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We give an explicit solution of the gambler’s ruin problem when the players use
two or more currencies. We also determine the asymptotics of the expected duration
of the game when both players have equal amounts of each currency.  2002 Elsevier

Science (USA)

1. INTRODUCTION

In the one-dimensional gambler’s ruin problem, two players start out with
i and N − i dollars, respectively. At each step they toss a fair coin to decide
who wins a dollar from the opponent. The game is over when one of them
goes bankrupt. It is well known that the expected duration of the game is
i�N − i� (see [3], or almost any other textbook on probability).
In the two-dimensional variant [6], the players use two different curren-

cies, say dollars and euros. They start out with (i dollars, j euros) and
(N − i dollars, M − j euros), respectively. At each step they toss fair coins
to decide the currency and the winner. The game is over when one of them
runs out of either currency. What is the expected duration of the game?
According to [6], no closed-form solution of this problem is known to exist,
and probably none does exist.
Denote by game�i� j� the game with the first player’s initial assets equal

to �i� j�. Assume that 1 ≤ i ≤ N − 1 and 1 ≤ j ≤ M − 1. Then, after
the first step, game�i� j� turns into one of game�i + 1� j�, game�i − 1� j�,
game�i� j + 1�, or game�i� j − 1�, each with probability 1/4. It follows that
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the expected duration ai� j of game�i� j� satisfies the recurrence equation

ai� j =
ai+1� j + ai−1� j + ai� j+1 + ai� j−1

4
+ 1�

1 ≤ i ≤ N − 1� 1 ≤ j ≤M − 1� (1)

and the boundary conditions

a0� j = aN� j = ai� 0 = ai�M = 0� 0 ≤ i ≤ N� 0 ≤ j ≤M� (2)

The unknown ai� j , 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M − 1, can be obtained from
(1) by straightforward linear algebra. Instead of solving this linear system
of �N − 1��M − 1� equations, Orr and Zeilberger [6] showed how to obtain
the values a1� j = aN−1� j , 1 ≤ j ≤M − 1, and ai� 1 = ai�M−1, 1 ≤ i ≤ N − 1,
from a system containing O�N +M� equations only. The remaining ai� j
can then be computed directly from the recurrence

ai+1� j = 4ai� j − �ai−1� j + ai� j+1 + ai� j−1� − 4�

1 ≤ i ≤ N − 3� 2 ≤ j ≤M − 2� (3)

Because of the obvious symmetries ai� j = aN−i� j = ai�M−j = aN−i�M−j , it
suffices to compute a quarter of these numbers only. Note, however, that
in floating-point arithmetic, this computation is numerically unstable due
to the coefficient 4 in front of ai� j in (3).
In this paper we give an explicit solution of the two-dimensional gam-

bler’s ruin problem (Section 2) as well as of its obvious generalization to
larger numbers of currencies (Section 3). Although our solution is not in
closed form because it contains a double sum, it provides a direct way to
compute the expected duration of the game without having to solve linear
systems or use recursive computations. In Section 4 we express the middle
element aN/2�N/2 as a single sum when N is a power of 2. In Section 5 we
determine the asymptotics of the middle element aN/2�N/2�����N/2 (when N is
even) for any number of currencies.

2. SOLUTION OF THE TWO-DIMENSIONAL PROBLEM

For the sake of simplicity we henceforth assume that M = N , but it
is straightforward to generalize our results to the case M �= N . Let A =
�ai� j	N−1

i� j=1 be the matrix of unknown values ai� j . Writing (1) in the form

�ai�j−1−2ai�j+ai�j+1�+�ai−1�j−2ai�j+ai+1�j�=−4� 1≤ i�j≤N−1�
and using (2), we see that A satisfies the matrix equation

AD+DA = −4J� (4)



gambler’s ruin problem 109

where

D =




−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
���

���
� � �

� � �
� � �

���
0 0 · · · 1 −2 1
0 0 · · · 0 1 −2




is an �N − 1� × �N − 1� symmetric tridiagonal Toeplitz matrix and J is the
�N − 1� × �N − 1� matrix of ones. This equation can be solved explicitly in
terms of the eigenvalues and eigenvectors of D.
Indeed, let 
 = diag�λk� be the diagonal matrix of the eigenvalues of D,

and let P be the orthogonal matrix whose columns are the corresponding
eigenvectors of D. Then D = P
PT and PTP = I. Multiplying (4) with PT

on the left and with P on the right gives

B
+ 
B = R�

where B = PTAP and

R = −4PTJP� (5)

