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Abstract

We study several variants of single-pivot and multi-pivot Quicksort
algorithms and consider them as discrete probability problems. With
experimental mathematics, explicit expressions for expectations, vari-
ances and even higher moments of their numbers of comparisons and
swaps can be obtained. For some variants, Monte Carlo experiments
are performed, the numeric results are demonstrated and the scaled
limiting distribution is also discussed.

1 Introduction

A sorting algorithm is an algorithm that rearranges elements of a list in a
certain order, the most frequently used orders being numerical order and
lexicographical order. Sorting algorithms play a significant role in computer
science since efficient sorting is important for optimizing the efficiency of
other algorithms which require input data to be in sorted lists. In this paper,
our focus is Quicksort.
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Quicksort was developed by British computer scientist Tony Hoare in 1959
and published in 1961. It has been a commonly used algorithm for sorting
since then and is still widely used in industry.

The main idea for Quicksort is that we choose a pivot randomly and then
compare the other elements with the pivot, smaller elements being placed
on the left side of the pivot and larger elements on the right side of the
pivot. Then we recursively apply the same operation to the sublists obtained
from the partition step. As for the specific implementations, there can be
numerous variants, some of which are at least interesting from a theoretical
perspective despite its rare use in the real world.

It is well known that the worst-case performance of Quicksort is O(n2) and
the average performance is O(n log n). However, we are also interested in the
explicit closed-form expressions for the moments of Quicksort’s performance,
in terms of the number of comparisons and/or the number of swaps. In this
paper, only lists or arrays containing distinct elements are considered.

The paper is organized as follows. In section 2, we review related work on the
number of comparisons of 1-pivot Quicksort, whose methodology is essential
for further study. In section 3, the numbers of swaps of several variants
of 1-pivot Quicksort are considered. In section 4, we extend our study to
multi-pivot Quicksort. In section 5, the technique to obtain more moments
and the scaled limiting distribution are discussed. In the last section we dis-
cuss some potential improvements for Quicksort, summarize the main results
of this paper and make final remarks on the methodology of experimental
mathematics.

Accompanying Maple Package

This article is accompanied by Maple packages QuickSort.txt and Findrec.txt

available from the front of this article

http://sites.math.rutgers.edu/~yao/QuickSort.html .

QuickSort.txt is the main package of this paper and all procedures men-
tioned in the paper are from this package unless noted otherwise. Findrec.txt
is mainly used to find a recurrence relation of moments from the empirical
data.
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2 Related Work

In the masterpiece of Shalosh B. Ekhad and Doron Zeilberger [EZ1], they
managed to find the explicit expressions for expectation, variance and higher
moments of the number of comparisons of 1-pivot Quicksort with an ex-
perimental mathematics approach, which is also considered as some form of
“machine learning”. Here we will review the results they discover or redis-
cover.

Let Cn be the random variable “number of comparisons in Quicksort applied
to lists of length n”, n ≥ 0.

Theorem 2.1 ([KP], p.8, end of section 1.3; [GKP], Eq. (2.14), p. 29, and
other places)

E[Cn] = 2(n+ 1)Hn − 4n.

Here Hn are the Harmonic numbers

Hn :=
n∑

i=1

1

i
.

In following theorems, we introduce the notation

Hk(n) :=
n∑

i=1

1

ik
.

Theorem 2.2 (Knuth, [K], answer to Ex. 8(b) in section 6.2.2))

var[Cn] = n(7n+ 13) − 2 (n+ 1)H1(n)− 4 (n+ 1)2H2(n).

Its asymptotic expression is

(7 − 2

3
π2)n2 + (13− 2 ln(n)− 2 γ− 4/3 π2)n− 2 ln(n)− 2 γ− 2/3 π2 + o(1).

Theorem 2.3 The third moment about the mean of Cn is

−n(19n2+81n+104)+H1(n)(14n+14)+12 (n+1)2H2(n)+16 (n+1)3H3(n).
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It is asymptotic to

(−19+16 ζ(3))n3+(−81+2π2+48 ζ(3))n2+(−104+14 ln(n)+14 γ+4π2+48 ζ(3))n

+14 ln(n) + 14 γ + 2 π2 + 16 ζ(3) + o(1).

It follows that the limit of the scaled third moment (skewness) converges
to

−19 + 16 ζ(3)

(7− 2/3 π2)3/2
= 0.8548818671325885 . . . .

Theorem 2.4 The fourth moment about the mean of Cn is

1

9
n(2260n3 + 9658n2 + 15497n+ 11357)− 2 (n+ 1)(42n2 + 78n+ 77)H1(n)

+12 (n+1)2(H1(n))2+(−4 (42n2+78n+31)(n+1)2+48 (n+1)3H1(n))H2(n)

+48 (n+ 1)4(H2(n))2 − 96 (n+ 1)3H3(n)− 96 (n+ 1)4H4(n).

It is asymptotic to

(
2260

9
−28 π2+

4

15
π4)n4+(

9658

9
−84 ln(n)−84 γ+1/6 (−648+48 ln(n)+48 γ)π2+

16

15
π4−96 ζ(3))n3

+(
15497

9
−240 ln(n)−240 γ+12 (ln(n)+γ)2+1/6 (−916+144 ln(n)+144 γ)π2+8/5 π4−288 ζ(3))n2

+(
11357

9
−310 ln(n)−310 γ+24 (ln(n)+γ)2+1/6 (−560+144 ln(n)+144 γ)π2+

16

15
π4−288 ζ(3))n

−154 ln(n)−154 γ+12 (ln(n)+γ)2+1/6 (−124+48 ln(n)+48 γ)π2+
4

15
π4−96 ζ(3) + o(1) .

