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birth, x,xgxe is a personal number and x,, and x,, are

check digits defined by

X10= _(ZX9 + 5x8 + 4x-, -+ 9x6 + 8x5 “+ X3 + 6x3 +7x2+ 3x1)
(mod 11)

and
X1 = "'(leo = 3XQ + 4x8 ot 5x-; + 6x6 + 7x5
+ 2x4+ 3X3 + 4x2 + le) (mod 11).

Write down a parity-check matrix for the code (regarded
as a code over GF(11)). If the code is used only for error
detection, will all double errors be detected? If not,
which double errors will fail to be detected?

12 Cyclic codes

- Cyclic codes form an important class of codes for several reasons.

From a theoretical point of view they possess a rich algebraic
Structure, while practically they can be efficiently implemented
by means of simple devices known as shift registers. Further-
more, many important codes, such as binary Hamming codes,
~ Golay codes and BCH codes, are equivalent to cyclic codes.

Definition A code C is cyclic if (i) C is a linear code and (if) any
cyclic shift of a codeword is also a codeword, i.e. whenever
@g@, - - a,_, is in C, then so is a,_,aua, - - - a,_,.

Examples 12.1 (i) The binary code {000, 101,011, 110} is
yclic.

(i) The code of Example 2.23, which we now know as the
damming code Ham (3, 2), is cyclic. (Note that each codeword
f the form a, is the first cyclic shift of its predecessor and so is
l“-‘!' bt.)

(iii) The binary linear code {0000, 1001, 0110, 1111} is not
clic, but it is equivalent to a cyclic code; interchanging the third
nd fourth coordinates gives the cyclic code {0000, 1010,
101, 1111}.

Lt 1]. From the list of codewords found in

nerator matrix [ TRE
ercise 5.7, we see that the code is not cyclic. But is Ham (2, 3)
uivalent to a cyclic code? The answer will be given in Example
-13 (see also Exercise 12.22).

Sitions 0,1,...,n—1. This is because it is useful to let a
ftor aga, - -a,_, in V(n,q) correspond to the polynomial
cecda, x"1,
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Polynomials

From now on we will denote the field GF(q) by F,, or simply by
F (with g understood). We denote by F [x] the set of polynomials
in x with coefficients in F. If f(x) =fotfix +- -tk is a

lynomial with f,#0, then m is called the degree of f(x),
denoted degf(x). (By convention the degree of the zero polyno-
mial is —».) The coefficient f, is then called the leading
coefficient. A polynomial is called monic if its leading coefficient
is 1.
Polynomials in F[x] can be added, subtracted and multiplied in
the usual way. F[x] is an example of an algebraic structure
known as a ring, for it satisfies the first seven of the eight field
axioms (see Chapter 3). Note that F[x] is not a field since
polynomials of degree greater than zero do not have multiplica-
tive inverses. Observe also that if f(x), g(x)eF[x], then

deg (f(x)g(x)) = deg f(x) + deg g(x)-

The division algorithm for polynomials

The division algorithm states that, for every pair of polynomials
a(x) and b(x)#0 in F [x], there exists a unique pair of polyno-
mials g(x), the quotient, and r(x), the remainder, such that
a(x) = q(x)b(x) +r(x),

where deg r(x) < deg b(x).

This is analogous to the familiar division algorithm for the ring
Z of integers. The polynomials g(x) and r(x) can be obtained by
ordinary long division of polynomials.

For example, in F[x], we can divide X*+x+1byx*+x+1as
follows.

r+1

x2+x+1 |Jr3 +x + 1

*+xi+x
x* + 1
¥ oilosi

x2+x + 1

X
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Hence x*+x+1=(x+1)(x*+x+1)+x is th i
H e desired -
sion of x> +x+1as g(x)(x?+x+ 1)+ r(x). i

: The ring of polynomials modulo f(x)

The ring Flx] of polynomials over F is analogous in many ways
to the ring Z of integers. Just as we can consider integers modulo
some fixed integer m to get the ring Z,, (see Chapter 3), we can
0 nsider polynomials in F[x] modulo some fixed polynom’ial f(x)

- Let f(x) l?e a fixed polynomial in F[x]. Two polynomials g(x.)
and h(x) in F[x] are said to be congruent modulo f(x),

bolized by
- 8(x) =h(x) (mod f(x)),

8(x) —h(x) is divisible by f(x).
gﬁy the division algorithm, any polynomial a(x) in F[x] is
gtrhuentd mc}?u;o )E(x)) to a unique polynomial r(x) of degree
ss than deg f(x); r(x) is just the principal i
s i principal remainder when a(x)
We denote by F[x]/f(x) the set of ials i
polynomials in F[x] of
gree less than degf(x), with addition and Itiplicati
rried out modulo f(x) as follows. B Wit
Suppose a(x) and b(x) belong to F[x]/f(x). Then the sum
2 ) + b(x) in F[x)/f(x) is the same as the sum in F[x], because
;(a(x).+ b(x)) <deg f(x). The product a(x)b(x) in F[x])/f(x)
unique polynorm.al of degree less than degf(x) to which
)b (x) (as a product in F[x]) is congruent modulo f(x).
For example, let us calculate (x + 1) in K[x]/(x*+x +1). We

(x+12=x2+2x+1=x?>+1=x (mod x*+x +1).
S (x + 1)>=x in B[x]/(x*+x +1).

as Z,, is a ring, so also is F[x]/f(x); it is called the ring of

“ mzals (over F) modulo f(x). :
'(x).e F,[x] has degree n, then the ring F,[x]/f(x) consists of
.mlal.s of degree <n — 1. Each of the n coefficients of such
lynomial belongs to F, and so '

| ixV/f(x) | =q".

12.2 The addition and multiplication tables for F[x]/
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(x*+ x + 1) are easily found to be:

+ l 0 1 ;S . |0 1 ol | 5 4
0 0 1 x LA 5% 010 0 0 0
1 1 0. il %, X Jue10 x l+x
X %\, R sl 1 Lo 0o Hidedkane 1
1+x11+x x 1 0 1+x|01+x 1 X

We see that this is more than just a ring. Every non-zero element
has a multiplicative inverse and so E[x]/(x*+x + 1) is actually_a
field. In fact, we have precisely the field of order 4 given in
Example 3.6(3), with x and 1+x corresponding to a and b
respectively.

It is certainly not the case that F[x]/f(x) is a field for any
choice of f(x); consider, for example, the multiplication table of
E[x]/(x*+1) (see Exercise 12.2). The special property of fgx)
which makes F[x]/f(x) a field is that of being ‘irreducible’, which
we now define.

Definition A polynomial f(x) in F[x] is said to be reducible if
f(x)=a(x)b(x), where a(x),b(x)e Flx] and. dega(x) .and
deg b(x) are both smaller than deg f(x). If f(x) is not reducible,
it is called irreducible. ;

Just as any positive integer can be factorized uniquely into a
product of prime numbers, any monic polynomial in F[x] can b-e
factorized uniquely into a product of irreducible monic
polynomials.

The following simple observations are often useful when

factorizing a polynomial.

Lemma 12.3
(i) A polynomial f(x) has a linear factor x —a if and only if
a)=0.
(ii) Ci polynomial f(x) in F[x] of degree 2 or 3 is irreducible if
and only if f(a)#0 for all @ in F.
(iii) Over any field, x" —1=(x —1)(x" ' +x"2+.--+x+1)
(the second factor may well be further reducible).

Proof (i) If f(x)=(x —a)g(x), then certainly f(a) =0. On the
other hand, suppose f(a) =0. By the division algorithm, f(x) =
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g(x)(x —a)+r(x), where degr(x)<1. So r(x) is a constant,
which must be zero since 0= f(a) = r(a).

(i)) A polynomial of degree 2 or 3 is reducible if and only if it
has at least one linear factor. The result is now immediate from
(i).

(iii) By (i), x —1 is a factor of x” —1 and long division of
x" —1 by x — 1 gives the other factor.

Example 12.4 (i) Factorize x*~1 in E[x] into irreducible
polynomials.

(i) Factorize x> — 1 in F[x] into irreducible polynomials.

Solution By 12.3(iii), x* — 1 = (x — 1)(x*>+ x + 1) over any field.
(i) By 12.3(ii), x>+ x + 1 is irreducible in F[x].
(i) By 12.3(i), in E[x], x — 1 is a factor of x>+ x + 1, and we
get the factorization x> — 1= (x — 1)*.

The finite fields GF(p"), h>1

The property in F[x] of a polynomial being irreducible cor-
responds exactly to the property in Z of a number being prime.
We showed in Theorem 3.5 that the ring Z,, is a field if and only
if m is prime and the following may be proved in exactly the
same way.

Theorem 12.5 The ring F[x]/f(x) is a field if and only if f(x) is
irreducible in F[x].

Proof This is left to Exercise 12.3.

Although we do not show it here, it can be shown that for any
prime number p and for any positive integer h, there exists an
irreducible polynomial over GF(p) of degree h. This result,
together with Theorem 12.5, gives the existence of the fields
GF(p") for all integers h =1. As we remarked in Theorem 3.2,
these are essentially the only finite fields.

Back to cyclic codes

Returning from our excursion to look at fields of general order,
we now fix f(x) =x" — 1 for the remainder of the chapter, for we
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shall soon see that the ring Flx}/(x" — 1) of polynomials modulo
x" —1 is the natural one to consider in the context of cyclic
codes. For simplicity we shall write F [x]/(x" = 1) as R,, where
the field F = F, will be understood.

Since x"=1(modx"—1), we can reduce any polynomial
modulo x" — 1 simply by replacing x" by 1, x"*1 by x,x"*2 by x?
and so on. There is no need to write out long divisions by x" — 1.

Let us now identify a vector aea, * * * @1 in V(n,q) with the
polynomial

a(x)=ap+ax+-:--+ >SN o
in R,. We shall simultaneously view a code as a subset of V(n, q)
and as a subset of R,. Note that addition of vectors and
multiplication of a vector by a scalar in R, corresponds exactly to
those operations in V(n, q). Now consider what happens when
we multiply the polynomial a(x) by x. In R,,, we have

x-a(x)=apx +ax*+- - +a,x"
=a,_+ax+-+ a7,

which is the vector a,_,dg:**@,—2. Thus multiplying by x
corresponds to performing a single cyclic shift. Multiplying by x™
corresponds to a cyclic shift through m positions.

The following theorem gives the algebraic characterization of
cyclic codes.

Theorem 12.6 A code C in R, is a cyclic code if and only if C
satisfies the following two conditions:

(i) a(x),b(x)e C>a(x)+bx)eC,

(i) a(x)eCandr(x)€R, >r(x)a(x)eC.

[Note that (ii) does not just say that C must be closed under
multiplication; it says that C must be closed under multiplication
by any element of R,. The reader who is familiar with ring theory
will recognize that Theorem 12.6 says that cyclic codes are
precisely the ‘ideals’ of the ring R,.] .

Proof Suppose C is a cyclic code in R,. Then C is linear and so
(i) holds. Now suppose a(x)eC and r(x)=rg+nx+--:+
r,-x""' €R,. Since multiplication by x corresponds to a cyclic
shift, we have x - a(x) € C and then x - (xa(x)) =x?a(x) € C and
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so on. Hence
r(x)a(x) = roa(x) + rnxa(x) + - - - + r,_.x"'a(x)
is also in C since each summand is in C. Thus (ii) also holds.
Now suppose (i) and (ii) hold. Taking r(x) to be a scalar, the
conditions imply that C is linear. Taking r(x)=x in (ii) shows
that C is cyclic.

We now give an easy way of constructing examples of cyclic
codes.

Let f(x) be any polynomial in R, and let (f(x)) denote the
subset of R, consisting of all multiples of f(x) (reduced modulo

St iy S A
(f(x)) = {r()f (x) | r(x) € Ry}

Theorem 12.7 For any f(x) € R,, the set (f(x)) is a cyclic code;
it is called the code generated by f(x).

Proof We check conditions (i) and (ii) of Theorem 12.6.
(i) If a(x)f(x) and b(x)f(x) € (f(x)), then

a(x)f(x) + b(x)f(x) = (a(x) + b(x))f (x) € (f(x))-
(i) If a(x)f(x) € (f(x)) and r(x) € R,, then
r(x)(@a(x)f(x)) = (r(x)a(x))f (x) € (f(x))-

Example 12.8 Consider the code C=(1+x?) in R; (with
F = GF(2)). Multiplying 1+ x? by each of the eight elements of
R, (and reducing modulo x*—1) produces only four distinct
codewords, namely 0, 1 + x, 1 + x? and x + x?. Thus C is the code
{000, 110, 101, 011} of Example 12.1(i).

We next show that the above easy way of constructing cyclic
codes is essentially the only way, i.e. any cyclic code can be
generated by a polynomial. (In the terminology of ring theory, -
this says that every ideal in R, is a ‘principal ideal’.)

Theorem 12.9 Let C be a non-zero cyclic code in R,,. Then
(i) there exists a unique monic polynomial g(x) of smallest
degree in C,
(i) C=(g(x)),

(iii) g(x) is a factor of x" — 1.
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Proof (i) Suppose g(x) and h(x) are both monic polynomials
in C of smallest degree. Then g(x) —h(x) e C and has smaller
degree. This gives a contradiction if g(x)#h(x), for then a
suitable scalar multiple of g(x) — h(x) is monic, is in C, and is of
smaller degree then deg g(x).

(ii) Suppose a(x)e C. By the division algorithm for F[x],
a(x) = q(x)g(x) + r(x), where degr(x)<degg(x). But r(x)=
a(x) — g(x)g(x) € C, by the properties of a cyclic code given in
Theorem 12.6. By the minimality of degg(x), we must have
r(x) =0 and so a(x) € (g(x)).

(i) By the division algorithm,

x"—1=q(x)g(x) +r(x),

where deg r(x) <deg g(x). But then r(x) = —¢g(x)g(x) (mod x" —
1), and so r(x) € (g(x)). By the minimality of deg g(x), we must
have r(x) =0, which implies that g(x) is a factor of x" — 1.

Definition 1In a non-zero cyclic code C the monic polynomial of
least degree, given by Theorem 12.9, is called the generator
polynomial of C.

Note that a cyclic code C may contain polynomials other than
the generator polynomial which also generate C. For example,
the code of Example 12.8 is generated by 1+x? but its
generator polynomial is 1 + x.

The third part of Theorem 12.9 gives a recipe for finding all
cyclic codes of given length n. All we need is the factorization of
x" — 1 into irreducible monic polynomials.

Example 12.10 We will find all the binary cyclic codes of length
3. By Example 12.4(i), x* =1 =(x + 1)(x*+x + 1), where x +1
and x?+x + 1 are irreducible over GF(2). So, by Theorem 12.9,
the following is a complete list of binary cyclic codes of length 3.

Generator Corresponding
polynomial Code in R; Code in V(3,2)

1 all of R, all of V(3,2)

x+1 {0,1+x,x+x* 1+x%} {000, 110, 011, 101}
X4+x+1 {0,1+x +x%} {000, 111}
x*=1=0 {0} {000}
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Lemma .12.11 Let g(x) =gy +g1x +- - - +gx" be the generator
polynomial of a cyclic code. Then g, is non-zero.

Proof Suppose g,=0. Then x"~'g(x) =x"'g(x) is a codeword
of C of degree r — 1, contradicting the minimality of deg g(x).

By definition, a cyclic code is linear. It would be handy if
immediately from the generator polynomial g(x) we could
deduce the dimension of the code and also write down a
generator matrix. The next theorem shows that we can do both.

Theorem 12.12 Suppose C is a cyclic code with generator
polynomial

8(x)=go+gix+- - +gx’
of degree r. Then dim (C) = n — r and a generator matrix for C is

8 81 8 " & 0.0 :.-H
08 & & g 0 -0
G=|0 0 8 & 8 " &
R E R EN .0
00 -0 g & & - g

Proof The n—r rows of the above matrix G are certainly

linearly independent because of the echelon of non-zero gos with

0s below. These n — r rows represent the codewords g(x), xg(x),

x°g(x), ..., x"7""'g(x), and it remains only to show that every

codeword in C can be expressed as a linear combination of them.

'ghe lFroof of Theorem 12.9(ii) shows that if a(x) is a codeword of
, then

a(x) = q(x)g(x) :
for some polynomial g(x), and that this is an equality of
polynomials within F[x], not requiring any reduction modulo
x"—1. Since dega(x)<n, it follows that degq(x)<n—r.
Hence

q(x)g(x)=(go+qix + -+ + Gu_p—1x" " ")g(x)
=qo8(¥) +qixg(x) + - - - + g, x" """ 'g(x),
which is the desired linear combination.
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Example 12.13 Find all the ternary cyclic codes of length 4 and
write down a generator matrix for each of them.

Solution Over GF(3), the factorization of x*—1 into ir-
reducible polynomials is

-1=(x~-1DE+x2+x+1)=(x—-1)(x +1)(x*+1).

