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 AN OCCUPANCY DISCIPLINE AND APPLICATIONS*

 ALAN G. KONHEIM AND BENJAMIN WEISSt

 1. Introduction. Most systems of filing, cataloguing or storing units of
 information have the following structure: each record, book or information
 unit has a natural name or record identification number associated with it.
 The set of all possible names, which we denote by { al, a2, ... , am}, is
 usually very large in comparison to the actual number, r say, of records

 jail, ai2 , ... , air} that are to be stored in any one problem. The storage
 procedure consists of assigning to each record ai, a unique record location
 number Aik E {O, 1, * *, n - 1 where n is the size of the storage (memory).
 Of course r ? n. Typical values of m and n are 236 and 210 respectively. The
 problem is to devise a procedure for assigning the record location numbers

 so that the time needed to store and recover a record, knowing only its
 name, is minimized in some sense.

 In certain circumstances the names { ail , ai2 , ... ai,J are structured
 in such a manner that a simple function g: {a,, a2, * , am,,} {0, 1, 2,
 * , n - 1} can be found with the property g(ai,) = g(aij) if and only if
 j - k. When this happens the storage and recovery is quite trivial.

 In most situations however {ai, , ai2 X . , aiJ lacks a definite struc-
 ture and m is much larger than n. Various schemes for storage have been
 considered. One has been described by Peterson in [1] and proceeds as

 follows: one begins by "randomly" selecting a function g: {al, a2, * ,am
 -{ fO, 1, , n - 1}. The record location numbers {As1, AI2, . ., Ai}

 of the records ai, , a,2 - *-* , air are defined inductively as follows:

 (i) Ail = g(ail),

 (ii) Aik = g(aik) + Sk (modulo n),

 where Sk is the smallest nonnegative integer such that g(aik) + Sk (modulo
 n) f [AilI Ai2, * * *, Ai,,-}. To recover the record aWk one computes in
 succession the record location numbers g(aik), g(aik) + 1 (modulo n),
 comparing after each computation the name of the record stored in each of
 these locations with aik . It is clear that the number of comparisons needed
 to recover the record aik is just Sk + 1.

 Peterson gives experimental data for the average value of Sk + 1. After
 some combinatorial preliminaries in ?2 we introduce in ?3 a new occupancy
 discipline and apply it in ?4 to obtain the probability distribution of the
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 OCCUPANCY DISCIPLINE 1267

 random variable Sk for a certain model of selecting the function g. This is
 used in ?5 to calculate the limiting value of E{ skl' as n -* oo with k/n
 = A E (0, 1). We conclude by applying ?3 to a curious "parking" problem
 in ?6.

 2. Combinatorial preliminaries. Let n be a positive integer and

 7r = ( r1, 2, * n) E Pn

 a permutation of the integers 1, 2, * * ,n. Define TYn, r,, and Tn by

 (2.1) rj,,(7r) = max {k: k < j, 7r; ? 7rm for

 m = j2 j - 1 ... ,j -k + 1} ,
 n

 (2.2) rn (7r) = ri,n (7r),
 j=1

 and

 (2.3) Tn = E 'rn (7r).

 LEMMA 1. Tn = (n + 1)n-1, n = 1, 2,
 Proof.

 n-1

 Tn = Fj Tn(r)
 j=O r E Pn,irn_i=n

 n-1 n-j-1 n

 - Z Z (n - i) rk_ n (70 rk,n(7)
 (2.4) j=? TEPn,rTnj=n )=1 k=n-j(l

 = j' (n - 1) (n- j) E Tn-j-1(7rl)Tj(7r2)
 n=O \ ,i / 7riEPn-j1 r2EPj

 -1(n- 1) (n j) Tn-j-iTj

 where we have set To = 1. Proceeding formally we introduce the generating
 function

 (2.5) g(z) = n zn
 n=o n!

 The recurrence relation of (2.4) implies that g satisfies the differential

 equation

 (2.6) z4(z)d (zg(z)) = z d(z)

 and hence

 I E { *} denotes the expectation of
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 1268 ALAN G. KONHEIM AND BENJAMIN WEISS

 (2.7) g(z) = exp (z4(z) ).

