point {0, x}. 

Chapter 5 

5.1 
5.2 

5.3 

5.4 

No; 24 is not a power of 2. 
[n,n —1, 2], 1 |. 

1 
| . 

l 
We use Theorem 4.1. 

x,yeCS>(x+y)H’ =xH' +yH’ =0+0=0 

>xtyec. 

xe C and ae GF(q)>(ax)H’' =a(xH’)=a0=0 

>axeC. 

If x= (x1,...,%,) €C, let X=(x1,...,%,, U7, x;), where 
», x; is calculated modulo 2. Then C = {&|x € C}. Suppose
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5.5 

5.6 

C is linear, so that x, ye C>x+yeC. Then 

i GeCSetH=(n ty, oo nt Ya Dut Dy) 

=(x1 +5, a in +I D Gr +y)| 

=(x+y)e€. 

So C is linear. 
Adding an overall parity check to the code of Example 

5.6(ii) gives an [8, 4, 4]-code with generator matrix 

10001011 

01001110 

00101101 

0001011 Iu. 

Let Ev and Od denote the subsets of C consisting of words 
of even and odd weights respectively. Suppose Ev #C. 

Then there exists a codeword, y say, of odd weight. Now 
the set Eu + y = {x+y|xe Ev} is contained in C (since C 
is linear). But all words in Ev + y are odd (via w(x + y) = 
w(x) + w(y) — 2w(xN y), cf. Lemma 2.6), and so we have 

Eu +ycOQOd. Hence |Ev|=|Eu +y|<|Od|. Also Od+ 

yc Ev and so |Od| <|Ev|. Hence |Ev| = |Od| = 3 |CI. 

00000 d(C,) = minimum non- 
11110 zero weight 

‘00111 =3 
11001 

0000000 

1001101=x, 

0101011=x, 

001011 1=x; 

= 110011 0=x,+% d(Cy) = 4. 
101101 0=x,+x; 

011110 0=x,+x; 

111000 1=x,+x,+x;
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5.7 

5.8 

5.9 

5.10 

A first course in coding theory 

0000 d(C) = minimum non-zero 
1011=x, weight = 3. 

Since 9[1 + 2 - 4] = 3*, the sphere- 
O112=x, packing bound is attained and so C 
202 2=2x, is perfect. 

022 1=2x, 

112 0=x,+x, 

221 0=2x, + 2x, 

120 2=x,+2x, 

2101=2x,+x, 

By Table 2.4, A,(8, 3) =20, A,(8, 4) = 16, and A,(8, 5) = 
4. By Exercise 5.4(ii), there exists a linear [8, 4, 4]-code 
and so B,(8, 4) = 16. There certainly exists also an [8, 4, 3]- 

code and so, since B,(8, 3) is a power of 2 and is = 20, we 

have B,(8, 3) = 16. The code constructed in Exercise 2.8 is 
linear and so B,(8, 5) = 4. 
. 01 

011 

First get the required permutation of the rows of A by 
permuting the rows of G. The J, part will have been 
disturbed but can be restored by a suitable permutation of 
the first K columns. 

generates a [3, 2, 2]-code over GF(q). 

5.11 F1 000011 

0100101 

001011 0}. 

0001111 
No, Yes (by Exercise 5.10). 

5.12 (uju+v)+('|u'+v’)=(4+u |ut+u'+viv eC, 
Thus C; is linear. So B,(2d, d) = 4d by Exercises 2.19 and 
2.23 since, at each step, C, and C, are linear. 

Chapter 6 

6.1 C,: |00 01 10 11 C,: |000 101 011 110 
    

    
  

    100 001 111 010 
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6.2 

6.3 

6.4 

6.5 

  

C3: |00000 10110 01011 11101 

10000 00110 11011 01101 

01000 11110 00011 10101 

00100 10010 01111 11001 

00010 10100 01001 11111 

00001 10111 01010 11100 

11000 01110 10011 00101 

10001 00111 11010 01100 

(i) 11101, 01011 
(ii) e.g. (a) 00000 received as 11000, (b) 00000 received 

as 10100. 

P core( Cy) — (1 — py? = 0.9801 

Pcon(C2) = (1 — p)? + pl — p)? = (1 — p)* = 0.9801 
Pecorr(C3) = (1 — p)?(1 — 2p* + 3p) = 0.9992 
There is no point in using C, for error correction since 

Po 1S the same as for C,, while C, takes 50% longer than 

C, to transmit messages. C, reduces the word error rate 
considerably. 

Pundetec(C) = 2p(1 — Pp) + p? = 0.0199 

Pundetec(C2) = 3p*(1 — p) = 0.000297 
Punaetee(Cs) = 2p*(1 — p)’ + (1 — p)p* = 0.00000197. 
(i) No, communication is impossible. 

(ii) Yes, interchange all Os and 1s in the received vector 
before decoding. 

The coset leaders include all vectors of weight =¢ and a,., 

vectors of weight ¢+ 1. So the probability that the error 
vector is not a coset leader is 

    
  

(, . , 7 a1 |p — p)"~*~* + terms involving p‘*? 

and higher powers. Hence 

n 
P... = (, 1 y — O41 fo for small p. 

Straightforward calculation, with A; = A,=7, A;=1.
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6.6 Since the code is perfect 3-error-correcting, we have 

23 23 
A =1, a, = 23, «,=(“5), a= ( ;) 

a,=0 for 1=4. 