Then

bi� j =
ri� j

λi + λj
� 1 ≤ i� j ≤ N − 1� (6)

so, using (5) and (6), the unknown matrix

A = PBPT (7)

can be expressed explicitly in terms of 
 and P . These, however, are well
known; namely,

λk = −4 sin2 kπ
2N

� 1 ≤ k ≤ N − 1� (8)

Pi� j =
√
2
N
sin

πij

N
� 1 ≤ i� j ≤ N − 1 (9)

(cf. [2, Sect. 2.6, item 70]). Therefore, by (5),

ri� j = −4
N−1∑
l=1

N−1∑
k=1

Pl� iPk� j

= − 8
N

N−1∑
l=1

sin
πil

N

N−1∑
k=1

sin
πjk

N
� 1 ≤ i� j ≤ N − 1�
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This sum can be evaluated as

N−1∑
k=1

sin
πjk

N
= �

N−1∑
k=0

ekjπı/N = �
ejπı − 1
ejπı/N − 1

=
{
0� j even,

cot
jπ

2N
� j odd, (10)

so

ri� j =


0� ij even,

− 8
N
cot

iπ

2N
cot

jπ

2N
� ij odd.

From (6) and (8) it follows that

bi� j =


0� ij even,

2 cot�iπ/2N� cot�jπ/2N�
N�sin2�iπ/2N� + sin2�jπ/2N�� � ij odd.

Finally, we obtain, from (7) and (9),

ai� j =
4
N2

N−1∑
k=1
k odd

sin
jkπ

N
cot

kπ

2N

×
N−1∑
l=1
l odd

sin�ilπ/N� cot�lπ/2N�
sin2�kπ/2N� + sin2�lπ/2N� � 0 ≤ i� j ≤ N� (11)

This is the promised explicit expression for the expected duration of
game�i� j�. It can also be obtained by applying the discrete Fourier trans-
form to (1) (see, e.g., [5, Theorem 3a]). Note that it requires only O�N2�
time to compute ai� j given i and j.
In the case i = 1, the method of [7] yields the explicit formula

a1� j =
4
N

N−1∑
k=0

sin
�2k+ 1�jπ

N
cot

�2k+ 1�π
2N

ξk�N − ξk�N
�ξk�N + 1��ξk�N − 1� �

where

ξk�N =
(
sin

�2k+ 1�π
2N

−
√
1+ sin2

�2k+ 1�π
2N

)2
�

This indicates the possibility that ai� j could be given in the form of a single
sum.
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3. GENERALIZATION TO HIGHER DIMENSIONS

In d dimensions, the two players use d different currencies. Their initial
assets are �i1� i2� � � � � id� and �N1 − i1�N2 − i2� � � � �Nd − id�, respectively.
At each step they first decide the currency, then the winner, both uniformly
at random. The game is over as soon as one of them runs out of any of the
currencies. Let ai1�i2�����id denote the expected duration of the game. Again
we assume for simplicity that N1 = N2 = · · · = Nd = N .
The solution of the general problem can be expressed explicitly by means

of a tensor product of matrices. If A is any matrix and B is a matrix of order
m× n, their tensor product is defined as

A⊗ B =



b1� 1A b1� 2A · · · b1� nA
b2� 1A b2� 2A · · · b2� nA
���

���
� � �

���
bm� 1A bm� 2A · · · bm�nA


 �

In particular, if I denotes the identity matrix,

A⊗ I =



A

A
�� �

A


 �

Now consider Sylvester’s equation

AD+ CA = R�

where C�D�R are known matrices, A is an unknown matrix, A and R are
of order p× q, C is of order p× p, and D is of order q × q (cf. [4, Sect.
7.6.3]). This is a system of linear equations

n∑
s=1
ai� sds� j +

n∑
t=1
ci� tat� j = ri� j� 1 ≤ i� j ≤ n� (12)

for the unknown ai� j . Let a resp. r be the vectors obtained by stacking
the columns of A resp. R one above another. If the equations are ordered
lexicographically first by j and then by i, we can rewrite (12) as a vector
equation

�C ⊗ Iq + Ip ⊗DT � a = r� (13)

where In denotes the identity matrix of order n. Using this on Eq. (4), which
is a special case of Sylvester’s equation with C = D, D = DT , and p = q =
N − 1, we have

