
A SIMPLE THREE-PERSON POKER GAME1*
J . P . Nash2 and L . S . Shapley

$1 . INTRODUCTION

In the study of games Poker, in its varied forms, has become a
popular source of models for mathematical analysis. Various simple Pokers

3 k *5 6have been investigated by von Neumann, Bellman and Blackwell, and Kuhn.
Our paper is the first to consider a three-person model. This version has
just two kinds of hands, no drawing or raising, and only one size of bet.
We suppose that the game is non-cooperative and solve for "equilibrium
points." The game turns out to have a well-defined value if the ante does
not exceed the amount of the bet, or is more than four times the bet; but no
value for at least two transition cases in between.

To cut down the magnitude of the computational task we use
"behavior coefficients" in place of mixed strategies. This is an effective
technique for a large class of games in extensive form.

4 2 . THE SOLUTION OP AN n-PERSON GAME

A definition for the solution of an n-person game, n > 2 , based 
on the principle of coalition, has been developed by von Neumann and 
Morgenstern. 1 It is unfortunately weak in its ability to predict the actions 
of the players, or to ascribe a value to the game. It is most naturally 
applicable to games (or economic situations) in which the players are free to 
offer or accept side payments (outside the mechanism of the game itself) in

1This work was supported in part by the Office of Naval Research.
2AEC Fellow.
Y .  von Neumann and 0. Morgenstern, "Theory of Games and Economic Behavior," 
2nd ed., Princeton, 19^7; pp. 1 8 6-2 1 9 .
Sroc. N. A. S. 35 (19^9), pp. 60 0-6 0 5.
RIn this volume.
^E. Borel considers some simple two-person betting models in the course of an 
analysis of the probabilities of actual Poker games, in his "Traite du Calcul 
des Probability, Paris, 1 9 3 8; IV, 2 , pp. 91-97-
^0p. cit., Chapter VI.
Accepted as a direct contribution to ANNALS OF MATHEMATICS STUDY No. 2k.
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return for cooperation during the play. The customary ethics of Poker 
suggest that a non-cooperative solution concept, not recognizing side 
payments and pre-play agreements, would be better for our present purpose.
We therefore define:

An equilibrium point (or EP) is a set of strategy choices, pure 
or mixed, of the n players, with the property that no player can improve 
his expectation by changing his own choice, the others being held fixed.

If it happens that each player’s expectation is the same in all 
equilibrium points, then we call the n-tuple of these expectations the 
value of the game.

In a two-person, zero-sum game the equilibrium points are just 
the minimax points, and describe the solution in the usual sense. It hasobeen shown that finite games always possess EP. They do not necessarily 
have values; nor are the strategies used in different EP of the same game 
necessarily interchangeable.

 ̂3 . THE RULES OP THE GAME

The deck contains just two kinds of cards, "High” and "Low," in
equal numbers. One card is dealt at.random to each of the three players.
The deck is so large that the eight possible deals occur with equal prob­
ability. Each player antes an amount a. The first player has the option 
of opening the bidding with a bet b, or of passing. If he passes, the 
second player has the same opportunity; then the third. When any player has
opened, the other two, in rotation, have the choice of calling with a bet
b, or of folding (dropping out), thereby forfeiting the ante money. The 
payoff rule: If no one opened (three consecutive passes), the players
retrieve their antes. Otherwise, the players betting compare cards, and the 
one with the highest wins the entire accumulation of bets and antes (the 
pot). In case of a tie, the winners divide the pot equally.

There are 1 3 possible sequences of bids. We may represent them:
BBB BPB PBBB PBPB PPBBB PPBPB PPP
BBP BPP PBBP PBPP PPBBP PPBPP

letting "B" stand for "open" and "call," "P" for "pass" or "fold." With 
the eight possible deals, there are 1 o4 different plays of the game that can 
occur. The possible payoffs are seen to be:

(2a , - a , - a ) (a/2 , a/2 , - a )
(2a + b, - a , - a - b )  (a/2 + b/2, a/2 + b/2, - a - b)
(2a + 2b, - a - b, - a - b) ( 0 , o , o )

8J. Nash, Proc. N. A. S. 36 (1950), pp. 48-1*9.
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and their permutations. Clearly it is only the ratio of a to b that is 
significant, but we shall retain the separate symbols in the hope that 
mental verifications by the reader of rich statements as the above will be 
made easier.