= (1 — p)?°(1540p? + 210p? + 20p + 1) ~ 0.99992 
P corr 

if p = 0.01. 
So P,,,= 0.00008 [Remark: A fair approximation is ob- 

. . . 23\ 0 2 
tained by using Exercise 6.4; namely ( 4 )10 , 

6.7 Suppose x = x,x.-:+ +X, 1S sent and that the received vector 
is decoded as x’ = x;x5---x,. Then 

SP Prob (x; # x)) Pomp = 

a 
| 

m
l
e
 

Ss) f(e) Prob (e is error vector), 
eeV(n,2) 

where f(e)=number of incorrect information symbols 
after decoding if the error vector is e, and so 

Pomp = : >» E:P,. 

6.8 Pyymb = 5[P, + P3 + 2P,] 

= 3[{2(1 — p)*p* + (1 —p)p* + p*} 

+ {(1—p)’?p + (1 — p)’p? + 2(1 — p)p?} 

+ 2{3(1 — p)*p* + (1 — p)p*}}. 

6.9 Note that P.,.= 52, P. Since F, =0 and 1<E<k for all 
122, we have 

1 2k 1 2* 2k 

pa <7 d EP SD P, 
k i= k ix i=2 

and hence the result.
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Chapter 7 

7.1 
n n 

u:v=» ujv;= >, UU; =V°U. 
i=1 i=1 

(Au+puv)-w= > (Au; + WU;)W, = > (Au;w; + LUW,) 
j=1 i=1 i= 

=A> uw,t+ pu >, uw, =Au-wt uvew. 
i=1 i=1 

7.2 The standard form generator matrix of FE, was found in 
Exercise 5.2. It follows from this and Theorem 7.6 that a 
generator matrix for FE; is [11---1]. So E,= {00 
-++Q,11---1}, which is the repetition code of length n. 

7.3 Find the syndrome S(y) of the received vector y. If 
S(y) =90, then y is a codeword. If S(y) #0, then y is not a 
codeword and we have detected errors. 

7.4 Suppose x is the codeword sent and y=x-+e is received, 
where e= e,;e,---e, is the error vector. Then S(y) = (x + 
e)H’ =xH’ +eH' =eH’. So S(y)’ =He’ =%_, eH, 
where H; is the jth column of H. 

7.5 Since the code is perfect, the coset leaders are precisely 

those vectors of weight <1. G is in the form [J,| A] and so 

1110100 

H =[-A?™ | L] =| 1101010 

1011001 

We use this to construct the syndrome look-up table: 
  

Syndrome coset leader 
  

000 0000000 
111 1000000 

110 0100000 

101 0010000 
011 0001000 

100 0000100 

010 0000010 
001 0000001 
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7.6 

7.7 

7.8 

7.9 

7.10 
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S$ (0000011) = 011; decode as 

0000011 — 0001000 = 0001011. 

The other three vectors are decoded as 1111111, 0100110, 

0010101. 
1022 1110 

(a) lonat. >) Lot: 
(c) A listing of the codewords reveals that d(C) =3. So 

the 9 vectors of weight = 1 are all coset leaders. Since 
the total number of coset leaders = 3*/37=9, the 
vectors of weight =1 are precisely the coset leaders 
(in fact the code is perfect). The look-up table is now 
easily constructed, and the given vectors decoded as 

0121, 1201, 2220. 
0612960587. 
Let C be a q-ary (10, M, 3)-code. Consider the M vectors 
of length 8 obtained by deleting the last two coordinates. 
These vectors must be distinct (or the corresponding 
vectors of C would be distance <2 apart). So M <q? (this 
is a particular case of the Singleton bound, Theorem 
10.17). In particular, A,.(10,3)<10°, A,,(10,3)<11%. 
[Remark: The sphere-packing bound is not as good in 
these cases.] We have A,,(10, 3) = 11° because the linear 
[10, 8]-code over GF(11) having 

n=[t | 

~ £123--- 10 

is an 11-ary (10, 11%, 3)-code. 
For example, 0 and 0505000000 are codewords only 
distance 2 apart. 
Let e, =0---01---1 (Gls). We require a code such that 
@o,€;,..-,@7 are all in different cosets (we could then 

decode via syndrome decoding with the es as coset 
leaders). This requires that 27/2* = 8, i.e. k <4, and so the 
rate cannot be greater than 4. To achieve rate 4+ we would 

need a 3 X7 parity-check matrix H such that eH’ #e,H7 
if iA~j, i.e. such that (e, —e;)H’ 40 for all i4j. Note that 
each e; — e; is a vector of the form 0---Q01---10---0.A
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7.11 

suitable H is 

0001000 

0100010 | 

1010101 

If e; — e; is orthogonal to the first row of H, then all its 1s 

are to the left or to the right of centre. If also e; —e; is 

orthogonal to the second row of H, then there can only be 

one 1, in one of the Ist, 3rd, 5th or 7th positions. But then 

e; —e; is not orthogonal to the third row of H. (Note: a 
similar code of maximum possible rate may be constructed 
of any given length.) 
If C is an [n, k]-code, then C is an [n + 1, k]-code and so a 
parity-check matrix of C is an (n + 1—k) X (n +1) matrix 
whose rows form a linearly independent set of codewords 
in C“. It is easily seen that H is such a matrix. 