It follows that the limit of the scaled fourth moment (kurtosis) converges
to

2260
9
− 28π2 + 4

15
π4

(7− 2/3 π2)2
= 4.1781156382698542 . . . .

Results for higher moments, more precisely, up to the eighth moment are
also discovered and discussed by Shalosh B. Ekhad and Doron Zeilberger in
[EZ1].

Before this article, there are already human approaches to find the expecta-
tion and variance for the number of comparisons. Let cn = E[Cn], then since
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the pivot can be the k-th smallest element in the list (k = 1, 2, . . . , n), we
have the recurrence relation

cn =
1

n

n∑
k=1

((n−1)+ck−1+cn−k) = (n−1)+
1

n

n∑
k=1

(ck−1+cn−k) = (n−1)+
2

n

n∑
k=1

ck−1,

because the expected number of comparisons for the sublist before the pivot
is ck−1 and that for the sublist after the pivot is cn−k. From this recurrence
relation, the complicated human-generated manipulatorics is needed to rig-
orously derive the closed form. For the variance, the calculation is much
more complicated. For higher moments, we doubt that human approach is
realistic.

The experimental mathematics approach is more straightforward and more
powerful. For the expectation, a list of data can be obtained through the
recurrence relation and the initial condition. Then with an educated guess
that cn is a polynomial of degree one in both n and Hn, i.e.,

cn = a+ bn+ cHn + dnHn

where a, b, c, d are undetermined coefficients, we can solve for these coeffi-
cients by plugging sufficiently many n and cn in this equation.

For higher moments, there is a similar recurrence relation for the probability
generating function of Cn. With the probability generating function, a list of
data of any fixed moment can be obtained. Then with another appropriate
educated guess of the form of the higher moments, the explicit expression
follows.

In [EZ1], it is already discussed that this experimental mathematics approach
is actually rigorous by pointing out that this is a finite calculation and by
referring to results in [S1] and [S2].

3 Number of Swaps of 1-Pivot Quicksort

The performance of Quicksort depends on the number of swaps and compar-
isons performed. In reality, a swap usually takes more computing resources
than a comparison. The difficulty to study the number of swaps is that
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the number of swaps depends on how to implement the Quicksort algorithm
while the number of comparisons are the same despite the specific implemen-
tations.

Since only the number of comparisons is considered in [EZ1], the Quicksort
model in [EZ1] is that one picks the pivot randomly, compares each non-pivot
element with the pivot and then places them in one of the two new lists L1

and L2 where the former contains all elements smaller than the pivot and
the latter contains those greater than the pivot. Under this model there is
no swap, but a lot of memories are needed. For convenience, let’s call this
model Variant Nulla.

In this section, we consider the random variable, the number of swaps Xn,
in different Quicksort variants. Some of them may not be efficient or widely
used in industry, however, we treat them as an interesting problem and model
in permutation and discrete mathematics. Especially, in the first subsec-
tion, we also demonstrate our experimental mathematics approaches step by
step.

3.1 Variant I

The first variant is that we always choose the first (or equivalently, the last)
element in the list of length n as the pivot, then we compare the other
elements with the pivot. We compare the second element with the pivot
first. If it is greater than the pivot, it stays where it is, otherwise we put
it before the pivot and all the other elements including the pivot shift one
position to the right. Though this is somewhat different from the “traditional
swap”, we define this operation as a swap. Generally, every time we find an
element smaller than the pivot, we put it on the pivot’s current position and
the indexes of the pivot and all elements on the right of pivot plus one.

Hence, after n − 1 comparisons and some number of swaps, the partition is
achieved, i.e., all elements on the left of the pivot is smaller than the pivot
and all elements on the right of the pivot is greater than the pivot. The
difference between this variant and Variant Nulla is that this one does not
need to create new lists so that it saves memories.

Let Pn(t) be the probability generating function for the number of swaps,
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i.e.,

Pn(t) =
∞∑
k=0

P (Xn = k) tk,

where for only finitely many integers k, P (Xn = k) is nonzero.

We have the recurrence relation

Pn(t) =
1

n

n∑
k=1

Pk−1(t)Pn−k(t)tk−1,

with the initial condition P0(t) = P1(t) = 1 because for any fixed k ∈
{1, 2, . . . , n}, the probability that the pivot is the k-th smallest is 1

n
and

there are exactly k − 1 swaps when the pivot is the k-th smallest.

The Maple procedure SwapPQs(n,t) in the package Quicksort.txt, which
is the accompanying Maple package of the paper, implements the recurrence
of the probability generating function.

Recall that the r-th moment is given in terms of the probability generating
function

E[Xr
n] = (t

d

dt
)rPn(t) |t=1.

The moment about the mean

mr(n) := E[(Xn − cn)r],

can be easily derived from the raw moments {E[X l
n] | 1 ≤ l ≤ r}, using

the binomial theorem and linearity of expectation. Another way to get the
moment about the mean is by considering

mr(n) = (t
d

dt
)r(
Pn(t)

tcn
) |t=1.

Recall that

Hk(n) :=
n∑

i=1

1

ik
.