D1a = −4r� (14)
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where D1 = D ⊗ IN−1 + IN−1 ⊗ D and r is a vector with all components
equal to 1. Because D1 = �P ⊗ P��
 ⊗ IN−1 + IN−1 ⊗ 
��P ⊗ P�T is the
spectral decomposition of D1, we obtain a compact form of solution of the
two-dimensional problem

a = −4�P ⊗ P��
⊗ IN−1 + IN−1 ⊗ 
�−1�P ⊗ P�T r�

In the three-dimensional case, we have the recurrence

�ai� j� k−1 − 2ai� j� k + ai� j� k+1� + �ai� j−1� k − 2ai� j� k + ai� j+1� k�
+ �ai−1� j� k − 2ai� j� k + ai+1� j� k� = −6� 1 ≤ i� j� k ≤ N − 1� (15)

Let A = �a�� �� 1 
 a�� �� 2 
 · · · 
 a�� ��N−1	 be the �N − 1�2 × �N − 1� matrix
whose kth column a�� �� k is obtained by stacking the columns of the �N −
1� × �N − 1� matrix �ai� j� k	N−1

i� j=1 one above another. Then (15) is equivalent
to Sylvester’s equation

AD+D1A = −6J�

Let a be the vector obtained by stacking the columns of A one above
another. Using (13), we have

D2a = −6r�

where D2 = D1 ⊗ IN−1 + I�N−1�2 ⊗D and r is a vector of ones.
In the d-dimensional case, we recursively define three sequences of matri-

ces by setting D0 = D, 
0 = 
, P0 = P , and, for k = 1� 2� � � � � d − 1,

Dk = Dk−1 ⊗ IN−1 + I�N−1�k ⊗D�


k = 
k−1 ⊗ IN−1 + I�N−1�k ⊗ 
�

Pk = Pk−1 ⊗ P�

Then for all k we have PTk Pk = I�N−1�k+1 , Dk = Pk
kP
T
k , and

Dd−1a = −2dr�

where a is the vector with components ai1�i2�����id ordered lexicographically
first by id, then by id−1� � � � � last by i1, and r is a vector of ones. Thus the
solution in the d-dimensional case is given by

a = −2dPd−1
−1
d−1P

T
d−1r� (16)
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4. A FASTER WAY TO SOLUTION FOR N = 2p

Let d = 2 again and let N = 2p for some integer p > 0. In this case
the system (14) can be solved efficiently using the block cyclic reduction
technique or Buneman’s algorithm (see [1; 4, Sect. 4.5.4; 8]). Recall that
D1 = D ⊗ IN−1 + IN−1 ⊗ D, so (14) has the �N − 1� × �N − 1� block-
tridiagonal form



G I 0 0 · · · 0
I G I 0 · · · 0
0 I G I · · · 0
���

���
� � �

� � �
� � �

���
0 0 · · · I G I
0 0 · · · 0 I G







a1
a2
a3
���

aN−2
aN−1




=




b
b
b
���
b
b



�

where G = D− 2I is of size �N − 1� × �N − 1�, aj is the jth column of A,
and b is a vector with all components equal to −4.
Multiplying every other row by −G and adding the two neighboring rows

to it, we eliminate the odd-numbered blocks and obtain the �N/2 − 1� ×
�N/2 − 1� block-tridiagonal system



G2 I 0 0 · · · 0
I G2 I 0 · · · 0
0 I G2 I · · · 0
���

���
� � �

� � �
� � �

���
0 0 · · · I G2 I
0 0 · · · 0 I G2







a2
a4
a6
���

aN−4
aN−2




=




b2
b2
b2
���
b2
b2



�

where G2 = 2I −G2 and b2 = �2I −G�b. Repeating this procedure p− 1
times, we come to a single-block system

GpaN/2 = bp� (17)

where we recursively defined G1 = G, b1 = b, Gk+1 = 2I −G2
k, and bk+1 =

�2I −Gk�bk. Let

1=
− 2I�


k+1= 2I − 
2k for k ≥ 1�
(18)

where D = P
PT , PTP = I, and the elements of 
 and P are given in
(8) resp. (9). By induction on k, it follows that Gk = P
kP

T and bk =
P�2I + 
k�
−1PTb. Hence, from (17),

aN/2 = P�I + 2
−1
p �
−1PTb� (19)
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The remaining aj can now be found by back-substitution from the interme-
diate systems.
For the middle element aN/2�N/2 = a2p−1� 2p−1 we obtain, from (19), (8),