Chapter 8 

8.1 

8.2 
8.3 

8.4 

000000011111111 

000111100001111 

011001100110011 | 

101010101010101 

H= 

When y is received, calculate yH’; this gives the binary 
representation of the assumed error position. If two or 
more errors have occurred, then y will be decoded as a 
codeword different from that sent. 
11100001, 01111000, at least two errors, 00110011. 

From the standard form generator matrix (see Example 
5.6(i1)), write down a parity-check matrix (via Theorem 

7.6) and observe that its columns are the non-zero vectors 
of V(3, 2). 
For C, a&=1 and a,=n, giving P,,,(C)=(1-p)” ‘((1- 
p+np). Because every vector in V(n, 2) has distance = 1 
from a codeword of C, it follows that every vector in 
V(n+1,2) has distance<2 from a codeword of C. 
Consequently, the coset leaders for C all have weight <2
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8.5 

8.6 
8.7 

8.8 

8.9 

8.10 
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and sO @=1, a@,=n+1, @ =n, which leads to 

Poor(C) =(1—p)*'(1-—p+np). [Remark: This result 
will be generalized to any perfect binary code in Exercise 
9.1.] 

01111111 
; 34106, 10561360. (i) |po1s346 “| 35234106, 10561360 

ii) f000000111111111 
011111000001111 
1012340123401 23 

1111111111111111 
1222223333344444 
4012340123401234 

Sood 1110 0 0 

3 20 0 1)’ 100 2 1 0 

02010 1 

[For the code C,, a column operation (e.g. interchange of 

columns 3 and 4) is necessary during the reduction of G to 
a standard form of G’. So, after applying Theorem 7.6 to 
get a parity check matrix H’ corresponding to G’, the 
above column operation must be reversed in H’ in order 

to get a parity-check matrix for the original code C).] 

d(C,) =2, d(C) =3. 

(other answers possible) 

  

For example, 
100111 

H={010123 

001134 

has the property that any three columns form a linearly 

independent subset of V(3,5), and so H is the parity- 
check matrix of a [6, 3, 4]-code. 

k R,= == (2-1 -ni(2-1)=1-5— > lasr> 

As in solution to Exercise 7.8, A,(n,3)<q"*. Now 
suppose g is a prime power. Then the bound is achieved 

forn=q+1 by Ham (2, qg) and for n<q +1 by shorten- 
ings of Ham (2, q).
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8.11 f(t)=least value of M for which there exists a ternary 
code of length ¢t with M codewords such that any vector in 
V(t, 3) has distance <1 from at least one codeword. For 
such a code the spheres of radius 1 about codewords must 
‘cover’ the whole space V(t, 3) and so a lower bound on M 

is given by M(1 + 2t) = 3° (1) 
(This is the sphere-packing bound, but with the inequality 
reversed. ) 
(a) (i) If t=(3"—1)/2 then (1) gives f(t) =3'-". The 

bound is achieved by a perfect [t,t—r, 3]- 
Hamming code over GF(3). So, for t = (3” — 1)/ 
2, we have f(t) =3'7’. 

(ii) Generating Ham (2, 3) by ont 

‘0’ by ‘X’, we get the entry 

X 1X2 xX 

and replacing 

x
 Kx 

XK 

hm 
me 

>
 

N
W
R
 eR

 

(b) The lower bound f(5) = 23 is given by (1). A crude 
upper bound is f(5) <27. This is obtained by com- 
bining each of the 9 bets for t=4 with each of the 
forecasts 1, 2, X for the 5th match. The surprising 
result proved by Kamps and van Lint is that one 
cannot do better than this. 

8.12 Let C be an (n, M, d)-code with M = A,(n, d). Then there 
is no vector in V(n,q) with distance =d from all code- 
words in C. Thus the spheres of radius d—1 about 
codewords cover V(n,q), whence the result. (The proof 
shows that a code meeting the lower bound may be 
constructed simply by starting with any word and then 

successively adding new words which have distance at least 
d from the words already chosen). 

Chapter 9 

9.1 Suppose C is a perfect ¢t-error-correcting [n, k]-code, so 
that t S()-2 ai
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9.2 

9.3 
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As in Exercise 8.4, for C, 

n+1 
a = (" ) for 0<i<r, 

l 

and 

f +1 
O,.,=2"t1k#- >) (” 

i=0 l 

n .(n f n 

=2->(")-3(F)-2G y=): 2, l 2, Ly i= t 

Hence 

, , n 
pil —p)yrri + ( pa — py" 

t 

nh . . 
"\p'( —p)r*t 

+> (, ” ‘pia _ pyitinig ("\p“*a _ py 

= (1 — p)Poor(C) 

+ (p Peon(C) —(")p*( = py") 

+("\pa -py 
= Peore(C). 

It is easily checked that u- v= 0 for any rows u and v of 
G. It follows that Gj, = G,,. Now show that G,, has no 

codeword of weight <5 by imitating the proof of Lemma 3 
in the proof of Theorem 9.3. 
If H =[I;| A] has no 4 columns linearly dependent, then 
each column of A has at most one zero, and no two 

columns of A can have a zero entry in common (or their 
sum or difference would be a linear combination of two of 
the columns of J). The hint now follows easily. It then 
follows that in each of the undecided columns of A, two of 

the *s are 2s and the other * is a 1. The remaining columns 

may now be completed, one at a time, in a unique way (up 

to equivalence).