Our educated guess is that there exists a polynomial of r + 1 variables
Fr(x0, x1, . . . , xn) such that

mr(n) = Fr(n,H1(n), . . . , Hr(n)).
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With the Maple procedure QsMFn, we can easily obtain the following theo-
rems by just entering QsMFn(SwapPQs, t, n, Hn, r) where r represents the
moment you are interested in. When r = 1, it returns the explicit expression
for its mean rather than the trivial “first moment about the mean”.

Theorem 3.1.1 The expectation of the number of swaps of Quicksort for a
list of length n under Variant I

E[Xn] = (n+ 1)Hn − 2n.

Theorem 3.1.2 The variance of Xn is

2n(n+ 2)− (n+ 1)H1(n)− (n+ 1)2H2(n).

Theorem 3.1.3 The third moment about the mean of Xn is

−9

4
n(n+ 3)2 + (4n+ 4)H1(n) + 3(n+ 1)2H2(n) + 2(n+ 1)3H3(n).

Theorem 3.1.4 The fourth moment about the mean of Xn is

1

18
n(335n3+1568n2+3067n+2770)−3(n+1)(4n2+8n+9)H1(n)+3(n+1)2H1(n)2

(−(12n2 + 24n+ 19)(n+ 1)2 + 6(n+ 1)3H1(n))H2(n) + 3(n+ 1)4H2(n)2

−12(n+ 1)3H3(n)− 6(n+ 1)4H4(n).

The explicit expressions for higher moments can be easily calculated auto-
matically with the Maple procedure QsMFn and the interested readers are
encouraged to find those formulas on their own.

3.2 Variant II

The second variant is similar with the first one. One tiny difference is that
instead of choosing the first or last element as the pivot, the index of the pivot
is chosen uniformly at random. For example, we choose the i-th element,
which is the k-th smallest, as the pivot. Then we compare those non-pivot
elements with the pivot. If i 6= 1, the first element will be compared with
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the pivot first. If it is smaller than the pivot, it stays there, otherwise it is
moved to the end of the list and all other elements including the pivot shift
one position to the left. After comparing all the left-side elements with the
pivot, we look at those elements whose indexes are originally greater than
i. If they are greater than the pivot, no swap, otherwise move them to the
pivot’s current position and the indexes of the pivot and elements after the
pivot but before the swapped element now plus one.

In this case, the recurrence of the probability generating function Pn(t) is
more complicated as a consequence of that the number of swaps given that i
and k is known is still a random variable rather than a fixed number as the
case in Variant I.

Let Q(n, k, i, t) be the probability generating function for such a random
variable. In fact, given a random permutation in the permutation group Sn

and that the i-th element is k, the number of swaps equals to the number of
elements which are before k and greater than k or after k and smaller than
k. Hence, if there are j elements which are before k and smaller than k, then
there are i− 1− j elements which are before k and greater than k and there
are k − 1− j elements which are after k and smaller than k. So in this case
the number of swaps is i+ k − 2− 2j.

Then we need to determine the range of j. Obviously it is at least 0. Totally
there are k− 1 elements which are less than k, at most n− i of them is after
k, so j ≥ k − 1 − n + i. As for the upper bound, since there are only i − 1
elements before k, j ≤ i − 1. Evidently, j ≤ k − 1 as well. Therefore the
range of j is [ max(k − 1− n+ i, 0), min(i− 1, k − 1) ].

As for the probability that there are exactly j elements which are before k
and smaller than k, it equals to(

i− 1

j

) j−1∏
s=0

k − 1− s
n− 1− s

i−j−2∏
s=0

n− k − s
n− 1− j − s

.

Consequently, the probability generating function

Q(n, k, i, t) =

min(i−1,k−1)∑
j=max(k−1−n+i,0)

(
i− 1

j

) j−1∏
s=0

k − 1− s
n− 1− s

i−j−2∏
s=0

n− k − s
n− 1− j − s

ti+k−2−2j,
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which is implemented by the Maple procedure PerProb(n, k, i, t). For
example, PerProb(9, 5, 5, t) returns

1

70
t8 +

8

35
t6 +

18

35
t4 +

8

35
t2 +

1

70
.

We have the recurrence relation

Pn(t) =
1

n2

n∑
k=1

n∑
i=1

Pk−1(t)Pn−k(t)Q(n, k, i, t),

with the initial condition P0(t) = P1(t) = 1, which is implemented by the
Maple procedure SwapPQ(n, t). The following theorems follow immedi-
ately.

Theorem 3.2.1 The expectation of the number of swaps of Quicksort for a
list of length n under Variant II

E[Xn] = (n+ 1)Hn − 2n.

Theorem 3.2.2 The variance of Xn is

1

6
n(11n+ 17)− 1

3
(n+ 1)H1(n)− (n+ 1)2H2(n).

Theorem 3.2.3 The third moment about the mean of Xn is

−1

6
n(14n2 + 57n+ 73) + (2n+ 2)H1(n) + (n+ 1)2H2(n) + 2(n+ 1)3H3(n).

Theorem 3.2.4 The fourth moment about the mean of Xn is

1

90
n(1496n3+5531n2+8527n+6922)− 1

15
(n+1)(55n2+85n+173)H1(n)+

1

3
(n+1)2H1(n)2

(−1

3
(33n2 + 51n+ 25)(n+ 1)2 + 2(n+ 1)3H1(n))H2(n) + 3(n+ 1)4H2(n)2

−4(n+ 1)3H3(n)− 6(n+ 1)4H4(n).