So there are 23=8 divisors of x*—1 in Ex], each of which
generates a cyclic code. By Theorem 12.9, these are the only
ternary cyclic codes of length 4. The codes are specified below by
their generator polynomials, and the corresponding generator
matrices are given by Theorem 12.12. Note that neither of the
two-dimensional codes has minimum distance 3 and so the
ternary Hamming [4, 2, 3]-code is not cyclic, thus answering the
question posed in Example 12.1(iv).

Generator polynomial Generator matrix

1 (4]
[-1 1 0 0]
x—1 0-1 10
0 01 Y
NG W
x+1 0 110
001 - il
: 1 010
x*+1 [0 10 J
! “1' ool
x-Dx+1)=x"—-1 LO-—l 0 1]
x=-DE*+1D)=x’-x"+x-1 [-1 1-1 1]
x+D)E+)=x"+x"+x+1 [ 1 Lgdoni)
x=1=0 [0 0 0 0]

The check polynomial and the parity-check matrix of a
cyclic code

The generator matrix of a cyclic code as given by Theorem 12.12
is not in standard form. Our usual method of writing down a
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parity-check matrix from the standard form of G (via Theorem
7.6) is therefore not appropriate for cyclic codes. However, there
is a natural choice of parity-check matrix for a cyclic code. This is
closely related to the so-called ‘check polynomial’, which we
define first.

Let C be a cyclic [n, k]-code with generator polynomial g(x).
By Theorem 12.9, g(x) is a factor of x” — 1 and so

x" —1=gx)h(x),

for some polynomial 4 (x). Since g(x) is monic, so also is h(x).
By Theorem 12.12, g(x) has degree n — k and so h(x) has degree
k. This polynomial h(x) is called the check polynomial of C. The
reason for this name is apparent from the following theorem.

Theorem 12.14 Suppose C is a cyclic code in R, with generator
polynomial g(x) and check polynomial 4(x). Then an element
c(x) of R, is a codeword of C if and only if c(x)h(x)=0.

Proof First note that, in R,, g(x)h(x)=x"-1=0.
Hence c(x) e C>c(x) = a(x)g(x), for some a(x) e R,,,
> c(x)h(x) =a(x)g(x)h(x)

=a(x)-0

=0.
On the other hand, suppose c(x) satisfies c(x)h(x) =0. By the
division algorithm, c(x) = g(x)g(x) + r(x), where degr(x)<n —
k. Then c(x)h(x)=0 implies that r(x)h(x)=0, i.e.
r(x)h(x)=0(modx” —1). But deg(r(x)a(x))<n—k+k=n,
and so r(x)h(x)=0 in F[x]. Hence r(x) =0, and then c(x)=
q(x)gx)eC.

In view of Theorem 12.14 and the fact that dim ((k(x))) =

- n—k=dim (C*), we might easily be fooled into thinking that

h(x) generates the dual code C*. In general this is not so. The
point is that the product of c¢(x) and h(x) being zero in R, is not
the same thing as the corresponding vectors in V(n,q) being
orthogonal. In the next theorem, however, we see that the
condition c(x)h(x)=0 in R, does imply some useful or-
thogonality relations which lead to a natural choice of parity-
check matrix.
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Theorem 12.15 Suppose C is a cyclic [n, k]-code with check
polynomial
h(x)=ho+hyx + - - -+ hx*.

Then '
(i) a parity-check matrix for C is

hkhk-l"' ho 00"'0

0 hy hk—l"'hoo"'p

H= . J " .

ek . ol

0 P 0 hk hk—\ ¥ f h()

(ii) C* is a cyclic code generated by the polynomial
E(x) = hk + hk-,x + oot hoxk.
Proof (i) By Theorem 12.14, a polynomial c(x)=cot+cyx +

.+« +¢,_x""" is a codeword if and only if c(x)h(x) =0. Now for
c(x)h(x) to be zero, then in particular the coefficients of

xk, xk*1 . x"! must all be zero, i.e.
Cohk+C1hk_1+--- +Ckh0 =0
C|hk +C2hk_|+"'+ck+‘ho ='0
cn—k—lhk b T - Cn-lhO = (.

Thus any codeword coc, * * - ¢,—; of C is orthogonal to the vector
hihy_y -~ hg00 - - - 0 and to its cyclic shifts. So the rows of the
matrix H given in the statement of the theorem are all codewords
of C*. We have already observed that h(x) is monic of degree k
and so h, =1; thus the echelon of 1s with zeros below in H
_ensures that the rows of H are linearly independent. The number
of rows of H is n — k, which is the dimension of C*. Hence H is
a generator matrix of C*, i.e. a parity-check matrix for C. .
(i) If we can show that h(x) is a factor of x" — 1, then it will
follow from Theorem 12.12 that (h(x)) is a cyclic code whose
generator matrix is the above matrix H, and hence that (h(x)) =
C*. We observe that A(x)=x*a(x""). Since h(x~)gkx™")
=(x"Y"—1, we have x*h(x~")x"*gx ) =x"(xT"-1)=1-
x", and so A(x) is indeed a factor of x" — 1.
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Remarks (i) The polynomial A(x)=x*h(x"")=hy + he_x +
~=++hx* is called the reciprocal polynomial of h(x); its
coefficients are those of h(x) in reverse order.

(i) We may regard h(x) as the generator polynomial of C*,
though strictly speaking, in the non-binary case, one ought to
multiply it by the scalar hg' to make it monic.

(ifi) The polynomial h(x~') =x""*h(x) is a member of C*.

We have not yet discussed the minimum distance of cyclic
codes. There are some classes of cyclic codes for which useful
lower bounds on the minimum distance are known. For example,
cyclic BCH codes can be constructed to have ‘designed minimum
distance’ while there are codes called quadratic residue codes
which satisfy a ‘square root bound’. These codes and bounds are
well treated in several of the more advanced texts. We con-
centrate here on finding the minimum distances of two particu-
larly interesting cyclic codes, namely the two Golay codes. Our
methods, while aimed directly at the codes in hand, nevertheless
provide some insights into the more general methods.

The binary Golay code

In Chapter 9, we proved the existence of a perfect binary
[23,12,7]-code G,; by exhibiting a generator matrix. We now
show that this Golay code can be constructed in a more natural
way as a cyclic code. The only knowledge we shall assume in
advance is the factorization of x** —1 over GF(2). [There is a
clever method of finding the factors of x” —1 over GF(g) in
general (see, for example, Chapter 7, §5, of MacWilliams and
Sloane (1977)) but we shall not dwell on this here. Alternatively
one may find the factors by consulting tables (see, e.g., the same
reference for a list of factors of x” — 1 over GF(2) for n < 63).]
We begin then with the factorization :

xB-1=(x-1)x" +x0+x5+ x> +xt +x2+1)
XM+ x24+x7+x+x°+x+1)
= (x — 1)8,(x)gx(x), say.

Let C, be the code (g,(x)) and let C, be the code (g.(x)). By
Theorem 12.12, C, is a [23, 12]-code. The object of the next few
pages is to show that the minimum distance of C, is 7.
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We observe that the polynomials g,(x) and g,(x) are recipro-
cals of each other, and so G, is equivalent to C;. Remarkably, the
knowledge that x» — 1= (x — 1)g,(x)g,(x), where g,(x) denotes
the reciprocal of g,(x), is all we need to show that d(C,) =7; we
do not actually need to know what g,(x) is.

Remark 12.16 Although we do not show it here, x” —1 has a
factorization over GF(2) of the form (x —1)g,(x)gx(x), wh_ere
(g:(x)) and (g,(x)) are equivalent codes, whenever p is a prime
number of the form 8m + 1. If p is of the form 8m — 1 we also
have g,(x) = g,(x). For example,

x’=1=(x-1Dx*+x+1)x>+x>+1)
and M =1=(x-1)gx)g(x),
where g(x) =1+ x>+ x5+ x° + x13 + x4 + x5,

In view of Remark 12.16, we prove the next two lemmas for p
equal to a general odd prime number rather than just for p =23.
We will denote the vector 1 +x + x?+ - - - +x~! consisting of all
Is by 1. Note that if x» — 1= (x — 1)g;(x)g2(x), then g,(x)g,(x) =
1.

Lemma 12.17 Suppose that x” —1=(x —1)g,(x)g.(x) over
GF(2), and that (g,(x)) and (g,(x)) are equivalent codes. Let
a(x) be a codeword of (g,(x)) of odd weight w. Then

(i) w?=p

(ii) if also g,(x) =g;(x), then w?> —w + 1=p.

Proof (i) Since (ga(x)) is equivalent to (g,(x)), there is some
codeword b(x) in (g,(x)) also of weight w. Now a(x)b(x) is a
multiple of g,(x)g,(x) =1, and so a(x)b(x)=0 or 1. Since w is
odd, we have a(1)b(1) =w - w = 1mod (2), and so we must have
a(x)b(x)=1+4+x+---+x""'. But a(x)b(x) has at most w?
non-zero coefficients and so w?=p.

(i) If go(x) =g,(x), then the codewords of (g,(x)) are just
the reciprocals of the codewords of (g,(x)). In particular we may
take b(x) to be a(x~") in the proof of (i) to get

a(x)a(x")=1+x+x>+:- +x71,

But w of the w? terms in the product a(x)a(x~') are 1 and so the
maximum weight of a(x)a(x~') is w?—w + 1.
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Corollary 12.18 If, with the hypotheses of Lemma 12.17, it is
also known that the minimum distance d of (g,(x)) is odd, then
d satisfies the square root bound

d=\p,
while if also g,(x) = g,(x), this can be improved to
d>—d+1=p.

By Lemma 12.17(ii), our [23, 12]-code C, has no words of odd
weight less than 7, because 52 — 5 + 1 <23. There is an ingenious
way of showing that C,, and more generally any so-called
quadratic residue (QR) code (we do not define QR codes here,
but simply remark that C, is an example of such a code), must
have odd minimum distance and therefore must satisfy the
square root bound. The argument, which involves showing that
an extended QR code has a transitive automorphism group, is
beyond the scope of the present book. As our main aim is merely
to find the minimum distance of the Golay code C,, the following
lemma will suffice.

Lemma 12.19 Suppose p is an odd prime number and that, over
GF(2), x* —1=(x —1)g,(x)g(x). Let a(x) be a codeword of
(g:1(x)) of even weight w. Then

(1) w=0(mod4)

(i) w#4 unless p =7.

Proof (i) As in the proof of Lemma 12.17, we have
a(x)a(x~') =0 or 1. Since a(x) has even weight, a(1) =0, and so
a(x)a(x~')=0. Suppose a(x) =x+ x2+ - - - +x°. Then

w w
a(x)a(x~) =3, 3 x*9=0

i=1 j=1
in R,. Of the w? summands, w are equal to 1 (the terms with
i=j), and these sum to 0(mod2). So the remaining w?—w
terms x“~“(i#j) must cancel each other out in pairs. Now if
x4~ =y~ then x%~“=x“"%, and so the terms must actually
cancel four at a time. Thus

w?—w=0(mod4) andso w=0(mod4).

(ii) Suppose w =4. Without loss of generality (via a suitable
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cyclic shift), suppose a(x)=1+x'+x/+x*, where i, j, k are
distinct and 1<i,j,k<p. Then (1+x'+x/+x*)1+x""+
xT+x7%)=0.

Thus the six sets {i,—i}, {.—j}, {k,—=k}, {i—j,j—i},
{i—k,k—i} and {j—k,k—j} must split into three matching
pairs, under congruence modulo p. By symmetry there is no loss
in assuming i is congruent to one of —j, j—i or j — k.

Case 1 Suppose i =j — k (mod p). Then k = —i gives a second
match and so the third match must be given by j = £(i — k). But
i=j—k and j=i—k implies 2k =0 (mod p), which is a con-
tradiction since p is an odd prime. Likewise, i=j—k and
j =k — i implies 2i =0 (mod p), which is again a contradiction.
Case 2 Suppose i =—j (modp). Since Case 1 has been ruled
out, we must have k=i—k or k=j—k and as the two
possibilities are essentially the same, we may assume k=i-k,
i.e. i=2k. The third match is then given by i —j=j — k, which
implies k= —3i=—6k. Thus 7k =0(modp), which is a con-
tradiction unless p = 7.

Case 3 Suppose i =j — i (mod p). To avoid the cases above, we
may assume the remaining matches are given by j=k —j and
k =i — k. But then k = 2j = 4i = 8k, again giving 7k = 0 (mod p).

Remark We observed in Remark 12.16 that x” — 1 has the form
(x — 1)g(x)g(x), where g(x) =x*+x +1. Since (g(x)) contains
words of weight 4, the exclusion of case p =7 in Lemma 12.19(ii)
is essential.

We have now reached our goal:

Theorem 12.20 Let Gy, be the binary cyclic code in Ry, with
generator  polynomial g(x)=1+x*+x*+x°+x+x'+x'.
Then G, is a perfect [23, 12, 7]-code.

Proof We have already observed that

X% —1=(x - 1)g(x)g(x).

By Lemma 12.17, the minimum odd weight w of Gy, satisfies
w? — w + 1= 23, which implies that w =7. By Lemma 12.19, G,;
can have no words of even weight <8. As g(x) is a codeword of
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weight 7, we have d(Gy;) = 7. Since

o B)+(3) >

the sphere-packing condition (9.1) is satisfied and so G,; is
perfect.

The code Go; is called the binary Golay code. 1t is equivalent
to the Golay code as defined in Chapter 9 (cf. the remarks
following Problem 9.9).

The ternary Golay code

We now show that the ternary Golay code G;, may also be
constructed as a cyclic code. Our starting point is the factoriza-
tion of x' — 1 over GF(3):

M=1=x-1)E+x* - +x2-1)x°—x*+x*-x-1)
= (x — 1)g1(x)g2(x), say.

Note that g,(x) = —x°g,(x7!) and so (g,(x)) and (g,(x)) are
equivalent [11, 6]-codes. We shall show that the code (g,(x)) has
minimum distance 5.

Theorem 12.21 Let C be the ternary code (g,(x)) in R,;, where
gi(x)=x*+x*—-x3+x>—1. Let D be the subcode of C
‘generated by (x —1)g;(x). Let a(x) =ap+a,x +- -+ a,,x'°be a
codeword of C of weight w. Then

(i) a(x)e D if and only if £/%a; =0,

(ii) if a(x) e D, then w =0 (mod 3),
(iii) if a(x) €D, then w =2 (mod 3),
(iv) if a(x)€D, then w=4,

(v) w#3,
(vi) d(C)=5.
Proof (i) Given that a(x) is in C and so is a multiple of g,(x);
we have
a(x) € D ©a(x) is a multiple of (x — 1)
©a(l)=0
10
@Z a;= 0.

i=0
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(ii) First observe that, since a? =1 (mod 3) for each non-zero
coefficient a;, we have w =}, a7 (mod 3). By Theorem 12.15(ii),
the dual code D+ of D is generated by the reciprocal polynomial
of g,(x), which happens to be precisely —g,(x). Thus D* =
(g,(x)) = (—g.(x)) =C. So D is contained in D+, which means
that D is self-orthogonal, i.e. the inner product of any two
vectors of D is zero. In particular, if a(x) € D, then the inner
product of a(x) with itself is zero, i.e. X a7=0(mod 3). Thus
a(x) € D> w=0(mod 3).

(iii) By Theorem 12.12, D is a code of dimension 5. Also D is
contained within the 6-dimensional code C. Since 1=1+x +
-+ +x'Y%isin C but not in D, C is the disjoint union of the three
cosets D,1+ D and —1+ D. Thus any codeword a(x) of C
which is not in D is of the form

a(x)=d(x) £1,
for some codeworg) d(x)=dy+dx+---+dx"eD.
Hence w(a(x)) =, (d; 1)
i=0

=(§ d,z) +11 ﬂ(ﬁ d,)

=0 i=0
=11  (by (i) and (ii))
=2 (mod 3).

(iv) Suppose a(x)€D. Now a(x)a(x~') is a multiple of
g1(x)g2(x) =1. By (i), a(1)#0, and so a(x)a(x~')= 1. Thus
a(x)a(x~') has weight 11. But at most w? coefficients of
a(x)a(x~') are non-zero and so w?=11. Hence w = 4.

(v) Suppose, for a contradiction, that w=3. Then, by a
suitable cyclic shift, and multiplication by —1 if necessary, we
may suppose a(x) =1+ x'+x’/. By (ii) and (iii), a(x) must be in
D and so, by (i), we must actually have a(x) =1+ x'+x/. Also,
a(x) € D implies that a(x)a(x~") is a multiple of

(x — 1)g1(x)ga(x) =x"" = 1=0
in Ry;. Thus
A+x'+x)(1+x""+x7)=0,

giving Mx~ldnd x4 27 2 =0,
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Since i and j are distinct and non-zero we must have i = — ==
i (mod 11), which implies that 3j = 0 (mod 11), which is a contra-
diction.

(vi) It follows from (ii)~(v) that d(C)=5 and since gi(x)
itself has weight 5, d(C) =5. .