Solutions to exercises 229 

9.4 

9.5 

9.6 

9.7 

9.8 

9.9 

(a) Suppose y has weight 4. Since G,; is perfect, there is 
a unique codeword x such that d(x, y) <3, and so 
1<w(x) $7. But every non-zero codeword has we- 
ight =7 and so w(x) =7, which implies that x covers 
y. The uniqueness of x as a codeword having 
distance =3 from y ensures that x is the only code- 
word of weight 7 which covers y. Counting in two 

ways the number of pairs in the set {(x,y)|x is a 
codeword of weight 7, y is a vector of weight 4, x 

7 23 
covers y} gives A,- ()) = ( 4 

(b) Let P,,..., P3 be points and B,, ... , Bys3 be blocks, 

and define P; € B; if and only if the (7, j)th entry of M@ 
is 1. 

(a) Straightforward generalization of the argument of 
Exercise 9.4. 

(b) Let X be the set of codewords of weight 2¢+1 
beginning with 7 ls. Let Y be the set of vectors in 
V(n, 2) of weight ¢+ 1 beginning with i 1s. As in the 
proof of Theorem 9.7, counting in two ways the 
number of pairs in the set {(x,y)|xeX,yeY,x 

. n-l 2t+1-i 
covers y}_ gives (ro) = ( i411 i |X|, 

whence the result. 

We must show that an arbitrary vector y= y,y.-- + yoq of 

weight 5 in V(24, 2) is covered by a unique codeword of 

weight 8 in Gy,. Certainly there cannot be two such 
codewords or their distance apart would be <6, a con- 
tradiction. If y.,=0, then since G); is perfect, G23 contains 

a codeword x having distance at most 3 from y,y,- - * yo3. 

So x has weight 7 or 8; in either case w(X)=8 and X 
covers y. If y.4=1, then y,-- - y23 is covered by a unique 

codeword x of weight 7 in G,3 and then X covers y. 
- 3 2’-1 

By a now familiar argument, A; - ( = ( ) 

a Ga(e 
(i) Assume 1111111100---O0¢G,,. Let G be a gener- 

ator matrix of G,,. Since d(G,,) = 8 and since Gy, is 

self-dual, it follows by Theorem 8.4 that any 7 

- 1, whence A, = 253.
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(ii) 

(iii) 

A first course in coding theory 

columns of G are linearly independent. In particular, 
the first 7 columns are linearly independent and so 
by elementary row operations, G may be trans- 
formed to a matrix having its first 7 columns as 
shown. Since 1111111100 - - - 0 is orthogonal to every 
row of G, the eighth column of G must also be as 
shown. 

Let the rows of G be r,,h%,...,¥yp. The set of 

codewords with one of the given starts is given by 
adding to 0, or to one of ,1r,...,9r,, all vectors of 

the form ))j2,A,r;, A; € GF(2). So for each of the 8 
starts, there are 2° codewords. 

Immediate, since d(G,,)=8, and any two of the 
chosen 256 codewords differ in at most 2 of the first 

8 positions. 
(iv) Immediate. 

9.10 Shorten N,; thrice (cf. Exercise 2.2) to get a (12, 232, 5)- 
code. 

9.11 (i) Let the rows of G be r,,1r,...,9r¢. To show that G, 

(il) 

(iii) 

Chapter 10 

generates an [8, 5, 3]-code, it is enough to show that 
if x is any non-zero codeword of C generated by 
r,,13,.-..,¥.¢, then x has at least three 1s in the last 8 

positions. If x had at most two ls in the last 8 
positions, then either x or x +r, would be a code- 
word of C having weight = 4, a contradiction. 

If there existed a [15,8,5]-code, then it could be 

twice shortened to give a [13, 6, 5]-code, contrary to 
the result of part (i). 
Not immediately, for in this case G, would generate 
a [7,4, 3]-code, and a code with these parameters 

does exist. However, further considerations do lead 

to a contradiction; see, e.g., van Lint (1982), §4.4. 

10.1 Use Theorem 10.8 with uw =1, v=2. 

10.2 In Theorem 10.10, take 

012 012 

A,=B,= 12 O}, A,=B,= 201 . 

201 120
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10.3. Using Theorem 10.19, a set of three MOLS of order 4 1s 

Olab QOabil Obla 

10ba 1baQ0 la0Oob 
= = A2= 

‘"~ab0l A2= 1016 > a1b0 

balQO b 10a b0al 

10.4 Ham (2, q)* has generator matrix 

i 111 1 

1 Ay A, A, Ag—id 

where GF(q) = {Ao, A1,---»Ag-1}- Clearly no non-zero 
linear combination of these two rows can have more than 

one zero and so Ham (2, q)~ has minimum distance gq. If 
we list the codewords generated by 

Soo aa 

101234 

and then apply Theorem 10.20, we get 

01234 01234 

12340 23401 

A,=23401 A,=4012 3 

34012 12340 

40123 34012 

01234 01234 

34012 40123 

A,;=12340 Azy=3 4012 

40123 23401 

23401 12340 

5 | 3456789 10 Mt 12 
~ f(n): 23.4167 8 2-9 10 2-11 

n.13 14 15 1617 18 19 20 
f(n): 12 2-13 2-14 15 16 2-17 18 3*-19 

* Take three MOLS of order 4 and three MOLS of 

order 5 and generalize the construction of Theorem 

10.10 to get 3 MOLS of order 20.
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10.6 The existence of 3 MOLS of order 20 (see prevjous 
exercise) gives the existence of a (5,400, 4)-code, by 
Theorem 10.20. Since this code achieves the Singleton 
bound, we have A,,(5, 4) = 400. 