$ h . BEHAVIOR COEFFICIENTS

By a calculation which we do not detail, we find that the three 
players have respectively 8 1 , 1 0 0, and 256 pure strategies. If we forbid 
those that involve folding on a high card (see below, i l ) , these numbers 
reduce to 1 8 , 2 0, and 3 2 . The equilibrium points are then to be sought in 
a space of 1 7 + 19 + 31 = 6 7  dimensions, the product of the three mixed- 
strategy simplexes.

However, as commonly occurs in games with several moves, there 
is great redundancy in this representation. Distinct mixed strategies exist 
which prescribe identical behaviors for the player in question. This equiva­
lence induces a natural projection of his simplex into a convex polytope of 
much lower dimension, with each pure strategy going into a distinct extreme 
point of the polytope. We shall discover that the players have only eight 
essential dimensions apiece; or five apiece if we outlaw folding on a high 
card.

The natural way to achieve this economy is by avoiding the 
description of behavior as a probability mixture of the pure strategies, and 
instead considering on-the-spot randomizations during the course of play.^ 
There are eight situations which require a decision that can face each 
player; and the decision is always to make or not to make a bet. We there­
fore introduce as the behavior coefficients the probabilities of betting in 
the different situations:

Player 1 Player 2 Player 3

BEHAVIOR COEFFICIENTS

9This procedure would not be legitimate if each player's information were not 
monotone increasing.
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Every mixed strategy can be completely represented, as far as its effect in 
the game is concerned, by an octet of values of the appropriate player's 
behavior coefficients.

 ̂5. IRRELEVANCE

It can happen that if certain of the coefficients take on extreme 
values (i.e., o or 1), then the situations to which other coefficients 
apply can never arise. For example, if = 1 and = 1 then the values 
of 6 and £ tell nothing about the behavior of Player 2. To keep the 
representation of behavior unique, we assign the conventional value 1 to an 
irrelevant coefficient if it refers to a high card, 0 if it refers to a low 
card This amounts to identifying certain vertices of the 2^-dimensional 
cube of behavior probabilities, and does not lower dimension.

$ 6. DISCRIMINANTS

The expected payoffs to the three players will be certain multi­
linear functions10

p,(«,(*, . p2(«,p>, p3(*,p>,
of the behavior coefficients, with terms of degree as high as five. It would 
be tedious, as well as unnecessary, to attempt to give the explicit functions 
here. In their place we shall work with the discriminants, U> J
defined by:

^ u  = 1 6 ^u Pk(u) P  , . . ., to) , u = ^ , . . ., CJ ;

where it is the k(u)-th player who controls u. (The factor of 16 clears 
out the fractions arising from the random deal and the divided pots.)
Directly from the definition of equilibrium, we have, at any EP:

f U = 0 ==> A u < 0
(C) | o <  U <  1 = >  = 0 U = «, fi , u  .

( u = 1 => A u > 0
A set of coefficient-values satisfying (C) does not necessarily constitute 
an EP, since the possibility that a player would increase his expectation 
by varying two or more of his coefficients simultaneously is not excluded by 
(C). Our method of solution will be to show that among the possible EP's

1°In the mixed strategies they would be trilinear functions.
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only one satisfies (C). By the existence theorem11 this one must be the 
unique EP.

T . DOMINATIONS

The values in the solution of 9 of the 2k coefficients can be 
fixed immediately by observing that to drop out with a high card is always 
definitely injurious to a player's expectation. Thus we have ...

. . .  j f = ^ = L  = X =  0 =  ^ =  T = f =  Y = 1  .

The value of » can not quite be determined in the same way, for
Player 3 might conceivably find opening on High no more profitable than
passing out the hand. However, it is easily seen that if an equilibrium 
point exists with v < 1 , then v = 1 together with the same set of other
values is also an EP. Therefore we may assume . . . = T|. It will turn
out that the unusual circumstances (i.e., | W  = •* < 1 ) which per­
mit ^ ( 1 do not occur in any EP.

Before proceeding, we restrict ourselves to the case b > a.
Later, by a process of continuation, we shall find EPTs for smaller bet
sizes . But the demonstration of the existence of a value to the game
requires that all EP’s be known, and to prove completeness is too complicated 
for b ( a.