The [11, 6, 5] code C of Theorem 12.21 is called the ternary
Golay code. 1t is a perfect code because

35{1 +2-11 +22(121)}=3“,

and it is equivalent to the ternary Golay code defined in Chapter
9. :

Hamming codes as cyclic codes

We will show that the binary Hamming codes discussed in
Chapter 8 are equivalent to cyclic codes. The proof will be
incomplete in the sense that we shall assume results previously
stated, but left unproved, in the text.

Theorem 12.22 The binary Hamming code Ham (r, 2) is equiv-
alent to a cyclic code.

Proof Let p(x) be an irreducible polynomial of degree r in
E[x]. Then, by Theorem 12.5, the ring £[x)/p(x) of polynomials
modulo p(x) is actually a field of order 2’. As was mentioned in
Chapter 3, every finite field has a primitive element and so there
exists an element « of F[x]/p(x) such that E[x]/p(x) = {0, 1, a,
a?, ..., "7}, Let us now identify an element a, + a,x + axx> +
“+++a,_x"7' of E[x])/p(x) with the column vector

ao

a,

ar-—l
and consider the binary r X (2" — 1) matrix

H=[1 a o*---a*?.

Let C be the binary linear code having H as parity-check matrix.
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Since the columns of H are precisely the distinct non-zero vectors
of V(r,2), C is a Hamming code Ham (r, 2). Putting n =2"—-1
we have
C={ffi' " fur €V, 2) | fo+fia+ - +fia" ' =0}

= {f(x) e R, | f(a) =0 in B[x]/p(x)}. (12.23)
If f(x) € C and r(x) € R,, then r(x)f(x) € C because r(a)f(a) -
r(a) -0=0. So, by Theorem 12.6, this version of Ham (r, 2) is
cyclic.

Definition If p(x) is an irreducible polynomial of degree r such

that x is a primitive element of the field F[x]/p(x), then p(x) is
called a primitive polynomial.

Theorem 12.24 If p(x) is a primitive polynomial over QF (2) of
degree r, then the cyclic code (p(x)) is the Hamming code
Ham (r, 2).

Proof If p(x) is primitive, then (12.23) implies that
Ham (r,2) = {f(x) € R, | f(x) =0 in B[x]/p(x)}
=(p(x))-
Example 12.25 The polynomial x*+x +1 is irreducible over

GF(2) and so E[x)/(x*+x + 1) is a field of order 8. Also, x is a
primitive element of this field, for

Elx]/(x*+x+1)
={0,1,x,x%, *=x+ 1, x*=x2+x,x’=x2+x+1,x0=x2+1)},

Thus a parity-check matrix for a cyclic version of the Hamming

code Ham (3, 2) is
1001011
H=10101110},

0010111

wherein the columns represent 1, @, o, ..., &® as described in
the proof of Theorem 12.22, with a = x.

Since x*+x +1 is a primitive polynomial, it is a generator
polynomial for Ham (3, 2) and so, by Theorem 12.12, a gener-
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ator matrix for the code is

1101000

G=|0110100
“loot11010])

0001101

Remarks (1) It can be shown that there exists a primitive
polynomial of degree r for any r.

(2) We saw in Example 12.13 that the ternary Hamming code
Ham (2,3) is not equivalent to a cyclic code. However,
Ham (r, q) is equivalent to a cyclic code if » and q—1 are
relatively prime (see, e.g., Blahut (1983), Theorem 5.5.1).

Concluding remarks on Chapter 12

(1) Cyclic codes were first studied by Prange (1957). Interest
was further stimulated by the theorem of Bose and Ray-
Chaudhuri (1960) which gave lower bounds on the minimum
distance for a large class of cyclic codes. It was quickly
discovered that almost every special linear code previously
discovered (e.g. Hamming, Golay, Reed—Muller) could be made
cyclic.

(2) For a comprehensive treatment of the theory of cyclic
codes, see, e.g., MacWilliams and Sloane (1977). For details of
the practical implementation of cyclic codes, including the
associated circuitry, see, e.g., Blahut (1983) or Lin and Costello
(1983).

Exercises 12

12.1 Is each of the following codes (a) cyclic, (b) equivalent to °
a cyclic code?
(i) the binary code {0000, 1100, 0110, 0011, 1001}
(ii) the binary code {00000, 10110, 01101, 11011}
(iii) the ternary code {0000, 1122, 2211}
(iv) the g-ary repetition code of length n
(v) the binary even-weight code E,
(vi) the ternary code {x € V(n, 3) | w(x) =0 (mod 3)}
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(vii) the ternary code
{x,xz- cx,€V(n,3)| > x;=0(mod 3)}
i=1

12.2 Write out the multiplication table for A[x]/(x*+1).
Explain why E[x]/(x*+ 1) is not a field.

12.3 Write out a proof of Theorem 12.5.

12.4 Show that an irreducible polynomial over GF(2) of
degree =2 has an odd number of non-zero coefficients.

12.5 To verify that a polynomial p(x) is irreducible, why is it
enough to show that p(x) has no irreducible factor of
degree <} degp(x)?

12.6 List the irreducible polynomials over GF(2) of degrees 1
to 4. Construct a finite field of order 8.

12.7 Suppose p is a prime number.
(i) Factorize x” —1 into irreducible polynomials over

GF(p).

(i) Factorize x?~' — 1 into irreducible polynomials over
GF(p).

12.8 Factorize x° — 1 into irreducible polynomials over GF(2)
and hence determine all the cyclic binary codes of length
5

12.9 Let g(x) be the generator polynomial of a binary cyclic
code which contains some codewords of odd weight. Is
the set of codewords in (g(x)) of even weight a cyclic
code? If so, what is the generator polynomial of this
subcode?

12.10 Suppose x" —1 is the product of ¢ distinct irreducible
polynomials over GF(g). How many cyclic codes of
length n over GF(q) are there?

12.11 Given that the factorization of x”—1 into irreducible
polynomials over GF(2) is (x — 1)(x* +x +1)(x* +x* +
1), determine all the cyclic binary codes of length 7. Give
a name or a concise description of each of these codes.

12.12 Factorize x®—1 over GF(3). How many ternary cyclic
codes of length 8 are there?

12.13 Write down a check polynomial and a parity-check matrix
for each of the ternary cyclic codes of length 4 (see
Example 12.13).

12.14 Let h(x) be the check polynomial of a cyclic code C. Is
(h(x)) equal to C*+? Is (h(x)) equivalent to C*?
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12.15

12.16

12.17

12.18

12.19

12.20

12.21

12.22

Suppose C is a binary cyclic code of odd length. Show
that C contains a codeword of odd weight if and only if 1
is a codeword of C.

Suppose a generator matrix G of a linear code C has the
property that a cyclic shift of any row of G is also a
codeword. Show that C is a cyclic code.

Show that 2 is a primitive element of GF(11). Deduce
that the [10,8]- and [10, 6]-codes over GF(11) of Ex-
amples 7.12 and 11.3 respectively are equivalent to cyclic
codes.

Let G,; be the cyclic Golay code defined in the text.
Prove that any two vectors in G,; of even weight have
inner product ‘equal to zero. Hence prove that the
extended Golay code G,4, obtained by adding an overall
parity-check to G,;3, is self-dual.

Determine which of the irreducible polynomials over
GF(2) of degree 4 (found in Exercise 12.6) are primitive.
Hence write down a generator polynomial for the binary
Hamming code of length 15. Find the check polynomial
for this code. Write down the corresponding parity-check
matrix (using Theorem 12.15) and check that its columns
are precisely the non-zero vectors of V (4, 2).

Let g(x) be the generator polynomial of a cyclic binary
Hamming code Ham (r,2), with r =3. Show that ((x —

1)g(x)) is a cyclic [2" = 1,2" — r — 2, 4]-code.

An error vector of the form x/+x'*! in R, is called a
double-adjacent error. Show that the code ((x —1)g(x))

of Exercise 12.20 is capable of correcting all single errors
and all double-adjacent errors.

Let C be a [g + 1,2, g]-code over GF(q), where g is odd.

Show that C cannot be cyclic. Deduce that the Hamming
code Ham (2, g) is not equivalent to a cyclic code when g
is odd.



13 Weight enumerators

If Cis a linear [n, k]-code, its weight enumerator is defined to be
the polynomial
We(z) =3, Az

i=0
=Agt+A;z+---+A,2",

where A; denotes the number of codewords in C of weight i.
Another way of writing W.(z) is
We(z) = 2 £
: xeC
Examples 13.1 (i) Let C be the binary even-weight code of
length 3; ie. C={000,011,101,110}. Its dual code C* is
{000, 111}. The weight enumerators of C and C* are

We(z) =1+ 322
Wei(z)=1+23,
(ii) The code C = {00, 11} is self-dual and so
We(z2)=Wei(z) =1+ 22

We have already seen (Theorem 6.14) that knowledge of the
weight enumerator of a code enables us to calculate the
probability of undetected errors when the code is used purely for
error detection.

The main result of this chapter is a remarkable formula of
~ MacWilliams (1963), which enables the weight enumerator of
any linear code C to be obtained from the weight enumerator of
its dual code C*.

For simplicity we shall prove this result, known as the
MacWilliams identity, only for binary codes (Theorem 13.5),
although the general result will be stated afterwards (Theorem
13.6).

The following three lemmas are required only for the proof of
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the MacWilliams identity. The less mathematically minded
reader, who is happy to accept the validity of the formula
without proof, may skip these lemmas, and also the proof of
Theorem 13.5, without any great loss; the subsequent examples
and exercises make use only of the formula and not of its proof.

Lemma 13.2 Let C be a binary linear [n, k]-code and suppose y
is a fixed vector in V(n, 2) which is not in C*. Then x - y is equal
to 0 and 1 equally often as x runs over the codewords of C.

Proof Let A={xeC|x-y=0}
and B={xeC|x-y=1}.

Let u be a codeword of C such that u-y=1 (u exists since
yéC*). Let u+ A denote the set {u+x|xeA}. Then

u+AcB,

forifxe A, then (u+x):-y=u-y+x-y=1+0=1.
Similarly
u+BcA.
Hence

|A|=|u+A|<|B|=|u+ B|<|A|

Hence |A| = |B| and the lemma is proved.

Lemma 13.3 Let C be a binary [n, k]-code and let y be any
element of V(n,2). Then

2 GoAlons

xeC

{2* ifyeC*
0 ifyéCc+

Proof 1fyeC*, thenx-y=0 for all xe C, and so
S (-pr=|c]-1=24

xeC

If yé C*, then by Lemma 13.2, as x runs over the elements of C,
(—1)*Y is equal to 1 and —1 equally often, giving

> (-1 =0.

xeC

Weight enumerators 167

(.emma 13.4 Let x be a fixed vector in V(n,2) and let z be an
indeterminate. Then the following polynomial identity holds:

D Z"O(=1)*Y = (1 — z)*@(] + z)—w),

yeV(n,2)
Proof
SRS
W —l Xy = co e Yityatectynl 1\t XnYn
yev(n.2) ) »n=0 y§=:0 ynz=oz l ’( 1) % :
1 1 n
= ool 2 (H z’i(—l)“”’)
»n=0 Ya=0 \i=1
n 1
=T1(3 #-17)
=1 V=0
= (1 =z)"= N1+ Z)r=we,
- o . 1+z  ifx=0
since Zi(-1 "'={ e
,go (=10 1-z ifx;=1

Theorem 13.5 (The MacWilliams identity for binary linear

- codes) If Cis a binary [n, k]-code with dual code C*, then

1 1=

~ Proof We express the polynomial

f(z)=2 ( 2 (_l)x-yzw(y))
X xeC ‘yeV(n2)
in two ways.

On the one hand, using Lemma 13.4,

f(z)= Zc (1-z)*®(1 + z)r @
=(1+2)" 2 (L—_Z)wm

xeC 1+z

asmfisd)
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On the other hand, reversing the order of summation, we have

fEy= 5 a3 (1)

yeV(n,2)

=D z*2% (by Lemma 13.3)

yeC~

=2kW cu(2).
Equating the two expressions for f(z) establishes the result.

The proof of the following more general result is similar to that
of Theorem 13.5, using generalized versions of the preceding
lemmas, but we omit the details.

Theorem 13.6 (The MacWilliams identity for general linear
codes) If C is a linear [n, k]-code over GF(gq) with dual code

C*, then

y 1
Wesle) = l1+ g = Vel =)

Remark 1If C is a binary [n, k]-code, then, since the dual code
of C* is just C, we can write the MacWilliams identity in the
(often more useful) form:

We(z) = % 1+ z)nwci(; :i) 13.7)

Examples 13.8 We apply Theorem 13.5 to the codes of

Examples 13.1.
(i) We have W,(z) =1+ 3z% Hence, by Theorem 13.5,

Weilz) =301 + z>’Wc(i : i)

=31 +2z)*+3(1-2)’(1+2)]
=142z

as already found directly from C+.
Let us interchange the roles of C and C* in order to check the
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formula (13.7). We have

Ja +z)3wcl(;—;—§) =41 +2) +(1-2)9

=1+3z2?,
which is indeed W(z).
(i) We have W.(z) =1+ z2. Hence

Wei(z) =41+ Z)ZWC(; ; i)

=l 2R+ (-2
C=1422

~ Thus Wci(z) = We(z), as we expect, since C is self-dual.

For the very small codes just considered, the use of the

~ MacWilliams identity is an inefficient way of calculating their

weight enumerators, which can be written down directly from the

~ lists of codewords. But suppose we are required to calculate the
- weight enumerator of an [n, k]-code C over GF(q) where k is

large. To enumerate all g* codewords by weight may be a
formidable task. However, if k is so large that n — k is small,

~ then the dual code C* may be small enough to find its weight

enumerator, and then the MacWilliams identity can be used to
find the weight enumerator of C.

For example, the binary Hamming code Ham (7, 2) has dimen-
sion 2" — 1 —r, and so the number of codewords in Ham (r, 2) is
2¥-1=r_ a large number even for moderately small values of r.
But the dual code has only 2" codewords and, as we shall soon
see, it has a particularly simple weight enumerator. From this,

- the weight enumerator of Ham (r, 2) itself is easily determined.
- First we look at a particular case.

‘ Example 13.9 Let C be the binary [7, 4]-Hamming code. Then

the dual code C* has generator matrix

0001111
01 00,11}

1010101
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When we compute We:(z) directly, by listing the codewords, we
find, surprisingly, that each of the non-zero codewords has
weight 4 (the next theorem shows this to be no isolated
phenomenon, as far as the Hamming codes are concerned). Thus

WCJ-(Z) =1+ 724,
and so the weight enumerator of C itself is, by equation (13.7),
HA+2)+71-2)* A +2)’|=1+722+ 724+ 2".

Theorem 13.10 Let C be the binary Hamming code Ham (7, 2).
Then every non-zero codeword of C* has weight 2!,

Proof Let
h, hyy By =+ hy,

H= |:'2 o h:21 h:zz h:Zn
h, R B -2 Ry
be a parity-check matrix of C where the rows of H are denoted
by hy, h,, ..., h,. Then a non-zero codeword ¢ of C* is a vector
of the form ¢= ¥/_, A,;h; for some scalars A,,4,,..., A, not all
zero. We will find the weight of ¢ by finding the number ny(c) of
zero entries of ¢ and then subtracting ny(c) from the length n.
Now ¢ has a zero in its jth position if and only if ¥;_, LA, =0,
i.e. if and only if X/., Ax,=0, where (x;x,---x,)7 is the jth
column of H. Since C is a Hamming code, the columns of H are
precisely the non-zero vectors of V(r,2) and so ny(c) is equal to
the number of non-zero vectors in the set

<o},
i=1
i.e. no(C) = IX' -1.

It is easy to see that X is an (r — 1)-dimensional subspace of
V(r,2) (e.g. view X as the dual code of the [r, 1]-code which has
generator matrix [A,A,---A4,], so that dim(X)=r-1, by
Theorem 7.3). Hence

|X|=2""! andso nyc)=2"""-

X={x1x2-'° »
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(Note that ny(c) is independent of the choice of non-zero
codeword ¢ in C*). Thus

w(e)=n—nyc)=2"-1~-(2"'-1)
=21,

Corollary 13.11 The weight enumerator of the binary Ham-
ming code Ham (7, 2), of length n =2"— 1, is

%[(1 +2)" + n(1 - 23)*~V2(1 - 2)].

Proof This is a straightforward application of the MacWilliams
identity which is left to Exercise 13.5.

