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A Note about the Title

G. H. Hardy published A Mathematician’s Apology in 1940. The
sense of the term is that of apologia, a defense of a field. It could be
said (and some of my friends have said) that a more accurate title
for the present piece would have been Confessions of a Numerical
Analyst. To be sure, this essay differs in many ways from Hardy’s,
containing more biographical material and also more mathematics,
especially in the second half. But its purpose is the same, a serious
and personal meditation about mathematics.
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1. Introduction

I am a passionate mathematician, but I am puzzled. My life is
mathematics, and I feel a strong connection to the mathematicians
of the past. As the years go by and I work on new problems and
gain in knowledge and perspective, my sense of myself as a
mathematician just gets stronger. And yet I feel a disconnection
from the mathematics and the mathematicians of the present.

I began to write this essay as a means to explore this odd
situation. Naturally enough, I began by reflecting on the experi-
ences of my career, and before long I found I was writing a
memoir, too. It is the story of a mathematician in an unusual (and
very lively) corner of the subject.

My part of mathematics is numerical analysis, which I defined
in an essay thirty years ago like this:

Numerical analysis is the study of algorithms for the
problems of continuous mathematics.

(Continuous means involving real or complex numbers.) The
traditional idea is that other mathematicians might invent the
notion of the roots of a polynomial, say, and then it is up to the
numerical analysts to develop algorithms to calculate them. For
example, the polynomial x° + x* — 3 is equal to 0 if x =
1.105298546006169.... How do we calculate those digits? By
executing algorithms developed by numerical analysts. Of
course, mathematicians have invented many more complicated
problems than roots of polynomials, such as partial differential
equations, which are the basis of much of the natural sciences.
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Numerical analysts are tasked with solving these too, and
scientists and engineers use our methods all the time.

Newton, Euler, and Gauss were outstanding numerical
analysts back in an era when it was self-evident that part of the
business of mathematicians was to calculate things. But the
landscape has changed since then, with other branches of
mathematics appearing and flourishing to a degree unimaginable
in those days. Nowadays, most leading mathematicians have
little interest in calculation, which they avoid by habit and may
disdain as unimportant in principle. They work on other things,
and no paper by a researcher like me would appear in a top journal
like Annals of Mathematics. Meanwhile numerical analysis
thrives separately, and of course, we have plenty of journals of
our own. Demographically we are big, accounting for perhaps
5% of academic mathematicians, and in impact on science and
technology we are enormous.

My personal good fortune has been remarkable. I hold what
is arguably the most visible chair in my field in the world, the
Professorship of Numerical Analysis at the University of Oxford.
This big mathematics department lists 100 professors on the web
site and is generally rated in the top group along with Harvard,
MIT, Stanford, Berkeley, Cambridge, and Princeton. None of
those other universities has a chair in Numerical Analysis, but

Oxford does, and since 1997, the Professor of Numerical Analysis
has been me. Our Numerical Analysis Group has been a leader
in the subject in Britain since its founding in the 1960s and is well
known around the world. I personally am well known, too, author
of widely read textbooks and technical papers, Fellow of the
Royal Society, former President of the Society for Industrial and
Applied Mathematics (SIAM), winner of big prizes and honorary
degrees. I am a fellow of Balliol College, founded in the days of
Kublai Khan.

Obviously this is a success story, and indeed, it could hardly
be better. It doesn’t sound like the profile of one who feels
disconnected from his discipline. So what is going on?
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2. Mathematics in Childhood and High School
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Not ahead of Nat Foote, however, the red-headed boy who had
joined the school during my absence. He and I were the ma%
whizzes in the Shady Hill Class of 1970, and in 7th 8% and 9
grades, the two of us were taken out of the regula.r.classroom to
study independently from textbooks under the guidance of the
teacher, Bob Lawler. We learned a lot of algebra. My father had
never taught me that amazing technique called factoring., like x* -
2x -3 = (x+ 1)(x —3), whereas Nat had learned it from hxg brother
George. We studied trigonometry, too, s I was good at smes.and
cosines. Nat and I tended to be boisterous when left unsupervised
for our math hour, and I remember arguing with Mr. Lawler about
mathematical things. He told me that 1 divided by 0 was
“undefined,” and I said that was stupid, obviously it was infinity.

At age 15 Nat and [ went to an outstanding high school,
Phillips Exeter Academy, which even in the 1970s had thrqe PhDs
on the math faculty. In our first class on the first day, which was
a calculus course filled mostly with seniors, Mr. Lynch taught us
the definition of the derivative of a function as a limit in the style
of epsilons and deltas, which he wrote carefully on the
blackboard. Wow! Ihad never seen this before, though Nat had
jearned it from George. The derivative seemed truly seriou§,
requiring concentrated thought, and I remember thinking ’fhat if
big ideas were going to come at this rate in high school, it was
going to be a pretty intense experience. Nat and I went on to pass
the BC calculus advanced placement test that spring.

I became hooked on computers that year, for Exeter had
teletypes connected to the Dartmouth Time-Sharing System. At
first 1 figured that everybody was using them, and there was 1o
need for me to join the crowd; but a few weeks later I'd given it
a try, and that was that. Mathematics was the obvious application
to explore, and 1 remember writing a sequence of BA_SIC
programs to print prime numbers 2,3,5,7,..., each more efficient
than the last. There were not enough terminals to go around, and
I often skipped lunch to grab an available space, but I think there
was only one day when I skipped both lunch and dinner.

Then came another sabbatical year travelling around the world
with my parents. This experience was enriched by a special
contribution from Steve Maurer, a teacher who was also a PhD
student at Princeton, who had become a friend through having
breakfast most mornings with me and Nat that first year at Exeter
in the Elm St. Dining Hall. Mr. Maurer put together a canary
sheaf of 33 difficult “Problems for a World Tour” for me to work
on as I travelled, and these became a theme of my junior year at
large. However, I managed only five or six of the problems, and
I felt this was a sign of inadequacy. At Mr. Maurer’s suggestion
I also studied the early chapters of Feller’s classic text on
probability, exciting material, and when our family paused for
four months in Seattle en route to revisiting Australia, I enrolled
in a very mechanical linear algebra course at the University of
Washington and also an honors analysis course from an inspiring
professor, Carl Allendoerfer. My contemporary Bill Gates was
living a mile or so from us at the time, attending Lakeside School
and doing equally advanced math along with his other activities,
but I hadn’t heard of him yet.

Back for senior year at Exeter, Nat and I were able to fly high.
In the first semester we took abstract algebra from David Arnold
using Fraleigh’s textbook, and this was the most thrilling
mathematical experience I had ever had. The definition of a
group was so beautiful! Mr. Arnold let Nat and me do a special
project on the Sylow Theorems. In our final semester we were
then introduced to a subject which was to prove important to my
career. We got to choose a “field course” on whatever topic we
wanted, and we picked complex analysis, that is, the mathematics
of real and imaginary numbers and the functions built from them.
Our instructor was the very special David Robbins, who was
teaching for a few years before beginning his career at the
Institute for Defense Analysis, and the textbook was the classic
by Churchill. In this course I remember having an edge over Nat,

which felt good. Mr. Robbins put a problem on one of the tests
involving an ant that moves one unit, then turns 30 degrees left
and moves half a unit, then turns another 30 degrees Ieft and
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moves a quarter unit, and so on; where does it end up? (Bugs
again, eight years later!—but now in the complex plane and with
a full compass of motion, not just forward or reverse.) I
remember being pleased that I spotted that this was a power series
and Nat didn’t. On the whole, though, Nat and I were more or less
indistinguishable all-rounders. He graduated first in the class, and
I was second. I got'the math prize. Though Mr. Maurer advised
against it (one must make new friends), we decided to continue
as roommates at Harvard.

At age 18, there was little doubt I was heading to be a mathe-
matician. I remember that summer, before Harvard, driving to a
park a few miles from home in Lexington with Herstein’s abstract
algebra book so I could study that subject in depth. This was not
successful, and I got sleepy in the hot sun.

Many mathematicians have stories like these of early years.
Most of us found ourselves good at the subject without trying very
hard, helped along by a special teacher or two, and by one means
or another ended up learning things beyond the usual curriculum.
In 1973 I placed first in the New Hampshire High School Mathe-
matics test, getting the first-ever perfect score, and Nat came
second. But when this led to the US Mathematical Olympiad for
high school students, I didn’t do so well. All in all, I was very
good, but never spectacular. Nor did T have any of the out-of-
school mathematical training that many kids were already
benefiting from and which later became an industry, like summer
math camps and coaching sessions for competitions. I just
pursued the subject eagerly, encouraged by supportive parents,
outstanding teachers, and a best friend and rival who was every

inch my equal.

Here is something funny from that senior year at Exeter. I had
jumped at the opportunity to go to such a special school, never
seriously considering the option of staying home in Lexington.
Well, on the National High School Mathematics Test that year,
whereas Exeter ranked #2 in New England, Lexington High
School was #1! We joked that if I had stayed home, it might have
been the other way around.

Atage 18, I don’t think I questioned any aspect of the subject
of mathematics. Math was there to be studied, and I was a
student. The experts had developed it over the ages, and it was
my lu<.:ky opportunity to learn some of what they had discovered.
Nor did I have an idea that a debate about “pure and applied”
would one day be important to me.

3. Fields Medalists and Their Strangely Small Impact on Me

Fo;ward half a century. Here is a list of all sixty Fields
med:allsts so far (including Grigori Perelman in 2006, though he
de’clfned the award). These are the gods of mathematics. All are
brilliant. Some have an aura of being more than that, gods among
the gods.

1936 Lars Ahlfors 1936 Jesse Douglas
1950 Laurent Schwartz 1950 Atle Selberg

1954 Kunihiko Kodaira 1954  Jean-Pierre Serre
1958 Klaus Roth 1958 René Thom

1962 Lars Hormander 1962  John Milnor

1966 Michael Atiyah 1966  Paul Cohen

1966  Alexander Grothendieck 1966  Stephen Smale
1970  Alan Baker 1970 Heisuke Hironaka
1970 Sergei Novikov 1970  John Thompson
1974  Enrico Bombieri 1974 David Mumford
1978 Pie‘rre Deligne 1978  Charles Fefferman
1978  Grigori Margulis 1978 Daniel Quillen
1982 Al?.in Connes 1982  William Thurston
1982  Shing-Tung Yau 1986  Simon Donaldson
1986 Gerd Faltings 1986 Michael Freedman
1990 Vladimir Drinfeld 1990 Vaughan Jones
1990  Shigefumi Mori 1990 Edward Witten
1994  Jean Bourgain 1994  Pierre-Louis Lions
1994  Jean-Christophe Yoccoz 1994 Efim Zelmanov
1998 Richard Borcherds 1998 Timothy Gowers
1998 Maxim Kontsevich 1998  Curtis McMullen
2002 Laurent Lafforgue 2002 Vladimir Voevodsky
2006  Andrei Okounkov 2006 Grigori Perelman
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2006 Terence Tao 2006 Wendelin Werner
2010 Elon Lindenstrauss 2010 Ng6 Bao Chau

2010 Stanislav Smirnov 2010 Cédric Villani

2014 Artur Avila 2014 Manjul Bhargava
2014 Martin Hairer 2014 Maryam Mirzakhani
2018 Caucher Birkar ? 2018  Alessio Figalli

2018 Peter Scholze 2018 Akshay Venkatesh

Now I’m no god, but remember, I am a leading figure in one
of mathematics’ big subdisciplines and the senior among 15
statutory chairs in one of the world’s top mathematics depart-
ments. So let’s ask, how many works by these Fields medalists
have I read?

The answer is, exactly one. This is the inspiring textbook
Complex Analysis by Ablfors that I studied in Math 213a,
sophomore year at Harvard. Beyond that, I've read some pages
by Serre, Hormander, Milnor, Atiyah, Smale, Lions, and Tao.
But Ahifors, Fields medalist 86 years ago, is the only one of the
60 who wrote something I have come anywhere close to reading
in full.

All areas of intellectual activity have proliferated in
specializations with the years, as more and more people make
contributions, but still, this situation is extreme. Can you imagine
a novelist who’s never read a book by Mann, Hemingway,
Marquez, Lessing, or Morrison? An economist who’s never read
anything by Samuelson, Arrow, Friedman, Kahneman, or
Krugman?

Part of the effect is related to the pure vs. applied divide,
which I will keep coming back to. I am applied, and these Fields
medalists are pure. Officially, Fields medals are for “mathe-
matics,” but it is understood that applied math doesn’t count, even
though you’ll never find such a statement in print. Many of the
winners would probably claim that they are simply mathema-
ticians, that the distinction between pure and applied is illusory,
and I’ have a word to say about that view later on. The Fields
medalist with the clearest record of applied contributions is

Fields Medalists and Their Strangely Small Impact on Me

prol?ab}y David Mumford, but these came after his Fields medal,
begnnmg at age 45 essentially as a second career at a second
university.

But pure vs. applied alone isn’t enough to explain the
weakness of the link between numerical people like me and the
anointed leaders of mathematics. We might think of an applied
mathematician as analogous to an experimental rather than
theoretical physicist. Can you imagine an experimental physicist
who’s never read a paper by Einstein, Schrédinger, Bethe,
Feynman, or Glashow? (I decided to get some data on this
que:stion, so I asked a few friends in experimental physics about
their reading histories. It seems it is typical to have read 5-10
works by these five men.)

It’s not that the Fields medalists have zero impact on me. I’ve
talked with Ahlfors (he was a reader of my undergraduate thesis),
Smale, Mumford (he taught me Math 250b at Harvard), Cohen
(ong of my professors at Stanford), Gowers, Tao, Smirnov, and
Hairer. I’ve attended lectures by Atiyah, Fefferman, Thurston,
.Yau, Donaldson, Witten, Lions, and Villani. I have a distant
impression of one or two of the contributions of Thompson,
Werner, Perelman, and Mirzakhani. But as we say in mathemat-
ics, the impact of these people on me has been epsilon. Whoever
they are influencing so greatly as to deserve Fields medals, it is
not the Professor of Numerical Analysis at Oxford. And, of
course, they have been equally little influenced by me. It would
bq interesting to know how many of the sixty have read a work of
mine, and in the absence of data on this point, I would estimate
this number as approximately 1.