We now show, in a more elaborate argument, that b > a entails
0 . If Player I opens on Low then he must expect to lose a + b in .75

of the deals, and gains at most 2a in the remaining .2 5 . This expectation
of at most - -J-(a + 3b) must be compared with that of at least -a he can
obtain by not betting at all (i.e., ^ = T r = < x = \ J = o ) .  Since we have assumed 
b > a, a behavior involving opening on Low (i.e., ^ > > 0) is possible in an 
EP only if conditions are most favorable to that policy. That is, b and a 
must be equal, and

( i) Player 1 must always win the amount 2a by opening in the 
low-low-low deal ( i . e . , $ = K = o ) ;

(ii) He must never be allowed to recover his ante when he passes 
(i.e., either £ = 1 or I -  J  = 1 ).
These conditions have a decisive effect on ^  , We may estimate by the
following tabulation of Player 11s payoff:

11 Nash, loc. cit.
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Deal = 1 = 0
HHH 0 0
HHL at most (a+b)/2 at least a/2
HLH a/2 at least a/2
HLL 2a at least 2a + b

We conclude that A„< -b and «* = o. It Is now easily verified that 
A,c= But, with k. already zero by (i), there can be no equilibrium
with a k > 0 (condition (C)).12 Thus, even after assuming most favorable
conditions for , we are led to the conclusion ... (b = o .

$ 8 . FURTHER REDUCTIONS

With jb = 0, it is easily calculated that:
A j  = -ta<b
A q = -2cc( 1 + £ )b
A k = ~2*0 - i )b .

If ot ) o then these three discriminants are strictly negative.1  ̂ But if*
<* =  Q then t>, e, and K become irrelevant. In any case ...
£ = 6 = k = o.

Continuing, we have:
= 2(£^a - I b - E^b - fcb)

A x = 2j(£ V a "V b  - oĉ b - oTb) .

(We use the bar to denote complementary probabilities: * = 1 - * , etc.) If
either of these discriminants is to be non-negative then several of the
coefficients are forced to assume extreme values, and a and b must be 
equal. When these restrictions are applied to the other discriminants a 
contradiction for each case is soon reached. The process is similar in form 
to the proof of = 0, as given above, and we shall not burden this 
account with the details. The conclusion is ... ptv" = %  = 0|.

A succession of results can be established in like manner, by 
deducing contradictions from the alternative hypotheses We list them in the 
order in which we found the arguments to go through most easily.

1 2The corresponding verbal argument: when confronted by BP, Player 3 knows
that both opponents hold Low; hence a call is always profitable for him.
1 ̂ For A k we argue:

A $  < ° —> £ = o =■> A k< o .
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*  > 0; i  < £
3-1

0II3II

P

£  <  1 ; «  <  1 , ^=0 ;

I < i; i > Q; 6 > 0; o< < 1 ; a  = o.

Again we omit the details, which are rather lengthy and not particularly 
interesting.

4 9. THE SOLUTION FOR b > a

There remain at this juncture two systems of equations, differing 
in the way in which they involve £ > which might possibly determine an EP. 
Together with the inequalities which they entail, they are:

(I) (II)

A„ = 0, 0 < «< < 1
A t  = 0, 0 < I < 1
A i
A (=0, 0 < i < 2/5 .

rA# =0, 0 < * < 1
I A j  = 0, 0 < I  < 1

1 = 0 ,  A ? < 0
(A^ = 0, 0 < i  < 2/3

The four discriminants in question are:
A *  = (a+b)g”£ + (4a+2b)?J - b 1 + b^ - 3b , 
A 6 = (a+b)g"«c + (4a+2b)J - b* - 2b ,
A  j = -2a~g^ - 2a^ - 4b* + 6a - 2b ,
A *  = -2(a+b) (* 7 + + J) + 4a“j .

The solution of system (I) is:

«* = E = 2

The inequalities are satisfied in the range: 

R 14J 0 < a/b < A 1 = 0 . 7 0 5 8 ... .

If a/b exceeds A1 then A j  becomes positive.
The equations of (II) give complicated expressions for c* , £ , J , 

and £ . The inequalities are satisfied in the range:
Rjj A1 < a/b < 1 .