Probability of undetected errors

Suppose we wish to find Pgeec(C) for a binary [n, k]-code C.
By Theorem 6.14, we have

undetec(c) I 2 Ap'(l —-p)n—i

i=1

=(1- p)"ZA( p)i

i=1

Ly b

Pingerec(C) = (1 —p)"[%(ﬁ) - 1]. (13:12)

Since

G

and since A, =1, we have

If we know Wc(z), then we can find P, 4..(C) by means of
equation (13.12). If we know only W .(z) to start with, then we

- could use the MacWilliams identity (13.7) to calculate W.(z) and
then use equatlon (13.12). Alternatlvely, we could use the

formula derived in Exercise 13.9, which gives P, eec(C) directly
in terms of W.(z), and thereby avoid the intermediate calcula-
tion of W(z).
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Exercises 13

13.1

13.2

13.3

13.4

13.5
13.6

13.7

Suppose C is a binary linear code of length n which
contains the vector 11 - - - 1 consisting of all 1s. Show that

Ai + An—ia

fori=0,1,...,n.
Find the weight enumerator of the code whose generator

matrix is
10011
01001
00101
(a) directly,

(b) by using the MacWilliams identity.
Let C be the binary [9,7]-code having the generator
matrix = ain

01
10
L 10
11
11
e 115

Let Y7, A;z' denote the weight enumerator of C. Use the
MacWilliams identity to find the values of A, A;, A, and
A;. Show that C contains the vector consisting of all 1s
and hence, or otherwise, determine the full weight
enumerator of C.

Using the result of Example 13.9, write down the weight
enumerator of the extended binary Hamming code of
length 8.

Prove Corollary 13.11.

Find the number of codewords of each of the weights 0,
1, 2, 3 and 4 in the binary Hamming code of length 15.
Let C be a binary linear code and let G, denote the
subcode of C consisting of all codewords of C of even
weight. Show that

W(z) = 3[We(z) + We(=2)].

13.9

' 13.10

R13.11

N13.12
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13.8 Let C be a binary linear code and let C be the extended

code obtained from C by adding an overall parity check.
Show that

We(z) =3[(1 + 2)We(z) + (1 — 2)Wc(-2)].
Suppose C is a binary [n, k]-code. Prove that

1
Pundetec(c) =F WC“(I [a ZP) i (1 _p)n_

Let Gy, be the extended binary Golay code defined in
Theorem 9.3. Notice that the vector consisting of all 1s
belongs to G,, (add all the rows of G together). Using
properties of G, found during the proof of Theorem 9.3,
show that

W, (2) =1+ 75928 + 257622 + 759216 + 224,

Let Gy be the cyclic binary code defined in Theorem
12.20, and let G,, be its extended code. Using results
from Chapter 12, including Exercise 12.18, determine the
weight enumerator of G,,.

Use either Exercise 13.10 or 13.11, together with Exer-
cise 9.4(a), to determine the weight enumerator of the
binary Golay code G,,.



14 The main linear coding theory problem

In Chapter 2 we discussed the ‘main coding theory problem’.
- This was the problem of finding A,(n, d), the largest value of M
for which there exists a g-ary (n, M, d)-code. In the present
chapter we shall consider the same problem restricted to linear
~codes. If ¢ is a prime power, we denote by B,(n, d) the largest
value of M for which there exists a linear (n, M, d)-code over
'GF(q). (The function B,(n,d) was briefly introduced in Exer-
cises 5.8 and 5.9). Clearly B,(n, d) is always a power of q, and
By(n,d)<A,(n,d). We shall refer to the problem of finding
B,(n,d) as the main linear coding theory problem, or MLCT
problem for short.

- If we regard the values of g and d as fixed, we may state the
problem as follows.

4
MLCT problem (Version 1) For given length n, find the
~maximum dimension k such that there exists an [n, k, d]-code
over GF(q). (Then, for this k, B,(n, d) = g*).

- Recall that the redundancy r of an [n, k, d]-code is just n — k
(the number of check symbols in a codeword). An alternative
‘version of the MLCT problem is:

MLCT problem (Version 2) For given redundancy r, find the
~maximum length n such that there exists an [n,n —r,d]-code
over GF(q).

- Solving Version 1 for all n is equivalent to solving Version 2
for all r, because in either case we then know exactly those
alues of n and k for which an [n,k,d]-code exists. The
ivalence of the two versions will be made explicit in Theorem
19.3,

f,flt turns out that Version 2 provides the more natural ap-
proach. The key to this approach, which was touched upon in
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Concluding Remark 3 of Chapter 8, is given in the next theorem.
But first we make some definitions.

Definitions An (n,s)-set in V(r,q) is a set of n vectors in
V(r,q) with the property that any s of them are linearly
independent.

We denote by max, (r, ¢) the largest value of n for which there
exists an (n, s)-set in V(r,q). An (n,s)-set in V(r, q) which has
n=max, (r,q) is called optimal. The packing problem for
V(r,q) is that of determining the values of max, (r,q) and the
optimal (n, s)-sets.

The packing problem was first considered by Bose (1947) for
its statistical interest and later (1961) for its connection with
coding theory, which is given by the following theorem.

Theorem 14.1 There exists an [n,n —r, d]-code over GF(q) if
and only if there exists an (n,d — 1)-set in V(r, q).

Proof Suppose C is an [n,n—r,d]-code over GF(q) with
parity-check matrix H. Then, by Theorem 8.4, the columns of H
form an (n,d — 1)-set in V(r, g). On the other hand, suppose K
is an (n,d — 1)-set in V(r, q). If we form an r X n matrix H with
the vectors of K as its columns, then, again by Theorem 8.4, H is
the parity-check matrix of an [n,n —r]-code whose minimum
distance is at least d.

Corollary 14.2 For given values of g, d and r, the largest value
of n for which there exists an [n,n —r, d]-code over GF(q) is

max,_, (r, q)-

So the MLCT problem (Version 2) is the same as the packing
problem of finding max,_, (r, g). We now show that the values
of B,(n, d) are also given by the solutions to this problem.

Theorem 14.3 Suppose max,_, (r—1,9)<n<=max,_,(r,q).
Then By(n,d)=q"™".

Proof Since n <max,_, (r, q), there exists an [n,n —r, d]-code
over GF(q), and so B,(n,d)=q""". If B,(n,d) were strictly
greater than ¢”"~", then there would exist an [n,n—r+1,d]-
code, implying that n <max,_, (r — 1, g), contrary to hypothesis.
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Let us pause to outline our plan of campaign for the remainder
of this and the next chapter. We shall consider the MLCT
problem for increasing values of the minimum distance d. The
cases d =1 and d =2 are easily dealt with in Exercise 14.2. We
will therefore consider first the problem for d = 3 and will solve it
for all values of g and r. We will then consider the case d =4,
solving the MLCT problem for ¢ =2 and giving the known
results for ¢ >2. For cases of d greater than 4, very little is
known in the way of general results, at least not until d reaches
its maximum value for given redundancy r, which is d =r +1.
We will consider this very interesting case in Chapter 15.

The MLCT problem for d =3 (or Hamming codes revisited)

Theorem 14.4 For given redundancy r, the maximum length n
of an [n,n—r,3]-code over GF(q) is (¢"—1)/(g —1); i.e.
max,(r,q) = (¢" — 1)/(g - 1).

Proof By Corollary 14.2, the required value of n is max, (r, q),
the largest size of an (n, 2)-set in V(r, g). Now a set S of vectors
in V(r, q) is an (n, 2)-set if and only if no vector in S is a scalar
multiple of any other vector in §. As we saw in the construction
of g-ary Hamming codes in Chapter 8, the ¢"—1 non-zero
vectors of V(r,q) are partitioned into (¢" —1)/(g — 1) classes,
each class consisting of g — 1 vectors which are scalar multiples of
each other. Thus an (n,2)-set of largest size is just a set of
(g" — 1)/(q — 1) vectors, one from each of these classes.

The optimal [n,n —r,3]-codes with n=(q"—1)/(q —1) are
just the Hamming codes Ham (r, g¢) defined in Chapter 8. The
solution to MLCT problem (Version 1) follows immediately from
Theorems 14.3 and 14.4:

Theorem 14.5 B,(n,3)=q""", where r is the unique integer -
such that ("' = 1)/(g—-1)<n<(gq"-1)/(qg - 1).

Remarks (1) It is easy to express B,(n,3) as an explicit
function of ¢ and n (see Exercise 14.3).

(2) To construct a linear (n, M, 3)-code with M = B,(n, 3),
one simply finds the least integer r such that n <(¢"—1)/(g — 1)
and writes down, as a parity-check matrix, n column vectors of
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V(r, q) such that no column is a scalar multiple of another. Such
a parity-check matrix can always be obtained by deleting columns
from the parity-check matrix of a Hamming code Ham (7, q).
Thus the best linear single-error-correcting codes of given length
are either Hamming or shortened Hamming codes.

Before proceeding to the case d =4, we remark that it will be
advantageous to view an (n, s)-set not only as a set of vectors in
the vector space V(r,q), but also as a set of points in the
associated projective geometry PG(r—1,q), which we now
define.

The projective geometry PG(r—1, q)

With the vector space V(r,q)={(a;,a,...,a,)|a€ GF(q)},
we associate a combinatorial structure PG(r — 1, g) consisting of
points and lines defined as follows.

The points of PG(r — 1, q) are the one-dimensional subspaces
of V(r,q). The lines of PG(r—1,q) are the two-dimensional
subspaces of V(r, g). The point P is said to belong to (or lie on)
the line L if and only if P is a subspace of L. PG(r—1,q) is
called the projective geometry of dimension r — 1 over GF(q).

Each point P of PG(r—1,q), as a subspace of V(r,q) of
dimension 1, is generated by a single non-zero vector. So, if
a=(ay,a,...,a)€P, then

P ={’a| A e GF(q)}.

In practice, we identify the point P with any non-zero vector it
contains. In other words, we take the points of PG(r—1,q) to
be the non-zero vectors of V(r,q) with the rule that if a=
(ay,as,...,a,) and b=(b,,b,,...,b,) are two such vectors,
then
a=bin PG(r—1,q)if and onlyifa=Ab in V(r, q),

for some non-zero scalar A.

We now list some elementary properties of PG(r — 1, q).

Lemma 14.6 1n PG(r—1,q),

(i) the number of points is (¢" —1)/(g — 1),
(ii) any two points lie on exactly one line,
(iii) each line contains exactly g + 1 points,
(iv) each point lies on (g"~' — 1)/(g — 1) lines.
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Proof (i) Since each of the ¢” — 1 non-zero vectors in V(r, q)
has g —1 non-zero scalar multiples, the number of points of
PG(r—1,q)is (g"—1)/(g —1).

(i) If a and b are distinct points of PG(r — 1, q), then the
unique line through them consists of the points Aa + ub, where 4
and p are scalars not both zero.

(iii) In (ii), there are g*>—1 choices for the pair (4, u), but
since we are identifying scalar multiples, the number of distinct
points on the line is (¢>—1)/(g —1)=¢q + 1.

(iv) Let t be the number of lines on which a given point P
lies. Let X denote the set {(Q, L)| Q is a point #P, L is a line
containing both P and Q}. We count the members of X in two
ways. For each of the (¢” —1)/(q¢ — 1) — 1 choices for Q, there is
a unique line L containing P and Q. Thus

IX|=(¢"-1)/(g—1)-1=(q"—q)/(g - 1).

On the other hand for each of the ¢ lines through P, there are, by
part (iii), g points Q other than P lying on L. Thus

|X|=1q.
Equating the two expressions for |X| gives t=(q""' = 1)/(qg — 1).
Definition The projective geometry PG(2,q) is called the
projective plane over GF(q). It follows from Lemma 14.6 that

PG(2, q) is a symmetric (g*+ g + 1, ¢ + 1, 1)-design, so that it is
a projective plane as defined in Chapter 2.

Examples 14.7 (i) The simplest projective plane is PG(2,2).
This contains 7 points labelled 001, 010, 100, 011, 101, 110, 111,

001

010 100

011 110 101

Fig. 14.8. The projective plane PG(2, 2).
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and 7 lines as shown in Fig. 14.8. This shows that PG(2, 2) is the
same as the 7-point plane of Example 2.19.

(ii) The 6 points of PG(1,5) are 01, 10, 11, 12, 13 and 14,
and there is just one line consisting of all 6 points. The points
could equally well be labelled 03, 10, 22, 12, 21, and 41, say,
because in PG(1,5), 01 =03, 11 =22, 13=21 and 14 =41.

Remarks (1) The points of PG(r—1,q) can be uniquely
labelled by making the left-most non-zero coordinate equal to 1.

(2) If g =2, the points of PG(r —1,2) are labelled by the
non-zero vectors of V(r, 2).

Definition A set K of n points in PG(r—1,q) is called an
(n, s)-set if the vectors representing the points of K form an
(n, s)-set in the underlying vector space V(r, q).

Remarks (1) Two advantages of working in PG(r — 1, q) are
that (a) some neat counting arguments may then be used to
obtain upper bounds on max,(r,q) and (b) many optimal
(n, s)-sets turn out to be natural geometric configurations.

(2) An (n,2)-set in PG(r—1,q) is just a set of n distinct
points of PG(r —1,q). So we may describe a Hamming code
Ham (r, g) as a code having a parity-check matrix H whose
columns are the distinct points of PG(r—1,q). Of course,
different representations of these points as vectors will give rise
to different, but equivalent, codes. For example (cf. Example
14.7(ii)), Ham (1, 5S) may be defined to have parity-check matrix

D13 1.3
2 [1 g:12 3 4]
or, equally well,
01212%
2 [3 0221 1]'

The MLCT problem for d=4

The maximum length of an [n,n —r,4]-code, for given r, is
equal to the value of max; (r, g), the largest size of an (n, 3)-set
in V(r,q) (or in PG(r — 1, q)).
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An (n, 3)-set in the plane PG(2, q) is usually called an n-arc,
while an (n, 3)-set in PG(r — 1, q), for r >3, is called an n-cap.

Since three points of PG(r —1,q) are linearly dependent if
and only if they are collinear (i.e. they lie on the same line), we
may describe an n-arc/n-cap as a set of n points, no three of
which are collinear.

The problem of determining the values of max, (r,q), first
considered by Bose (1947), was quickly solved for g = 2, for all r,
and for r=<4, for all g. But, despite having received much
attention since, the problem has been solved only for the
additional pairs (r,q)=(4,3) and (5, 3). The known values of
max, (r, q) are listed in Fig. 14.9.

max, (r,2) =2 (Bose 1947)
_[q+1, q odd
max; (3, q) {q +2, devel (Bose 1947)

g*+1, qodd (Bose 1947)
4,9)=| :
maxs (4, 9) g*+1, geven (Quist1952)
max; (5,3) =20 (Pellegrino 1970)
max; (6, 3) = 56 (Hill 1973)

Fig. 14.9. The known values of max; (7, ).

We now prove the more straightforward of these results.

The determination of max;(r, 2)

Here we are concerned with finding optimal binary linear codes
with d =4. The following general theorem shows that we may
obtain such codes from optimal codes of minimum distance 3 by °
the simple device of adding an overall parity-check.

Theorem 14.10 Suppose d is odd. Then there exists a binary
[n, k, d]-code if and only if there exists a binary [n + 1, k, d + 1]-
code.

Proof The proof of Theorem 2.7 is valid in the restriction to
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linear codes. This is because an ‘extended’ linear code (i.e. the
code obtained from a linear code by adding an overall parity-
check) is also linear (see Exercise 5.4).

Corollary 14.11 Suppose d is even. Then
(i) By(n,d)=By(n—1,d-1)
(i) max,_,(r,2) =max,_,(r—1,2)+1.

Proof

(i) is immediate from Theorem 14.10.

(ii) n<max,_, (r,2) & there exists a binary
[n,n —r,d]-code

& there exists a binary
[n=1,n—=r,d—1]-code

on-1 sSmax,_, (r B 1, 2)

&On<maxy,,(r—1,2)+1.

Corollary 14.12 max, (r,2)=2""".

Proof By Theorem 14.4, max, (r,2) =2"— 1. Hence
max; (7,2)=(2"'-1)+1=2""1,

The optimal binary code with d =4 and redundancy r is the
extended Hamming code Ham (r — 1, 2). As we saw in Chapter
8, a parity-check matrix for this code is

11:---1

where H is a parity-check matrix for Ham (r — 1, 2), so that the
columns of H are just the points of PG(r—2,2) (i.e. the
non-zero vectors of V(r — 1, 2)).

The columns of H form an optimal 2"~ '-cap in PG(r — 1,2). It
consists of the points of PG(r —1,2) not lying in the subspace
{(x1,...,x,)|x,=0}. Geometrically, it may be described as the
complement of a hyperplane.

The main linear coding theory problem 183
The determination of max, (3, q)

First we give some examples of good linear codes with d = 4 and
redundancy 3. We then prove that these codes are optimal by

showing that there cannot exist such codes of greater length.

Theorem 14.13 Let ay,a,,...,a,_, be the non-zero elements
of GF(q).

11:.-- 110
(i) Thematrix H=|a, a, *+- a,_, 00

aia3---a2_, 01

is the parity-check matrix of a [g+1,q —2,4]-code.
Equivalently, the columns of H form a (g + 1)-arc in
PG(2,q).

- (ii) If g is even, then the matrix

111 100
H*=|aya, -+ a,.,010
aia3---a_,001

is the parity-check matrix of a [g+2,q —1,4]-code.
Equivalently, the columns of H* form a (g +2)-arc in
PG(2,q).