 On the other hand it is well known [2] that the only solution of (2.7) analytic

 in I z I < 1/e is

 (2.8) g(z) = (n + 1) n Z I < e. no n! z<1e

 This analytic function satisfies (2.7) and this in turn implies that
 Tn = (n + 1)n1.

 3. An occupancy discipline. Consider r balls B1, B2 * B, which are
 to be placed into n cells Co, Ci, ** , Cn- . We assume that r < n. The
 locations of the r balls are determined according to the following occupancy

 discipline: suppose r "fictitious" cell numbers (ji, j2, *** jI ,* ... * jr)
 have been selected (0 _ jk < n, 1 < k < r). The "actual" location of the
 kth ball Bk , say ik is defined inductively according to the rules

 (i) 1 = jl,
 (ii) for k > 2, ik = jk + Sk (modulo n), where Sk is the smallest

 nonnegative integer such that

 ik = jk + sk (modulo n) f {ll, 12 , *lk-1}

 We let A denote the transformation

 A: j = (jl1 ,2 X jr) --+ Aj = 1 = (11' l , Ir),

 and set

 at1 = { j:Aj = 11.

 Note that

 ,A(ai) = (the number of elements in (a1) = tI/k(l),

 where

 lIk(l) = max {I: {Ik, lk - 1 (modulo n), l * *k - a + 1 (modulo n)}

 C 1, k} }

 Let f(n, r), 1 < r < n, n = 2, 3, * *, be the total number of ways of
 placing the r balls into the n cells leaving the last cell (Cn-i) empty, i.e.,

 f(n, r) -
 1,max1C i _ r1i<n-1

 Comparing the construction of f(n, r) to the definition of Tn in Lemma 2
 we observe that f(n, n - 1) = Tn = nf
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 OCCUPANCY DISCIPLINE 1269

 LEMMA 2. f(n, r) = nl (n - r).
 Proof. We begin by establishing the recurrence formula

 (3.1) f(n,r) = (r) (j + 1)'1f(n -1-j, r -j),
 j=O J

 where we define

 (3.2) f (n, n) = 0,
 f(n, 0) = 1, n > 0.

 By virtue of (3.2) the recurrence (3.1) is certainly true for r = 0 and
 r n - 1. Henceforth we shall assume 0 < r < n - 1 and n > 2. The set

 r ={: max li <n - 1}
 1 _ i <?r

 can be decomposed inito the r + 1 disjoint sets

 ro = {1: max li < n-2},
 I_<,<r

 Fj = 1:1 E IP, In -2, n - 3,** n -jl}C{1,1 r}

 but n-j -2 ( {11 12 l*r} j = 1, 2,

 Note that rP is precisely the set of occupancy numbers for which

 (i) Cn-I is empty,
 (ii) C, is occupied for n-j -1 < v < n-1, and

 (iii) Cn-j-2 is empty.

 For each of the choices of j balls Bil Bi2 Bij. 1 _ ii < i2 <

 < ij < r, there are f(j + 1, j) = (j + 1)j-1 sets of "fictitious" cell num-
 bers for Bi, , Bi2, *---, B i which will result in these balls being placed
 into the cells Cn-2, Cn-3, *..., )Cn-j1 in some order, leaving cell Cn-1
 empty. For each choice of these (j + 1)"1 "fictitious" cell numbers for
 Bil, B, * * , Bi, there remain f(n- 1 -j, r-j) sets of r-j "fic-
 titious" cell numbers for the remaining r - j balls which will result in their
 being placed into r - j of the cells C0, Ci, , Cn- j2, leaving cell C-J2
 empty. Thus

 r (i

 f (n, r) =, .(j + )i `lf (n -1-j, r -j), O < r < n, n > 1

 Starting from (3.1) we obtain the formula
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 1270 ALAN G. KONHEIM AND BENJAMIN WEISS

 f(n, r) n zr (jp + 1) "P
 (3.3) r! jp2!Ai < pn-r1l+j2+- +jnr=r p=1 jp!