. Some Fields medalists live the glamorous academic life,
giving distinguished lectures all over the place, but one who was
not_like that was the reclusive Dan Quillen, with whom I have a
curious connection. I was on a mathematics faculty with Quillen
not once but twice—at MIT and then again later at Oxford before
his retirement in 2006—and I never met him.
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4. Undergraduate at Harvard: Choice of Numerical Analysis

At Harvard, Nat and [ entered as two of the freshman hotshots
in math. The ethos was: advanced courses, advanced courses!
Nobody serious about mathematics would ever sink so low, for
example, as Math 21, linear algebra. So I first heard the linear
algebra word “eigenvalue” in a physics course. Eigenvalues
would play an important role in my career.

Most of the hotshots, including Bill Gates, took the legendary
Math 55, taught by John Mather, which was designed to exhibit
one’s testosterone.! After long discussion of pros and cons,
however, Nat and I decided to deviate from this path and take
Math 105, a third-year analysis course taught by Neil Fenichel.
For this we studied word-by-word, with intense effort and
excitement, the opening chapters of Dieudonné’s Foundations of
Modern Analysis. Following the Bourbaki tradition, and living
up to his surname, Dieudonné announces at the beginning that

there will be no figures in the book, since figures encourage

unrigorous thought. Here is how he puts it:

This has also as a consequence the necessity of a strict adherence
to axiomatic methods, with no appeal whatsoever to “geometric
intuition,” at least in the formal proofs: a necessity which we
have emphasized by deliberately abstaining from introducing any
diagram in the book. My opinion is that the graduate student of
today must, as soon as possible, get a thorough training in this
abstract and axiomatic way of thinking if he is ever to understand
what is currently going on in mathematical research.

This extreme Bourbaki point of view, I hasten to add, has lost
favor in later decades even among pure mathematicians.

I still have Dieudonné on my shelf, every line of the early
chapters highlighted in orange, yellow, and blue to distinguish
definitions, theorems, and other important material. It was a big
course, with 40 or more students, and Nat and I got two of the
four A+ grades. Meanwhile we were also taking Physics 55 along

1 See “Math 55” at Wikipedia—and footmote 8.
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with Steve Ballmer and Jim Sethna, among others. Every
semester at Harvard, I enrolled in both math and physics courses,
and what I learned in those courses laid the foundation of my
career. As arule I got A’s in math courses and A -’s in physics,
and I felt this pattern reflected reasonably my talents.

A big bifurcation came at the end of freshman year, when Nat
announced that he was moving into the social sciences. Up to that
point, we had been taking almost exactly the same courses since
age 10. After 1974 we diverged, he following his father into the
business world, me following mine into science and academics.
Like most Harvard graduates, Nat has gone on to earn vastly more
money than I have in his career, but money has only occasionally
been a constraint for me, and although I note the gap, it doesn’t
disturb me too much.

In sophomore year the serious young mathematicians, now
without Nat, hurried into graduate courses. I took Math 213a/b,
complex analysis, with Barry Mazur and Raoul Bott, and Math
250a/b, abstract algebra, with John Tate and David Mumford.
Though 1 didn’t fully appreciate it then, I later came to see that
learning mathematics from this incandescent foursome was about
like being taught rock and roll by John, Paul, George, and Ringo.
I liked these professors very much—what an intense year! But it
was hard going, and these classes had plenty of graduate students
in them who knew more than I did, including Putnam Exam
winners. [ recognized that two of the other undergraduates were
better mathematicians than I was: Tom Goodwillie, a year older
than me and now a professor at Brown University, and Nat Kuhn,
son of the philosopher of science Thomas Kuhn, a year younger
and now a psychiatrist in the Boston area.

Math 250a, with Tate, was the only course I took with Bill
Gates. The lectures were late mornings Tuesdays and Thursdays,
and afterwards a bunch of us would go to lunch, typically a subset
of me, Bill, Doug Critchlow (now at Ohio State), Nat Kuhn, Tom
Goodwillie, and somebody called Jack whose last name I don’t
recall. Sometimes we ate at Currier House, where Bill lived. He
was thin, quick, and confident. At one of these lunches, Bill

11
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bragged that he was the fastest typist around since he used a
keyboard all day long. I firmly disagreed, so we made a bet about
it and trooped up to his room with two witnesses to see who was
really the fastest. My touch-typing smashed his hunt-and-peck.

Another memorable person in my class at Harvard was Paul
Ginsparg, an impressive (and even more confident) young
physicist. Ginsparg went on to found arXiv, the e-Print repository
that launched the era of open-access publishing.

At the end of this intense sophomore year came my personal
bifurcation. All along I had assumed, as young mathematicians
do, that I would pursue pure mathematics. After all, this was the
very core of the subject, the place to make one’s mark for all time.
I remember thinking that whereas some people concentrated on
just analytic number theory or algebraic number theory, I was
more serious than that and would be a star of both analytic and
algebraic number theory.

Somehow by the end of sophomore year, all this fell away,
and I decided that what mattered was applied mathematics. These
many years later, I find it surprisingly hard to recall details of how
my views changed. I think I had a sense that applied mathematics
was simply more connected with the world than pure, and without
a doubt, the influence of my father played a part. I don’t mean
that he tried to persuade me one way or another, but it was he who
had formed me as a thinker with discussions of scientific
questions throughout my childhood and teenage years. From him,
I had always had a sense of mathematics as one point on a
spectrum including physics, chemistry, and engineering. (I don’t
think I took biology seriously at that age.)

So I switched majors from Math to Applied Math and
arranged to start taking applied courses in the fall. One of these
was Applied Math 211, the graduate course in numerical analysis,
energetically taught by Don Rose from the marvelous books by
Forsythe & Moler and Dahlquist & Bjorck (three of whom I
would come to know pretty well). 1was well ready for this, since
I’d been programming Fortran for Howard Emmons’ Home Fire
Project for several years, ten hours a week during university terms

12
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and full-time during the summer. Other than Gates, incidentally,
there were probably only three or four members of the Harvard
Class of *77 with as much programming experience as I had.

This was it,  discovered. Numerical analysis was the heart of
applied mathematics, the heart of mathematics, the heart of
science. I remember the thrill of a late night with the PDP-8 in
the Engineering Sciences Lab in which I finally got my Fortran
code working to solve a boundary-value problem by the shooting
method. It converged, and the correct digits lined up proudly. In
my daily index card of November 4, 1975, at age 20 plus a couple
of months, I wrote: “AM 211. I love this course.”

5. The Field’s Odd Reputation

Numerical analysis, the field I would devote my life to. A
subject that may appear to be just one of mathematics’ many
subdisciplines, one of 16 if you go by the list of research groups
at our departmental website. And yet, forty years of working in
this area have given me a special vision of mathematics. We
numerical people are the ones who see the show live. It happens
on our screens and at our fingertips. We make it happen. The
energy of this experience has kept me going, decade after decade,
and it’s always something of a mystery to me why more
mathematicians don’t recognize numerical computation as an
indispensable way to explore mathematics.

_A friend who knew me well asked after my first few months
of graduate school, “Are you skiing on the complex functions
yet?”

But I want to comment here on a public relations problem of
this subject of mine. These observations come from my 1992
essay mentioned earlier, “The definition of numerical analysis,”
and I spoke about them in my inaugural lecture at Oxford in 1998.

When computers deal with real numbers like 7 and v2, they
usually approximate them to about 16 digits of accuracy. The
approximations entail what are called rounding errors, which
occur all the time, whenever you calculate anything numerically.

13
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Rounding errors have their interest, but they are pretty ugly from
the usual mathematical point of view, and somehow or other, this
ugliness came to be regarded as the very essence of my field. In
writing that essay I looked up dictionary definitions of numerical
analysis and recorded these dispiriting specimens:

Webster’s New Collegiate Dictionary (1973): The study
of quantitative approximations to the solutions of
mathematical problems including consideration of the
errors and bounds to the errors involved.

Chambers 20% Century Dictionary (1983): The study of
methods of approximation and their accuracy, etc.

The American Heritage Dictionary (1992): The study of
approximate solutions to mathematical problems, taking
into account the extent of possible errors.

How dreary! In the inaugural lecture, I had some fun imagining
what it would be like if other fields had our flair for publicity:

Acronautical engineering. The design of flying vehicles
capable of rapidly and reliably reducing the errors in
passengers’ initial positions.

Education. The development of methods for measuring
the ignorance of children and adults, and diminishing it
where possible.

Medicine. The study of the approach of death in humans,
and of methods for delaying this event.

I think I know how the sad definitions of numerical analysis
came about. Leaders of our field at the beginning of the computer
era, notably Jim Wilkinson and George Forsythe, discovered that
rounding errors sometimes led to surprises, much bigger errors in
the final answer than you might expect. They were fascinated by
this effect and made it their mission to tell the world. Watch out,
computers may fail you! How I wish they had been less effective
in their admonitions. For the bigger truth of this subject is that it

is all about calculating numbers correctly—generally with
amazing speed and by methods that are often not in the least bit
obvious. As I mentioned earlier, here is the definition I prefer:

Numerical analysis is the study of algorithms for the
problems of continuous mathematics.

You can add qualifications, and in particular, many would
distinguish the applied end of the field as “scientific computing,”
but this definition is the essence of the matter, and the spotlight is
on algorithms, not rounding errors. If rounding errors vanished,
90% of numerical analysis would remain.?

Years have passed, and my essay has had some influence, as
has the improvement of the rounding error situation through the
adoption of the IEEE standard for floating point arithmetic. Some
of the newer textbooks put less of an emphasis on rounding errors
on page 1, and Wikipedia, for example, now gives a definition of
numerical analysis that I might have written. The data science/
machine learning revolution is also doing its part to heighten
interest in numerical algorithms after decades in which many
mathematicians and computer scientists avoided them. Indeed,
after years of moving the other way, computer science is growing
more numerical these days as it is discovered that numerical
methods for optimization, for example, are effective in ever new
and unexpected settings. May the progress continue.

6. Discrete and Continuous

The distinction between discrete and continuous mathematics
is complex and sometimes hard to pin down, but very important.
I think this gulf'is as big as the one between pure and applied, and
in my case it may be bigger, for I consider myself qualified to

2 This estimate was bome out in the SIAM 100-Dollar, 100-Digit Challenge in
2002, which I’'ll say more about later, where contestants had to compute ten
numbers each to 10-digit accuracy. Exactly one of the ten problems depended
on rounding errors in the sense that a successful solution required extended-
precision computer arithmetic.
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The Field’s Odd Reputation

have opinions about pure continuous mathematics, but not about
discrete mathematics, pure or applied.

Discrete vs. continuous starts from the difference between
counting and measuring, and it is related to the distinction
between algebra and analysis. I first heard of this dichotomy in
my senior year at Exeter, when Nat and I spent a couple of days
visiting our friend Eric Anderson in his freshman dorm to see
what Harvard life was like. I was talking with one of Eric’s class-
mates, and he made a remark that seemed deeply wise. ‘The first
thing you must decide about yourself as a mathematician, he said,
is whether you are an algebraist or an analyst.

I had no idea then which I was, but over the years [ have come
to know: I am an analyst all the way down. What matter to me
are real and complex numbers and the functions associated with
them. Algebraic and combingtorial structures are a distant
galaxy, one I admire through the telescope. If I worry about the
state of mathematics, it’s the continuous side I am thmkmg of. I
have no standing to worry about the discrete side.’

If you look yet again at the definition of numerical analysis,
you'll see that its penultimate word hints at the existence of
another field with a dual definition:

Numerical analysis is the study of algorithms for the
problems of continuous mathematics.

Plainly the other field will be defined like this:

O is the study of algorithms for the problems of discrete
mathematics.

So what is [1? The answer is computer science, or at least one of
the classical parts of computer science (CS for short). The view

3 That said, one thing does puzzle me. In computational mathematics, although
univariate polynomials are ubiquitous, multivariate polynomials are not used
very much, as I discussed last year in one of my “Notes of a2 Numerical
Analyst” columns in the LMS Newsletter. Yet multivariate polynomials are
precisely the subject matter of algebraic geometry, one of the highest-prestige
areas of pure mathematics, with ten Fields medals. What’s going on?
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that the study of algorithms is the heart of computer science was
put forward by Don Knuth of Stanford beginning in the 1960s,
and Knuth took on a stature in computer science like that of Noam
Chomsky in linguistics. He made the analysis of algorithms
exciting and intellectually deep, and the discipline of CS was
born. Knuth has been a career-long inspiration to me and also a
friend, but he is at heart a discrete mathematician, and the
continuous side of algorithms got mostly left aside by him and his
circle when they were defining computer science in the academic
imagination. Alan Turing and John von Neumann, by contrast,
computer pioneers of an earlier generation who both died young
in the 1950s, were equally at home with the discrete and the
continuous.

This leads to an odd situation. Intrinsically, you would think
numerical analysis ought to belong to computer science, since it’s
all about computing. And yet computer scientists are mostly
trained in discrete mathematics, not continuous. On the other
hand, physicists, chemists, and engineers are trained in
continuous mathematics, because that’s what they need for their
work. And so it happens that numerical analysts employed in
Computer Science departments sometimes find they can talk to
the faculty in every science or engineering department, except
their own.

But lately we are less often to be found in the CS department.
When these units were first founded in the 1960s, about half the
pioneers were numerical analysts, including Walter Gautschi and
John Rice at Purdue, George Forsythe and Gene Golub at
Stanford, Fritz Bauer in Munich, Eduard Stiefel and Heinz
Rutishauser in Zurich, John Bennett in Sydney, Bill Gear at
Illinois, Tom Hull at Toronto, Germund Dahlquist in Stockholm,
and Leslie Fox here at Oxford.* Likewise, about half the papers
in the Journal of the Association for Computing Machinery in
those days were on numerical topics. This has all changed since

4 Fox was the first Professor of Numerical Analysis at Oxford (1963-83), Bill
Morton was the second (1983-97), and I am the third (1997-).
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Turing Awards and My Mathematics-CS Oscillation

then. The (renamed) Journal of the ACM now rarely pubfishes
numerical papers, and at most universities, numerical analysis has
moved back to the mathematics department. It happened at
Oxford in 2009, on my watch. A year or two ih advance of the
move, the head of the CS department wrote in a draft summary
report for the Research Assessment Exercise that when the
Numerical Analysis Group moved from CS to Maths, both
departments would be improved! Alas, I made a fuss about this
silly insult, and it was deleted from the final document. What a
treat it would have been to have left that gem in the historical
record.