If a/b is less than A1 , then J becomes negative. On the other hand, 
none of the inequalities is violated immediately if a/b is allowed to 
exceed 1. At the endpoints of Rjj the numerical values are:

1 ̂A-j is the positive root of >A^+1 8A^+3A2-1 OA-3 .
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at a/b = A 1 : °< = .6^82 £ = . 6k82 ? = 0 £ = .5 66  ̂ ;
at a/b = 1 : ,308t . 8 2 5 7 .Okh] .6 3 5U .

As may be seen in Figure 1A, the coefficients are practically linear in Rj-p 
and the connection at A 1 is continuous.

Figure 1A
Equilibrium Point Behavior Coefficients

  Player 1 kS: Player k sandbags
  Player 2 kB: Player k bluffs
+-+-+ Player 3 kC^: Player k calls Player h's bluff

Figure 1B 
Value of the Game
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Since the EP is unique for each a/b, the value of the game is
well-defined throughout Rj and Rj j . In R^ it is the triple

/ a2 a2 a2 \
V - V  HCa+BT' " HTa+ET’ / •

In. Rjj the results are again best given graphically (Figures IB and 2) and
numerically. We have:

V = <̂ -.0 5 18a, -0518a, .1 0 5 6a )  at a/b = A1 ;
V = <[-.0755a, -.0^79a, .1214a) at a/b = 1

The connection at A1 between the two cases is of course continuous.
Thus, Player 5 enjoys a definite advantage. This may be ascribed

1 *3to his ability to cause a pass-out. y He bluffs (4) an increasing proportion 
of the time as the relative size of the ante increases. His opponents meet 
this strategem by the manoeuvre known as "trapping” or "sandbagging" , .
&): passing with a high card on the first round, then calling on the second.
For the small ante case (a/b in Rj), equilibrium is maintained only if 
the first two players follow the same strategy (*=£), and receive the 
same (negative) payoff. But for larger ante (a/b in Rj j ) it becomes
possible for Player 2 also to bluff (?) a small fraction of the time, and 
his fortunes take a turn for the better. Player 1 sharply increases his 
sandbagging activity («) (while Player 2 diminshes his), but this appears 
to be a defensive tactic only, for his position continues to worsen as a/b 
increases.

$10. EXTENSION OF THE SOLUTION

The solutions of system (II) can be continued through the range 
R j j ,  1 < a A  < Ag = 1 .0376 . . .  1 6

without violating (C) . If a/b exceeds A^ then the value of A gj becomes
positive. It is easily verified that we still have an EP in this extension,
although uniqueness and the existence of a well-defined value are no longer
assured.

1 5̂This is analogous to the advantage in von Neumann’s variant "C" (op. cit., 
pp. 2 1 1 -2 1 8 ) which accrues to the first player. For that player also has the 
power to stop the play without forfeiting his basic investment ("b", loc. 
cit.) and without risking an additional sum ("a - b", loc. cit.). But 
"initiative," in the sense of having the first move, is a distinct handicap 
in our game.
1 ̂ A2 is the positive root of 1 62A^+l 55A5-! i+AA2-! 50A - 2 8 .
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At a/b = A2 a qualitatively new phenomenon occurs. System (II) 
gives the EP:

« = .2 6 5 6, €= .841*2 , 1 = .0491, .6423 , oj = 0 .
But this is just one extreme of a one-parameter family of EP's, the other 
extreme of which is the EP:

= .2 6 5 6, € = 1 , 1 =  .0 6 2 3, i  = .6423, . 3 7 2 0 .
The coefficients £ , X , and <0 increase together while the others remain 
fixed. Since just one player's behavior is variable, the family of EP’s 
forms an interchange system: every triple of strategies selected individ­
ually from the EP1s is itself an EP.