Higher moments can also be easily obtained by entering QsMFn(SwapPQ, t,

n, Hn, r) where r represents the r-th moment you are interested in.
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Comparing with the Variant I where the index of the pivot is fixed, we find
that these two variants have the same expected number of swaps. However,
the variance and actually all even moments of the second variant are smaller.
Considering that the average performance is already O(n log n) which is not
far from the best scenario, it is favorable that a Quicksort algorithm has
smaller variance. In conclusion, for this model, a randomly-chosen-index
pivot can improve the performance of the algorithm.

3.3 Variant III

Next we’d like to study the most widely used in-place Quicksort. This algo-
rithm is called Lomuto partition scheme, which is attributed to Nico Lomuto
and popularized by Bentley in his book Programming Pearls and Cormen, et
al. in their book Introduction to Algorithms. This scheme chooses a pivot
that is typically the last element in the list. Two indexes, i, the insertion
index, and j, the search index are maintained. Following is the pseudo code
for this variant.

algorithm quicksort(A, s, t) is

if s < t then

p := partition(A, s, t)

quicksort(A, s, p - 1)

quicksort(A, p + 1, t)

algorithm partition(A, s, t) is

pivot := A[t]

i := s

for j := s to t - 1 do

if A[j] < pivot then

swap A[i] with A[j]

i := i + 1

swap A[i] with A[t]
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return i

From the algorithm we can see that when the pivot is the k-th smallest, there
are k− 1 elements smaller than the pivot. As a result, there are k− 1 swaps
in the if statement of the algorithm partition. Including the last swap
outside the if statement, there are totally k swaps. We have the recurrence
relation for its probability generating function

Pn(t) =
1

n

n∑
k=1

Pk−1(t)Pn−k(t)tk

with the initial condition P0(t) = P1(t) = 1.

Theorem 3.3.1 The expectation of the number of swaps of Quicksort for a
list of length n under Variant III

E[Xn] = (n+ 1)Hn −
4

3
n− 1

3
.

Theorem 3.3.2 The variance of the number of swaps of Quicksort for a list
of length n under Variant III

var[Xn] = 2n2 +
187

45
n+

7

45
− 2

3n
− (n2 + 2n+ 1)H2(n)− (n+ 1)H1(n).

Note that for this variant, and some other ones in the remainder of the
paper, to find out its explicit expression of moments, we may need to modify
our educated guess to a “rational function” of n and Hk(n) for some k (see
procedure QsMFnRat and QsMFnRatG). Moreover, sometimes when we solve
the equations obtained by equalizing the guess with the empirical data, some
initial terms should be disregarded since the increasing complexity of the
definition of the Quicksort algorithms may lead to the “singularity” of the
first several terms of moments. Usually, the higher the moment is, the more
initial terms should be disregarded.

3.4 Variant IV

In Variant III, every time when A[j] < pivot, we swap A[i] with A[j].
However, it is a waste to swap them when i = j. If we modify the algorithm
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such that a swap is performed only when the indexes i 6= j, the expected cost
will be reduced. Besides, if the pivot is actually the largest element, there is
no need to swap A[i] with A[t] in the partition algorithm. To popularize
Maple in mathematical and scientific research, we attach Maple code for the
partition part here, the ParIP procedure in the package QuickSort.txt, in
which Swap(S, i, j) is a subroutine to swap the i-th element with the j-th
in a list S.

ParIP:=proc(L) local pivot,i,j,n,S:

n:=nops(L):

pivot:=L[n]:

S:=L:

i:=1:

for j from 1 to n-1 do

if S[j]<=pivot then

if i<>j then

S:=Swap(S, i, j):

i:=i+1:

else

i:=i+1:

fi:

fi:

od:

if i<>n then

return Swap(S, i, n), i:

else

return S, i:

fi:
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end:

Lemma 3.4.1 Let Yn(k) be the number of swaps needed in the first partition
step in an in-place Quicksort without swapping the same index for a list L
of length n when the pivot is the k-th smallest element, then

Yn(k) =

{
| {i ∈ [n] |L[i] ≤ pivot;∃j < i, L[j] > pivot} | k < n

0 k = n
.

Proof. When k = n, it is obviously that for each search index j, the condition
S[j] <= pivot is satisfied, hence the insertion index i is always equal to j,
which means there is no swap inside the loop. Since eventually i = n, there
is also no need to swap the pivot with itself. So the number of swaps is 0 in
this case.

When k < n, notice that the first time i is smaller than j is when we find the
first element greater than the pivot. After that, i will be always less than
j, which implies that for each element smaller than the pivot and the pivot
itself, one swap is performed.

The Maple procedure IPProb(n,k,t) takes inputs n, k as defined above and a
symbol t, output the probability generating function Q(n, k, t) for the number
of swaps in the first partition when the length of the list is n and the last
element, which is chosen as the pivot, is the k-th smallest.

When k < n, the probability that there are s swaps is(
k − 1

k − s

)
(k − s)!(n− k)(n− k − 2 + s)!

(n− 1)!
.

Therefore the probability generating function

Q(n, k, t) =
k∑

s=1

(
k − 1

k − s

)
(k − s)!(n− k)(n− k − 2 + s)!

(n− 1)!
ts.

The recurrence relation for the probability generating function Pn(t) of the
total number of swaps follows immediately

Pn(t) =
1

n

n∑
k=1

Pk−1(t)Pn−k(t)Q(n, k, t)
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with the initial condition P0(t) = P1(t) = 1.

Theorem 3.4.2 The expectation of the number of swaps of Quicksort for a
list of length n under Variant IV

E[Xn] = (n+ 2)Hn −
5

2
n− 1

2
.