~

7. Turing Awards and My Mathematics-CS Oscillation

I wrote one of my index card notes on the question of discrete
and continuous in 2019, focusing on the Turing Award, computer
science’s highest honor. In theory, computer science includes
numerical analysis as part of its scope, and a numerical analyst is
certainly eligible, in theory, to win the award. How many of the
72 winners have actually been numerical analysts? The answer is
three, if you count Richard Hamming (1968). The other two, the
“card-carrying numerical analysts” in the group, were Jim
Wilkinson (1970) and William (“Velvel”) Kahan (1989). Note
that these dates are 54, 52, and 33 years ago. The award citations
for Wilkinson and Kahan both emphasize their contributions to
the problem of rounding errors, that 10% of numerical analysis
which people mistake for the whole of the field.

Curiously, although I’ve only read one work by a Fields
medalist, I’ve read about fifteen by Turing Award winners. On
that basis, you might judge that I am a computer scientist. As a
second data point, the positions I've held suggest I am a perfect
mix of CS and mathematics:

Student.at Harvard 1973-77: mathematics
Graduate student at Stanford 1977-82: CS
Postdoc at NYU 1982-84: mathematics and CS
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Assistant/associate professor at MIT 1984-91: mathematics
Associate/full professor at Cornell 1991-97: CS
Professor at Oxford 1997- : CS, then mathematics

7 '~
My books and papers, however, show where my heart really lies.
I am a mathematician.

8. Pure and Applied

It’s time to say the next word about pure and appliec{ mathe-
matics. I’ve published a few essays touching on this divide, such
as my April 2011 “From the SIAM President” column in SIAM
News. It’s a dichotomy all mathematicians have opinions on, and
as with all matters of identity politics, it can be awkward. Here
in the Andrew Wiles Building at Oxford, we have -adopted
euphemisms to avoid uttering the dangerous words: we speak of
“North wing” and “South wing” mathematics. Before the
building was opened in 2013, there had been talk of assigning
offices randomly to encourage interactions between disparate
fields, but that idea didn’t last long, and the pure people ended up
on the north side of the central common room and the applied
ones on the south.

As you might expect, most applied mathematicians are
concerned with scientific applications. Our South wing includes
a big research group known as OCIAM, the Oxford Centre for
Industrial and Applied Mathematics, whose origins are in solid
and fluid mechanics. We also have the Wolfson Centre for
Mathematical Biology and the Mathematical and Computational
Finance Group. The work in these research groups starts from
applications of mathematics to mechanics, electromagnetics,
biology, finance, and other areas. A key word is “modeling,” as
an applied mathematician of this kind uses mathematics to model
the natural, social, or cyber world. The expectation is that the
required mathematics will already largely exist, such as the notion
of a partial differential equation, and the fundamental scientific
laws being wielded will also exist, such as Maxwell’s equations
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for electromagnetism. According to this admittedly simplified
way of thinking, the applied mathematics consists in combining
these ingredients in nontrivial ways to understand nontrivial
phenomena. -

Well, this isn’t what I do. (There have been two exceptions
in my career, involving transition to turbulence in the 1990s and
Faraday cages twenty years later.) I am one of those researchers
who develop methods rather than models. The same goes for
many numerical analysts, though not all. It is sometimes said that
our focus is on “applicable” rather than applied mathematics.

There’s nothing wrong or odd about this situation. It is
altogether fitting and proper that the mathematical population
should include some people interested in models and others in
methods, and indeed, in OCIAM and the other applied groups at
Oxford you will find faculty members who work on both, such as
Jon Chapman, a magician of asymptotic analysis. But the fraction
who are primarily oriented toward methods is small.

1 remember discussing the models vs. methods question over
lunch with Harvey Greenspan one day when I was an Assistant
Professor at MIT in the 1980s. Greenspan, a dominant figure in
the group and an expert in fluid mechanics, said that numerical

analysis wasn’t a serious research subject. That feeling used to”

run deep in some' people, the idea apparently being that a good
scientist can figure out computational methods on the. fly, as
needed. Luckily, you won’t encounter this opinion so much any-
more. But it remains the case that among applied mathematicians,
there is sometimes a certain distance from the perspective of the
numerical analysts. When Alain Goriely, Professor of Applied
Mathematics and Director of OCIAM, showed me a draft of his
Applied Mathematics: A Very Short Introduction, 1 saw that the
pages on numerical computation gave the impression that the first
thing one must know about this subject is that numerical results
are often wrong! There’s our flair for publicity again. Goriely is
a good friend, and when I pointed out to him that this looked odd,

he was quick to fix it. .
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The usefulness of numerical analysis, all across science and
engineering, is unarguable. At MIT and then again later at
Cornell, I taught graduate courses in numerical linear algebra and
numerical solution of PDEs that were taken by PhD students from
a dozen different departments, for these skills are needed in all
scientific areas. At Oxford, there was no concept of inter-
departmental courses at the PhD level, but starting in 1999, I
decided to introduce such a course anyway, running for two terms
with the title “Scientific Computing for DPhil Students.” I taught
this ten times, and there are more than 500 alumni from the
various departments of Oxford’s Mathematical, Physical, and
Life Sciences Division.

9. Five Mathematical Fields

There are five mathematical fields I need to talk about, starting
with four with which my career has had longstanding
connections. I regard these subjects as among mankind’s lasting
achievements. At the same time, in each case, although I have
been involved in the area for decades, my relationship with it has
been in certain respects odd and unsatisfactory. For most of this
time I assumed I was simply at fault for this. More recently, [ am
not so sure. y ’
© J . /!pproximation theory, beginning with my undergraduate

esis.

2. Complex analysis, beginning with that high school course
with David Robbins. '

3. Real analysis and partial differential equations. This was
the area of my PhD thesis at Stanford and is core territory for
numerical analysis.

4. Functional analysis. My work in my “pseudospectra
period” 1989-2004 was mainly related to eigenvalues or spectra
of matrices and operators, one of the central topics of functional
analysis. In my “Chebfun period” since then, 1 have been
concerned with developing continuous analogues of discrete
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Laboratory Mathematics

notions from linear algebra, which on the face of it is the very
definition of functional analysis.

These four fields cover much of the analysis side of mathe-
matics. How it adds up with the decades! And there is a fifth
field I will also speak of, where my involvement is newer but still
important to me.

5. Probability and stochastic processes. This became
personal with my work leading to Chebfun’s randnfun com-
mand in 2016.

10. Laboratory Mathematics

Before turning to these areas, I want to say a word about how
I do mathematics. My habits began to be formed as I worked on
my senior thesis at Harvard under Garrett Birkhoff, “Chebyshev
approximation in the complex plane.” 1 had weekly half-hour
meetings with Prof. Birkhoff in his office at the back of the
mathematics library with an alligator hide on the wall, but the
choice of thesis topic was my own. For better or worse, I have
done little work in my career guided by more senior figures.

Birkhoff did, however, make a good suggestion when he said
I should talk to Phil Davis at Brown University. I duly made an
appointment and drove down to Providence, Rhode Island. Prof.
Davis was avuncular and smart, and upon hearing my questions,
he pulled from his shelf an exactly on-target recent aiticle by one
Volker Klotz in the Journal of Approximation Theory. It was in
German. You don’t read German? Davis asked. You should
know German! This was a life-changing suggestion for me, for I
had always avoided the study of foreign languages, thinking this
was for less serious people. I started learning German that
summer, and it’s been a part of my life ever since, joined later on
by French.

Age 21 is a foundational time for anyone, and the senior thesis
set the pattern of my career. I was skilled at computer
programming, and it was natural that I should explore what could
be done computationally with complex Chebyshev approxima-
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tion. It was the spring of 1977, then, that showed me the way.
do numerical experiments. Whatever the topic, I use the
computer to guide me. This applies when I am working on
algorithms and also when I am working on theoretical problems.
For example, 1 can’t imagine investigating the Kreiss Matrix
Theorem or Crouzeix’s Conjecture without doing computations
along the way to keep me on track. I have long marvelled at how
most mathematicians prove their theorems without taking
advantage of this kind of help. (That’s why they need to be so
brilliant.)

In that first experience with this modus operandi at age 21, I
wrote Fortran codes to plot error curves for complex Chebyshev
approximations. The plots led to the thrilling discovery that these .
curves are nearly circular. Not just circular to a few percent, but
to one part in a million or a trillion! The reason I was the first to
see this was that [ was the first to do the experiments. A year or
two later in Zurich and Stanford, I was able to prove a theorem
establishing the effect theoretically by building on aresult of 1925
that I found in a book in the library, and this led to a new
construction that I called Carathéodory-Fejér approximation,

/which turned out to be related to other developing topics that
came to be known as AAK theory  and Hankel norm
approximation. It also led me to the numerical discovery of a
certain number 9.28903 ... which now goes by the name of
Halphen’s constant (or rather its reciprocal). You can see how a
fruitful early research experience like this would be formative.

Similarly, my PhD thesis, on group velocity in finite
difference schemes for partial differential equations, had plenty
of theorems, but they all sprang from computational experiments
that alerted me to certain surprising group velocity effects in
numerical discretizations, which I realized could explain the
physical basis of a celebrated stability theory of. Gustafsson,
Kreiss, and Sundstrdm. It was in the lead-up to this thesis that I
developed the habit of writing research memos as I work on a
topic, three or four pages long, usually presenting numerical
experiments with figures. My “Waves” memo series ran from “1.
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Wave speeds in finite difference schemes” (25 May 1980) to “49.
Slides from oral defense” (6 April 1982). Today, forty years later,
I have just finished Rat203 in the current sequence of “ratmemos™
devoted to rational functions.

As a third example, I mentioned earlier my pseudospectra
period. This sprang from computer “plots of dots,” revealing how
the eigenvalues of nonnormal matrices, such as nonsymmetric
Toeplitz matrices, spread out into a cloud if you perturb the
matrices a little bit. Gradually, I came to see that the perturbed
eigenvalues don’t just tell you about the perturbed problem, but
more importantly, they encode information about the behavior of
the unperturbed one. This was the beginning of the theory of
pseudospectra and my discovery that in many fields involving
nonsymmetric matrices and operators, eigenvalues did not have
the significance that was generally supposed. Eventually this led
to the book Spectra and Pseudospectra with Mark Embree.
Sometimes it feels as if my whole career has consisted of working
out the implications of phenomena revealed by computer plots,
an utterly obvious thing to do, but most people don’t do it.

The discipline of physics divides familiarly into theoretical
and experimental, and everybody understands that both are
essential to advancing the field. In mathematics, it could be the
same, for many phenomena of interest these days are
unobservable except on the computer. One classic example is the
famous effect known as chaos, discovered by Lorenz in numerical
simulations in 1961, and another is the phenomenon of solitons,
special nonlinear waves discovered through numerical
simulations beginning with Fermi, Pasta, Ulam, and Tsingou in
1953.5 On the whole, however, the experimental side of
mathematics is weaker than it should be and doesn’t always get
much respect. Indeed, the phrase “experimental mathematics”
sounds dim in my ears, suggesting that this is an activity carried

* These examples had theoretical and observational precursors, notably
Poincaré’s study of the N-body problem in the 1880s and John Scott Russell’s
observation of solitary waves in the Union Ship Canal in Scotland in 1834.
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out by people who are unaware of theorems or incapable of
appreciating them. That’s why I gave this section the heading
“laboratory mathematics.”

When people contrast theory and experiment in mathematics
and physics, they often make a logical error. In mathematics,
unlike physics, we have proofs, and that is magnificent. The
surprisingly common error is to suppose that mathematics has
proofs instead of experiments as a source of knowledge, when in
fact, it has proofs in addition to experiments.

Our laboratory is wonderfully lightweight, for all you need is
a computer. You have an idea for an experiment? If you’ve been
in training as long as I have, chances are you can carry it out and
get some results within the hour. (The physicists are not so
lucky.) Such an experiment, for example, was the first step
toward learning that the “random Fibonacci sequences” generated
by the equation '

Xn+1 = ExXn X Xn-1

where each + sign comes from a random coin toss, grow at the
rate (1.13198824 ...)"™ as n - co. My Cornell student Divakar
Viswanath, now at the University of Michigan, proved the
theorem and wrote the paper, and 1.13198824 ... is called
Viswanath’s constant.

You might think that all numerical analysts would function as
laboratory mathematicians, and of course, some do, but it is
curious how many do not. Too often, numerical analysis becomes
just another specialty to which a mathematician has decided to
apply their talent. Such people may draw remarkably little
inspiration from computing, regarding it as a tool for confirming
theorems rather than the whole point of the enterprise. When a
paper is published in this mode, you’ll see 25 pages of equations
and theorems establishing the theoretical properties of the method
under consideration followed by a few pages of numerical
experiments at the end to “verify the results.” Very possibly the
calculations were done by a graduate student, who may be
thanked for carrying out this necessary but onerous task.
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11. Approximation Theory: My Early Years

1 remember my first encounter with approximation theory. To
approximate a function like e* for values =1 £ x < 1, you can
use a few terms of the Taylor series, like this,

e* ~ 1+ x+ 0.5x2,

and you’ll get an aécuracy of 0.218. But somewhere along the
way, maybe as a sophomore at Harvard, I learned that you can do
much better with different polynomial coefficients, like these:

e* ~ 0.989 + 1.130x + 0.554x2.

Now the accuracy is 0.045, five times better. Neat! The theory
of such Chebyshev or “minimax” approximations appealed to me,
and 1 decided to write my undergraduate thesis in the area.b
Approximation theory extends much further than improving this
or that calculation by a factor of 5. Ultimately it deals with the
foundational question of how we can grasp functions at all.

In my PhD student years, I regarded approximation theory as
one-third of my portfolio along with numerical conformal
mapping and finite difference methods for partial differential
equations. Twelve of my first 18 papers were in this area, most
of them with Martin Gutknecht of the ETH in Zurich, with whom
I formed a happy collaboration after spending the summer of 1979
there. This was the first of three phases of my career as an
approximation theorist: .

I: academic polynomial and rational approx. (1977-85),
I: numerical polynomial approximation (2004-1 D,
III: numerical rational approximation (2017-).