      

Chapter 11 

11.1 0204006910. 

11.2 

i 479 1 
1081 2 

977 9 

C= fs 218 10 
197 4 

E 767 1 

11.3 0000001000, 1005000003. 

11.4 Identify the letters A,B,...,Z with the field elements 

0,1,...,25 of GF(29). Let H be the parity-check matrix 

11 1 1 

12 3 8 

1 2? 3? 8? 

1 23 3° 8° 

for an (8, 29*, 5)-code over GF(29). Let C be the 26-ary 
code obtained by taking only those codewords consisting 

of symbols 0,1,..., 25, 1.e. 

C= fxr --xg/x,;€{0,1,..., 25}, 

8 

S) ix; = 0 (mod 29), j = 0, 1, 2, 3. 
i=1 

A probabilistic estimate for the number of codewords in 

8 

C is 29* x (55) = 295,253 (it happens that this is a re- 

markably good estimate).
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Alternatively we could base our code on 26 of the 

elements of GF(27). This would give us more codewords, 
but the arithmetic involved in the decoding would be less 
straightforward. 

11.5 o(6)=|][(1-X0)> 0'(6)=-> xX, [] 0-X) 
i=1 t=1 it 

> 0'(Xj1) = —X, [] (-%:x7"). 
i=1 
it¢j 

The result now follows from equation (11.10). 

37618945210 

11.6 H= 54327654321) 
There exists a codeword (%),...,%1) of weight 2 with 
non-zero entries x; and x; if and only if H; = —(x,/x;)H,, 
where H; denotes the ith column of H. In order to 

determine which columns of H are scalar multiples of 

others, calculate the ratios h,/h, for each column 

i hy} 
They are 5, 10, 2, 6, 9, 7, 3, 4, 8, 6, 0. It follows that a 

double-error vector will go undetected if and only if it is 
of the form (0, 0, 0, A, 0, 0, 0, 0, 0, —A, 0) for some 

Ae {1,2,..., 10}. 

Chapter 12 

12.1 (i) No, No (not linear), (11) No, No, (iii) No, Yes, (iv) 
Yes, provided the alphabet is a field, (v) Yes, (vi) No, 
No, (vii) Yes. 

  

22 + |O0 1 x 1+x 1 +x has no inverse 
0/0 0 0 0 
1 0 1 x 1+x 

x |O x 1 1+x 

1+x|O 1+x 1+x 0 
12.3 Just imitate the proof of Theorem 3.5. 
12.4 If f(x) had an even number of non-zero coefficients, then 

we would have f(1) = 0 and so x — 1 would be a factor of 

f(x).
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12.5 Because p(x) =f(x)g(x) > deg p(x) = deg f(x) + deg g(x) 

> either deg f(x) <4deg p(x) or 

deg g(x) <2deg p(x). 
12.6 x, 1+x, l+x4+x7, 14+x4+x°, 1+x%*%4+%7, 1t+x4+x74, 

12.7 

12.8 

12.9 

12.10 

12.11 

12.12 

12.13 

12.14 

12.15 

1+x°4+x4, 1+x4+%x74+2%3+x*. (Using Lemma 12.3 and 
Exercise 12.4, it easily follows that the irreducible 

polynomials of degrees 2, 3 and 4 are precisely those with 
constant coefficient 1 and with an odd number of 

non-zero coefficients, with the exception of (1+x+ 

x”)? =1+x7+x*). For example, F[x]/(1+x+x°) is a 
field of order 8. 
(i) By Exercise 3.12, (x? —1)=(x—-1). 

(ii) From Fermat’s theorem (Exercise 3.8) and Lemma 
12.3(i), it follows that x?~*=(x — 1) —-2)---(«- 

(p — 1)). 
By Lemma 12.3(i), x°-—1=(« —1)(x*4+x°4+2%7+x +1), 
and the second factor is irreducible by Exercise 12.6. So 
the only cyclic codes are {0}, (x —1) (the even weight 
code), (x*+x°+x7+x+1) (the repetition code), and 
the whole of V(5, 2). 
Yes, (x — 1)g(x). 
2°. (In a factor of x” — 1, each of the ¢ distinct irreducible 
factors may or may not be present). 
(1) = whole space 
(x —1) =even weight code E, 

(x3 +x+1) 
(x? +x°+1) 
((x —1)(x?+%x+1)) yan are even weight subcodes of 
((x — 1)(x? + x* + 1))J Ham (3, 2) (alternatively, both are 

duals of Ham (3, 2)) 
((x3 +x + 1)(4° +x7+1)) =repetition code of length 7 
(x7—1) = {0}. 

x8—1=(x4- 14741) = -1D(e + D074 12 4+%4+ 
2)(x* + 2x + 2), 32. 
Straightforward application of Theorem 12.15. 
Not in general; Yes, C+ is obtained from (h(x)) by 
writing the codewords backwards. 