~ Proof (i) Itis enough to show that any three columns of H are

linearly independent. Any three of the first ¢ — 1 columns of H

- form a Vandermonde matrix, and so are linearly independent by

Theorems 11.1 and 11.2. For any three columns which include
one or both of the last two columns, the determinant may be
expanded about these last columns to get again the determinant

: of a Vandermonde matrix.

(ii) We have shown in the proof of part (i) that any three

- columns of H* are linearly independent, with the possible

exception of three of the form

1 1 0
a;|,|a|,and |1].
a’| |af 0

: The determinant of the matrix A formed by these three columns

'HJ
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is equal to a7 — a7. Since g is even, GF (q) has characteristic 2 (cf.
Exercise 4.6). Hence, by Exercise 3.12, a? — a} = (a; — a;)*. Since
a;#a;, det A is non-zero.

g+1, ifgisodd

Corollary 14.14 max;(3,q)= { g+2, it i,

Remark The (q + 1)-arc formed by the columns of H in
Theorem 14.13 is the conic {(x,y, z) € PG(2,q)| yz = x*}.

We now show that the codes/arcs given in Theorem 14.13 are
optimal.

Theorem 14.15
(i) For any prime power g, max;(3,9)<gq +2.
(ii) If g is odd, then max;(3,9)<q + 1.

First proof (i) Let H be a standard form parity-check matrix
for an [n,n — 3, 4]-code C over GF(g), with n =max; (3, q):

a, a; *+*- a,,_3100
= b]bz"'bn_3010 .

c{rcs™ SHghaX) 6]

Since any three columns of H are linearly independent, the-

determinant formed by any three columns must be non-zero.
From the non-vanishing of the determinant formed by any two of
the last three columns and one of the first n — 3 columns, we find
that the as, b;s and ¢s are all non-zero. Multiplying the ith
column by a;' for i=1,2,...,n—3, we have that C is
equivalent to a code in which the a;s are all 1. Thus we may

assume that
T PO ST RN
A=|b, by -+ b,_3010],

C’ Cz i) C,l_3001

where the b;s and ¢;s are non-zero. As the determinant formed

by the last column and two of the first n — 3 columns is non-zero,

the b;s must be distinct non-zero elements of GF(g). Hence
—3<g-landson=gq+2.
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(i) (Adapted from Fenton and Vdmos, 1982). Now suppose
g is odd. Suppose, for a contradiction, that a (¢ +2,q — 1, 4]
code C exists. Then, as in (i), we may assume that C has a
parity-check matrix

0 RN e
H = blbz"'bq._lolo
€1 €3 nve €5:2110 01

where by, b,,...,b,_, are the distinct non-zero elements of
GF(q) and similarly c,,c,,...,c,-, are also the distinct non-
zero elements of GF(g) in some order. The non-vanishing of
determinants of the form

1.4
det | b; b; 0
¢ ¢ 0

implies that the elements by, byes', ..., b, 152y are distinct

~ and so they too are the non-zero elements of GF (g) in some
- order. Hence, by Exercise 3.13, all three of the products [1¢- b;,

117 ¢;, and [1¢= (bc;!) are equal to —1. But then

:_1;]1 (beit)= (1]] b,-)(ﬁ c,~)-l =(-1)(-)'=1.

i=1
Since 1# —1 if g is odd, this gives the desired contradiction.

Second proof (geometric) (i) Suppose K is an n-arc in
PG(2, q) of maximum size n = max; (3, g). Let P be a point of
K. By Lemma 14.6(iv), there are g + 1 lines through P and every
point of K lies on one or other of them. But on none of these
lines can there be more than one point of K besides P (by
definition of an n-arc, no three points of K are collinear). Thus
n<l+(g+1)=q+2. :
(i) Now suppose g is odd. Suppose, for a contradiction, that
K is a (q + 2)-arc in PG(2, q). Then if P is any point of K, each
of the g +1 lines through P must contain exactly one further
point of K. This means that every line in PG(2, g) meets K in
either 2 or 0 points (but never in 1). Now let Q be any point of
PG(2, q) lying outside K. Through Q there pass g + 1 lines and
each point of K lies on one (and only one) of them. So if ¢ of
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these lines meet K in two points, then |K|=2¢, contradicting
|K| =g + 2 being odd.

Remark The author feels that the attractiveness of the above
proofs merits the inclusion of both. The geometric proof has two
important advantages: (1) it generalizes to give upper bounds on
max; (r, ¢) for larger values of r; (2) it does not assume specific
properties of the field GF(g), and so gives the same upper bound
on the size of n-arcs in any projective plane of order q.

Corollary 14.14 and Theorem 14.15 give

Theorem 14.16 (Bose 1947)

o+l if g is odd
max; (3, 9) {q +2  ifgiseven.
Remark 1t has been shown by Segre (1954) that, for ¢ odd,
every (g +1)-arc in PG(2,q) is a conic. This implies that the
optimal [g + 1, g — 2, 4]-code is unique, up to equivalence. For q
even, optimal (g +2)-arcs in PG(2, q) are not in general unique,
and a classification is unknown.

The determination of max, (4, q), for q odd

As we shall adopt a geometric approach here, we introduce a
little more terminology concerning the projective geometry
PG(r—1,q). In defining PG(r—1,q) from the vector space
V(r, q), recall that the points and lines in PG(r -1, q) are the 1-
and 2-dimensional subspaces respectively of V(r, q). More gener-
ally we define a t-space in PG(r—1,q9) to be a (t+1)-
dimensional subspace of V(r, g). Thus a 0O-space is a point and a
1-space is a line. A 2-space is called a plane and an (r — 2)-space
in PG(r -1, q) is called a hyperplane. Note that the dimension t
of a tspace in PG(r—1,q) is always one less than the
corresponding vector space dimension.

We usually identify a t-space in PG(r — 1, ¢) with the set of
points it contains. The number of points in a t-space is
(@' —1)/(q — 1), since a (¢ + 1)-dimensional subspace of V(r, q)
contains ¢"*'—1 non-zero vectors, each of which has ¢iz1
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non-zero scalar multiples. A t-space is just a copy of PG(t,q) in
so far as the incidence properties of its subspaces are concerned.
In particular, a cap in PG(r — 1, ¢) must meet a (t — 1)-space in
at most max; (¢, ¢) points, bearing in mind that any subset of a
cap is also a cap.

We may now derive an upper bound on max; (4, gq), for g odd.

Theorem 14.17 1If q is odd, then max; (4, g) < q*+1.

Proof Suppose K is an n-cap in PG(3, ¢) of maximum size. Let
P, and P, be any two points of K and let L be the line on which
P, and P, lie. Since no three points of K are collinear, L contains
no other point of K.-Through the line L there pass g + 1 planes
(Exercise 14.4), and each point of K, other than P, and P,, lies
on one and only one of these planes. Since g is odd, it follows
from Theorem 14.15(ii) that no plane can contain more than
q + 1 points of K. In particular, a plane through L can contain at
most g — 1 points in addition to P, and P,. Hence

n<2+(g+1)(g-1)=¢*>+1.

We next show that (¢° + 1)-caps exist in PG(3, g), when q is
odd.

Theorem 14.18 Suppose g is odd and let b be a non-square in
GF(q). Then the set

Q={(x’ya z, W)GPG(3, q)lzw =x2_by2}
is a (g% + 1)-cap in PG(3, q).

Proof Since b is a non-square, the only point of Q having z =0
is (0,0,0,1). Each of the remaining points may be represented
by a vector having z = 1, and so we may write

0 ={(0,0,0,1), (x,y, 1,x*~by?) | (xr, ) € V(2, q)}. (14.19)

This shows that |Q| = g* + 1. We must show that no three points
of Q are collinear. Clearly (0,0,0,1) cannot be collinear with
two other points of Q because there is only one point of Q of the
form (x,y, 1, ) for any given pair (x, y). Now let a, = (1,051,
xi—by}) and a, = (x,,y,, 1,x3~ by3) be any two points of Q,
other than (0, 0,0, 1). Suppose, for a contradiction, that the line
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joining a, and a, contains a third point of Q. Then, for some
non-zero scalar A, a, + Aa, € Q, i.e. the point (x,y,z,w)=(x; +
Axs, yy + Ays, 1+ A, x3 — by} + Ax3 — Aby3) satisfies zw = x? — by?.
This condition implies, after some cancellation, that
Ax? + Ax3 — Aby? — Aby3 = 2Ax,x, — 2Aby,y,.
Since A #0, it follows that
(1= x3)*=b(n =¥l

which is impossible since b is a non-square.
Putting Theorems 14.17 and 14.18 together gives

Theorem 14.20 1f q is odd, then max; (4,q) =¢*+ 1.

Example 14.21 Take ¢ =3 and b= —1 in Theorem 14.18. By
(14.19), a 10-cap in PG(3,3) is formed by the columns of the

matrix 0000111222
40012012012
0111111111

1105 1c)=1( 2253 ) 202

Thus H is the parity-check matrix of a ternary [10, 6, 4]-code
which is of greatest length for d =4 and r = 4.

Remarks (1) The set Q of Theorem 14.18 is an example of an
elliptic quadric. For q odd, any elliptic quadric is a (g*+ 1)-cap,
and conversely (Barlotti 1955) any (g*+ 1)-cap is an elliptic
quadric. This implies that the optimal [¢*+ 1, g — 3, 4]-code is
unique, up to equivalence.

(2) For g =2", with h>1, it is also true that max; (4, q) =
g*+ 1, but the proof is a little trickier and is omitted here.

The values of B,(n, 4), for n<qg*+1

By means of Theorem 14.3, we can instantly translate our results
concerning max; (r, ¢) for r =2 and 3 into results about B,(n, 4).

Theorem 14.22 If g is odd, then

B, (n 4)={q"n3 for 4$n$q+1
q\t, q forg+2<n<gqg*+1.
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If g is even, then

B,(n 4)={q"‘3 for dsns<gq+2
e g"* forg+3sns<qg®+1.

Remarks on max;(r, q) for r=5

For r =3 and r = 4 the packing problem for caps in PG(r — 1, q)
was fairly easy to solve because of the existence of natural
geometric configurations (conics in PG(2, g) and elliptic quadrics
in PG(3,q)) which are optimal caps. But in PG(r—1,q) for
r =5, large caps do not appear to arise in such a natural way and
so the packing problem is much more difficult. As we see from
Table 14.9, the only known values of max; (r, g) for g#2 and
r=5 are max,;(5,3)=20 and max,(6,3)=56. (For a coding-
theoretic proof of the second result, wherein the uniqueness of
the optimal ternary [56, 50, 4]-code is also demonstrated, see Hill
(1978).)

It is easy to construct 20-caps in PG(4, 3) (Exercise 14.9) but

- hard to show that 20 is the largest size possible. By contrast, it is
- rather difficult to describe a 56-cap in PG(S, 3), but a short proof
- of the maximality of 56 has been given by Bruen and Hirschfeld

(1978) (cf. Exercise 14.11). In the next dimension up for g = 3,
the best known bounds are

112 < max; (7, 3) < 163,

suggesting that the problem of finding optimal caps in PG(6, 3) is
far from solution.

Concluding remarks on Chapter 14

(1) We have mentioned that the problem of determining
max, (r,q) was first considered by Bose (1947). Much of the
subsequent work has been carried out by the Italian school of
geometers led by Segre, Barlotti and Tallini.

For a survey of the known results concerning max, (r, ¢) and
similar functions, see Hirschfeld (1983). For a comprehensive
coverage of the theory of projective geometries over finite fields,
see Hirschfeld (1979 and Volume 2, to appear).

(2) For recent results concerning max, (r,q) for ¢ =3 and
s<r=15, see Games (1983).
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(3) There seems to be little pattern to results concerning
max,_, (r, q) for fixed values of d greater than 4. However, when
d takes its maximum value for given r, that is d=r+1, an
interesting pattern once again emerges. This case is the subject of
the next chapter.

(4) Another version of the MLCT problem is to find, for
given ¢, n and k, the maximum value of d for which there exists
an [n, k, d]-code over GF(q). In the case of binary linear codes,
Helgert and Stinaff (1973) give a table of such values (or bounds
when the values are not known) for k<n<127. For a com-
prehensive update of this table, incorporating many improve-
ments by various authors, see Verhoeff (1985).

Exercises 14

14.1 Is it true that B,(n,d) is always equal to the highest
power of 2 less than or equal to Ay(n, d)?

14.2 Show that (i) B,(n,1) = q", (ii) B,(n,2)=g""".

14.3 Show that B,(n, 3) = gl"~o8(na—n+D],

14.4 Show that in PG(3, q) the number of planes containing a
given line is g + 1.

14.5 Which code is the optimal [n,n—35,5]-code having
n =max, (5, 3)?

14.6 Specify a [26, 22, 4]-code over GF(5).

14.7 Pinpoint where the proofs of Theorems 14.17 and 14.18
fail when ¢ is even.

14.8 Devise a syndrome-decoding algorithm for a [¢* + 1, ¢* —
3,4)-code over GF(q) (g odd), which will correct any
single error and detect any double error.

14.9 Given the 10-cap of Example 14.21, construct a 20-cap in
PG(4,3).

14.10 Show that, in PG(m, g), the number of (¢ + 1)-spaces
containing a given ¢-space is (¢"'=1)/(g—1). In
PG (S, 3), state (i) how many planes contain a given line,
(ii) how many 3-spaces contain a given plane, (iii) how
many 4-spaces contain a given 3-space.

14.11 Given that max, (5, 3) =20, show that max; (6, 3) <56.
[Hint: Use parts (i), (ii) and (iii) of Exercise 14.10.]

14.12 State the values of By(n,4) for 4=n<112.

; 15 MDS codes

In the previous chapter we considered the problem of finding
linear codes of maximum length for given redundancy r and
given minimum distance d. Particular attention was paid to the
cases d <4. In this chapter we consider the problem when d is as
large as possible for given redundancy r. The following theorem
shows that this is the case d =r + 1.

Theorem 15.1 An [n,n —r,d]-code satisfies d <r + 1.

- Proof 1 This is just the Singleton bound applied to linear codes.

Theorem 10.17 states that any g-ary (n, M,d)-code satisfies

- M=<gq""“*. So, in particular, an [n,n - r, d]-code over GF(q)

satisfies ¢" "< ¢g"~“*' whence d<r + 1.

Proof 2 Suppose Cis an [n,n —r, d]-code and let G =[I,_, | A]
be a standard form generator matrix of C. Since A has r
columns, those codewords which are rows of G have weight
=r + 1. The result follows by Theorem 5.2.

Definition An [n,n—r,r+1)-code (i.e. a linear code of re-
dundancy r whose minimum distance is equal to r + 1) is called a
maximum distance separable code, or MDS code for short.

By Theorem 14.1, the maximum length of an [n,n —r,r + 1]-
code over GF(q) is equal to the value of max, (r, q), the largest -
size of an (n,r)-set in V(r,q). We recall that an (n, r)-set in
V(r,q) is a set of n vectors such that any r of them are linearly
independent. Equivalently, an (n,r)-set in V(r,q) is a set of n
vectors such that any r of them form a basis for V(r, q).

MDS codes were first studied explicitly by Singleton (1964),
although the problem of finding max, (r, ¢) had already been
studied as a problem in statistics (Bush 1952) and as a problem in
geometry (Segre 1955, 1961). (In the geometrical context, an
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(n,r)-set, regarded as a subset of PG(r—1,¢q), is called an
n-arc. This agrees with the usage of the term n-arc for an
(n, 3)-set in PG(2, q) already met in Chapter 14.)

MacWilliams and Sloane (1977) introduce their chapter on
MDS codes as ‘one of the most fascinating in all of coding
theory’. The problem of determining the values of max, (r, q) is
a particularly attractive one for two reasons. Firstly, the problem
is equivalent to a surprising list of combinatorial problems; no
fewer than six different interpretations are given in MacWilliams’
and Sloane’s book, while yet another is given in Fenton and
Véamos (1982). Secondly, although a complete solution to the
problem seems inaccessible at present, the known results suggest
a tantalizingly simply stated conjecture:

Conjecture 15.2 If 2<r<gq, then
max, (r,q)=q+1
(except that max; (3,g) =max,_; (g —1,9)=q +2if g =2").

Note that the conjecture has already been proved for r=2
(Theorem 14.4) and for r =3 (Theorem 14.16). Before consider-
ing the conjecture further let us dispose of the rather uninterest-
ing cases outside the range to which it applies. For redundancies
0 and 1, MDS codes exist of any length n over any field GF(q)
(for r=0,V(n,q) is an [n, n, 1]-code, while for r = 1, the matrix

]

generates an [n,n — 1, 2]-code). Cases r > g are covered by the
following theorem.

Theorem 15.3 1f r = q, then max, (r,q) =r + 1. Any MDS code
of redundancy r = ¢ is equivalent to a repetition code of length
reb ks

Proof The repetition code of length r +1is an [r+1,1,7 +1)-
code with generator matrix [11- - - 1]. Hence

max, (r,q)=r+1.
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Also, it is clear that any [r +1, 1, 7 + 1]-code is equivalent to a
repetition code.