In the first phase, it might have been noted that I came from a
nonstandard background, since I was doing my PhD in a
numerical analysis group. ButImade good contributions, notably
in connection with Carathéodory-Fejér approximation, non-

6 Decades later, we can compute the number 0.045 with one line of Chebfun:
f = chebfun('exp(x)'); p = minimax(f,2); norm(f-p,inf).
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uniqueness of best rational approximations, and the behavior of
Padé approximations. I went to approximation theory conferen-
ces and to workshops at the mathematical research center in
Oberwolfach, and I met the leaders of the field. I felt young and
inexpert, but I liked learning from those who knew more, and I
was publishing a solid series of papers with Gutknecht, and this
was a normal good start by a mathematical apprentice.

But my PhD thesis was in a different area, and other, more
computational interests called, and in the mid-1980s, I moved on
to other things.

12. Approximation Theory: Polynomials and Chebfun

Twenty years later began the stage of my career in which 1
have really been using approximations. In fact, I have probably
turned into the leading instance of a mathematician who is
applying approximation theory to get things done. Iam speaking
of the relatively classical, one-variable part of the subject. The
multivariate side is being applied by many people these days in
connection with deep learning, neural networks, and data science.

The flame was lit by the software system Chebfun. Back in
2001, my DPhil student Zachary Battles had asked for sugges-
tions of research topics for his thesis, and on December 4 of that
year, I sent him a message proposing seven possibilities. Zachary
was a Rhodes Scholar from Pennsylvania and completely blind,
an outstanding computer programmer and an amazingly talented
person all around. Number 3 on the list was “A Matlab extension
for functions,” and this was the topic he chose. Chebfun was
born, and by 2006, it was the focus of much of my work. .

I will talk later about the conceptual basis of Chebfun. What
matters here is that its implementation depends on polynomial
approximations. Chebfun carries out numerical computations
with functions that are realized on the computer as chebfuns,
which means polynomials in the form of Chebyshev series of
adaptively determined degrees, or concatenations of such objects.
At every step, the system approximates functions by these
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chebfuns to 15 or 16 digits of accuracy. The project was perfectly
suited to my interests, and it grew from one student at first to as
many as ten students and postdocs during the exciting period
2011-2017. Chebfun is fast and powerful, and it has been very
successful, with thousands of users around the world and a new
paper that cites it being published every 1.5 days on average,
according to Google Scholar.

However, something strange happened. As I started to care
about approximating functions, I found myself drifting away from
the field of approximation theory. The trouble, to put it bluntly,
is that approximation theorists are not very interested in
approximating functions. They are interested in pursuing their
mathematical ideas to the next logical step. The field has a
momentum of its own, quite independent of its apparent raison
d’étre. '

Few fields would seem to have so plain a purpose as approxi-
mation theory, as is discussed, for example, by Hilbert’s student
Paul Kirchberger in his thesis in Géttingen in 1902. (I comment
on Kirchberger’s views in Approximation Theory and Approxi-
mation Practice.) But in truth, approximating functions is only a
starting point. The larger aim of approximation theory, as with
so many academic fields, is to follow certain intellectual
trajectories. Here, as always, mathematicians are motivated only
in part by the challenge of developing useful tools, and in equal
measure by the challenge of making their results as sharp as
possible. The dual obsessions of mathematicians are to make
everything as sharp as possible and to make everything as general
as possible.

Let me illustrate the allure of sharpness with the problem of
optimal interpolation points. It turns out that if you want to
interpolate a function f(x) defined for —1<x<1 by a
polynomial p(x), then equally spaced interpolation points are a
catastrophically bad choice, whereas Chebyshev points, clustered
near +1 and —1, are excellent. This phenomenon was explained
by Carl Runge shortly before he moved to Géttingen in 1904 as

Germany’s first Professor of Applied Mathematics.” But are
Chebyshev points optimal? This is just the kind of question that
Jjumps at a mathematician, so natural and enticing. A century ago
it was realized that no, they are not optimal, so the question
became, what can be said about optimal interpolation points?
Bernstein made a conjecture in 1931 about how they can be
characterized, and it was exciting, fifty years later, when Kilgore
and de Boor were finally able to prove that the conjecture was
g true. Students learn these things in approximation theory courses.
i If you ask an approximation theorist whether Chebyshev points
*  are optimal for interpolation, the chances are they will be aware

P that no, they are not.
# But here’s what’s crazy. How much better are optimal points
than Chebyshev points? Twice as good? 10% better? It turns
out that they are zero percent better! For low-degree interpolation
& you may gain a little bit, but this quickly shuts off to no gain at
all as the degree rises. So the whole literature of optimal
interpolation points is pretty much an academic game. If you ask
your approximation theorist about this bucket of rain on the
optimal parade, there’s a good chance they’ll be unaware of it.
Optimal interpolation points illustrate how easily mathemat-
icians are distracted by pretty problems from what one might have
imagined they are trying to do. The true but misleading statement
“Chebyshev points are not optimal” is an example of what I called
an “inverse Yogiism” in an essay I published a few years ago in
the Notices of the American Mathematical Society. Yogi Berra’s

7 Runge was exactly 99 years older than me, as we share the birthday August
30 (along with both Howard Emmons and Mark Embree, mentioned earlier).
When Runge’s retirement age came up in 1924, the first thought was to appoint
another Professor of Applied Mathematics as his successor. However, it was
decided that the distinction between pure and applied mathematics was no
longer heipful, thanks in part to the successful contributions of Runge himself,
and upon a vote of the mathematics faculty, the title reverted to Professor of
Mathematics. (See Iris Runge, Car! Runge und sein wissenschaftliches Werk,
p- 192.) Applied mathematics reemerged at Gottingen with the establishment
of the Institute of Numerical and Applied Mathematics in 1967.
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celebrated quirky remarks, like “A nickel ain’t worth a dime
anymore,” are statements that are literally contradictory or
nonsensical, yet convey a truth. Mathematicians’ occupational
hazard is the reverse: statements that are literally true, yet miss
the point.

At the other extreme from optimal interpolation points,
namely, very useful but of little interest to approximation
theorists, here is an application of approximation theory with
great practical value: calculating the roots of functions. If f(x)
is a function defined for a < x < b, the best method of finding
its roots is to approximate it by a polynomial p and then find the
roots of p by solving a matrix eigenvalue problem. This method
works like magic, and it was proposed by Jack Good in a paper in
1961, then realized in Chebfun four decades later. For example,

the commands
f = chebfun(@(x) besselj(9,x),[0 1600])
r = roots(f)

compute all 318 roots of the Bessel function Jo(x) for 0 € x <
1000 to 15-digit accuracy in 1/40 of a second on my laptop. The
100" root is 313.3742660775.... Are approximation theorists
excited by this fruit of their researches? No, they are mostly
unaware of it. It has no pedigree connecting it to the classical
problems investigated by the founders of the field.

Having gone to approximation theory conferences early in my
career, I might have resumed the habit later on as I found myself
reconnecting with the subject, but 1 hardly did this at all. I found
the conferences and the work they showcased just too academic,
too far removed from practical problems of approximating
functions. For a taste of the kind of work I have drifted away
from, here are the titles of the first five papers published in the
Journal of Approximation Theory in the millennium year 2000.
(There is a principle that a mathematics paper always has a few
names in the title.)

“On the rate of convergence of the generalized Durrmeyer
type operators for functions of bounded variation.”
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“ 4 Korovkin theorem for abstract Lebesgue spaces. "

“The maximal Riesz operator of two-dimensional Fourier
transforms and Fourier series on H,(RXR) and

H,(TXT).”
“Multiple refinable Hermite interpolants.”

“Markov-Bernstein type inequalities for multivariate
polynomials on sets with cusps. ”

Now in each case, I can figure out what is going on in the paper
with a bit of work, and in fact, it will probably be interesting. But
when it comes to computation, this kind of research is not much
help. It’s no more and no less than perfectly normal academic
mathematics.

Thus, as I found myself using approximation theory more and
more, I was interested less and less in learning about new research
developments. The feeling was mutual. If in 1985 I may have
seemed like a young man on the way up, with the potential to
become a leader of the field, what I have grown into a third of a
century later is quirkier than that. My name is well known, but I
am not much of a figure in the approximation theory community,
and I am not often invited to speak at the conferences.

Paradoxically, somewhere along the way I seem to have
written one of the main textbooks in the field, Approximation
Theory and Approximation Practice (“ATAP™). 1loved working
on this project, especially during a sabbatical at TU Berlin hosted
by Volker Mehrmann. The book had an unusual gestation. In
March 2009, I was invited by Max Jensen to give a seminar at the
University of Durham. By that point Chebfun was becoming very
good at illustrating concepts of approximation theory, and it
occurred to me that for the seminar, it would be interesting to
show off some of these capabilities, so I offered the title
“Approximation theory and approximation practice.” Four years
later, the book appeared.

To make ATAP strong, I decided to track each idea to its
original source and list them all in an annotated bibliography.
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This took a good deal of work, for mathematicians have a way of
talking at length about the fine points while not mentioning the
coarse ones. For example, a function f(x) defined for —1 < x =<
1 has a Chebyshev series. Now there are two basic ways to get a
degree n polynomial approximation to f: either you truncate the
series, or you interpolate f by a polynomial inn + 1 Chebyshev
points. (This is a version of the “coefficients” vs. “values”
distinction we will meet again later.) Existing textbooks of
approximation theory—an excellent and appealing group, by the
way, mostly written about fifty years ago—do not point out that
there are these two possibilities. They do not tell the reader how
simple the relationship between the two is, involving the so-called
“aliasing formula,” nor show that they are equally effective in
approximating functions (to within a factor of 2), nor present

theorems for the two cases in parallel. I had to figure all this out '

for myself, even if in the end many of the key facts turned out to
have been worked out a century ago and published in papers like
“(Jber einen Satz des Herrn Serge Bemstein” (Marcel Riesz,
1916).

13. Approximation Theory: Rational Functions

And then, six years ago, I began to get involved with rational
functions as never before. Rational functions are ratios of
polynomials, 7(x) = p(x)/q(x). 1 could tell a number of stories,
but I’1l concentrate on the oddest, the story of Donald Newman’s
startling theorem of 1964.

It had been known forever that whereas polynomials are good
at approximating smooth functions, they are terrible with non-
smooth ones. For example, suppose you want to approximate the
absolute value function f(x) = |x| for —1 < x < 1 with an error
no greater than 0.001. You’ll need a polynomial of degree n =
282, and as the degree increases further toward oo, the error
decreases only in proportion to 1/n. This is awful, and it means
that polynomials are useless for doing anything practical with
non-smooth functions, except at very low accuracy.
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Then along came Donald Newman’s four-page paper in the
Michigan Mathematics Journal. Newman proved that if you take
a rational approximation to the absolute value function [x| for
—1 < x <1 of degree n, which means a ratio p/q where p and
q are of degree n, then the convergence can be as fast as “root-
exponential,” that is, errors decreasing at a rate exp(—Cv/n) for
some constant C > 0. The speedup is spectacular. Degreen = 8
is now enough for accuracy 0.001, and degree 26 for accuracy
0.000001. What a difference!

But now comes something astonishing. Approximation
theory is about approximating functions, right? And Newman
had just published a result showing that rational functions are
spectacularly good at doing that, right? So immediately in 1964,
with great excitement, people must have started to apply rational
functions for all kinds of computations, right?

Not at all. Newman’s result had no impact whatever on
numerical computation. And as for the approximation theorists:

They didn’t apply Newman's theorem. They sharpened it.

As 1T say, this is what mathematicians do. None of us showed any
interest in developing algorithms exploiting root-exponential
convergence. Instead, the attention was on the theoretical notion
of exactly optimal “best” approximations, which are hard to
calculate and therefore somehow extra-interesting. A number of
people started investigating these best approximations of |x| for
—-1<x<1. Vyacheslavov in 1974 proved that the sharp
constant is C = . Varga, Ruttan, and Carpenter in 1993 found
more precisely, through numerical experiments, that the error
behaves asymptotically like 8exp(—myn ), a calculation for
which they had to work in 200-digit arithmetic precision. Herbert
Stahl proved this result rigorously a few months afterward. Later,
in 2003, Stahl generalized the result to the equally academic
problem of best rational approximation of |x|*, where « is a
positive number.
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Forty years had now elapsed since Newman. Approximation
theorists had sharpened and generalized his discovery. But none
of us had applied it to do anything useful! And yet it was
potentially extremely useful, for whenever you solve a PDE in a
domain with corners—and in practice most domains have
corners—there will generally be singularities of the same nature
as those in Newman’s problem (branch points). So his discovery
has a close link to problems of scientific interest, but we had not
noted this. Nor had we investigated methods for finding practical
approximations with root-exponential accuracy, as opposed to the
exactly optimal best approximations that are so fascinating but so
hard to compute.

I speak of “we,” for I was as distracted as the rest. Rational
approximation had always been an interest of mine, and I'd met
Donald Newman at a meeting in 1985 in the English village of
Shrivenham, where he kindly praised me for finding a rhyme for
that name in a limerick. But for thirty years, despite knowing and
admiring Newman’s theorem, it did not occur to me to try to use
it. So I too, like everybody else, pretty much forgot what was
supposedly the purpose of approximation theory.

Somehow in 2016, my perspective changed and I began to
consider rational functions properly for computation. First Yuji
Nakatsukasa, Olivier Séte, and I devised the “AAA algorithm”
for rational approximation in ordinary 16-digit arithmetic, which
has opened many doors. Then my student Abi Gopal and I
adapted Newman’s discovery to create what we call “lightning
solvers” for PDE problems in domains with corners. The idea is
to solve the Laplace, biharmonic, and Helmholtz equations to
many digits of accuracy via rational approximations with
exponentially clustered poles near each comer, just as in
Newman’s approximations of |x|, and the name “lightning”
speaks to the mathematical link to the way lightning strikes trees
and buildings at sharp points. Further developments have been
contributed by Peter Baddoo, Stefano Costa, Yuji Nakatsukasa,
and André Weideman.
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All this could have been done forty years ago. I could have
shown it to Donald Newman!

14. Graduate Student at Stanford: Gene Golub, Serra House

After Harvard I wanted to do a PhD in numerical analysis. My
plan was to go to Berkeley, but one day in the spring of my senior
year, Gene Golub telephoned long-distance from California and
told me Stanford was better. It thrilled me to get a call from a
famous professor, and he was friendly and enthusiastic, so
Stanford is where I went. If Velvel Kahan had called, I would
probably have gone to Berkeley.