Theorem 3.4.3 The variance of the number of swaps of Quicksort for a list
of length n under Variant IV

var[Xn] = 2n2−215

12
n+

1

12
+(11n+14)H1(n)−(n2−2n−2)H2(n)−(2n+2)H1(n)2

Compare these results with Theorem 3.1.1 and Theorem 3.2.1, it shows
that Variant IV has better average performances, notwithstanding the “broader”
definition of “swap” in the first two subsections. And of course, it is better
than the in-place Quicksort which swaps the indexes even when they are the
same. We fully believe that the additional cost to check whether the insertion
and search indexes are the same are totally worth.

3.5 Variant V

This variant might not be practical, but we find that it is interesting as a
combinatorial model. As is well known, if a middle-most element is chosen
as a pivot, the Quicksort algorithm will have better performance than av-
erage in this case. Hence if additional information is available so that the
probability distribution of chosen pivots is no longer a uniform distribution
but something like a bell curve, it is to our advantage.

Assume that the list is a permutation of [n] and we are trying to sort it,
pretending that we do not know the sorted list must be [1, 2, . . . , n]. Now
the rule is that we choose the first and last number in the list, look at the
numbers and choose the one which is closer to the middle. If the two numbers
are equally close to the middle, then flip a coin to decide the final choice.

Without loss of generality, we can always assume that the last element in
the list is chosen as the pivot, otherwise we just need to run the algorithm in
the last subsection “reversely”, putting both the insertion and search indexes
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on the last element and letting larger elements be swapped to the left side
of the pivot, etc. So the only difference with Variant IV is the probability
distribution of k, which is no longer 1

n
for each k ∈ [n].

By symmetry, Pr(n)(pivot = k) = Pr(n)(pivot = n + 1 − k), so we only
need to consider 1 ≤ k ≤ (n + 1)/2. When n is even, let n = 2m. Then
Pr(n)r(pivot = k) = 4k−3

(2m−1)2m . When n is odd, let n = 2m − 1, then

Pr(n)(pivot = k) = 4k−3
(2m−1)(2m−2) when k < m and Pr(n)(pivot = m) =

2
2m−1 .

With this minor modification, the recurrence relation for Pn(t) follows.

Pn(t) =
n∑

k=1

Pk−1(t)Pn−k(t)Q(n, k, t)Pr(n)(pivot = k)

with the initial condition P0(t) = P1(t) = 1.

Though an explicit expression seems difficult in this case, we can still ana-
lyze the performance of the algorithm by evaluating its expected number of
swaps. By exploiting the Maple procedure MomFn(f,t,m,N), which inputs
a function name f , a symbol t, the order of the moment m and the upper
bound of the length of the list N and outputs a list of m-th moments for
the Quicksort described by the probability generating function f of lists of
length 1, 2, . . . , N , we find that Variant V has better average performance
than Variant IV when n is large enough. For example, MomFn(PQIP, t, 1,

20) returns

[0,
1

2
,
7

6
, 2,

179

60
,
41

10
,
747

140
,
187

28
,
20459

2520
,
1013

105
,
312083

27720
,
25631

1980
,
353201

24024
,
1488737

90090
,

6634189

360360
,
814939

40040
,
273855917

12252240
,
4983019

204204
,
97930039

3695120
,
20210819

705432
],

and MomFn(PQIPk, t, 1, 20) returns

[0,
1

2
,
4

3
,
20

9
,
155

48
,
1957

450
,
2341

420
,
4055

588
,
55829

6720
,
794

81
,
630547

55440
,
170095

13068
,
12735487

864864
,

3864281

234234
,
2521865

137592
,
36424327

1801800
,
4343228489

196035840
,
107768347

4463316
,
15673532207

598609440
,
1136599735

40209624
].

We notice that since n ≥ 14, Variant V consistently has better average
performance. From this result we can conclude that it is worth choosing a
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pivot from two candidates since the gains of efficiency are way more than its
cost.

Moreover, we can obtain a recurrence for the expected number xn of the
random variable Xn. The Findrec(f,n,N,MaxC) procedure in the Maple
package Findrec.txt inputs a list of data L, two symbols n and N , where
n is the discrete variable, and N is the shift operator, and MaxC which is
the maximum degree plus order. Findrec(MomFn(PQIPk, t, 1, 80), n,

N, 11) returns

Figure 1: The Recurrence Relation for the Expected Number of Swaps

As aforementioned, N is a shift operator. Since this formula is too long, to see
its detailed interpretation, please look at Theorem 4.2.1 as reference.

For sure we can also look at more elements to choose the middle-most one as
the pivot. In case that we do not want to store so much information, some
other variants involving “look twice” idea could be that if the first selected
element is within some satisfactory interval, e.g., [n

4
, 3n

4
] for a permutation

of n, then it is chosen as the pivot. Otherwise we choose a second element
as the pivot without storing information about the first one. It is also likely
to improve the algorithm with “multiple looks” to choose the pivot and the
requirement to choose the current element as the pivot without continuing
looking at the next one could vary and ideally the requirement should be
more relaxed as the number of “looks” goes up.

4 Explorations for Multi-Pivot Quicksort

With the same general idea of the 1-pivot Quicksort, it is natural to think
about “what if we choose more pivots”. In k-pivot Quicksort, k indexes are
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chosen and the correspondent elements become pivots. The k pivots need
to be sorted and then the other elements will be partitioned into one of the
k+1 sublists. Compared to 1-pivot Quicksort, multi-pivot Quicksort is much
more complicated because we need to determine how to sort the pivots, how
to allocate each non-pivot element to the sublist they belong to and how to
sort a sublist containing less than k elements. Therefore, there are a few
multi-pivot Quicksort variants. We refer the readers to [I2] for other versions
of multi-pivot. When k is large, it seems difficult to have an in-place version,
so we mainly consider the random variable, the number of comparisons Cn,
in this section since a swap might be difficult to define in this case.