Now suppose r=¢g and suppose for a contradiction that
max, (r,q)=r + 2. Then there exists an [r +2,2,r + 1]-code C
over GF(q). This code C must be equivalent to a code having

generator matrix
s g i o AR |
G=| |
0Olaya,- - a,

In order that any linear combination of the rows of G has weight
at least r+1, the as must be distinct non-zero elements of
GF(q). This implies that r <g — 1, contrary to hypothesis.

Remark 1t follows from Theorem 15.3 and the preceding
remarks that the only binary MDS codes are V(n,2), the even
weight codes E,, and repetition codes. So this chapter is really of
interest only for codes over GF(g) with g > 2.

From now on we assume that r lies in the range 2 <r=<g and

~ return to our consideration of Conjecture 15.2. Our first task will

be to show that there exist MDS codes which meet the
conjectured values of max, (7, ¢) in all cases.

Theorem 15.4 Suppose 2<r=<gq. Let a,,a,,...,a,_, be the
non-zero elements of GF(q). Then the matrix

e G TG N

a, a, ---aq_,OO

=] % 47ra,00
00

(@17 @3 " o Byt 01

is the parity-check matrix of an MDS [g+1,g+1—r,r+1}-
code. Equivalently, the columns of H form a (g + 1)-arc in
PG(r—1,q).

Proof This is exactly the same as the proof of Theorem
14.13(i), for the determinant of a matrix formed by any r
columns of H is equal to the determinant of a Vandermonde



194 A first course in coding theory

matrix and so is non-zero. Thus any r columns of H are linearly
independent.

Corollary 15.5 1f 2<r=gq, then max, (r,q)=q + 1.

As we saw in Theorem 14.13(ii), in the case where g is even
and r = 3, we may add the further column

i

to the matrix H of Theorem 15.4 to get an MDS code of length
q + 2. Such a trick will not work for » > 3. However, we see from
Conjecture 15.2 that the case ¢ even and r = ¢ — 1 also seems to
be special. Indeed there exists an MDS code of length ¢ +2 in
this case too. This fact will follow from the very useful result that
the dual code of an MDS code is also MDS, thus implying that
the roles of dimension and redundancy are interchangeable in so
far as the existence of MDS codes is concerned. In order to show
this duality, we first reformulate our problem in terms of
matrices having every square submatrix non-singular.

Definitions A square matrix is called non-singular if its columns
are linearly independent, or equivalently, if it has a non-zero
determinant (cf. Theorem 11.2).

Given any matrix A, a ¢ X t square submatrix of A is a t X ¢
matrix consisting of the entries of A lying in some ¢ rows and
some ¢ columns of A.

For example, if
ay Gy ay3 Ay,
A= lay ay ay ay |,
a3 A3 Q33 A3y
then

ay a a, a
[ 2 za] aiid [ 11 14]
a3 a3 a3 Q34
are examples of 2 X 2 square submatrices of A.

Theorem 15.6 Suppose C is an [n, n — r}-code with parity-check
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matrix H = [A” | 1]. Then C is an MDS code (i.e. d(C)=r+1)
if and only if every square submatrix of A4 is non-singular.

Proof By Theorem 8.4, C is an MDS code if and only if any r
columns of H are linearly independent, i.e. if and only if any
r X r submatrix of H is non-singular. Let us interpret this last
condition on H as a condition on A”. Suppose B is an r X r
submatrix of H obtained by choosing some r columns of H.
Suppose ¢ of the chosen columns are from A7 and » — ¢ of them
from /. If we expand det B about the last r — ¢ columns, we end
up with
. detB = tdetB’,

where B’ is the ¢ Xt matrix obtained by taking the r X ¢ matrix
consisting of the t chosen columns of A” and then deleting the

r —t rows corresponding to where the chosen columns of I, have
1s. To illustrate this point suppose

a;;, G, a3, 1000
ap a,» a3, 0100
A3 @3 433 0010 |
Q4 Gy a3, 000 1

H=

If B is the 4 X 4 submatrix of H consisting of columns 1, 3, 5 and
6, then

ay a4 00
det B = det | *1 92 10 = det [a,, a3']=det8’.
a3 a3 0 1 Ay A3y

Returning to the general case, it follows that B is non-singular
if and only if the corresponding square submatrix B’ is non-
singular. It is clear that any t X t square submatrix B’ of A7 (for
any t with 1 <¢<r) arises from some r X r submatrix B of H in*
this way, and so the result follows.

Corollary 15.7 The dual code of an MDS code is also MDS.
Proof The code C with parity-check matrix [A” | 1,] is MDS

<> AT has the property that every square submatrix is non-
singular
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& A has the same property (since the determinant of any square
matrix is equal to the determinant of its transpose)
& the code C* with parity-check matrix [I,_, | —A] is MDS.

It follows from Corollary 15.7 that generator matrices and
parity-check matrices of MDS [n, k]-codes serve also as parity-
check matrices and generator matrices respectively of MDS
[n, n — k]-codes.

Corollary 15.8 There exists an MDS [n, k]-code over GF(q) if
and only if there exists an MDS [n, n — k]-code over GF(q).

Corollary 15.9 Suppose q=2", h>1. Then there exists a
g +2, 3, g]-code over GF(q). Equivalently, there exists a (g +
2)-arc in PG(q -2, q).

Proof By Theorem 14.13(ii), there exists a [g+2,¢4—1,4]-
code over GF(q). By Corollary 15.7, its dual code is a
[q +2,3, g]-code.

Combining the results of Corollaries 14.14, 15.5 and 15.9, we
have

Theorem 15.10 If 2<r=<gq, then max, (r,q)=q+1. If also
g=2"and r=3or q — 1, then max, (r,q)=q + 2.

The known results concerning Conjecture 15.2

Theorem 15.10 shows that the conjectured values of max, (r, q)
are all lower bounds. The conjecture was shown to be true for
r=2and r =3 in Theorems 14.4 and 14.16. We mention without
proof that, by geometric methods, the conjecture has also been
proved for r =4 and r = 5, for all g (Segre 1955 and Casse 1969).
Using the duality result of Corollary 15.8, the truth of the
conjecture for r=35 implies its truth also for r in the range
q —3=<r=gq (see Exercises 15.2 and 15.3). [This last result was
first proved in a different way by Thas (1968), who also showed
(1968, 1969) that the conjecture is true for g odd in the ranges
q>@r—9%and g -3>r>q-4Vq—5/4].

Following MacWilliams and Sloane (1977), we show the results
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graphically in Fig. 15.11, which neatly illustrates the symmetry

- between dimension k and redundancy r.

The broken line n =k +r=¢q +1 in Fig. 15.11 is the conjec-

~ tured bound above which no MDS code is known to exist. The

heavy line represents an upper bound given by repeated applica-
tion of the recursive bound

max, (r+1,q)$maxr(r’q)+l

~ (see Exercise 15.5), starting at maxs(5,q)=¢+1 (thus

maxs (6,9)<q+2, max,(7,q)<qg+3,...,max,(r,q)<q+

- r—4 for r=6). The region marked with a question mark is

therefore the ‘grey’ area where the existence of MDS codes is

~ undecided.

Finally we mention that the conjecture has been verified by
exhaustive search for g <11, for all r (Maneri and Silverman

- NS = -

Fig. 15.11. Values of k, r for which a [k +r, k]-MDS code exists. @
means MDS code exists for all g. O means MDS code exists if and only
it g =2"!
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1966 and Jurick 1968) and so the smallest undecided case is
max, (6, 13) = 14 or 15.

Concluding remarks on Chapter 15

(1) The Reed-Solomon codes described in Chapter 11 are
MDS codes; they are shortened versions of the codes defined in
Theorem 15.4. Since MDS codes meet the Singleton bound,
Theorem 15.4 enables Theorem 11.4 to be improved to

Theorem 15.12 1f g is a prime power and if d <n <g + 1, then
A (n,d)=B,(n,d)=qg" ",

(2) One remarkable property of an MDS [n, k]-code C over
GF(q) is that its weight enumerator is completely determined by
the values of n, k and ¢ and does not depend on the code C
itself. This fact is a little less surprising when one considers the
MacWilliams identity. Let

We(z)=1+ 2 Az
i=n—k+1

be the weight enumerator of C. Since C* is also MDS and hence
has minimum distance k + 1, the coefficients of z, 22, ..., z* on
the right-hand side of the MacWilliams identity (Theorem 13.6)
must all be equal to zero, giving k equations in the k unknowns
A, k15, A, (we also have the equation 1+ Y7, _,. A, =
g*). It turns out that these equations have a unique solution.
Exercise 15.6 gives an illustration of this. In fact it is possible to
derive the formulae

n e SN
a=(a-n5 (7o asw
je
for the A;s in terms of n, d and ¢, though this derivation is a little
complicated (see e.g. Chapter 11 of MacWilliams and Sloane,
1977) and is not included here.

(3) Theorem 15.6 enables the MDS codes existence problem
to be posed in elementary terms, independently of any terminol-
ogy from coding theory or geometry. In view of Theorem 15.10,
Conjecture 15.2 may be simply stated as follows.
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Conjecture 15.14 Any r x k matrix over GF(q) with 2<r,
k=<gq and having the property that any square sub-matrix is
non-singular satisfies

r+k<sqg+1

(except for case ¢ =2" and r or k = 3).

From an earlier remark, the smallest possible counter-example
isa 6x9 or 7 x 8 matrix over GF(13).

Exercises 15

15.1 Consider the matrix

16251
A=114336
1:5+8:1

over GF(7). Check that every square submatrix of A is
non-singular. Hence write down generator matrices for
[8, 3] and [8, 5] MDS codes over GF(7).

15.2 Show that if max, (r, ) =¢ +1, then max,,,_, (¢ +2—
r,q)=q+1

15.3 Suppose g=2" h>1. Assuming known results about
max, (r, q) for r <4, show that max,_, (g —1,q) =g +2.

15.4 Given that GF(8)={0,a,=1,a,,as,...,a,}, write
down a parity-check matrix for an [n, n — 7, 8]-code over
GF(8) with n = max, (7, 8).

15.5 Prove that max,., (r + 1, g) < max, (r, ¢) + 1.

15.6 Use Theorem 13.6 to find (a) the weight enumerator of
an [8, 3, 6]-code over GF(7) and (b) the weight enumera-
tor of an [8, 5, 4]-code over GF(7). Check your answers
by using the formulae (15.13). ’

15.7 For each integer k =2, specify an [n, k, n — k + 1]-code
over GF(11) having n as large as possible.



Concluding remarks, related topics,
: 16 and further reading

The main aims of this final chapter are to review the progress
- made in the earlier chapters and to mention some related topics,
- with suggestions for further reading
The treatment presented in the book has been motivated
~ mainly by two recurring themes:

(1) the problem of finding codes which are optimal in some
sense;
(2) the problem of decoding such codes efficiently.

This has led to a rich interplay with several well-established
- branches of mathematics, notably algebra, combinatorics, and
geometry.
~ With regard to optimal codes, the main emphasis has been on
finding values of A,(n, d), the largest size M of an (n, M, d)-
- code over an alphabet of g letters. In the case of binary codes,
~ we gave in Table 2.4 the state of knowledge regarding values of
Ay(n,d) for small n and d. We now consider this table again
(Table 16.1), for d <S5, in order to indicate those places in the
- text where results have been proved.

Remarks 16.2 (1) All of the bounds in Table 16.1 have been
- proved in the text or exercises with the exceptions of (i) the
upper bounds obtained by linear programming methods and (ii)
the lower bounds for d=3 and n=9, 10, and 11. A rathér
- complicated construction of an (11, 144, 3)-code was given by .
Golay (1954). Successive shortenings of this code give codes with
parameters (10, 72, 3), (9, 38, 3) and (8, 20, 3). For a long time it
was believed that the (9, 38, 3)-code was optimal, but recently
Best (1980) found a (9, 40, 3)-code (despite a publication of 1959
which claimed that 39 was an upper bound on A,(9, 3)!).

(2) Itis conjectured that the Plotkin bound is always attained
in the range d<n=<2d+1. Indeed it has been shown by
Levenshtein (1964) that there exist codes which meet the Plotkin
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Table 16.1

Values of A,(n,d)

n d=3 d=5

3| R 2 P —_

4 '|URT 2 P —

S JSH 4 P R 2 P

6 | SH 8 P R* 2 P

Teesk ML 16 S R'™ 2 P

811G 20 Ly E, 4 P

9 kB 40 E, SD 6 P
10 | G 72-79 L, SD 12 P
11 G 144-158 E; D 24 P
12: |0SH 256 Ly SNR 32 L,
13- | SH 512 E, SNR 64 E;
14 | SH 1024 E, SNR 128 E,
15 H 2048 S NR 256 E,
16 | E 2560-3276 L, NR™ 256-340 L,

Key to Table 16.1

Lower Bounds

If C is a given code, then:

C*  denotes the code obtained from C by adding an extra zero
coordinate,

SC  denotes a code obtained by shortening C, possibly more

than once, i.e. use E; (below) in the form A,(n —1,d) =

iAZ("a d)

repetition code (Example 1.11).

Hamming code (Theorem 8.2).

Best (1980).

Golay (1954); for alternative constructions see

MacWilliams and Sloane (1977, Chapter 2, §7). A

(20, 8, 3)-code is also constructed in Exercise 2.16.

E;:  a(u|u+ v)-construction (see Exercise 2.18).

E,: see Exercise 2.8.

D:  constructed from a Hadamard design (Exercise 2.12).

NR: Nordstrom-Robinson code (Exercise 9.9).

O in

Upper Bounds
P:  Plotkin bound (Exercise 2.22).
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Key to Table 16.1 (Contd.)

' S:  sphere-packing bound (Theorem 2.16).
- L: linear programming bound (L;: see Best et al. (1978) or

MacWilliams and Sloane (1977); L,: see Best (1980)).

E;: A,(n,d)<2A,(n —1,d) (Exercise 2.2).

bound provided certain Hadamard matrices of order m < n exist,

~ for m =0(mod 4). [A Hadamard matrix of order m is an m X m

matrix of +1s and —1s such that HH” = ml (over the field of real

- numbers). It is easy to associate a Hadamard design with a
- Hadamard matrix and we have already seen how such designs
- give rise to optimal codes (see Exercises 2.15 and 2.24)]. An

introduction to Hadamard configurations may be found in
Anderson (1974). A proof of Levenshtein’s theorem may be
found in Chapter 2 of MacWilliams and Sloane (1977). It is also a

- well-known conjecture that Hadamard matrices of order m exist

for all positive integers m =0 (mod 4). This conjecture is known
to be true for m <264 and so the Plotkin bound is indeed tight
for n <264 (in the range 2d + 1=n).

(3) Values of A,(n, d) found in the text but outside the range

- of Table 16.1 include:

A,(23,7) =4096 (Theorem 11.3 or 12.20)
Ay(n,3)=2""", whenever n =2" — 1 (Corollary 8.7).

As well as considering optimal binary codes, much attention
has also been given in this text to optimal g-ary codes for general
q. For example: in Chapter 8 we showed that, for a prime power
q,A,(n,3)=q""" for any n of the form (¢"—1)/(g —1); in
Chapter 9 we showed that A;(11, 5) = 3% in Chapter 10 we found
the values of A,(4,3) for general g; and in Chapter 15 we
showed that A,(n,d)=q""“*" if g is a prime power and
dsn<gqg+1.

Finally, the problem of finding optimal linear codes over
GF(q) was considered in Chapters 14 and 15.

A topic not covered in this text is that of asymptotic bounds,
applicable when n is large. However, much research has been
devoted to closing the gap between the best-known asymptotic
lower and upper bounds, which are currently an asymptotic
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version of the Gilbert-Varshamov lower bound (cf. Theorem
8.10) and an upper bound, obtained by linear programming
methods, due to McEliece ef al. (1977). Good accounts of this
topic may be found in MacWilliams and Sloane (1977) and van
Lint (1982).

We now give brief descriptions of some types of code not
previously discussed in this text.

Burst-error correcting codes

The codes we have considered to date are designed to correct
random errors (e.g. for a binary symmetric channel). It often
happens that we need a code for a channel which does not have
random errors but which has errors in bursts, i.e. several errors
close together. There are some linear cyclic codes which are well
adapted for burst-error correcting, two important families being
Reed—Solomon codes and Fire codes. An alternative procedure is
to scramble the order in which the digits are transmitted, the
scrambling occurring over a length of several blocks. Then at the
receiving end the order is changed back to the original sequence.
This change-back will break up any bursts of errors, leaving
errors scattered in a pseudo-random way over several blocks, so
that they fall within the capacity of random-error correcting
codes. The interleaving of codes is one way of carrying out this
procedure.

For a good account of burst-error correcting codes, see
Peterson and Weldon (1972) or Dornhoff and Hohn (1978).