Enrolling at Stanford involved a switch to a department of
computer science, since that was the home of numerical analysis.
Later, Gene told me I'd been the top PhD applicant in CS that
year, but I had no sense of such things at the time, and indeed, I
had not heard of linked lists or other basic topics of CS 101, nor
had I heard of the department’s greatest star, Don Knuth.
Students these days seem to manage their careers more
scientifically than I ever did, juggling the data carefully to
optimize their options. I juggled my feelings and my ambitions,
but not much data. In those days we didn’t have rankings of
universities from 1 to 500 to look up on the internet.®

Gene Golub was an extraordinary personality, off the scale in
the degree of his attention to people. He was a bachelor, and his
students and colleagues in numerical analysis were his life. He
was big and friendly and told everyone to “Call me Gene” as soon
as he met them. It seemed there were weekly parties at his house

8 We had the internet, though, which was then called the ARPANET, and I
even had an address on it in 1978, among the first few thousand: 1 was
CSD.TREFETHEN@SU-SCORE. Only a small group of universities and
national labs were connected, but these included Stanford and Harvard, so 1
was able to exchange emails with my girlfriend back home (an alumna of Math
55—so much for testosterone). I don’t remember what we called the messages,
but it wasn’t a word as short as “email.”
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Graduate Student at Stanford: Gene Golub, Serra House

at 576 Constanzo Avenue, and in later years he and 1 kept in
touch, frequently having dinner together at a restaurant with some
of his other numerical friends. Indeed, whether I was in Oxford
or Sydney or Paris, Gene had a way of turning up for an extended
visit. He often had a gift in hand, like the latest Robert Caro
biography. Golub was a regular part of my life until his death in
2007, and a big influence on me even if we worked in different
areas. I was unusual in Gene’s circle in never writing a paper
with him, and he joked, not without reason, that I was a Harvard
snob.

It was because of Gene Golub that I became involved with
SIAM, and in fact, four Stanford numerical analysts have served
as Presidents of SIAM and several more as Trustees. It was
because of him that I attended the first of the quadrennial ICIAM
congresses (International Congress of Industrial and Applied
Mathematics), a series he played a role in establishing. That was
in Paris in 1987, and 35 years later, I am one of only two or three
people who have attended all nine ICTAMs.® Next year I plan to
extend the streak to ten.

Stanford Computer Science in 1977. Somehow I had landed
in the heart of Silicon Valley in its early days, when TeX and
WIMP interfaces and SUN Microsystems and Silicon Graphics,
Inc. were being created. Itook my place in a legendary group of
graduate students alongside Marsha Berger, Petter Bjorstad, Dan
Boley, Ken Bube, Tony Chan, Bill Coughran, Bill Gropp, Erig
Grosse, Mike Heath, Randy LeVeque, Franklin Luk, Stephed
Nash, and Michael Overton—also affiliated students Jonathan
Goodman, Nick Gould, and Jorge Nocedal. Many of these people
are now famous in our field. The whole group of us, together with
Gene’s many visitors, had our desks in a spacious former family
home called Serra House, with a persimmon tree in the courtyard.

® Sir Michael Atiyah, one of four people to date to win both the Fields medal
and the Abel Prize, gave a plenary talk at this first ICIAM congress in which
he remarked that applied mathematics feeds off the crumbs dropped from the
table of pure mathematics. That comment got some attention.
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The visiting professors in my first year at Stanford included
Germund Dahlquist and Jim Wilkinson, towering figures of the
numerical analysis of the 20% century.!® And I haven’t mentioned
my thesis supervisor, the generous and appealing Joe Oliger, or
the other faculty members in the group, Jack Herriot and later my
good friend Rob Schreiber. It was Gene who brought these
people together, all united by a love of numerical analysis. Later
at Oxford, this was my vision of how an academic research group
ought to be.

The importance of Gene Golub in the history of numerical
analysis is related to a historical transition and to a clash of
terminology. Classically, the roots of linear algebra are in
algebra. For example, eigenvalues of matrices are traditionally
regarded as algebraic quantities, having elegant invariance
properties going back to the 19 century. However, linear algebra
is also a subject of analysis, where the corresponding objects are
singular values, with the singular value decomposition (SVD)
being the tool you need if you want to measure the size of a matrix
or its inverse. The SVD was barely known when Golub started
advocating it in the 1960s, but now it is used throughout the
computational sciences. This quantitative, analytical side of the
subject is the one that matters to us numerical analysts, so for the
purposes of this essay, “linear algebra” belongs to analysis, not
algebra. Gene preferred to avoid the A-word entirely and talk of
“matrix computations.”

T took two courses from Wilkinson, who was tied with the complex analyst
Max Schiffer as my favorite lecturer at Stanford. Wilkinson, with his impish
English smile, was a laboratory mathematician at heart. He spoke rivetingly
about his experiments on the Pilot Ace computer beginning in 1949, trying to
figure out why the errors behaved as they did and eventually coming up with
the explanation he called backward error analysis.




15. Complex Analysis and Peter Henrici

Continuous mathematics is about functions, and functions live
in the complex plane. This is the plane of complex numbers zZ =
x + iy, where x is the real part of z, y is the imaginary part, and
i is defined by that magic formula i? = —1. “Living in the
complex plane” is a way of saying that, although you can examine
a function like f(x) = sin(x) /(1 + x2) for real numbers x, you
won’t fully understand its properties until you view it as f(z) =
sin(z) /(1 + z2). Mathematicians have understood this since
Cauchy, Weierstrass, and Riemann in the 19% century. For
example, the ideas of integrals and infinite series come fully into
their own in the complex plane.

As I’ve mentioned, I was lucky to be exposed to this subject
so early. I liked it very much, so it was natural that I should
choose to write my undergraduate thesis on complex Chebyshev
approximation. And then, with the help of a word about me from
his friend Birkhoff, I got to know the Swiss mathematician Peter
Henrici (pronounced hen-REE-tsee), who was writing his great
three-volume work Applied and Computational Complex
Analysis. Henrici spent the fall of 1978 visiting Stanford, and at
his suggestion, I set to work on the topic of numerical Schwarz-
Christoffel conformal mapping. 1 spent every weekend that fall
at the SLAC computer center developing my algorithm, reportin
my progress to Henrici in the weekdays. The project resulted in
one of the first robust numerical methods and computer codes for
conformal mapping, which later evolved into the SC Toolbox for
Matlab by Toby Driscoll, now at the University of Delaware. It
also led to my first publication, which appeared in the inaugural
issue of Golub’s new journal, then called the SIAM Journal on
Scientific and Statistical Computing. This paper has some nice
computer-generated pictures of conformal maps in it, and all my
later papers also have computer figures, with just one or two
exceptions. This is typical for many numerical analysts.

I published the preprint of the Schwarz-Christoffel paper in
March 1979 as CS-TR-1979-710 in Stanford’s computer science
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technical report series, and I believe this was the third research
report ever formatted in TeX, which Don Knuth had just created.
The first was Knuth’s TeX manual STAN-CS-78-675,'! in
November 1978, and the second was CS-TR-1979-703, by Bengt
Aspvall. For decades now, TeX (or rather its variant LaTeX) has
been the universal typesetting system for mathematicians,
physicists, and computer scientists.

Henrici and I hit it off. He was a European professor in his
fifties used to dominating the room, and I was a 23-year-old kid,
but we had in common, first of all, a love of numerical
mathematics. When programmable pocket calculators appeared,
he was the first to write a numerical analysis book for them
(Computational Analysis with the HP-25 Pocket Calculator,
1977), just as when Matlab came out, I would be the first to
publish a research paper with a Matlab program in it (“Matlab
programs for CF approximation,” 1985). Equally important, we
shared a love of words, writing, and typing. Later, when Henrici
was back in Zurich, we typed dozens of mathematical letters back
and forth to each other on our IBM Selectric typewriters. (He had
an older model, without the erase key.) It was at Henrici’s
invitation that I visited the ETH in 1979, and for a couple of
weeks that summer, when he was off in the mountains on Swiss
military duty, he lent me his office in the Hauptgebiude with its
great windows overlooking the Polyterrasse and the city and lake
of Zurich. There was a shelf by the desk with a foot of books he
had written, and I remember paying quite a bit of attention to that
shelf.

To my lifelong regret, Henrici died early, at age 63 in 1987. 1
didn’t realize when he was alive how much I meant to him, for
it’s easier for an older man to see himself in a younger one than
the other way around. Henrici liked my American freshness and
my confidence in doing mathematics on the computer. On
hearing how I had computed SC maps by combining Golub and

11 Donald E. Knuth, Tau Epsilon Chi, a system for technical text, November
1978.
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Welsch’s code for Gauss-Jacobi quadrature with Powell’s code
for quasi-Newton solution of nonlinear systems, he exclaimed
with his big laugh that this was a “symphony of computation.”
The graduate students in his group at the ETH, who were older
than me and in fact in two cases married with three children,
probably wondered why this American upstart was getting so
much attention. Henrici insisted I must call him Peter, though his
students didn’t get that offer until the completion of their PhDs.
I remember him confiding in me one day that he felt the younger
people around him somehow didn’t like words very much. He
thought they talked too slowly, and he liked my verbal ease.

[ wish Henrici had lived to a normal lifespan. I’ve been close
to several senior figures over the years, notably Gene Golub as
mentioned and also Gil Strang and Cleve Moler, but Henrici and
1 had something special. It never got a proper chance to grow.

When I brought my draft of the Schwarz-Christoffel paper to
his office toward the end of his time at Stanford, formatted in TeX
of course, 1 had put both our names on it. “Oh, I don’t need
another publication,” Henrici said generously. So I removed his
name and became the sole author; but now I wish I had insisted.

16. Complex Analysis: CAvid and CMFT

I've been working with complex variables ever since.
Sometimes this is for applications that are obviously complex,
like conformal mapping or Padé approximation, but equally ofteq
it is for problems that on the face of it involve just real numbers,
yet where you need the complex context to get it really right. For
example, in my papers on Clenshaw-Curtis quadrature, on
functions in the d-dimensional hypercube, and on solving
Laplace’s equation in a polygon, the algorithms, theorems, and
proofs all rely on complex variables.

In numerical analysis we like algorithms that converge
quickly as you increase the number n of steps or parameters, and
in the best cases, this means they converge at an exponential rate
when the functions they are applied to are smooth enough.
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Smooth enough means analytic, the condition of having
convergent Taylor series at each point. This is where the subject
of complex variables comes in, for if a function is analytic, it can
be extended from the real line into the complex plane, and
exponential convergence can then often be proved by analysing a
complex contour integral.

For example, the most famous method for calculating a real

. b .
integral | , f(x)dx isknown as Gauss quadrature, which involves

sampling f at n points between a and b and then adding up the
samples multiplied by certain weight factors. Here is the striking
result from the 19" century:

Theorem. If f is analytic, Gauss quadrature converges
exponentially.

This theorem tells us that Gauss quadrature has the most basic
good property we could ask for.

But do you know something odd about this fundamental
theorem? It appears in almost no textbooks!—although almost
every numerical analysis text teaches the reader about Gauss
quadrature.'? One reason may be that the notion of analyticity is
considered too advanced, even though it has been the basis of
mathematicians’ understanding of functions for 200 years.
Another may be that the authors of the textbooks don’t know the
theorem, since they learned the subject from previous textbooks.
In fact, numerical analysts are often quite weak in complex
variables. Maybe it wasn’t like that in the 1950s and 60s, but one
can only do so much, and the vital subject of numerical linear
algebra has expanded so greatly since then as to take up a lot of
the oxygen. Today’s numerical analysts speak fluent Matlab, and
they know how to precondition a Krylov subspace iteration, but

12 Folkmar Bornemann has pointed out that the theorem can be found as
Corollary 5.3.5 in Numerical Methods in Scientific Computing I, by Dahlquist
and Bjorck (2008).

+
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" most of them haven’t touched a contour integral since their
student days.

What about numerical analysts like me who use complex
variables all the time? No doubt there is a community of experts
we can call upon for advice?

This is where it gets painful. Yes, there are hundreds of
specialists in complex analysis around the world. They know
more than I 'do about many things, and sometimes I am able to
call upon their expertise. Yet usually, when I have tried, I have
not gotten very far. Our languages and value systems are 100
different.

Complex analysis is not regarded as one of the hot areas of
mathematics these days, and a number of these specialists
probably feel isolated in their departments. A typical paper in this
area has less impact than one of mine, at least as measured by
citations, so you might imagine that the experts would be eager to
be in conversation with me. That’s not how human nature works,
though. They are trained in one way of thinking and I in another,
and to each of us, the other’s concerns seem not so important.

If you look at the research topics investigated by complex
analysts, incidentally, you’ll see plenty of words that appear
computational. Complex analysts “estimate” and “compute” all
the time, as do many other mathematicians. But these estimates
and computations are conceptual ones. Computation in the sense
of actually working with numbers is a fringe activity.

In my three-month sabbatical at the University of Geneva in<
2014, I had an office next door to the Fields medalist Stas
Smirnov, one of the most exciting complex analysts of all, but I
only managed to talk with him once. I was working on the
mathematics of the Faraday cage effect, which had inexplicably
never been sorted out since Faraday’s original discovery in 1836;
even Richard Feynman in his Lectures gets it wrong. This topic
is intimately tied to complex variables, but I was unable to catch
Smirnov’s interest. If the same problem had been brought in the
door by a colleague from his own area, his engagement might

»
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have been different, but as a numerical analyst, I was not in the
set of people he was predisposed to pay attention to.

During the Covid pandemic, a worldwide “CAvid” lecture
series has been superbly organised by Rod Halburd, the
“Complex Analysis video seminars.” Unfortunately, after an
initial burst of enthusiasm, I have missed many of these talks,
which have titles like “Loewner-Kufarev energy and foliations by
Weil-Petersson quasicircles.” When I see a title like that, T suspect
the speaker and I may have little in common. So I fall into the
habit of not paying attention, and undoubtedly, as a result, I miss
some things that would be interesting.