4.1 Dual-Pivot Quicksort

Let’s start from the simplest multi-pivot Quicksort: dual-pivot. The model
for dual-pivot Quicksort is that two pivots p1 and p2 are randomly chosen.
After one comparison, they are sorted, say p1 < p2. Non-pivot elements
should be partitioned into one of the three sublists L1, L2 and L3. L1 contains
elements smaller than p1, L2 contains elements between p1 and p2 while L3

contains elements greater than p3. Each non-pivot element is compared with
p1 first. If it is smaller than p1, we are done. Otherwise it is compared with
p2 to determine whether it should go to L2 or L3.

Given that the list contains n distinct elements and the two pivots are the
i-th and j-th smallest element (i < j), we need one comparison to sort the
pivot and i − 1 + 2(n − i − 1) = 2n − i − 3 comparisons to distribute non-
pivot elements to the sublists. Hence the total number is 2n− i− 2 and the
recurrence relation for the probability generating function Pn(t) of the total
number of comparisons Cn of dual-pivot Quicksort is

Pn(t) =
1(
n
2

) n∑
j=2

j−1∑
i=1

Pi−1(t)Pj−i−1(t)Pn−j(t)t
2n−i−2

with the initial condition P0(t) = P1(t) = 1 and P2(t) = t.

The above recurrence is implemented by the procedure PQc2. With the
aforementioned Maple procedure QsMFn it is easy to get the following theo-
rems.
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Theorem 4.1.1 The expectation of the number of comparisons in dual-pivot
Quicksort algorithms

E[Cn] = 2(n+ 1)Hn − 4n.

Theorem 4.1.2 The variance of the number of comparisons in dual-pivot
Quicksort algorithms

var[Cn] = n(7n+ 13) − 2 (n+ 1)H1(n)− 4 (n+ 1)2H2(n).

Theorem 4.1.3 The third moment about the mean of Cn is

−n(19n2+81n+104)+H1(n)(14n+14)+12 (n+1)2H2(n)+16 (n+1)3H3(n).

Theorem 4.1.4 The fourth moment about the mean of Cn is

1

9
n(2260n3 + 9658n2 + 15497n+ 11357)− 2 (n+ 1)(42n2 + 78n+ 77)H1(n)

+12 (n+1)2(H1(n))2+(−4 (42n2+78n+31)(n+1)2+48 (n+1)3H1(n))H2(n)

+48 (n+ 1)4(H2(n))2 − 96 (n+ 1)3H3(n)− 96 (n+ 1)4H4(n).

As usual, any higher moment could be easily obtained with a powerful silicon
servant. Careful readers may notice that the above four theorems are exactly
the same with the ones in section 2. It is natural to ask whether they have
indeed the same probability distribution. The answer is yes. In section 4.1.2
of [I1] the author gives a sketch of proof showing that actually 1-pivot and
dual-pivot Quicksorts’s numbers of comparisons satisfy the same recurrence
relation and initial condition. From experimental mathematical point of
view, a semi-rigorous proof obtained by checking sufficiently many special
cases is good enough for us. For example, the first 10 probability generating
function, Pn(t) for 1 ≤ n ≤ 10 can be calculated in a nanosecond by entering
[seq(PQc2(i, t), i = 1..10)] and we have

P1(t) = 1,

P2(t) = t,

P3(t) =
2

3
t3 +

1

3
t2,
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P4(t) =
1

3
t6 +

1

6
t5 +

1

2
t4,

P5(t) =
2

15
t10 +

1

15
t9 +

1

5
t8 +

4

15
t7 +

1

3
t6,

. . . . . . . . .

which are exactly the same with the probability generating function for the
number of comparisons of 1-pivot Quicksort.

In conclusion, in terms of probability distribution of the number of com-
parisons, the dual-pivot Quicksort does not appear to be better than the
ordinary 1-pivot Quicksort.

As for the random variable Xn, the number of swaps, it depends on the
specific implementation of the algorithm and the definition of a “swap”. As a
toy model, we do an analogue of section 3.1. Assume the list is a permutation
of [n]. The first and last elements are chosen as the pivot. Let’s say they are
i and j. If i > j then we swap them and still call the smaller pivot i. For
each element less than i, we move it to the left of i, and for each element
greater than j, we move it to the right of j and call this kind of operations
a swap.

The recurrence relation for the probability generating function of Xn is

Pn(t) =
1(
n
2

)(
1

2
+

1

2
t)

n∑
j=2

j−1∑
i=1

Pi−1(t)Pj−i−1(t)Pn−j(t)t
n−1+i−j

with the initial conditions P0(t) = P1(t) = 1 and P2(t) = 1
2

+ 1
2
t.

Theorem 4.1.5 The expectation of the number of swaps in the above dual-
pivot Quicksort variant

E[Xn] =
4

5
(n+ 1)Hn −

39

25
n− 1

100
.

Note that this result is better than those in section 3.1 and 3.2.