Convolutional codes

Convolutional codes are powerful error-correcting codes which
were introduced by Elias in 1955. They are unlike the codes we
have already considered in that message symbols are not broken
up into blocks for encoding. Instead check digits are interleaved
within a long stream of information digits. For example, for rate
3, one might have the information input x,x,x, - - - encoded as
X1X1X2X3X3X3 . .., where each check digit x; is a function of
X1, %3, ...,% Wwhich is found by means of a feed-back shift
register. The decoding is done one digit at a time using the
previously received and corrected digits.
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Mathematicians tend to be less interested in convolutional
codes because the mathematical theory is nothing like as well

' developed as for block codes. Convolutional codes are also
| intrinsically more difficult. Despite this, such codes have been
: extensively used in practice. For example, NASA has been using
- convolutional codes in deep-space applications since 1977 (from
- 1969 to 1976, NASA’s Mariner-class spacecraft had used a
- Reed-Muller [32, 6]-block code, as mentioned in Chapter 1).

Chapters on convolutional codes are included in the books by
Blahut (1983), McEliece (1977), Peterson and Weldon (1972),

.~ and van Lint (1982).

A Cryptographic codes

- Cryptographic codes have little in common with error-correcting
.~ codes, for their aim is the concealment of information. The last

decade has seen an explosion of interest in such codes following
the invention of the concept of the public-key cipher system by
Diffie and Hellman (1976). Such a system makes use of a

. one-way trapdoor function. This is an encrypting function which
has an inverse decrypting function; but if only the encrypting
- function is known, it is computationally infeasible to discover the

decrypting function. This means that a person R can publish his

- encrypting algorithm (e.g. in a directory) so that any member of

the public can send messages to R in complete secrecy, for only

" R knows his own decrypting algorithm. Such a public-key
System thus overcomes the weakness of a traditional cipher
~ system which requires the secret delivery of a ‘key’ in advance of
- sending a secret message.

Rivest er al. (1978) found an elegant way to implement the

:' Diffie-Hellman system by using prime numbers and a simple

consequence of Fermat’s theorem (Exercise 16.1). Their method °

~ relies on the facts that

(a) there are computer algorithms for testing primality which

~ are extremely fast (e.g. a few seconds for a 100-digit number),

while
(b) all known algorithms for factorizing composite numbers

 are extremely slow (e.g. if n is a 200-digit number obtained by
- multiplying two 100-digit prime numbers, the fastest of today’s
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computers, using the best-known algorithm, would take millions
of years to find the prime factors of n).

THE RIVEST-SHAMIR-ADLEMAN (R-S-A)
CRYPTOSYSTEM

Let us assume that all messages are encoded as large decimal
numbers (e.g. viaA =01, B=02, ..., Z =26). The purpose here
is not to encrypt the message but merely to get it in the numeric
form necessary for encryption.

A subscriber R chooses two large prime numbers p and g, each
about 100 digits long, and calculates n = pq. He then finds two
numbers s and ¢ such that

st=1(mod (p - 1)(q — 1)),

i.e.st=r(p —1)(g —1) + 1, for some integer .

R publishes the numbers n and s but keeps the numbers p, g,
and ¢ secret. He also publishes the encryption algorithm, which is
simply:

‘encipher a message number x as y = x* (mod n)’.

To decipher the received message y, R simply calculates
y*(mod n). This gives the original message x because, using
Exercise 16.1, we have

y'=x" =x"?P-D@-D+1 = x (mod n).

Remarks (i) A long message number must be broken into
blocks, so that each block represents a number smaller than n.
The blocks are then enciphered separately.

(i) Even if n is an enormous number, say 200 digits, a
message can be enciphered or deciphered very efficiently, using
less than one second of computing time.

(iii) A subscriber R can construct (privately) his key numbers
P, g, n, s and t very quickly with a computer. It takes a few
seconds to generate a pair of random prime numbers p and g,
each having about 100 digits. Then, for a random choice of s, the
Euclidean algorithm provides a very fast method of calculating ¢
such that st =1 (mod (p — 1)(¢ — 1)).

(iv) The deciphering procedure is secret because ¢ is known
only to R. To find ¢ from n and s requires knowledge of p and q.
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This in turn requires factorizing n, which we have already
remarked to be computationally infeasible (by known methods).

An illustration of an R-S—A cryptosystem in which p and ¢
are small prime numbers, so that the code may easily be broken,
is given in Exercise 16.2.

Interesting expository articles on cryptographic codes are
Gardner (1977) and Sloane (1981). For a comprehensive treat-
ment of cipher systems in general, Beker and Piper (1982) is
recommended.

Variable-length source codes

In order to illustrate the ideas here, let us consider the problem
of transmitting English text over a binary symmetric channel as
quickly and as reliably as possible. This can be carried out by
applying two codes in series. First a source code encodes the text
into a long string of binary digits. For reliability, this binary data
is then broken into blocks of length k and each block encoded
into a codeword of length n by means of an error-correcting
[n, k]-code. Decoding of the two codes is, of course, done in
reverse order.

In choosing the source code we are not concerned with the
error-correcting aspects. Our main aim is to encode the source
alphabet as economically as possible. If letters in the source
alphabet occur with differing frequencies, we can best do this by
using a variable-length source code.

We now give three examples of source codes for our alphabet
of 27 letters (‘A’ to ‘Z’ and ‘space’).

ASCII CODE (AMERICAN STANDARD CODE FOR
INFORMATION INTERCHANGE)

Computers are usually constructed internally to handle only 0s
and 1s. A source code is therefore required to translate each
typed character into a binary vector. A common such code is the
ASCII code. This has 128 = 27 codewords representing letters of
the alphabet (upper and lower case), digits 0 to 9, and assorted
other symbols and instructions. Each codeword is a binary vector
of length 7 together with an overall parity check (so that any
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ASCII Morse Huffman
Character Probability code code code
space 0.1859 01000001 space 000
A 0.064 2 10000010 01 0100
B 0.0127 10000100 1000 0111111
C 0.0218 10000111 1010 11111
D 0.0317 10001000 100 01011
E 0.103 1 10001011 0 101
F 0.0208 10001101 0010 001100
G 0.0152 10001110 110 011101
H 0.046 7 10010000 0000 1110
I 0.057 5 10010011 00 1000
J 0.000 8 10010101 0111 0111001110
K 0.0049 10010110 101 01110010
L 0.0321 10011001 0100 01010
M 0.0198 10011010 11 001101
N 0.057 4 10011100 10 1001
(0] 0.063 2 10011111 111 0110
P 0.0152 10100000 0110 011110
Q 0.000 8 10100011 1101 0111001101
R 0.048 4 10100101 010 1101
S 0.0514 10100110 000 1100
0y 0.0796 10101001 1 0010
U 0.0228 10101010 001 11110
Y 0.008 3 10101100 0001 0111000
w 0.0175 10101111 011 001110
X 0.0013 10110001 1001 0111001100
Y 0.016 4 10110010 1011 001111
Z 0.000 5 10110100 1100 0111001111

Fig. 16.3. Codes for the English alphabet.

single error may be detected). In other words, the ASCII code
is the binary even-weight code of length 8. Those codewords
representing upper case letters are shown in Fig. 16.3.

For other applications, a fixed-length code such as the ASCII
code may be uneconomical.

MORSE CODE

This is a variable-length code which takes advantage of the high
frequency of occurrence of some letters, such as ‘E’, by making
their codewords short, while very infrequent letters, such as ‘Q’,
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are represented by longer codewords. The Morse code is given in
Fig. 16.3, where the Os may be read as dots and the 1s as dashes.
Although the Morse code may appear to be a binary code, it is in
fact a ternary code, having the symbols dot, dash, and space. A
space has to be left between letters (and at least two spaces
between words), for otherwise the code cannot be uniquely
decoded; for example, the message 01000110 can mean either
LEG or RUN unless spaces are inserted between letters. This
drawback means that the Morse code is rarely used nowadays.

HUFFMAN CODES

Suppose a source alphabet has N letters a,, a-, . . ., ay and that
the probability of occurrence of a; is p;,. Then if each a; is
encoded into a word of length /;, the average word-length of the
code is LN pi;.

Huffman coding is an ingenious way of matching codewords to
source symbols so that

(a) the code is uniquely decodable, i.e. when any string of
source symbols has been encoded into a string of binary
digits, it is always clear where one codeword ends and the
next one begins, and

(b) the average word-length is as small as possible.

While omitting the details of how Huffman codes may be
constructed, we give an example of such a code for the English
alphabet in Fig. 16.3. From the given probabilities, it may be
calculated that the average word length is 4.1195. This gives a
saving of nearly 18% on the best fixed-length code we could have
used, in which all codewords have length 5 (any fixed-length code
is clearly uniquely decodable). The reason why a Huffman code
is uniquely decodable is that no codeword is a prefix of any other
codeword, i.e. if xx,---x, is any codeword, then there is no
codeword of the form x,x, - - x,x,,, - -x,, for any m >n.

For a good account of Huffman source coding, the reader is
referred to McEliece (1977), Jones (1979), or Hamming (1980).

Exercises 16

16.1 Suppose p and g are distinct prime numbers. Prove that
for any integers x and r,

x’(P_l)(q"l)"”l =yx (modpq)
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[Hint: Use Fermat’s theorem: ‘if x#0 (modp), then
x?~'=1(mod p)’ (cf. Exercise 3.8).]

16.2 Suppose a person’s published encryption algorithm reads:
‘Convert your message to a large decimal number via the
code A=01, B=02,...,Z =26, space =00. Break this
number into blocks of length 4. Encipher each block x
into the 4-digit block y = x*** (mod 2813)".

Find the decryption algorithm for the above code and
hence (with the aid of a pocket calculator) decipher the
following intercepted message:

2385 0593 0736 0209 1671 2595 2026 2418.

16.3 In the R-S-A cryptosystem, explain how messages can
be ‘signed’ to prevent forgeries.

16.4 Consider a source alphabet a,, a,, a;, a, with probabil-
ities of occurrence 4, i, §, § respectively. Which of the
following source codes are (a) uniquely decodable, (b)

prefix-free?
Source Code Code Code Code
letter pi A B G D
a, 0.5 0 00 0 0
a, 0.25 1 01 10 01
a, 0.125 00 10 110 011
a, 0.125 11 11 111 0111

For those codes which are uniquely decodable, calculate
the average word-length.
16.5 Use the Huffman code of Fig. 16.3 to decode the message

00101110101000101100101011.

Solutions to exercises

Chapter 1

1.1

1.2

[Remark: Pictures have actually been transmitted from
Earth into outer space in this way. Two large prime
numbers were used so that a much more detailed picture
could be sent. It is reasonable to expect that a civilized
recipient of such a message would be able to work out how
to reconstruct the picture since factorization of a number
into prime factors is a property independent of language
or notation.]

If either 00000 or 11111 is sent, then the received vector |
will be decoded as the codeword sent if and only if two or
fewer errors occur. So the probability that the received
vector is corrected to the codeword sent is

+ (Z)(l -p)’p?

=1-10p® + 15p* - 6p3,

(1-py+51-p)p

whence the word error probability is 10p® — 15p* + 6p°.
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1.3

1.4
1.5
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Suppose d(C)=4. If a received vector y has distance <1
from some codeword, we decode as that codeword. If y
has distance at least 2 from every codeword, we seek
re-transmission. This scheme guarantees the simultaneous
correction of single errors and detection of double errors.
Note that C could also be used either as a single-error-
correcting code or as a triple-error-detecting code, but not
both simultaneously (why not?).
(16 -1)/2] =7.
Suppose C is a g-ary (3, M, 2)-code. Then the M ordered
pairs obtained by deleting the third coordinate of each
codeword must be distinct (if two such pairs were identi-
cal, then the corresponding codewords of C would differ
only in the third position, contradicting d(C)=2). So
M=<gq>
A 3-ary (3,9, 2)-code is

00 Oumpistder 2 0 2

011 TT@% 210

022 1295 221
More generally it is easily shown that {(a,b,a+

b)|(a,b) € (F,)*}, where F,={0,1,...,g—1} anda+b
is calculated modulo ¢, is a g-ary (3, g%, 2)-code.

Chapter 2

2.1

2.2

(i) {000000, 111111}. (ii) (F)>. (iii) Add overall parity-
check to (E)®. (iv) Not possible. Suppose C were a
(5,3,4)-code. There is no loss in assuming 00000 is a
codeword. But then the other two codewords each have at
least four 1s, which implies that they differ in at most 2
places. (v) Not possible. A binary (8, M, 3)-code satisfies
the sphere-packing bound, M(1+ 8) =25, which implies
that M <28.

Suppose C is a binary (n, M, d)-code. Partition the code-
words of C into two disjoint sets, those ending with a 0
and those ending with a 1. One or other of these sets
contains at least M/2 of the codewords. Take this set and
delete the last coordinate to get an (n — 1, =M/2, d)-code
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2.3
2.4

2.5
2.6

2.7

2.8

29

2.10

(this is called a shortened code of C). Taking M = A,(n, d)
gives Ay(n — 1,d)=3A,(n, d).

Immediate from Exercise 1.5.

Let C be the code obtained from (E)"~' by adding an
overall parity check. Every codeword of C has even weight
and so C € E,. Since every vector of E, may be obtained
from one in (F)"! in this way, we have C =E,. Thus
|E,| = |(B)*~'|=2""". (E)"! has minimum distance 1,
and so E, has minimum distance 2.

(9/ (9>

Let C be a binary (n, M, d)-code with d even. Delete a
suitable coordinate from all codewords to get an (n—
1, M, d — 1)-code and then add an overall parity check (cf.
proof of Theorem 2.7).

Any such code is equivalent to {00---0,11---100- - -0},
where the number of 1s in the second word is one of
1,2,...,n.

Suppose C is a binary (8, M, 5)-code, with M = 4. We may
assume 00000000 C. At most one codeword has
weight = 6, for two words of weight =6 could differ in at
most four places. So C has at least two codewords of
weight 5. Up to equivalence, we may assume these are
11111000 and 11000111. It is now easy to show that the
only further codeword possible is 00111111.

Let C be an (n, g, n)-code over F,={1,2,...,q} and let
A be a matrix whose rows are the codewords of C. Since
d(C)=n, the g elements of any column of A must be
distinct and so must be precisely the symbols 1,2,...,q
in some order. For each column of A a suitable permuta-
tion of the symbols may be performed to give ;

11...1
qq.'.q'

Apply either the sphere-packing bound or an argument
similar to that of Exercise 1.5 (i.e. the words formed by
deleting the last two coordinates must be distinct).
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2.12

2.13

2.14
2.15

2.16

2.17

A first course in coding theory
By Corollary 2.8 and Example 2.23, we have
A2(8, 4) o A2(7, 3) = 16.

Take as codewords the 11 rows of an incidence matrix of
the design, the 11 vectors obtained by interchanging all Os
and 1s, the all-0 vector, and the all-1 vector. The minimum
distance may be shown to be 5 by an argument similar to
that used in Example 2.23. A binary (11, M, 5)-code

satisfies 11
M[l o 1+ ( 2)] =21,

and so M <2"/67, which implies M =< 30.

(i) Following the hint: for each of the v choices of x
there are r choices of B: for each of the b choices of
B there are k choices of x. So the number of pairs in
the set is vr = bk.

(ii)) Lety be a fixed point. Count in two ways the number
of ordered pairs in the set

{(x, B): x is a point, B is a block, x # y and both
x and y € B}.

(i) Condition (ii) of the previous exercise is not satisfied.
(ii) Immediate from Theorem 2.27(i).

Easy generalization of the argument of Example 2.23,
Exercise 2.12.

Straightforward check (just 34 comparisons of codewords
are required: 11010000 with 19 others, then 11100100 with
11 others, then 10101010 with 3 others, and finally 0 with
1).

Since (u, |u; +v;) = (u; | u, + v,) if and only if (u,,v,)=
(u,, v,), the number of codewords in C; is M{M,.

Let a=(u|u+v) and b=(u’|u’+v’) be distinct code-
words of C;.

If v=v’', then d(a,b) =2d(u,u’)=>2d,.

Ifv#v', thend(a,b)=d(u,u’)+du+v,u' +v')
=wu+u)+wlu+v+u +v')
=du+u,0)+du+u’,v+v)
=d0,v+v') (by the triangle

inequality)
=d(v,v')=d,.
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2.18

2.19

2.21

222

Let C, be the (8, 128, 2)-code E; (see Exercise 2.4) and let
G, be the (8, 20, 3)-code of Exercise 2.16. Apply Exercise
2.17 to get a (16, 2560, 3)-code.
C,=(4,8,2)-code, C, = (4,2,4)-code >
G; = (8, 16, 4)-code.
C, = (8,16, 4)-code, C, = (8, 2, 8)-code >
G = (16, 32, 8)-code.
C, = (16, 32, 8)-code, C, = (16, 2, 16)-code >
G, = (32, 64, 16)-code.
Since w(x; +x;) = d(x;, x;) =d, we have

w(T)=iM(M — 1)d (1)
Suppose 3M = t; codewords have 1 in the jth position, so

that M + ¢, codewords have 0 in the jth position. Then the
number of 1s in the jth column of T is

AM — )M +1) = GM)* - ¢

<{m
aM)? -1

since 7 = (3)? if M is odd. Hence

if M is even
if M is odd,

iM?*n if M is even} @)

=
i {i(M” ~)n  ifMisodd
(1) and (2) give the required result.