I gave a CAvid talk of my own and decided to begin with some
personal remarks about these difficulties. Here is how I put it:

I want to say a word about our field, the field of complex
analysis, and me. As Rod says, I’m a numerical analyst, but pretty
much everything I’ve done, or let’s say two-thirds of the things
I've done over the years, have been rooted in complex variables.
That is my central playground and maybe my main advantage as a
numerical analyst, because many numerical analysts aren’t so
good at complex analysis. But the personal thing 1 wanted to say
is a somewhat sad one, which is that I have very little connection
with this community, the community of more theoretical complex
analysts. Most of you on this call I don’t know; I haven’t met
three-quarters of you. I don’t read your papers, with a few
exceptions, and probably you don’t read mine. It’s amazing how
separate the practical computational world is from the theoretical
world. That can’t be good. Idon’t have a solution to offer, but it
can’t be good, and in particular, for me personally, it’s meant I
haven’t benefited from experts as much over the years as I should
have. SoI work on a project; it’s very much in the complex plane;
1 know there must be experts out there I should be asking. I usually
don’t know who they are and I usually don’t manage to ask them.
What a waste.

Another impressive enterprise in complex analysis is CMFT,
which stands for Computational Methods and Function Theory
and is both a series of quadrennial international conferences since
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1989 and a high-quality journal since 2001. (Function theory is
another name for complex analysis.) From the start, the
announced vision has been to blend the numerical and the
theoretical:

CMFT is an international mathematics journal which publishes
carefully selected original research papers in complex analysis
(in a broad sense), and on applications or computational methods
related to complex analysis.

I was excited when this vision was announced, and I happily
accepted the invitation to be one of the inaugural editors of the
journal. Unfortunately, the “C” in CMFT has proved to be silent.
People like me have ended up playing little role, and the articles
published in the journal only occasionally have any true
engagement with applications or computational methods. The
editorial board now has 53 members, only one of whom, Lothar
Reichel, is known as a numerical analyst. I think the fault for this
situation lies on both sides. The purer complex analysts would
like to be closer to computation, but they don’t know what steps
to take, and the computational ones like me would like to be
closer to theoretical developments, but we don’t know which ones
to tune in to. As I write, the ninth CMFT conference has just
taken place in virtual mode. None of the invited speakers were
numerical people, and apart from my own, few of the contributed
talks showed evidence of actual computation. I believe the live
demo in my talk was the only one at the conference.

Rainer Kress of the University of Gottingen has pointed out -

to me another example of the “silent C” phenomenon. One of the
oldest mathematics journals is the Journal fir die reine und
angewandte Mathematik, founded in 1826. Although the name
means “Journal for Pure and Applied Mathematics,” this journal
is actually pure.

But to return to complex variables. Fortunately, there is a
small group of good friends who share my joy in computing in
the complex plane, including Peter Baddoo, Stefano Costa, Tom
DeLillo, Toby Driscoll, Bengt Fornberg, Nick Hale, Cécile Piret,

Alex Townsend, Elias Wegert, André Weideman, and Heather
Wilber. Take a look at the spectacular “Complex Beauties”
calendars by Wegert and his colleagues and you’ll see what I
mean.

17. Postdoc at NYU with Peter Lax: Pure and Applied Again

Oh, mathematics is beautiful. Real analysis, the study of
functions of a real variable, has such powerful theorems!
Continuity, compactness, Fourier transforms,... the elegance and
importance of these topics is deeply satisfying. And real analysis
leads to the language of the laws of nature, partial differential
equations or PDEs. When Maxwell discovered how light waves
work, it was because of a PDE. When Einstein predicted
gravitational waves, it was because of a PDE. Chemistry is built
on Schrédinger’s equation, fluid mechanics on the Navier-Stokes
equations, and civil engineering on the equations of elasticity.

My PhD thesis at Stanford was in this area, specifically, the
numerical solution of hyperbolic PDEs. For a postdoctoral next
step, the glamorous place to go was therefore the Courant Institute
of Mathematical Sciences at New York University (NYU), in
Greenwich Village, New York. Unlike most mathematics
departments, the Institute focused on just one area, namely real
analysis, PDEs, and their numerical analysis, and in its
constellation of stars, the most brilliant was Peter Lax. Lax was
a wunderkind from Hungary who had worked in the Manhattan
Project as a teenager. Now 56, he was in his prime, and I found
myself at Courant for two years with him as my NSF postdoctoral
supervisor. I also taught a course each year as an Adjunct
Assistant Professor. 13

If every mathematician were like Peter Lax, there might be no
need for this essay. His brilliance and charm set the tone for the
Institute, where he was a social as well as an intellectual magnet.

13 1t was at this time, back again on the same coast as my father Lloyd
MacGregor Trefethen, that I started going by my middle name, Nick.
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At lunch we would gather with him in the lounge on the 13% floor,
and the conversation would be one of substance. Sometimes he
would first lead a party to Dean & DeLuca’s in Soho to pick up
the right ingredients, for of course, he had gourmet tastes and
wanted to welcome others into his world. I remember his twinkly
eye and curly hair and curiosity about all subjects. In his central
European way, he seemed to know everything about music and
literature too. ’

I didn’t work with Lax, for he had half a dozen postdocs on
the roster and my tastes were more computational than his. But
his influence on me was still great, and when I say that if everyone
were like him things might be different, I mean something
specific. Lax’s mathematical mind encompassed both pure and
applied. His publications had a pure style, centering on theorems
proved with technical perfection, but he knew and appreciated the
applied things too. He had enormous impact on numerical

analysis through celebrated theorems that encapsulated just the-

right point in each area, like the Lax equivalence theorem, which
I had studied as a graduate student.

There is a widely held view I mentioned earlier, that
mathematics is one, that the difference between pure and applied
is illusory. This is nonsense, and in my experience it is generally
an opinion held by pure mathematicians, who often fancy
themselves applied, or fancy they could easily be applied if they
chose. You know that joke, what’s the difference between an
entomologist and an etymologist? An etymologist knows the
difference. I think there’s a principle like this in mathemétics.
What’s the difference between a pure and an applied
mathematician? An applied mathematician knows there’s a
difference.' Our mission, the mission of this essay, is to
encourage better communication between the many parts of
mathematics without pretending they are all the same.

In his 1981 essay with the notorious title “Applied mathematics is bad
mathematics,” Paul Halmos makes the same distinction—but in the other
direction!
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Lax was brilliant and wide-ranging enough to pull it off. If
we were all like him, mathematics might indeed be one, but most
of us are not so remarkable.

Pure mathematics has its eyes on history, preferring to work
on ideas that will still be important in 100 years, which for good
reasons may often be very abstract and general. For the people at
the top, this orientation may be realistic, and indeed, it is one'of
the triumphs of the human spirit that we can create mathematics
that lasts for centuries. For more average researchers, however,
this model is not always a good one, and contributes to
mathematicians having so much difficulty in understanding each
other’s work. '3

18. Real Analysis and PDEs: Regularity

Having given quite a few pages to two of my five fields, I am
at risk of going on at frightening length with the remaining three.
To avoid that, I'll confine myself to one observation for each. For
real analysis and PDEs, my theme is smoothness, or as
mathematicians call it, “regularity.”

How smooth is a curve? The basic idea for answering such
questions is derivatives. If a function is continuous, that’s not
much smoothness at all, but if you can differentiate it, i.e., take a
derivative, that is good. If you can differentiate it twice, that is
better. And so the basic measure of smoothness is the number of
derivatives you can take, and there are standard notions such as
C*([a, b]), the set of functions defined for @ < x < b whose ko
derivatives exist and are continuous. Such ideas apply not just to
functions of a single variable, i.e., curves, but also to functions of
several variables, namely surfaces.

15 Pye served on committees to award fellowships for pure mathematicians.
To explain why a candidate is deserving, a referee will begi‘n !ay making an
attempt to describe the substance of their achievements, but this is harq. Pretty
soon the letter moves away from substance and resorts to asserting howfv
brilliant the candidate is. Every discipline judges people in part by their
brilliance, but no other takes it as far as mathematics.
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The degree of smoothness of a function need not just be an
integer like 0, 1, or 2. We can talk about a function having “half
a derivative” of smoothness by appealing to a notion known as
Holder continuity. There’s also another technology going by the
name of Sobolev spaces. With Sobolev spaces you can consider
in a systematic way the sets of all functions that can be

fractionally differentiated, say, 1/2 or V2 or m times, which are

represented” with the notations H/Z, HYZ2, and H". The
mathematics is elegant and, of course, completely rigorous. If
you want further refinements, there are Besov spaces Bj, and
Triebel-Lizorkin spaces Fs4. I remember at one point in my
postdoctoral stage thinking it was very important that I should
understand the details of Besov spaces.

Now, why do we go to the trouble of this delicate analysis?
At the outset, the mathematics forces us to. For example, suppose
you have a function f and you want to work with its Fourier
series, a decomposition into an infinite collection of sines and
cosines. Naturally you ask, does the series converge to f7 It turns
out that for convergence to be assured, it’s not enough for f to be
continuous, but it’s more than enough for f to be differentiable.
So of course mathematicians want to work out a sharp criterion
for exactly how much smoothness is needed. It turns out that any
amount of differentiability is more than enough, like half a
derivative or one-millionth of a derivative. So more refined
analyses come into play of functions that don’t have any
differentiability at all, yet are still a little smoother than just
continuous. It’s a long and technical story, addictive in its
complexities, and many mathematicians have contributed to it.
Barry Simon’s textbook on harmonic analysis, which is what this
subject is called, runs to 759 pages, and it is not too extreme an
oversimplification to say that its central project is to develop
theorems relating different measures of smoothness of functions
to different convergence properties of their Fourier series and
transforms.
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So regularity theory starts from natural questions, but it has
grown into a monster, consuming everything in sight.
Mathematicians are made fun of for worrying about the existence
of a solution without caring about how to find it, but an equally
good caricature would be that they worry about regularity. How
smooth is this object? Though scientists and engineers hardly
care, this question in a thousand forms dominates real analysis
and PDE theory. It gets much more attention than questions you
might have thought were more fundamental, like, How good a
model of a scientific problem is this equation? How can we find
solutions? What do the solutions look like? What phenomena do
they reveal? )

As ever, it’s a case of mathematicians’ attraction to the
challenges of sharpness, generality, and technical difficulty. I've
just looked up the papers published so far this year in the Springer
journal Partial Differential Equations and Applications and the
NYU journal Communications on Pure and Applied Mathemat-
ics. Five of the 17 mention regularity in their titles.

A theme of this essay has been that we often see the pure
mathematicians doing one thing and the numerical analysts
another. But regularity theory for PDEs is an exception, for here,
the numerical analysts have followed the theorists. Iam speaking
especially of the dominant technology for solving PDEs known
as the Finite Element Method. In the finite elements numerical
analysis literature, you will rarely see a problem even stated, let
alone investigated, in any terms except Sobolev spaces. Ifit’s a
fluid mechanics problem, the velocity may be assumed to belong
to H, the pressure to H?, and the pressure gradient to H™* (a
space of functions with “minus 1 derivative”). The finite element
discretization and its convergence theory will be tuned to these
spaces. Everything fits together perfectly, with all the pieces
interlocking in an elegant fashion.

It’s impressive, but how distant from the functions that arise
in applications! Let me explain. Years ago, in the days of Euler
and Lagrange, the default assumption was that a function would
be given by a formula, which means essentially that it’s analytic.
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I think of this as the 18" century notion of a function. As
mathematics developed, the default assumption swung to the
other extreme, that a function is merely continuous, and I think of
this as the 20®-century notion of a function. Having, say, one
derivative or half a derivative is a minor variation on this
assumption. .

But what functions usually look like in practice is something
else again: -

’\/VW

*18th ¢. function” “20th c. function” what functions usually look like
analytic continuous piecewiss analytic

They are analytic, not merely continuous, except at isolated points
(or curves or surfaces, in higher dimensions) where they have
jumps or other singularities. Just think of a rectangle, the simplest
domain where a PDE problem of scientific interest is likely to be
posed. At the corners, the solution will probably have
singularities. Along the sides, it will probably be analytic.
Functions of this kind have almost no place in real analysis or
PDE theory. In fact, even the big book by Grisvard on analysis
of PDEs in domains with corners, precisely the setting where you
might think a different notion of functions might be called for,
begins with 80 pages of Sobolev spaces. And so our mathematical
analysis, and our finite element algorithms in their standard
forms, fail to recognize or exploit the perfect smoothness that so
many functions have almost everywhere in their domains.

Do you know how difficult it is to construct a function that is
merely continuous, or has merely one or two derivatives, all along
its length as permitted by the Sobolev theory rather than at
isolated points? Until a celebrated example of Weierstrass was
published in 1872, it was not even known that this was possible.
Nowadays the preferred method is to make use of the
mathematical idealization of Brownian motion, in which
infinitesimal random pulses nudge the curve up or down at every
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point along the way, and that’s how the 20™-century sketch above
was made. Of course, there are applications where this is just
what is needed, but these are the exceptions. Yet every time a
PDE theorist or a numerical analyst investigates a problem in the
setting of Sobolev spaces, they are implicitly working with this
pessimistic model of functions and probably settling for algo-
rithms with correspondingly low convergence rates.

19. Cleve Moler and Matlab

En route to functional analysis and Chebfun, I must mention
Cleve Moler and Matlab. 6

I first met Cleve Moler when I was a graduate student and he
visited Stanford, where his loud and friendly voice reverberated
around Serra House. Moler is the antithesis of a European, and
as a transatlantic soul, I love both Europeans and their antitheses.
A room with Moler in it is a no-nonsense zone. He has no interest
in showing you how your problem is connected with the theory
of pseudodifferential operators. He just wants to get things done
computationally, and nobody has done it better. Moler is about
the same age as Knuth, and while Knuth was writing his great
books on the analysis of discrete algorithms, Moler was creating
the modern era of numerical software. He was an author of both
of the foundational software packages of the 1970s, EISPACK
and LINPACK, and he also published two influential software-
based numerical analysis textbooks. And then, in around 1977 in
the Computer Science department at the University of New
Mexico, he invented Matlab, which changed the world.