 0 < r <n, n 1,

 and this is equivalent to

 dr (3*4) f(n Xr) dz-r ( ()) |z ?J,

 where J is defined by (2.8). But according to (2.7),

 (g(Z))nr = exp (n - r)z5(z) = Z (n -r)j (9(z))j

 (5 ZZZ (n -r)' f(r, r-j)

 rT=O j=O j! (r-j)1

 or

 (3.6) f(n, r) = Z (.) (n -r) jf(r, r - j).

 From (3.6) we easily deduce that f(n, r) = nr-l(n - r), thus completing the
 proof of Lemma 2.

 4.- Length of search in a certain associative memory. Let X

 -{aj,a2, ... ,am,Y= {0,1,2...,n-1}and9(X,Y)= {g:g:X--Y}.
 The elements of X are record identification numbers and the elements of

 Y are record location numbers. Let S = {ail, ai2, ... , ai be a fixed
 (ordered) set of record identification numbers with r < n. An element

 g E 9(X, Y) determines record location numbers for S according to the
 rules:

 (i) the record location number for ai, is Ail =(ail),
 (ii) for k > 2, the record location number for ask is Aik = g(aik) + Sk

 (modulo n), where Sk is the smallest nonnegative integer such that g(ais)

 + Sk (modulo n) f {A1 s, A 2 ... , Aik-j}.
 Using the terminology of ?3 the set S labels the r balls, the numbers (g(ai,),

 g(ai), *-- , g(ai,)) are the "fictitious" cell numbers and the (Ai1, A2,
 Ai, A tt) are the "actual" cell numbers. Within the context of the com-
 puter usage 8k + 1 can be interpreted as the number of steps required to
 search for and recover the kth record.

 Let (Q, 8, Pr) be a probability space, i.e.,
 (i) Q is a set of points (the sample space),
 (ii) 8 is a a-field of subsets of Q, and
 (iii) Pr is a probability measure on U.

 Let G be a 9(X, Y)-valued random variable on (Q, 8, Pr) with
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 OCCUPANCY DISCIPLINE 1271

 Pr{co: G(c) = g} -n) m g E 9(X, Y).
 In designing a "random access associative memory" we perform a chance

 experiment and choose the mapping G(w) =g qE 9(X, Y). In this section
 we shall calculate the quantities

 Pr{co: Sk(W) = j}, 0 ? j < k, k =1, 2,

 First observe that

 n-1

 Pr {co: sk(w) =j} Z PrE {O: sk(ow) = j} Pr(E,),
 p=Q

 where

 ( i) PrH,{ } denotes the conditional probability of { } given (condi-
 tioned by) the event E,, and

 (ii) Ep = {I,: G(w) (aik) = p1.
 The event {I: Sk(W) = j, G(w)(ai1) = p}, 0 ? j < k- 1, can occur in

 any one of the following ways:
 for j , 1,

 (i) {p -q (mod n), p -q + 1 (mod n), - p, p + 1 (mod n),

 p + j - 1 (mod nr)} C {Ajl(c), A2((w ), Aik-I (, )
 and

 (ii) fp-q-1 (mod n), p + j (mod n)}

 { {A 1(c), Aj,(c), Aik*, A1(C)}, q = 01, 2, k - j - 1;
 forj = o,

 p Q {A1(w), Aj2(w), - - A,k-j(w)}.

 Thus

 f(n,k-1) if j =O,

 (4.1) PrE,{cc: Sk(&0) =j} = | joi(q + ? )
 f (n-j - q -1, k -j - q -1)

 if 1 ? j _ k - 1.

 Thus we have Theorem 1.
 THEOREM 1.
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 1272 ALAN G. KONHEIM AND BENJAMIN WEISS

 1 (k i\ Pr{wC: Sk((G) =} A k ( / (q + 1)1
 (4.2) j

 - (n k)(n - q _ 1)k-q-2

 (4.3) E{sk} = 2 ( ) (q + 1)Qq(n - q -

 5. Limiting behavior of Etsk}.
 THEOREM 2. Let ,u E (0, 1). Then

 (5.1) lim E{s,n} = 1 ,u2(2- )

 Proof. Let

 a.= 2-j ( q ) (q + 1) q(n - q -

 and set

 qO(n)-1 k-1

 (5.2) Si= . a., S2= E a.,
 q=l i=qo(n)

 where qo(n) will be specified later. We shall prove that for an appropriate
 choice of qo(n)

 (5.3) Si (n) 2 qe 1 q! (jAe )2,

 (5.4) S2(n)0.