(9), and (10),

aN/2�N/2 =
2
N

N/2−1∑
k=0

�−1�k
(
1+ 2

λ
�p�
2k+1

)
cos��2k+ 1�π/2N�
sin3��2k+ 1�π/2N� � (20)

where λ�k�j , the jth element of 
k, satisfies

λ
�1�
j = λj − 2�

λ
�k+1�
j = 2 − (

λ
�k�
j

)2 for k ≥ 0�

Using the substitution λ
�k�
j = −2 cosh ak, we find ak+1 = 2ak and

a1 = cosh−1�1− λj/2�, so ak = 2k−1a1 and λ
�k�
j = −2 cosh�2k−1 cosh−1�1−

λj/2��. With (8) and (20) we finally obtain

aN/2�N/2 =
2
N

N/2−1∑
k=0

�−1�k

×
(
1− 1

cosh �N/2� cosh−1�1+ 2 sin2��2k+ 1�π/2N���

)

× cos��2k+ 1�π/2N�
sin3��2k+ 1�π/2N� �

Note that this formula requires only O�N� operations to compute aN/2�N/2.

5. SOME ASYMPTOTICS

Clearly, the expected duration of the game is largest when the initial
assets of the two players in each currency are as close to each other as
possible. Here we assume that N1 = N2 = · · · = 2n, and find an asymptotic
formula for the middle element an�n�����n.

Theorem 1. Let d = 2. If N1 = N2 = 2n, then

an� n = c2n
2 +O�log2 n��

where

c2 =
256
π4

∞∑
k=0

∞∑
l=0

�−1�k+l
�2k+ 1��2l + 1�(�2k+ 1�2 + �2l + 1�2) ≈ 1�17874� (21)
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Proof. From (11) we have

an� n =
1
n2

2n−1∑
k=1
k odd

2n−1∑
l=1
l odd

sin�kπ/2� sin�lπ/2� cot�kπ/4n� cot�lπ/4n�
sin2�kπ/4n� + sin2�lπ/4n�

= 1
n2

n−1∑
k=0

n−1∑
l=0

�−1�k+l cot��2k+ 1�π/4n� cot��2l + 1�π/4n�
sin2��2k+ 1�π/4n� + sin2��2l + 1�π/4n� � (22)

Denote by sn the expression obtained by replacing sin x with x and cosx
with 1 everywhere in (22):

sn =
256
π4

n2
n−1∑
k=0

n−1∑
l=0

�−1�k+l
�2k+ 1��2l + 1�(�2k+ 1�2 + �2l + 1�2) � (23)

For 0 < x� y < π/2 we have

�1− x2/2��1− y2/2�
xy�x2 + y2� <

cot x cot y

sin2 x+ sin2 y
<

1
xy�x2 + y2� �

The first inequality follows from cosx > 1 − x2/2 and sin x < x,
the second from the fact that the Taylor coefficients of f �x� y� =
�sin2 x + sin2 y� tan x tan y − xy�x2 + y2� are nonnegative at x = y = 0.
Thus

0 <
1

xy�x2 + y2� −
cot x cot y

sin2 x+ sin2 y

<
1− �1− x2/2��1− y2/2�

xy�x2 + y2� = x2 + y2 − x2y2/2
2xy�x2 + y2� <

1
2xy

�

which shows that the error committed in replacing cot x cot y/ sin2 x+ sin2 y
with 1/xy�x2 + y2� is bounded by 1/2xy. It follows that


an� n − sn
 <
1
n2

n−1∑
k=0

n−1∑
l=0

1

2 �2k+1�π
4n

�2l+1�π
4n

= 8
π2

n−1∑
k=0

1
2k+ 1

n−1∑
l=0

1
2l + 1

= 8
π2

(
H2n −

1
2
Hn

)2
�

where Hn = ∑n
k=1 1/k is the nth harmonic number. As ln n + γ < Hn ≤

ln n+ 1, it follows that an� n − sn = O�log2 n�.
Next replace the sum in (23) by the infinite sum

tn =
256
π4

n2
∞∑
k=0

∞∑
l=0

�−1�k+lrk� l = c2n
2� (24)
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where

rk� l =
1

�2k+ 1��2l + 1�(�2k+ 1�2 + �2l + 1�2) �
The sum in (24) is absolutely convergent; therefore it can be rearranged
into