The value of the game at a/b = A2 is not well-defined. Player 
3 gains at the expense of Player 1 as 1 , } , cj increase, while Player 2 's 
share remains (necessarily) constant. The numerical range of values:

V =  <-.0755a, -.0 4 7 5a, .1 2 3 0a) at a/b = A2, = 0 ;
V = <-.0 82 6a, -.0475a, .1 3 0 1a) at a/b = A2, e = 1 .
Beyond A2 another new effect appears. If we set E = 1 and

(III)

.= 0 also. This suggests

0ii

<
0 < « <  1

* = 1 , a £ > 0

A ? = 0 , 0 < 1 < 1
A *  = 0 , 0 < i < 1

Av = °. ° < v  < 1

Au= o, 0 < GJ < 1 .
Solving gives unique values for o< ,  ̂ , and i , and for the product yfv*, 
and puts a restriction on U  ,

v  < V m a x “ 110 (a/h - A2> •
With these values (C) is satisfied throughout the range:
RjIX A2 < a/b < A3 = 1.1 262 ... . 1 7

In Rjjj the EP's are not unique, as just noted, nor do they form an inter­
change system, since different players control \f and . But it is a 
curious fact that the game does indeed possess a well-defined value (if we

exceeds Ax.3
1 ̂ A* is the largest root of 12A^-14A2-3A+4. A p  becomes positive if a/b
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assume that there are no EP's undiscovered). Thus the two properties — 
existence of a value and interchangeability of equilibrium strategies — 
which are found in the solution of all two-person, zero-sum games, are 
quite independent of one another in our three-person Poker.

The situation at a/b = rounds out the picture, for here we 
have discovered a two-parameter family of EP’s. The interchange systems are 
indexed by one parameter, while the payoffs depend only on the other para­
meter. The new coefficient to enter at is (b , Player 1's bluff;
whereas k , Player 3's countermeasure to the bluff, comes in immediately 
thereafter. The value to Player 1 also finally starts to improve for 
a/b > Aj.18

$11. THE COALITION GAME

For the sake of making a comparison of our solution with the
1 9solutions as defined by von Neumann and Morgenstern, y we now calculate the

Figure 2
Characteristic Triangle of Coalition Game with a = b 

(with values of the non-cooperative game for o < a/b < A^)

1 8It is easily verified that for a > ^b the value of the game is zero for all players, since each can guarantee himself that amount by betting on all 
occasions, regardless of his hand.
1 9For the actual construction of the solutions and their interpretation, see 
the discussion op. cit., particularly pp. 2 8 2-2 9 0 .
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"characteristic function" of the game for the case a = b That is, for 
each set of players (a "coalition") we determine the maximum they can obtain 
for themselves as a group, irrespective of the actions of the remaining 
players. Essentially, therefore, we determine the values of three different 
two-person, zero-sum games. We do this here by exhibiting the optimal 
strategies.

We cannot expect to be able to represent all the strategies avail-
20able to a coalition by means of our one-person behavior coefficients. The 

correlated randomization which may be required is illustrated in the optimal 
strategy for [1,3) as given below. For the other coalitions, the one- 
person behavior coefficients happen to be sufficient to describe optimal play.

The optimal strategies for the several coalitions are as follows:
{1 ) «* = 2/3 . (2 , 3) 4 = 2/ 3 .
(21 l  = 7 / 1 1  7 = 3 / 1 1 (1 3 ) / *  = °> < = 3 / 1 6  with prob. 8/1 1 ;
1 J c • 1 ’ ■>> 1« = 1 , i  = 0 with prob. 3/11.
(3) /*> = 1 A ,  0 < 4 £ 2/3. (1 , 2 } o< = 3/ 1*, £ = o.
When not otherwise specified, always bet on High, pass on Low. The optimal 
strategy is not unique for (3 ), but is unique for all other proper 
coalitions.

The characteristic function:
v({1 }) = -v({2 , 3 )) = - a/ 1 2  = -.0 8 3 3a
v( {2 ]) = -v(Cl, 3)) = -5a/ 8 8 = -.0568a
v( {3 }) = -v({1 , 2 )) = a/6** = .0 1 5 6a
v( [1 , 2 , 3 )) = v(0 ) = 0 .

Thus, Player 3 has a positive expectation even when the other two are allied 
against him.

The solutions as defined by von Neumann and Morgenstern are sets 
of triples lying in the triangle bounded by these values (see Figure 2 ). The 
equilibrium point is contained in precisely two of these solutions, both of 
them of the "discriminatory" type. From Figure 2 it is obvious that the 
third player has by far the most to fear from collusion between his 
opponents.

J. Nash 
L . S . Shapley

Princeton University

20 The information available to a two-player coalition is not monotone increasing When making its second move, the coalition has "forgotten" the 
contents of the hand of its first member.