Let g(x) be the generator polynomial of C. Then g(x) isa 

}ooth are Hamming codes Ham (3, 2)
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divisor of (x —1)(x""'+---+x+4+1). If g(x) is a mul- 
tiple of x —1, then so is every codeword, and so every 
codeword has even weight. So if there exists a codeword 

of odd weight, then x”"'+---+x +1 must be a multiple 
of g(x), i.e. Le C. The reverse implication is immediate 

since w(1) is odd. 
12.16 Let g,,...,g, denote the rows of G. Let x denote a 

12.17 

12.18 

cyclic shift of x. Ifx =). A,g, eC, then x = ) Ag, EC. 

Check that 2°,2',...,2° are precisely the distinct non- 
zero elements of GF(11). Hence the code of Example 
7.12 is equivalent to the code C with parity-check matrix 

111 1 
5° 9 2°29} 

(29, 29,24)... 28) = 29(29, 21, , 29) 

Now 

and so C~ is cyclic by Exercise 12.16. Therefore C is 
cyclic by Theorem 12.15(ii). The result for Example 11.3 
follows similarly. 
The subcode D of G,3 consisting of codewords of even 

weight is ((x —1)g,(x)). Thus D* = (g,(x)) = (gi)) 
and so D< D~. Hence u- v= 0 if u and v are codewords 
of even weight. Since 1é€G,3, any codeword of odd 
weight is of the form u+ 1 for some codeword u of even 
weight. If u+1,v+1 are codewords of odd weight, then 
(ut+1)-(v+1)=u-v+1-v+u-1+1-1=0+0+0+1 
=]. Also if u+1 has odd weight and v has even weight, 
then (u+1)-v=u-v+1-v=0+0=0. Now let x,y be 
any codewords of G3 and let X, y be the corresponding 
codewords of G,,. Then X*-J~=x-y+Xx4y2,=0, since 

x-y=1&x,y both have odd weight Ox 24 = yxy =1. So 

G,, ¢ Gd, and since dim (G,,) = dim (G3,) = 12, it follows 
that Gy, = G54. 

12.19 x*+x+1 is a generator polynomial for Ham (4, 2). 
Dividing x'° — 1 by x* +x + 1 (e.g. by long division) gives 
A(x)=xV+x8 4x74 P+ x3 4x2 4+4 41. 

12.20 Ham(r,2) is a [2’—1,2’-—r-—1,3]-code. By Exercise 
12.9, ((x — 1)g(x)) is the subcode of codewords of even



236 A first course in coding theory 

weight. This subcode must have dimension 2’ — r — 2 and 
minimum distance 4. 

12.21 It is enough to show that no vector of the form 

(xitx yt +x)=a4+ L(x' +x) 

is a codeword of ((x +1)g(x)) (then all vectors of the 
form 0, x‘, and x'+.x'*! will be coset leaders). But 
(x + 1)(x' + x’) is a codeword> (x + 1)(x' + x’) is a mul- 
tiple of (x + 1)g(x)>x' +x! is a multiple of g(x) >x' + 
x/ € (g(x)), contradicting d((g(x))) =3. 

12.22 (van Lint 1982, solution to Exercise 6.11.7). Show that 
every non-zero codeword of C has exactly one zero 

entry. Show also that there is exactly one codeword 
C= CoC, °°" Cy, such that co = Cig 41) = 1 [Consider the q? 
ordered pairs (Co, C(g+1)2) aS ¢ runs over all codewords of 

C]. If C were cyclic, then a cyclic shift of ¢ through 
(q + 1)/2 positions would yield the same codeword c, but 
this is not possible if ¢ contains only one zero entry. Thus 
C is not cyclic and so Ham (2, q), being the dual code of 
C, is not cyclic by Theorem 12.15(ii). 

Chapter 13 

13.1 The mapping x—>x+1 gives a one-to-one correspon- 

dence between the set of codewords of weight i and the 
set of codewords of weight n —1. 

13.2 (b) C*~ is generated by 

tod 

11101) 

and so C+ = {00000, 10010, 11101, 01111}. Hence 
W c(z) =14+ 27+ 22%. So 

Welz) =40 + 2) We) 
=4(1+z)§+(1+z)(1—z)?+2(1 +z) -z)"] 
=14+3z74+3z3+2°. 

  

13.3 C* is generated by 

SO oortioL 

110011101)
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13.4 

13.5 

13.6 

13.7 

13.8 

13.9 

and so We.(z)=1+3z°. Hence W(z)=4[(1 +z)? + 
3(1 + z)*(1—z)®], whence Ayp=1, A,=0, A,=4[36+ 
3(3 + 15 — 18)]=9, A,=27. The sum of all the rows of 
the generator matrix of C is 1. By Exercise 13.1, 
A; =Aog_;, and so 2(Ayg+A,+A,+A3+A,4) =2’, which 
gives A, = 27. Hence 

W(z) = 14+ 927 + 2727 + 27z* + 27z° + 27z° +: 927+ 2’. 

Adding an overall parity check increases each odd weight 

by 1 and leaves each even weight unchanged. So 
W e(z) =14+ 14244 28. 
Let C be Ham (r, 2). Then by Theorem 13.10, We.i(z) = 
1+ (2’-1)z7 =14+nz"*?, So 

1 
W-(z) = 5 [(d+z)? +n — z)@tP2(1 + z)@-D?] 

- [i +z)" +n — 27)"-9(1 —z)). 