 We start with (5.4); it suffices to prove

 (5.5) (i) aqO(n) -*0 (n-* oD), and

 (5.6) (ii) a/aq-1 ? 1 - e, q > qo(n), n > N,

 where 0 < e < 1. Now

 = n-k (k-1) (k-q) q 1( + k-q2
 2 n nq q(+? n J

 (5.7) (1-) I i e(l + q-)l (1 q + 1 k-?-2

 ? C\Vq exp q(1 -,u + log A),

 where C is a constant. We have used in deriving (5.7) the inequalities

 q! > V\2irq qqee
 and
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 ( 1 - x)4 < e 0 < x < 1, a > 0.

 We shall set q = qo(n) = ni/4 in (5.7) and note that

 axqo(n) < Cnl18 exp ( - A2n114) -__ 0,

 since 1 - , + log ,u < 0 for ,u E (0, 1). This proves (5.5).

 k-_k-q(q+ 1)' q (n_- q_ )k-q-2
 a{q/(aq-l q qq l q - 1 (n q)k-q-1

 _q k - qf-k-q2 (5.8) q-< e k-exp+
 q-1 n -q n -q n-

 <q1 1exp ( q) exp {1 + log k }
 For q _ qo(n) and n > N it follows from (5.8) that

 aq/aq-l 1 -,

 thus provinig (5.6).
 To prove (5.3) we note that for each fixed q,

 l n -k (k -l) ... (k- q) q 1 qt _ q + 1 k-q-2
 q 2 n nq q - ) x nJ

 1 _ t&)Aq (q + 1)q q e-Ae _A

 as n oo, k = lun. The convergence in (5.9) is such that

 aq < c'(q +1)!q q (,),2 q _n1

 and hence (5.3) is established.
 If we set 'I(z) = zg(z), then by (2.8)

 (5.10) Si(n) (1 - j)" (,ue-') (ge')
 2

 To evaluate 'I'(ste-") we employ the functional equation (2.7) obtaining
 after straightforward calculation

 (5.11) Z'"(z) - _I(z) z{ 1 -

 Since *(,ue-') = ju, (5.10)-(5.11) yield Theorem 2.
 Finally we note that the quantity

 M(r, n) = -E (1 + E{sk)
 r k-1
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 1274 ALAN G. KONHEIM AND BENJAMIN WEISS

 can be interpreted as the average number of steps required to recover from
 the memory a record of S, assuming that all records in S are requested with
 equal probability. A more detailed error analysis yields the following.

 THEOREM 3. If ,u E (0, 1) then

 lim M(,2n- n) = 1 + - v dv = -
 n-oo00A (1-V)2 d 2=-21-a

 6. A parking problem-the case of the capricious wives. Let st. be a
 street with p parking places. A car

 st.

 : D -+ ................

 1 2 p
 occupied by a man and his dozing wife enters st. at the left and moves
 towards the right. The wife awakens at a capricious moment and orders her
 husband to park immediately! He dutifully parks at his present location, if
 it is empty, and if not, continues to the right and parks at the next available

 space. If no space is available he leaves st.
 Suppose st. to be initially empty and c cars arrive with independently

 capricious wives in each car. What is the probability that they all find
 parking places? If by "capricious" we mean that the probability of awaken-
 ing in front of the ith parking place is 1/p, 1 < i < p, then the desired
 probability is just

 (6.1) P(c, ) - f(z ?1,c) = (1)+ c(1 _ c).

 In particular

 lim P(u, p, p) = (1 - ,)e, 0 < ?1.
 p-O00

 The right-hand side of (6.1) is also the probability that c cars will suc-
 ceed in parking in st. of length p (initially vacant) under the following
 more complicated parking discipline: when the ith car stops he parks if the
 space is free. If the space is occupied he performs a chance experiment; with
 probability qi he moves backward and with probability 1 - qi he moves
 forward, in both cases seeking the first free space. The proof is left to the
 reader.
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