Matlab started as an interface to portions of EISPACK and
LINPACK. Instead of requiring programmers to invoke Fortran
subroutines through elaborate ca'lling sequences, the idea was to
let them compute interactively at the terminal, typing commands
like eig(A) to find the eigenvalues of a matrix or A\b to solve a

16 The correct orthography is MATLAB, but I don’t like that, so I write Matlab
instead.
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linear system of equations.!” All the right algorithms would be
* invoked in all the right places, without the user needing to know
the details. At first Matlab was regarded by many people as a toy,
good for the classroom but not for “real” computing. But before
long it was a programming language as well as an interactive
system, and once Moler, John Gilbert, and Rob Schreiber gave it
sparse matrix capabilities in 1992, Matlab became a tool for
serious numerical computing of the desktop scale, as opposed to
the supercomputer scale needed for, say, weather prediction or
analysis of chemical molecules.

Moler visited Stanford again on sabbatical in the winter
quarter of 1978-79 and taught CS238b, which met MWF 12:00.
I'was in the class along with Marsha Berger and Randy LeVeque
as he explained matrix eigenvalue algorithms with demonstra-
tions in Matlab. At the time, I was working on approximation
theory and conformal mapping and beginning to think about
PDEs, and I’m not sure Matlab made much of an impression on
me. But it certainly impressed the engineers in the class, and a
couple of years later, when I was in my Assistant Professor office
at MIT, I remember Cleve coming in to introduce a young man to
me. “This is Jack Little,” he said. “He’s starting a company to
sell Matlab!”18

At that stage, at MIT, I was the only numerical analyst on the
applied math faculty and I was teaching the numerical linear
algebra course, with a Sun-1 workstation to play with in the
basement. I had money to spend, having been named as a
Presidential Young Investigator, and when the chance came along

”Forme eig(A) epitomizes the successful contribution of numerical analysis
to our technological world. Physicists, chemists, engineers, and mathema-
ticians know that computing eigenvalues of matrices is a solved problem.
Simply invoke eig(A), or its equivalent in whatever language you are using,
and you tap into the work of generations of numerical analysts. The algorithm
involved, the QR algorithm, is completely reliable, utterly nonobvious, and
amazingly fast. On my laptop, for a 1000 x 1000 matrix 4, eig(A) computes
all 1000 eigenvalues in half a second.

'8 The IBM PC had been introduced in August, 1981.
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to buy Matlab from the new company, I placed an order for ten
copies for $500. (One of the licences was employed by my
student Alan Edelman, now a professor at MIT, in his classic
work on condition numbers of random matrices.) Only a decade
later did MathWorks inform me that I had been their very first
customer. They gave me a plaque, now on display in my office:
“First order for MATLAB, Professor Nick Trefethen, February 7,
1985.” Another one is on the wall at the MathWorks headquarters
in Massachusetts.

I said Matlab changed the world, certainly the world of
desktop computing by numerical analysts, applied mathema-
ticians, and engineers. In particular, it changed my research life.
IfT had no strong reaction to it as a graduate student, that situation
transformed when I was a junior faculty member with a
workstation, which by now had moved upstairs to my office. I
found that Matlab fitted my research and teaching style perfectly.
The numerical experiments that had started in Fortran with my
undergraduate thesis at Harvard now had a more natural platform,
and it became a part of my mathematical life I have never ceased
to rely upon. It’s around 37 years now, let’s say 14,000 days, and
I would estimate I have used Matlab on 12,000 of them.

20. Ten Digits

Digits of accuracy have always fascinated me, for they are the
stamp that you have solved your problem. Of course, some
problems can be solved exactly in the sense of an analytic
formula, but these are exceptional. Most of the time there is no
formula, and one must compute. This starts with problems as
simple as finding a number x that is equal to its own cosine, i.e.,
x = cos(x). (Solution: x = 0.7390851332....)

Two years after landing as the Professor of Numerical
Analysis at Oxford and in charge of the Numerical Analysis
Group, I started a tradition that we kept up for fifteen years. Each
October, five or six new students would arrive to begin DPhil
(PhD) studies with me or one of the other faculty members. As
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an American used to graduate students broadening their
" knowledge by taking courses for a year or two, I didn’t like the
British system of these 21-year-olds getting right down to full-
time research on problems that were often all too academic. So I
decided to require them to give some time in their first term to
what we called the Problem Solving Squad. Each week for six
weeks, I handed out a problem, usually stated in just one or two
sentences, whose solution was a single number to be computed
numerically: There were no hints. The students’ challenge,
working in pairs, was to compute each number to as many digits
of accuracy as they could. Here are some of the problems.

A particle starts at the top vertex of a triangular array with
30 points on each side, and then takes 60 random steps. What is
the probability that it ends up in the bottom row?

What is Y-, sin(n) /log(n) ?

Three regular tetrahedra each have volume 1. What's the
volume of the smallest sphere you can fit them inside?

What is | 01 sin®(tan(tan(mx)))dx?

A needle of length 1 rests on the surface defined by the height
Sunction h(x) = 0.1x% + 0.1sin(6x) + 0.03sin (12x). What is
the lowest possible height of the center of the needle?

What is the smallest value of € > 0 for which the equation
eu'" +u—u® = 0 withu(1) = 0 has exactly five solutions?

What is Yn™1, where n is restricted to those positive integers
whose decimal representation does not contain the substring 42?

At what time t, does the solution of the equation u, = Au +
e¥ on a 3 X 3 square with zero boundary and initial data blow
upto o ?

If(xy) = exp(~(y +2°)?) and g(x,y) = =y + 57,
what is the area of the region of the x-y plane in which f > g?

Two adjacent solid unit cubes, each with mass 1, attract each
other gravitationally according to Newton’s Law with constant
G = 1. What is the force of attraction between them?
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Non-mathematicians may not recognize how unusual, even
strange, some of these problems are. They have no scientific
motivation, and no ordinary mathematical motivation either.
What they have is algorithmic motivation. They aim to test
whether the students can figure out enough about the structure of
the problem to really “nail” it. The Squad participants were
encouraged to look up any and all sources of information and to
talk to friends and faculty members. We had some long weeks of
effort and some very satisfying successes. Now and again I made
a mistake in cooking up a problem the night before—for example,
one problem turned out to have the answer oo, which I failed to
spot in advance—but fortunately, most of them made good sense.
There were also a couple of problems where an exact solution was
unexpectedly found. The most surprising example of this was the
“two cubes” problem above, for which Bengt Fomberg of the
University of Colorado later derived an insanely complicated
exact formula consisting of a sum of fourteen terms along the

lines of 35log(1 + v5) and 22 tan~1(2v6). To test the correct-
ness of his solution, of course, we compared it against the
numerically computed result 0.9259812605 .... This story is told
in a chapter of the 2011 book An Invitation to Mathematics, edited
by Dierk Schleicher and Malte Lackmann, and also in one of my
LMS Newsletter columns in 2020. Wider context of the problem
can be found in work of Michael Trott of Wolfram Research, Inc.
and Folkmar Bornemann of TU Munich.

After the Problem Squad had been running a few years, in
2002, I decided to organize a digit-hunting event for people
outside Oxford. I selected ten problems and posted them in SIAM
News as the “SIAM 100-Dollar, 100-Digit Challenge.” Contes-
tants, who could work in teams of up to six people, had to try to
solve each problem to ten digits of accuracy, and their score
would be their total number of digits. The Challenge attracted a
good deal of attention, and twenty teams got perfect scores of 100
points. (All 20 won $100, thanks to an anonymous donor who
was later revealed as William Browning.) The story is
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compellingly told, including mathematical details of the problems
going far beyond anything I had had in mind, in The SIAM 100-
Digit Challenge: A Study in High-Accuracy Numerical Comput-
ing by Folkmar Bornemann, Dirk Laurie, Stan Wagon, and Jorg
Waldvogel (SIAM, 2004). In the course of writing their book,
Bornemann et al. managed to solve nine of the problems to
10,000-digit accuracy; the tenth remains stuck at 273 digits.
Further developments were described by Bornemann in 2016 in
“The SIAM 100-digit challenge: a decade later.”

As the Challenge became known, people started to associate
me with the project of computing numbers to ten-digit accuracy,
and I realized this was a philosophy I believed in. I think of 3
digits as “engineering accuracy,” what you might hope for in a
problem with complex geometry and physics, whereas 10 digits
is “scientific accuracy,” a good target when the problem is more
idealized. Three digits are usually plenty for an application, but
they are nowhere near enough if you are building a computational
foundation for further work. There is also an algorithmic divide
between 3 and 10 ten digits. While many algorithms may solve a
problem to low accuracy, such as the randomized simulation
known as Monte Carlo analysis, you usually won’t be able to get
10 digits unless you have the mathematics more fully under
control. Another consideration is that, in physics, whereas many
quantities are known to 5-10 digits of accuracy, like the speed of
light or Planck’s constant, not many are known much beyond that:
so 10 digits is a reasonable proxy for exactness. Finally, there is
the convenient feature that 10 digits is well below 16 digits, the
level of rounding errors, so it can usually be achieved by
computation in standard floating point arithmetic.

I wrote an essay on this philosophy of numerical computing
called “Ten digit algorithms,” in which I defined a TDA by three
conditions:

Ten digits, five seconds, and just one page.
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A Ten Digit Algorithm should fit on one page of code in your
computer language, and it should compute the answer to 10-digit
accuracy in no more than five seconds. A lot of thinking went
into this definition, and in particular, the five-second condition
requires the computation to complete on a human time scale, so
that a good researcher will be unable to resist adjusting
parameters, exploring, confirming. (So much error results from
people settling for experiments that take minutes or hours to run!)
My essay was issued as an Oxford Numerical Analysis Group
report in 2005, and it ends with a bullet list and three sentences of
exhortation:

Ten digit algorithms can

« Improve our publications

« Speed up program development

« Make our numerical methods faster

« Make our scientific results more reliable

» Facilitate comparisons of ideas and results

« Add focus to the classroom

» Add zest to our field.
The challenge of designing these codes raises our standards and
raises our expectations. It’s good for the academics, and it
opens the doors wider to non-academics. And it’s fun!

Apart from the technical report, the TDA essay has not been
published, and in fact, it has the distinction of having been
rejected by arXiv. I tried twice to post it there, and both times,
the repository responded by saying that they regretted that the
piece was not substantial enough. Evidently, to be rejected by
arXiv, it is not necessary to find a flaw in Einstein’s theory of
relativity or discover new properties of the number 666.
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Thanks to Wilkinson, Golub, Moler, and other mathema-
ticians, and to EISPACK, LINPACK, Matlab and other compu-
tational tools, numerical linear algebra is a booming business. Its
methods are widely known and taught to new generations around
the world, partly from my own textbook Numerical Linear
Algebra co-authored with David Bau when I was on the faculty
at Cornell, before moving to Oxford. One explanation of this
success is that, to a degree unpredicted by von Neumann and the
other pioneers, computational science comes down to linear
algebra. Your scientific problem may be formulated in nonlinear
partial differential equations, for weather prediction perhaps, but
you’ll probably reduce it in two steps to get answers on the
computer:

Linearization: nonlinear — linear
Discretization: analysis — algebra
It’s the second step, discretization, that is the terrain of Chebfun.

As the schema suggests, often when we are dealing with discrete
vectors and matrices, they are only discrete because we have

made them so to fit on the computer. We would prefer to deal

with their continuous counterparts, functions and linear operators,
and the vision of Chebfun was to make this possible. Just as we
compute with numbers like e and v7 without thinking about how
they are approximated in 64-bit floating-point arithmetic, we
would like to be able to compute with functions like sin(x) and
e* without thinking about how they are discretized with respect
to x.

What opened the door to realizing this vision was the
introduction into Matlab of Object-Oriented Programming. A
central idea of OOP is overloading, where you take an operation
and give it a new meaning without changing the syntax. Matlab’s
syntax already encapsulated matrix algorithms developed over
generations. How about retaining that framework but over-
loading the operations, and introducing appropriate new
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algorithms, so that our programs would work with functions and
operators instead of vectors and matrices? We would be doing
continuous linear algebra at the keyboard, which is so often what
the user wanted in the first place.

Chebfun unfolded in a manner somewhat like that of Matlab
itself. At first, our expectation was that the experiment would be
interesting but perhaps not so useful, since surely the execution
would be slow. We were surprised to find how fast it actually
was. Before long we had overloaded 100 Matlab commands to
their continuous counterparts, including mainstays of numerical
linear algebra like the singular value decomposition. Everything
was mathematically and algorithmically new and had to be
figured out. Big steps towards practicality came when we
allowed functions to be piecewise rather than just globally smooth
and to depend on two or three variables rather than just one. The
key people in these developments were my DPhil students
Ricardo Pachén and Alex Townsend and my postdocs Rodrigo
Platte and Behnam Hashemi. Another big step came when we
overloaded the Matlab backslash operator for matrix systems of
linear equations, x = A\b, to solve ordinary differential equa-
tions (ODEs), u = L\f. After an initial spark from Folkmar
Bornemann of TU Munich, this differential cquations side of
Chebfun was built by Toby Driscoll and later Asgeir Birkisson
and Nick Hale. (Hale, now at Stellenbosch University, directed
the big release of Chebfun Version 5 in 2014 and has written more
Chebfun code than anyone else.) Without it ever having been
planned, Chebfun has emerged as the most convenient software
tool available for solving ODEs. Further Chebfun contributions
were made by DPhil students Anthony Austin, Nicolas Boullg,
Abi Gopal, Hrothgar (mononymic), Mohsin Javed, Hadrien
Montanelli, and Mark Richardson, by postdocs Jared Aurentz,
Silviu Filip, Pedro Gonnet, Stefan Giittel, and Kuan Xu, by my
close faculty colleague Yuji Nakatsukasa, and by sabbatical
visitor Grady Wright from Boise State University. Heather
Wilber also extended Chebfun to work with functions in a disk
when she was just a Masters student at Boise State.
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For fifteen years, this continuous mode of numerical
computing has been my world. It’s not just Matlab I use daily,
but Matlab with Chebfun. I don’t know how long Chebfun itself
will last, but the idea of overloading vector operations to
functions is here to stay.

This brings me to-functional analysis, one of the major areas
of mathematics since its initiation by Fredholm, Hilbert, and
Schmidt at the turn of the 20™ century and the focus of another of
Oxford’s mathematical research groups. Functional analysis
could be defined as

The study of continuous analogues of linear algebra.

This isn’t how you’ll usually see it put, but it’s the essence of the
matter. This is the field of mathematics in which we do linear
algebra on functions instead of discrete vectors.