We(z) = de[(1 + 2) + 15(1 — 2°)" — z)]. (1) 
Ajp=1, A, =A,=0 (either from (1) or because we know 
d(C) = 3), A; =35, A, = 105. 
The coefficient of z’ in the right-hand side is 4A,(1+ 
(—1)') =A, if i is even, 0 if i is odd. 
If W(z) =» A,z', then 

We(z) = » (A; + Aj_1)2’ 
ieven 

ieven j odd 

=4[W-(z) + We(—z)] + 4z[We(z) — We(-z)]. 

From equation (13.12), 

  

1 n 

Pundetee(C) = (1 — p)” anak (1 + 7) 

«Woi((1-725)/(+755)) 
—(1-p)’ 

: = 5g Wes(l ~ 2p) ~ (1 -p)
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13.10 

13.11 

13.12 

13.13 

A first course in coding theory 

By Lemmas 1, 3, and 4 in the proof of Theorem 9.3, Gy, 

is self-dual, A; #0 only if i is divisible by 4, and A,=0. 

Since 1 € G,,, it follows from Exercise 13.1 that A) =0 

and that A,=A sg. So W(z)=1+Agz?+ Appz? + 
Agz'©+z4. Applying the MacWilliams identity and 
equating coefficients of W-(z) and W..(z) (since C is 
self-dual) gives: 2+2Ag+A,.=2" (constant 
coefficients) 0=0 (coefficients of z) and 138+ 10A, — 
3A, = 0 (coefficients of z*). Solving these gives Ag = 759, 
Ay = 2576. 
Gy, 1S self-dual by Exercise 12.18. By Lemma 12.19, 

codewords of G,; of even weight have weight divisible by 

4. Since 1 (=g,(x)g2(x)) € G3, it follows by Exercise 13.1 
that any odd weight of a codeword of G,, is congruent to 

3 (mod 4). Consequently, all codewords of G,, have 
weight divisible by 4. Also A,=0, since d(G,4) = 8. The 
result now follows exactly as in Exercise 13.10. 

By Exercise 13.10 (or 13.11) the only A,js in W,(z) 
which can be non-zero are Ag, Az, Ag, Ay, Ap, Ais, Are 

and A,3;. Also Az+Ag=759 and A,,+A,.=2576. By 

Exercise 9.4(a), A7=253 and so A, = 506. Since 1€ G,,, 

we have Ay, = Aj) = 1288, A,, = 506, and Aj, = 253. So 

W o,,(Z) = 1+ 25327 + 506z8 + 1288z"! 

+ 1288z!* + 506z! + 253z'6 + 273. 

Straightforward, though tedious, calculation. In the 
MacWilliams identity, equate the coefficients of 1, z* and 
z* to get three equations in three unknowns A,, Ag and 
Aj, which may be solved to give A,=0, Ag=759, 
Ay = 2576. 

Chapter 14 

14.1 No; Exercises 9.9 and 9.11 show that A,(15, 5)=256, 

14.2 
B,(15, 5) = 128. 
(i) V(n,q) is an [n, n, 1]-code. 

(ii) C= {xyx.--+-x, | xy +x.4+---+x,=0} is an 
[n,n —1,2]-code. Since there cannot exist an 
[n, n, 2]-code, we have B,(n, 2) =q""'.
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14.3 By Theorem 14.4, there exists an [n,n — r, 3]-code over 

14.4 

14.5 

14.6 

14.7 

14.8 

14.9 

GF(q)@n <(q"—1)/(q —1) 

@r2log, {n(q—-1)+1} 

<on—r<n—log, {n(g—1)+1}. 

So B,(n,3)=4 [n—log, {n(q~-1)+1}] 

Let t be the number of planes in which a given line L lies. 

Counting in two ways the number of members of the set 
{(P,)|P is a point not on L, x is a plane containing 
both L and P} gives q?+q*+q+1-(q¢+1)=1t(q7+ 
qg+1-—(q+1)], whence t=q +1. 
The Golay code G,, is a ternary [11, 6, 5]-code, showing 
that max, (5,3) 211. If max, (5,3) were =12, then there 
would exist a ternary [12,7,5]-code, contradicting the 
sphere-packing bound. 
Use Theorem 14.18. Since 2 is a non-square in GF(5), 
the 4x26 matrix whose columns are (0,0,0,1)’? and 
(x,y,1,x?-—2y’)’, for (x,y)eV(2,5), is the parity- 
check matrix of a [26, 22, 4]-code. 
(i) By Theorem 14.16, a plane can contain g + 2 points 

of a cap. 

(ii) By Exercise 3.14, if g is even, then every element of 
GF(q) is a square. [Remark: a version of Theorem 
14.18 does hold for qg even, with an elliptic quadric 
specified in a different way]. 

Let H be the parity-check matrix whose columns form the 
(q? + 1)-cap defined in (14.19). Label the column (0001)? 
by © and each column (x, y,1,x*—by’)’ by (x,y). A 
decoding algorithm is the following. Calculate the syn- 
drome s=yH!’ =s,5,535,. If s=0, assume no errors. If 

s#0, calculate 6 =s,5,-—s5*+bs3. If 0=0 and s,=0, 
assume an error of magnitude s, in position ~. If d=0 
and s,#0, assume an error of magnitude s3 in position 

(s,/s3, 52/83). If 9#0, then there are =2 errors. 
If {x,,X>,..., Xi} is a 10-cap in PG(3, 3) then the set 

{(x, | 0), (x2 | 0), oe , (X10 | 0), (Xi | 1), (% | 1),..., 

1 
is a 20-cap in PG(4, 3). (X10 | 1)}
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14.10 For a given t-space, the number of ways of choosing an 

extra point of PG(m, q) to generate a (t + 1)-space is 

qth —] git} —] 

q-1 q-1 
  

Many of these extra points generate the same (t+ 1)- 
space, and so we must divide by 

qt? _ 1 q'*} _ 1 

q-1 q-1 
? 

the number of points in such a (tf + 1)-space not lying in 
the given f-space. 
(i) 40, (ii) 13, (iii) 4. 