4.2 Three-Pivot Quicksort

As mentioned at the beginning of this section, to define a 3-pivot Quicksort,
we need to define 1) how to sort the pivots, 2) how to partition the list and
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3) how to sort a list or sublist containing less than 3 pivots. Since this paper
is to study Quicksort, we choose 1-pivot Quicksort for 1) and 3). For 2),
it seems that the binary search is a good option since for each non-pivot
element exactly 2 comparisons with the pivots are needed.

The Maple procedure PQs(n,t) outputs the probability generating function
for 1-pivot Quicksort of a list of length n. Hence during the process of sorting
the pivots and partitioning the list, the probability generating function of the
number of comparisons is PQs(3, t)t2n−6, which equals to

(
2

3
t3 +

1

3
t2)t2n−6 =

2

3
t2n−3 +

1

3
t2n−4.

So the recurrence relation for the probability generating function Pn(t) of
the total number of comparisons for 3-pivot Quicksort of a list of length n
is

Pn(t) =
1(
n
3

) n∑
k=3

k−1∑
j=2

j−1∑
i=1

Pi−1(t)Pj−i−1(t)Pk−j−1(t)Pn−k(t)(
2

3
t2n−3 +

1

3
t2n−4)

with initial conditions P0(t) = P1(t) = 1, P2(t) = t and P3(t) = 2
3
t3 + 1

3
t2.

This recurrence is implemented by the procedure PQd3.

The explicit expression seems to be difficult to obtained in this case, but nu-
merical tests imply that 3-pivot Quicksort has better performances than dual-
pivot, and of course 1-pivot since it is indeed equivalent to dual-pivot.

By exploiting the Maple procedure MomFn(f,t,m,N) again, we can compare
the expectation of different Quicksort variants.

For instance, MomFn(PQc2, t, 1, 20) returns

[0, 1,
8

3
,
29

6
,
37

5
,
103

10
,
472

35
,
2369

140
,
2593

126
,
30791

1260
,
32891

1155
,
452993

13860
,
476753

12870
,
499061

12012
,

2080328

45045
,
18358463

360360
,
18999103

340340
,
124184839

2042040
,
127860511

1939938
,
26274175

369512
],

and MomFn(PQd3, t, 1, 20) returns

[0, 1,
8

3
,
14

3
,
106

15
,
49

5
,
64

5
,
561

35
,
1226

63
,
5192

225
,
465316

17325
,
533509

17325
,
714008

20475
,
61615768

1576575
,

342234824

7882875
,
754600981

15765750
,
1404956027

26801775
,
15298397599

268017750
,
31489234438

509233725
,
1697926310039

25461686250
].
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We notice that for each fixed n > 3, 3-pivot Quicksort’s average perfor-
mance is better than 2-pivot and 1-pivot. This numerical test is also doable
for all previous Quicksort variants but seems unnecessary when the explicit
expressions are easily accessible.

Similarly with section 3.5, a recurrence relation of the expected number of
comparisons can be obtained. Findrec(MomFn(PQd3, t, 1, 40),n,N,8)

returns

(3n+ 4) (n2 − 5n+ 12)

(n+ 4) (n+ 3) (3n+ 1)
− (12n4 + 13n3 − 12n2 + 59n+ 24)N

(3n+ 1) (n+ 4) (n+ 3) (n+ 2)

+3
(n+ 1) (6n+ 5)nN2

(n+ 4) (n+ 3) (3n+ 1)
− (n+ 1) (12n+ 7)N3

(n+ 4) (3n+ 1)
+N4,

which leads to the following theorem.

Theorem 4.2.1 The expected number of comparisons Cn of 3-pivot Quick-
sort for a list of length n satisfies the following recurrence relation

Cn+4 =
(n+ 1) (12n+ 7)

(n+ 4) (3n+ 1)
Cn+3 − 3

(n+ 1) (6n+ 5)n

(n+ 4) (n+ 3) (3n+ 1)
Cn+2

+
(12n4 + 13n3 − 12n2 + 59n+ 24)

(3n+ 1) (n+ 4) (n+ 3) (n+ 2)
Cn+1 −

(3n+ 4) (n2 − 5n+ 12)

(n+ 4) (n+ 3) (3n+ 1)
Cn.

The recurrence relations for higher moments are also obtainable, but a long
enough list of data is needed.

4.3 k-Pivot Quicksort

More generally, k-pivot Quicksort can be considered with the convention that
1) the k pivots are sorted with 1-pivot Quicksort, 2) binary search is used to
partition the list into k + 1 sublists, 3) we use 1-pivot Quicksort to sort lists
with length less than k.

In the package QuickSort.txt the procedure PQck(n, t, k) outputs the
probability generating function for the number of comparisons of k-pivot
Quicksort where each element is compared with pivots in a linearly increas-
ing order. Obviously this is not efficient when k is large. However, the
problem for binary search is that when k 6= 2i − 1 for some i, it is hard to
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get an expression for the number of comparisons in the binary search step
since the number highly depends on the specific implementation where some
boundary cases may vary and the floor and ceiling functions will be involved,
which leads to an increasing difficulty to find the explicit expressions for
moments.

There is a procedure QsBC(L, k) which inputs a list of distinct numbers L
and an integer k representing the number of pivots and outputs the sorted
list and the total number of comparisons. For convenience of Monte Carlo
experiments, we use MCQsBC(n, k, T) where n is the length of the list, k is
the number of pivots and T is the number of times we repeat the experiments.
Because of the limit of computing resources, we only test for k = 3, 4, 5, 6
and n = 10, 20, 30, 40, 50.