tn =
256
π4

n2
∞∑
j=0

�−1�jdj� (25)

where

dj =
j∑

k=0
rk� j−k

is the absolute value of the sum of the jth diagonal of the original array.
We transform sn into tn in two steps: First we approximate sn by

un =
256
π4

n2
n∑
j=0

�−1�jdj�

then we replace un by tn.
It is possible to show that dj > dj+1 for all j ≥ 0. Therefore the error in

truncating the alternating sum (24) after the nth diagonal does not exceed

256
π4

n2dn+1 =
256
π4

n2
n+1∑
k=0

rk� n+1−k ≤ 256
π4

n2�n+ 2�r0� n+1

= 256n2�n+ 2�
π4�2n+ 3��4n2 + 12n+ 10� <

32
π4
�

Thus both differences sn − un and un − tn are O�1�, and the theorem is
proved.

Theorem 2. If N1 = N2 = · · · = Nd = N = 2n, then

an�n�����n ∼ cdn
2�

where

cd=d
(
1− 22d+1

πd+1

× ∑
k1�k2�����kd−1≥0

�−1�
∑d−1
j=1 kj

∏d−1
j=1 �1/�2kj+1��

∑d−1
j=1 �1/�2kj+1�2�

cosh�π/2�
√∑d−1

j=1 �2kj+1�2

)
� (26)
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Proof. Consider the Poisson partial differential equation in d dimen-
sions

.u = −2d (27)

on the d-dimensional hypercube Qd = �0� 1	d, with zero boundary con-
ditions: u
∂Qd

= 0. Following the finite-difference method to obtain
an approximate solution, we discretize the problem by introducing the
d-dimensional sequence of values on the square grid

ai1�i2�����id =
1
h2
u

(
i1
N
�
i2
N
� � � � �

id
N

)
�

where h = 1/N and 0 ≤ i1� i2� � � � � id ≤ N . Replacing second derivatives
by second differences divided by h2, Eq. (27) turns into the d-dimensional
gambler’s ruin recurrence for ai1�i2�����id . Thus, for large n,

an�n�����n ∼ 4n2u
(
1
2
�
1
2
� � � � �

1
2

)
� (28)

It remains to solve Eq. (27) exactly. First we homogenize the equation by
introducing

v�x1� x2� � � � � xd� = u�x1� x2� � � � � xd� +
d∑
i=1
xi�xi − 1�� (29)

which satisfies

.v = 0� v
xi=0 = v
xi=1 =
d∑
j=1
j �=i

xj�xj − 1��

Then we solve this Dirichlet problem exactly by the standard Fourier-series
method and obtain

v�x1� x2� � � � � xd� = −2
2d−1

πd+1
∑

k1�����kd−1≥0
k1�����kd−1 odd

∏d−1
j=1 �1/kj�

∑d−1
j=1 �1/k2j �

cosh�π/2�
√∑d−1

j=1 k
2
j

×
d−1∑
i=1

fi�x1� � � � � xd�k1� � � � � kd−1�� (30)

where

fi�x1� � � � � xd�k1� � � � � kd−1�

=
i−1∏
j=1
sinπkjxj

d−1∏
j=i

sinπkjxj+1 cosh


π(xi − 1

2

)√√√√d−1∑
j=1

k2j


 �

Combining (28) with (29) and (30) yields (26).
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TABLE I
Approximate Values of cd

d 1 2 3 4 5 6 7 8 9

cd 1 1.17874 1.34911 1.51271 1.67071 1.82399 1.97321 2.11891 2.26149

In particular, for d = 2 we obtain from (26) a single-sum expression
for c2,

c2 = 2
(
1− 32

π3
∑
k≥0

�−1�k
�2k+ 1�3 cosh�π/2��2k+ 1�

)

(cf. Eq. (21)). Some values of cd are shown in Table I.
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2. D. M. Cvetković, M. Doob, and H. Sachs, “Spectra of Graphs,” 3rd ed., Barth, Heidel-
berg/Leipzig, 1995.

3. W. D. Feller, “An Introduction to Probability Theory and Its Applications,” Wiley,
New York, 1950.

4. G. H. Golub and C. F. van Loan, “Matrix Computations,” 3rd ed., Johns Hopkins Press,
Baltimore, 1996.

5. P. Henrici, Poisson’s equation in a hypercube: Discrete Fourier methods, eigenfunc-
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