14.11 (Bruen and Hirschfeld 1978). Suppose K is a cap in 
PG(5,3). We shall show that |K|<56. We may assume 
some plane a meets K in four points, for otherwise 
|K|<42 (two points on some line L plus at most one 
further point on each of the 40 planes through L). 
Similarly, we may assume some 3-space contains at least 

8 points of K, for otherwise |K| <4+3- 13 = 43. Finally, 
since max; (5, 3) = 20, we have |K| <8 + 4(20 — 8) = 56. 

14.12 B,(n,4)=3"-* for 5<n <10, 3”-° for 11<n <20, 3”"°° 
for 21<n <56, 3"-’ for 57<n <112. (It is not known 
whether B;(113, 4) = 3! or 3'°°.) 

Chapter 15 

15.1 [J,| A], [| AZ]. 
15.2 Suppose, for a contradiction, that max,,,_,(q+2- 

r,q)2qt+2. Then there exists a [g+2,r,q+3-r]- 
code whose dual is a [¢ +2,q +2-—r,r+1]-code, con- 
tradicting max, (7r,g)=q +1. 

15.3. max,_,(q —1,q)2q+2 by Corollary 15.9. If there ex- 

isted a [q + 3, 4, q|-code over GF(q), then its dual would 
be a [¢q +3, q —1, 5]-code, contrary to max,(4,q)=q + 

1.
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15.4 t 1111] 
1 a, a3 

H= L 1 a; a3}. 

: 1 dg ag | 

15.5 Let H=[A | J] be a standard form parity-check matrix for 
an [n,n—r,r+1]-code with n=max,(r,q). Deleting 
the last row and last column of H gives a matrix whose 
columns form an (n—1,r—1)-set in V(r—1,q) and so 
n—1<max,_,(7—1,q). 

15.6 Let C be an [8, 3, 6]-code over GF(7). By Corollary 15.7, 
C+ is an [8,5,4]-code. Let W-(z)=NA,z' and 
W -:(z) =X B,z'. By Theorem 13.6, 

8 

r(1 +> Bz’) = (1+ 6z)®+ A,(1 — z)°(1 + 6z)” 

~ + A,(1—z)"(1+6z)+Ag(1—z)® (1) 
Equating coefficients of 1, z and z* and solving for A,, A; 
and Ag, gives W.(z) =1+ 168z° + 48z’ + 126z°. We.(z) 
is now easily obtained directly from (1). 

15.7 For2s<k 11, 

1 1 1 10 

1 2 :++ 10 00 

1 2%! .-- 10*' 01 

generates a [12, k, 13 — k]-code. 
For k = 11, 1 | generates a [k + 1, k, 2]-code. 

1 
Le |: 

1 

Chapter 16 

16.1 If x#O(modp), then x"@~DG-Dt1= (Ply G-by = x 
(mod p) by Fermat’s theorem. If x =O(modp), then 
x’?-D@-)+1 = y (mod p) holds trivially. So p is a factor
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16.2 
16.3 

16.4 

16.5 

A first course in coding theory 

of x"?~)@-)*1 — yx for any integer x. Similarly g is also a 
factor for any integer x. Since p and q are distinct prime 
numbers, pq is a factor of x”?~V@~+! — y for any x. 
LEAVING TOMORROW. 
When the subscriber R (of the text) has encrypted a 
message he is to send to S (using S’s encryption 

algorithm) he signs it with a further message z which he 
sends in the form z‘ (mod 7) (i.e. via R’s own decrypting 
algorithm). The receiver S verifies the signature by 
calculating (z‘)’ = z (modzn). Only R could have sent the 
message, since only R knows ¢. 

B, C and D are uniquely decodable. B and C are 
prefix-free. Average word-lengths of B, C and D are 2, 

1.75 and 1.875, respectively. [Remark: It is a conse- 
quence of Shannon’s ‘source coding theorem’ (see, e.g., 
Jones 1979) that the ‘source entropy’, —X?_, p; log) p; 
(=1.75 here), gives the smallest possible average word 
length. So the above code C here is best possible. | 
THE END.
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Algebraic coding theory is a new and rapidly developing 

subject, motivated by immediate practical applications 

but also fascinatingly rich in mathematical structure. It is 

not surprising that the subject is becoming increasingly 

taught in undergraduate courses in mathematics, 

engineering, and computer science. 

This book provides an elementary, yet rigorous, intro- 

duction to the theory of error-correcting codes. It is 

based on courses given by the author over several years 

to students ranging from second-year undergraduates to 

first-year postgraduates. 

The large number of exercises, all with solutions, makes 

the text highly suitable for self-learning. 

Raymond Hill's book...is very suitable for undergraduate 
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computing. In addition, it is ideal for anyone who wants 

a very clear introduction to the subject, together with an 

appreciation of its practical importance and use. 
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coding theory can be explained to second year 

mathematics students and to interested engineers or 

computer scientists. He has succeeded and is to be 

congratulated. 
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