Do you see a possible link to Chebfun? °

Strangely, there has been very little link at all. For an
explanation of this situation, we must note that for a mathema-
tician, the word “continuous” implies the transition from finite-
dimensional to infinite-dimensional spaces, and anything infinite
is a rich source of technical challenges. Indeed, the need to treat
infinities rigorously, which arose for example with Cantor’s
theory of sets and Lebesgue’s theory of integration, is perhaps the
biggest single reason why mathematics had to become more
technical in the past 150 years. These challenges, in all their
richness, are the wellspring of the field of functional analysis. For
example, the notion of the eigenvalues of a matrix in linear
algebra, if you want to make it rigorous for continua, becomes the
more advanced notion of the spectrum of a linear operator, which
may be divided into the point spectrum, the continuous spectrum,
and the residual spectrum. Other matrix concepts like nullspaces
and ranges likewise acquire new complications. Big theorems
come into play, like the Hahn-Banach theorem and the uniform
boundedness principle, which as a rule express results too trivial
to mention in the linear algebra case. The monumental work
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Linear Operators by Dunford and Schwartz fills three volumes,
2592 pages.

In all those pages, and all the achievements of functional
analysis, there were probably things that could have been of use
to us in developing Chebfun; but how were we to find them?
Generations of mathematical results addressing genuine mathe-
matical problems proved strangely distant from our project of
creating a continuous analogue of linear algebra on the computer.
As I write, this term’s talks in our department’s functional
analysis seminar series have just been announced, with titles like
“Applications of subfactor and categorical techniques to C*-
algebras” and “Schatten class Hankel operators on the Segal-
Bargmann space and the Berger-Coburn phenomenon.” It’s
another world. Once again, I stop paying attention, and, no doubt,
occasionally there are things I miss.

For Chebfun, we started from a blank slate and built it all
ourselves.

22. Stochastic analysis: Values vs. Coefficients

My fifth and final area is different from the others. With
those, I can claim some expertise bought with the years, but in
this case I was mostly a newcomer when I got involved in 2016.

The mathematics of probability has been with us for a long
time, and in the 20™ century it took great strides, but still it
remained a specialized subject among mathematicians. For
example, when I was a postdoc at the Courant Institute in the
1980s, although a probabilist or two were on the payroll (Henry
McKean was a star, and Raghu Varadhan would later win the
Abel Prize), everyone knew that the main subject was PDEs. But
somehow in more recent years, probability has moved to center
stage. You see this in mathematics departments around the world,
and starting in 2006, a regular fraction of Fields medals have been
awarded for advances related to probability, not to mention that
Abel Prize to Varadhan and another one recently to Furstenberg.
At NYU, among 72 professors “currently shown at the
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. mathematics web site, 14 list PDEs among their interests and 14
list probability and/or stochastics. Half the research talks now
seem to have a probabilistic flavor, including those in the
numerical analysis/scientific computing seminar. I just checked
and found that the next talk in this series has about as probabilistic
a title as you could imagine: “Leveraging concepts from
stochastic simulation and machine learning for efficient Bayesian
inference.”

I am about 50% cynical about the rise of probability. Partly I
think it is important and exciting, and that machine learning, for
example, indisputably requires probabilistic foundations. It also
seems that for computational problems of a sufficiently large
scale, the best algorithms almost always make use of randomness.
The other half of me wonders if the trend is driven more by the
hunger for ever bigger problems than by genuine scientific need.
It sometimes seems as if our computers have grown too powerful
for the old problems to be challenging, so we make them harder
by upgrading constants to random variables. Recently I marked
a student paper that explained with the blitheness of youth that
whereas in the past, scientists modeled phenomena with
differential equations, now it is recognized that these need to be
replaced by stochastic differential equations.

Yet plenty of stochastic analysis is well justified, and it can
certainly be interesting. Indeed, there’s a fascination in random
phenomena that I think reflects something deep in our
psychology. If you simulate a random process, you’ll find it
seems to have a personality like a living creature, and you’ll want
to investigate further.
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A few years ago, the Chebfun project faced a challenge. Like
every computing system, Matlab has a command that produces
random numbers. If you type randn (1000, 1), you get a vector
of 1000 of them. What’s the continuous analogue? What should
the output be from the Chebfun command randn, or as we ended
up calling it, randnfun?

The sketch above shows our answer, for it is a plot of the
output from the Chebfun commands cumsum{(randnfun(
0.001)). The “cumsum” part of this instruction specifies an
indefinite integral, the continuous analogue of a cumulative sum,
and randnfun(©.001) specifies an approximation to white
noise. Mathematicians call such a curve a Brownian path, which
is a random walk in the limit of infinitely many steps of infinitely
small size. Albert Einstein, Jean Perrin, and other physicists
understood the essential features of Brownian paths soon after
1900, including the intriguing property that they are continuous
but nowhere differentiable. Norbert Wiener in the 1920s began
the process of making the theory rigorous. Stochastic analysis is
still under development, and for example, Martin Hairer’s Fields
medal in 2014 was awarded for his rigorous treatment of
nonlinear stochastic partial differential equations.

Now to describe any function, we always have the two options
of “space and Fourier space,” or “space and dual space,” or as the
Chebfun team likes to say it, “values and coefficients.” You can
represent f(x) by its values at each point x, or as an infinite
series, in which case you are working with its coefficients. This
duality goes back to Joseph Fourier in Egypt with Napoleon more
than 200 years ago (or perhaps to Alexis Clairaut in the 18%
century), and it has proven to be one of the most fruitful ideas in
all of mathematics, even if there are technical challenges
involved, as I mentioned earlier in connection with the 759 pages
of Barry Simon’s book.

For the randnfun command, we realized that we would have
to use the “coefficients” approach, since a chebfun must be
smooth, being represented by polynomials. The specification we
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settled on was for randnfun to output a chebfun corresponding
to a finite Fourier series with random coefficients, with the length
of the series specified by a parameter. In the call to randnfun
above, the parameter is 0.001, meaning that there are on the order
of 1000 terms in the series.

As always, there is the alternative “values” approach to
Brownian paths, in which we evaluate f(x) at individual points,
and the parameter is how many points we evaluate. The two
approaches are mathematically equivalent, as was established by
Wiener himself, even if only one of them lends itself to Chebfun
implementation.

Stochastic analysis comprises not just random functions, but
also random differential equations. These are called SDEs, short
for stochastic differential equations, and here there are the same
two approaches. You can represent solutions by coefficients, and
Chebfun does this, providing (unexpectedly) one of the world’s
simplest tools for exploring SDE phenomena, as described in our
SIAM Review paper of 2017 and in chapter 12 of our book
Exploring ODEs. Or you can represent them by values, and this
was the method that was developed first, by the Japanese
mathematician Kiyosi Itd in the 1940s. Later, in the 1960s,
Eugene Wong and Moshe Zakai proved that the values and
coefficients approaches to SDEs are equivalent.

Intellectually, this has been a fascinating journey for me,
finding that Chebfun could do something useful in the area of
random functions and encountering along the way some powerful
mathematics. What a bit of luck to learn about stochastic
differential equations by discovering we had created a good tool
to solve them!

Sociologically, the experience has been less positive. As
always, to learn what I needed, my instinct was to ask questions
of everybody, both acquaintances reachable by email and the
local experts in the common room. I am afraid I found these
conversations difficult. I quickly discovered, stochastic analysts
do not like the “coefficients” approach. They do not use it, they
do not teach it to their students, and they do not put it in their

textbooks, even though it is simpler than the Ité and Stratonovich
calculi required by the “values” formulation, not to mention the
associated Euler-Maruyama and Milstein numerical methods.
Indeed, it was only slowly that I learned that both formulations
were in the literature and had been proven to be equivalent.

Everyone who has taken a calculus course knows the idea of
integrals, but only those who have studied more advanced
mathematics know the subject of measure theory. The “values”
formulation of stochastic analysis has technical complications
closely allied to those of measure theory, yet this is the
formulation that mathematicians insist must be taught from the
beginning. I have been unable to determine why their feeling is
so strong on this point. Imagine if we told students they had to
learn measure theory before they could talk about integrals! '?

As I say, I found it difficult to discuss these matters with the
stochastic analysts. There I was in the common room, having
understood eventually that one can define Brownian paths and
SDEs by either values or coefficients and eager to learn the pros
and cons of the two approaches—eager to learn why stochastic
analysts, biologists, and financial mathematicians (but not
physicists) work with the first rather than the second. Instead of
enjoying stimulating conversations about a subject that is
absolutely fascinating, I felt I was being told to go away and study
Gaussian processes, or regularity structures, or rough paths.

Do you see what is so puzzling here? We all know how trying
it can be to have to explain something to a person who lacks the
necessary background and asks foolish questions. But is there a
discipline other than mathematics where we would expect to see
this dynamic play out between senior professors in the same
department?

19 This is the final sentence of our SIAM Review paper.
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It would be hard to argue that I am anything but a
mathematician. And yet I have described a career in which, as
the decades have passed, I have become established in this
profession while feeling I am drifting away from it.

In my early years 1 took it for granted that the more
mainstream mathematicians, the leaders in each specialized field,
understood what was important in their areas. It troubled me,
therefore, to notice that my own work wasn’t building on theirs.
I would investigate a problem and make a good contribution,
often a genuine discovery, without ever mastering or in the end
even attempting to master the results of the nonnumerical experts
in the area. Indeed, I joked occasionally that

Numerical analysis is the study of the mathematics of the
previous century.?®

Despite the joke, privately I interpreted the situation as a
deficiency on my part. I knew I was doing good work, but I
supposed it would be even better if I had the strength of character
to absorb the papers of Adamjan, Arov, and Krein in support of
my Carathéodory-Fejér approximation, to immerse myself in the
theories of the great Louis Nirenberg while I was working on
PDEs at the Courant Institute, or to digest Dunford and Schwartz
when I was writing the book on pseudospectra. Year after year, I
had the sense I was falling short.

One may spot a possible flaw in that reasoning. If ignoring
the masters were truly an error, then I would have found not
infrequently in my career that my contributions later turned out to
have been anticipated, or invalidated, by the work of others. This
has not happened. Everything I’ve done has remained valid and
original, some things more important than others, of course, but
almost never mistaken or redundant. Indeed, it is clear that if I

20 This kind of floating reference appeals to the mathematical sense of humour.
A leading textbook on fractals takes it further with the dedication, “To my
current wife.”

66

Mathematics Today

had done more of that, [ would have done less of this. We are all
finite, and for better or worse, tying myself more keenly to the
mathematics of my day would have made me a different
researcher. 1 would have been more of a pure mathematician and
less of a numerical analyst.

Reflecting on this phenomenon of worthwhile contributions
from such different communities, I find it hard not to conclude
that the division of labor reported at the beginning of this essay,
that pure mathematicians develop the concepts and numerical
ones develop the algorithms, is oversimplified. At many points
in my career I have found that the established concepts were not
on target: that Atiyah’s crumbs travel, or at least ought to travel,
in both directions. For example, I’ve mentioned how eigenvalues
proved not to have the significance generally supposed for
nonsymmetric matrices and operators, whereas pseudospectra
come closer. A second example: slowly over the years I came to
realize that, although I have written a number of papers and even
edited a book on numerical conformal mapping, this is not
actually a good method for its most famous application, solving
PDEs in complicated domains. A third example: in working with
approximations of functions in squares and cubes and
hypercubes, I found that the standard notion of the degree of a
multivariate polynomial, the “total degree,” is not appropriate;
instead one should use the “Euclidean degree,” a term proposed
by Jared Aurentz. A fourth example: discovering that, despite a
century of literature presenting Gauss-Hermite quadrature as the
optimal method for the integration of functions on the infinite real
line —o0 < x < o, it is in fact much less efficient than other,
simpler methods like the trapezoidal rule. This last experience
exemplified a common feature of inverse Yogiisms, that
sometimes you can see quickly that the established formulation is
askew, but then it may still take quite a bit of work to pin down
exactly where the problem lies.

So perhaps I have not wasted my time as a mathematician, but
this does not resolve the puzzle. What in the world is going on
with mathematics if careful attention to the works of the leaders
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of approximation theory, complex analysis, real analysis/PDEs,
functional analysis, and stochastic analysis need not be on the
path to making contributions in these fields?

I don’t fully know the answer, but here is perhaps a start. A
discipline is defined in part by its subject matter, and for
continuous mathematics, though some would no doubt say this is
oversimplified, I think the subject matter is

Numbers, functions, and equations.

But it is also defined by its methodology, and for any kind of
mathematics, two quite distinct methodologies might be said to
be

(A) Theorems and proofs

and
(B) Algorithms and computations.

I believe my experience has shown that to an extent one would °

hardly have thought possible, (A) and (B) can operate indepen-
dently and still successfully, and they have been doing so for a
long time, producing valid advances on both sides that have
strangely little to do with one another. Of course, there is a certain

amount of communication in both directions. But some mathe-

maticians are carrying forward mathematics mainly in the seiting
of (A), while others are making equally genuine contributions in
the context of (B). Those of us on the (B) side do not abjure
theorems and proofs, and indeed we often create our own, as I
have done many times for many topics. But for the most part we
ignore the theorems and proofs that define the cutting edge of
today’s mathematics as it is generally understood—Fields medal
mathematics, if you like.

What an odd situation! Researchers on both ends of the
mathematical spectrum manage to be productive, I am glad to say,
and at every point in-between; but still, it is hard not to wish this
degree of separation could be diminished.
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As a dual citizen of the USA and the UK, I see pure and
applied mathematics in terms of an analogy. Nobody would say
that the American and British societies are, or should be,
identical. But they are certainly related, and surely both will be
stronger if there is good communication between them. The
current state of pure and applied mathematics feels rather as if
America and Britain communicated only by occasional sailboats
passing back and forth.

Some people believe that theoretical physics is in a state of
crisis brought on by the dominance of string theories unsub-
stantiated by experiments. I think the situation in today’s mathe-
matics is similar, with a detachment of a bewilderingly large
fraction of our community from phenomena coupled with an
extreme attachment to abstraction and technique. The word
crisis, however, is probably excessive in both cases. Physics and
mathematics are among the great ongoing achievements of
humanity, and both remain alive and strong. Concerning the one
that I know, mathematics, I only wish to suggest that its current
state is not all it could be, and that it is a challenge for the next
generations to bring the field closer together.
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