[seq(MCQsBC(10 ∗ i, 3, 100), i = 1..5)] = [22.95, 65.75, 118.71, 178.28, 239.45],

[seq(MCQsBC(10 ∗ i, 4, 100), i = 1..5)] = [23.78, 67.77, 120.91, 180.35, 251.19],

[seq(MCQsBC(10 ∗ i, 5, 100), i = 1..5)] = [23.54, 65.74, 119.59, 178.36, 241.03],

[seq(MCQsBC(10 ∗ i, 6, 100), i = 1..5)] = [23.14, 66.22, 120.07, 176.43, 236.46],

Our observation is that for large enough n, the more pivots we use, the less
comparisons are needed. However, when k is too close to n, the increase of
pivots may lead to inefficiency.

5 Limiting Distribution

The main purpose of this paper is to find explicit expressions for the moments
of the number of swaps or comparisons of some variants of Quicksort, to com-
pare their performances and to explore more efficient Quicksort algorithms.
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However, it is also of interest to find more moments for large n and calculate
their floating number approximation of the scaled limiting distribution.

As mentioned in [EZ1], if we are only interested in the first few moments,
then it is wasteful to compute the full probability generating function Pn(t).
Let t = 1 + w and use the fact that

Pn(1 + w) =
∞∑
r=0

fr(n)

r!
wr

where fr(n) are the factorial moments. The straight moments E[Xr
n], and

the moments-about-the-mean, mr(n) follow immediately.

As a case study, let’s use the Variant IV in section 3.4 as an example. The
recurrence relation is

Pn(1 + w) =
1

n

n∑
k=1

Pk−1(1 + w)Pn−k(1 + w)Q(n, k, 1 + w),

where Q is as defined in 3.4.

Since only the first several factorial moments are considered, in each step
truncation is performed and only the first several coefficients in w is kept.
With this method we can get more moments in a fixed time. The procedure
TrunIP implements the truncated factorial generating function.

With the closed-form expressions for both the expectation, cn, and the vari-
ance m2(n) := var(Xn), the scaled random variable Zn is defined as fol-
lows.

Zn :=
Xn − cn√
m2(n)

.

We are interested in the floating point approximations of the limiting distri-
bution limn→∞ Zn. Of course its expectation is 0 and its variance is 1.

For instance, if we’d like to know the moments up to order 10, TrunIP(100,
z, 10) returns

1 +
7617634712836831344646726224164628686543

27341323619495089084130905464828354336
z

+
1169146867836246319480317311960440606057785761234433183813484643

29517287662514914280390084303910684938635848245569645536000
z2
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+
58024172013839694810625346567417182291098218339356411215067112605982034521

15125688216961909953814450921738787993181911018772132633289881600000
z3

+ . . . .

For 1 ≤ r ≤ 10, the coefficient of xr times r! is the r-th factorial moment.
By

E[Xr] =
r∑

j=0

{
r

j

}
E[(X)j]

where the curly braces denote Stirling numbers of the second kind, we can get
the raw moments. And with the procedure MtoA a sequence of raw moments
are transformed to moments about the mean. Divided by m2(n)

r
2 , the 3rd

through 10th moments in floating point approximations are

[0.7810052982, 3.942047050, 9.146681877, 37.12169647, 137.7143092,

613.5286860, 2872.409923, 14709.75560].

The same technique can be applied to other variants of Quicksort in this
paper and we leave this to interested readers.

6 Future Work and Final Remarks

In such a rich and active research area as Quicksort, there are still several
things we could think about to improve the algorithms’ performances. Just
to name a few, in 2-pivot Quicksort when we compare non-pivot elements
with the pivots to determine which sublist they belong to, if the history is
tracked, e.g., we already know quite a lot compared elements are smaller than
the smaller pivot then it might be better to compare the next element with
the larger pivot first. The optimal strategy would vary with the additional
information about the range of the numbers or the relative ranking of the
two pivots among all the elements.

As for k-pivot Quicksort, our naive approach only distinguishes two cases:
whether the currently to-be-sorted list has length less than k or not. If the
length is less than k, we use 1-pivot Quicksort, otherwise we still choose k
pivots. However, it might be able to improve the performance if the number
of pivots varies according to the length of the to-be-sorted list or sublist.
Let’s say, there is a function g(n), where n is the length of the list. So we
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pick g(n) pivots at the beginning. After we obtain the g(n) + 1 sublists with
length ni, (1 ≤ i ≤ g(n) + 1), for each one of them, we choose g(ni) pivots.
It would be interesting whether we can find an optimal g in terms of its
average performance. Additionally, when k is large, it might make sense to
use multi-pivot Quicksort to sort the k pivots as well.

Of course, it is also interesting to study the explicit expressions of the num-
bers of swaps in multi-pivot Quicksort. But it appears to be dependent on
the specific implementation of the algorithm so it is of significance to look
for variants which save time and space complexity.

The main results of this paper are those explicit expressions of moments
and recurrence relations for either the number of comparisons or the number
of swaps of various Quicksort variants. Though all of their asymptotics are
O(n log n), the constant before this term varies a lot and some comparisons of
these variants are also discussed. When there is difficulty getting the explicit
expressions, numerical tests and Monte Carlo experiments are performed.
We also have a demonstration on how to get more moments and find the
numeric approximation of the scaled limiting distribution.

Nevertheless, more important than those results is the illustration of a method-
ology of experimental mathematics. From ansatzes and sufficient data we
have an alternative way to obtain results which might be extremely diffi-
cult or even impossible to get via traditional human approaches to algorithm
analysis. In experimental mathematics we trust.
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