If Ay(n,d) is even, the result is immediate. If A,(n,d) is
odd, use [2x] =2|x] +1.

The result gives A,(9,5)<10 and A,(10,6)<6. The
former bound can be improved via Corollary 2.8 and the
latter bound; thus A,(9, 5) = A,(10, 6) <6. :
(i) was shown in Exercise 2.21. (ii) follows from (i) and
Corollary 2.8. (iii)) By (i), Ay(2d —1,d)<2d. Hence
A,(2d, d) < 4d by Exercise 2.2. (iv) follows from (iii) and
Corollary 2.8.

The (32, 64, 16)-code is optimal by Exercise 2.22 (iii). The
generalization follows from the Remark in Exercise 2.19
and Exercise 2.22 (iii).

Immediate from Exercises 2.15 and 2.22(iii).
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Chapter 3

3.1 22=(2%%%2=1%%=4(mod 7).
310 = (3%)% = 1% =1 (mod 10).
3.2 x=0,1,20r3(mod4)=>x*=0, 1, 0 or 1 (mod 4)
respectively. Hence x* + y*=0, 1 or 2 (mod 4), but
1839 = 3 (mod 4).
e g i ey el (o T 1.2.3.74.5.°6.7'89 10 11 12
1 145375% TP roie 81253 ez
3.4 ()2, (i) &
3.5 Yes, No, No.
36 () 1:0+2:1+3:344-14+5x+6:-94+7-1+
8:3+49:94+10:9=0(mod11)=>5x +7=0>
Sx=4>>x=4-5""=4.9=3,

(ii) The number is 00232xy800, where we see that each
of x, yis 0, 8 or 9. For the number to be an ISBN, we
require 6x +7y =7,i.e. y=1+7x. Nowx =02y =
1,x=82y=2;x=92y=9.S0ox=y=9.

3.7 Suppose x, - X, is the codeword sent and y, - - - y;o the
vector received. If a single error has occurred of mag-
nitude a, then £!2,y,= (X%, x;) +a=a (mod 11). So the
error is detected. Unlike the ISBN code, any transposition
of two digits will go undetected, for then ¥y, = X x; =0.

3.8 1la,2a,...,(p—1)a are distinct (modp), for
ia =ja (mod p) =>i=j (mod p) (multiplying both sides by
a’'). So la,2a,...,(p—1)a are congruent to the ele-
ments 1,2,...,p—1 in some order. Hence
la:2a----: p-1a=1-2----(p—1)(modp) and so
(p=1!a?'=(p—1)! (modp). Multiplying through by
the inverse of (p — 1)! gives a?~' =1 (mod p).

39 a$¥0=>ged(a,p)=1. By the Euclidean algorithm, 1
=ax +py for some integers x and y. Hence
ax=1(modp)andsox=a"'.31=1-23+8;23=2-8+
7;8=1-7+1.S01=8~-1:-7=3-8-23=3-31-4-23.
Hence —4-23=1 (mod31) and s0 237! = —4=127.

3.10 2, 3, 2 (other answers possible).
3.11 Let 1 be the multiplicative identity element of F. The field
elements n1 for n =1, 2,3, ... cannot all be distinct, since

F is finite. So I1=m1 for some 0<m </, whence (I —

m)1 = 0. This implies that n1 = 0 for some integer n. Let p
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be the smallest positive integer such that p1 =0. Then p is
prime because p =rs, with 1<r,s<p, >pl=(rl)(s1) =
0 =>r1=0 or s1=0 (by Lemma 3.1 (ii)), contradicting
the minimality of p. Finally, if € F, then pa=a+
at+: - t+a=a(l+1l+---+1)=a(pl)=a0=0.

3.12 (I;) = plil (p — LT FEIE07 (52} 5 dhieh e nu-
merator p! is divisible by p, whereas the denominator
55 T 5 0o, Hence (’: ) =0 (mod p). By the binomial
theorem,

G ¥B)p =S (‘;)aibr-f = a7 + b7 (mod p)
i=0
For the last part, use induction on a.

3.13 In the product, each element x will cancel with its inverse,
except when x =x~!. Now x =x"'&x?=1(x - 1)(x +
1)=0&x=1o0rx=-1.

314 (1)) =y k=yP=x>-y*=0>

x-y=0>x=y.
So the squares of the non-zero elements are precisely
the distinct non-zero elements (in some order).

(ii) Hint: show that if a # 0, then x> = a has either 2 or 0
solutions.

Chapter 4

4.1 Show that this single condition holds if and only if both
conditions (1) and (2) of Theorem 4.1 hold.

4.2 Suppose x,yeE,, so that w(x) and w(y) are even
numbers. By Lemma 2.6, w(x+y)=w(x)+w(y)—
2w(x Ny) = an even number. So x +y € E, and hence E, is
a subspace. By Exercise 2.4, |E,| =2""" and so dim (E,) =

n-1.
The rows of 100---01
010---01
60---01 1

form a basis (other answers are possible).
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4.4
4.5
4.6

4.7
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(1,2,0,1)=2(0,1,2,1)+(1,0,2,2). So {(0,1,2,1),
(1,0,2,2)} is a basis and dim (C) = 2.

Show that {u, v} is linearly dependent if and only if either
or v is zero or v is a scalar multiple of u.

In each case show that the new set is still both a spanning
set and a linearly independent set.

In F, let n denote the element 1+ 1+ - - - + 1 (nls). Then
the subset {0,1,...,p —1} of F may be regarded as the
field GF(p), since addition and multiplication are carried
out modulo p. It follows at once that F is a vector space
over GF(p), all the axioms following immediately from
the field properties of F and GF(p). If the vector space F
over GF(p) has dimension A, then it follows, as in the
proof of Theorem 4.3, that |F| = p*.

We omit the proof of the general result here, as it will be
given in Chapter 14. The points of P, are {000, 100},
{000, 010}, {000, 001}, {000, 110}, {000, 101}, {000, 011},
and {000,111}. The lines are {000, 100,010, 110},
{000, 100, 001, 101}, etc. That this 7-point plane is the
same as that of Example 2.19 may be seen from Fig. 14.8,
wherein a vector x stands for the point {0, x}.

Chapter 5

b
5.2

0

53

54 Ifx=(x,...

Noj; 24 is not a power of 2.
[r,n~-1,2], 17.

In—l ?
1
We use Theorem 4.1.
X,YeEC(x+y)H" =xH" +yHT =0+ 0=0
>x+yeC.
xeCandaeGF(q)=> (ax)H” =a(xHT)=a0=0
>axeC.

1 X,) €C, let &= (xy,...,x,, 57, x,), where
L x; s calculated modulo 2. Then € = {&|x e C}. Suppose
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o

5.6

C is linear, so that x,ye C=>x+ye C. Then
i,ieé:}ﬁ+9=(x,+y,,...,x,,+y,,,2x,+2y,)

=(xl+yl1 ey Xy +}’m2 (xi+yi))
=(x+y)eC.

So C is linear.
Adding an overall parity check to the code of Example
5.6(ii) gives an [8, 4, 4]-code with generator matrix

10001011
01001110
00101101
0001011

Let Ev and Od denote the subsets of C consisting of words
of even and odd weights respectively. Suppose Ev# C.
Then there exists a codeword, y say, of odd weight. Now
the set Ev +y = {x+y|xe€ Ev} is contained in C (since C
is linear). But all words in Ev +y are odd (via w(x+y) =
w(x) + w(y) —2w(xNy), cf. Lemma 2.6), and so we have
Ev+yc Od. Hence |Ev|=|Ev+y|=<|0d|. Also Od+
y< Ev and so |Od| < |Ev|. Hence |Ev|=|0d| =} |C)|.

00000 d(C,) = minimum non-

L2111 B zero weight
00111 A

11001

G

0000000
1001101=x
0101011=x,
0010111=x,
G=1100110=x+x
1011010=x,+x%s
0111100=x+x,
111000 1=x,+%+Xs

d(Cy) = 4.
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57 0000 d(C) = minimum non-zero
1011=x weight = 3,
1552 Since 9[1 +2 - 4] = 3%, the sphere-
0 7 packing bound is attained and so C
202 2=2 is perfect.
0221=2,
1120=x,+x,
2210=2x,+2x,
1202=x,+2x,
2101=2%, + X,
5.8 By Table 2.4, A8, 3) =20, A,(8,4) =16, and Ay(8,5) =
4. By Exercise 5.4(ii), there exists a linear [8, 4, 4)-code
and so B,(8, 4) = 16. There certainly exists also an [8, 4, 3]-
code and so, since By(8, 3) is a power of 2 and is <20, we
have B,(8, 3) = 16. The code constructed in Exercise 2.8 is
linear and so By(8,5)=4.
1
5.9 [0 1 l] generates a [3, 2, 2]-code over GF (q).

5.10 First get the required permutation of the rows of A by
permuting the rows of G. The I, part will have been
disturbed but can be restored by a suitable permutation of
the first k columns.

51 7100001 1

0100101
0010110/
0001111

No, Yes (by Exercise 5.10).

512 (ulu+v)+ @’ lu’+v')=(u+u’In+u'+v+v’)eC,.
Thus C; is linear. So By(2d, d) = 44 by Exercises 2.19 and
2.23 since, at each step, C, and G, are linear.

Chapter 6

6.1 C;: IOO 01 10 11] G |000 101 011 110

100 001 111 010
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6.2

6.3

6.4

6.5

Gs: (00000 10110 01011 11101

10000 00110 11011 01101

01000 11110 00011 10101

00100 10010 01111 11001

00010 10100 01001 11111

00001 10111 01010 11100

11000 01110 10011 00101

10001 00111 11010 01100

(i) 11101, 01011

(ii) e.g. (a) 00000 received as 11000, (b) 00000 received
as 10100.

Poore(Cy) =(1 - p)?=0.9801

Poor(G)=(1=p)*+p(1-p)2=(1-p)*=0.9801 3

Poor(G) = (1~ p)*(1 - 2p> + 3p) ~0.9992

There is no point in using G, for error correction since

P, is the same as for C,, while G, takes 50% longer than

C, to transmit messages. C; reduces the word error rate

considerably.

Pundetee(C1) = 2p(1 = p) + p* =0.0199

Pundetec(Q) b 3p2(1 ~p) =0.000297

P yngerec(G) = 2p3(1 -p)P+ (1 = p)p*=0.00000197.

(i) No, communication is impossible.

(i) Yes, interchange all Os and 1s in the received vector
before decoding.

The coset leaders include all vectors of weight <t and @4,

vectors of weight 1+ 1. So the probability that the error

vector is not a coset leader is

[(t _: 1) - ar,+,]p'”(1 =p)"~""'+ terms involving p"+2

and higher powers. Hence

P o [(t : 1) - a',+l]p‘+‘ for small p.

Straightforward calculation, with Ay=A,=7,A,=1.
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6.6 Since the code is perfect 3-error-correcting, we have

a0=l’ d’1=23, a2=(23)’ a’3=(23),

2 3
and
=0 for i =4.
P e = (1 — p)*(1540p° + 210p* + 20p + 1) = 0.99992
if p =0.01.

So P.,=0.00008 [Remark: A fair approximation is ob-

tained by using Exercise 6.4; namely (?)10‘8.]

6.7 Suppose X =x,x, - -+ x,, is sent and that the received vector
is decoded as x’' = x{x; - - x.. Then

symb 2 Prob (xl * x/)

1
P > f(e) Prob (e is error vector),
eeV(n?2)

where f(e) =number of incorrect information symbols
after decoding if the error vector is e, and so

symb z F P

6.8 Py =3[P+ P3 + 2P}]
=3[{2(1 - p)’p*+ (1= p)p* + p*}
+{(1-p)p+(1=p)p*+2(1-p)p’}
+2{(3(1 - p)’p*+ (1 -p)p?)).

6.9 Note that P.,= Y2, P. Since F, =0 and 1<F <k for all
i=2, we have

EP\ ZFPs)_‘,P

i=2 i=2

and hence the result.
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Chapter 7

7.1

7.2

7.3

7.4

7.5

urv= Eu,v,—ZU,u,-—v ‘u.

i=1

(u+pv) - w =3, (Au; + po)w, = 3, (Auw, + pow)
i=1 i=1

=AD uw,+ U, UW =AU W+ uv-w.
i=1 i=1
The standard form generator matrix of E, was found in
Exercise S.2. It follows from this and Theorem 7.6 that a
generator matrix for E; is [11---1]. So E; ={00
++0,11-- -1}, which is the repetition code of length n.
Find the syndrome S(y) of the received vector y. If
S(y) =0, then y is a codeword. If S(y) #0, then y is not a
codeword and we have detected errors.
Suppose x is the codeword sent and y =x + e is received,
where e =¢,e, - - - ¢, is the error vector. Then S(y) = (x +
e)HT =xH" + eH" =eH". So S(y)"=He' =Y., ¢H,
where H, is the jth column of H.
Since the code is perfect, the coset leaders are precisely
those vectors of weight < 1. G is in the form [, | A] and so

1110100
H=[-AT| )= 1101010
1011001 |

We use this to construct the syndrome look-up table:

Syndrome coset leader
000 0000000
111 1000000
110 0100000
101 0010000
011 0001000
100 0000100
010 0000010
001 0000001
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7.6

o e
7.8

19

7.10
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S$(0000011) = 011; decode as
0000011 — 0001000 = 0001011.

The other three vectors are decoded as 1111111, 0100110,
0010101.

@ fom] ~ ® [oo]

(c) A listing of the codewords reveals that d(C) =3. So
the 9 vectors of weight <1 are all coset leaders. Since
the total number of coset leaders=3%/32=9, the
vectors of weight <1 are precisely the coset leaders
(in fact the code is perfect). The look-up table is now
easily constructed, and the given vectors decoded as

0121, 1201, 2220.

0612960587.

Let C be a g-ary (10, M, 3)-code. Consider the M vectors

of length 8 obtained by deleting the last two coordinates.

These vectors must be distinct (or the corresponding

vectors of C would be distance <2 apart). So M < g® (this

is a particular case of the Singleton bound, Theorem

10.17). In particular, A,,(10,3)<10%, A,,(10,3)< 115

[Remark: The sphere-packing bound is not as good in

these cases.] We have A,,(10, 3) = 11® because the linear

[10, 8]-code over GF(11) having

111-,-1
i [123 e 10]

is an 11-ary (10, 118, 3)-code.

For example, 0 and 0505000000 are codewords only
distance 2 apart. 3
Let =0---01---1 (jls). We require a code such that
€y, e,,...,e; are all in different cosets (we could then
decode via syndrome decoding with the es as coset
leaders). This requires that 27/2* =8, i.e. k <4, and so the
rate cannot be greater than 4. To achieve rate § we would
need a 3 X 7 parity-check matrix H such that e H” # eH”

ifi#j,i.e. such that (e; —e,))H” #0 for all i ;é }. Note that
each e, —e; is a vector of the form0---01---10---0. A

Solutions to exercises 225

7.11

suitable H is

0001000
0100010 |
1010101

If e; — e; is orthogonal to the first row of H, then all its 1s
are to the left or to the right of centre. If also e, —e; is
orthogonal to the second row of H, then there can only be
one 1, in one of the 1st, 3rd, S5th or 7th positions. But then
e; —e; is not orthogonal to the third row of H. (Note: a
similar code of maximum possible rate may be constructed
of any given length.)

If C is an [n, k]-code, then C is an [n + 1, k]-code and so a
parity-check matrix of Cisan (n+1-k)x(n+ 1) matrix
whose rows form a linearly independent set of codewords
in C*. It is easily seen that H is such a matrix.

Chapter 8

8.1

8.2
8.3

8.4

000000011111111
000111100001111
011001100110011 |
101010101010101

When y is received, calculate yH”; this gives the binary
representation of the assumed error position. If two or
more errors have occurred, then y will be decoded as a
codeword different from that sent.

11100001, 01111000, at least two errors, 00110011.

From the standard form generator matrix (see Example
5.6(ii)), write down a parity-check matrix (via Theorem
7.6) and observe that its columns are the non-zero vectors
of V(3,2).

For C, ap=1 and a,=n, giving P (C)=(1-p)" '(1—
p +np). Because every vector in V(n,2) has distance <1
from a codeword of C, it follows that every vector in
V(n+1,2) has distance<2 from a codeword of e
Consequently, the coset leaders for C all have weight <2

H=
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8.5

8.6
8.7

8.8

8.9
8.10
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and so a=1, a;=n+1, a,=n, which leads to

P..(C)=(1—p)""(1—p+np). [Remark: This result

will be generalized to any perfect binary code in Exercise

9.1.]

oIl 11 1 1AV

(1) [1 012345 6]’ 35234106, 10561360.

i) [000O0OOO111111111
[011111000001111
101234012340123

YTy rer e ri 1.
122722,233 33344444
4012340123401234

4.3 Y 0] A s VA A R
[320’01' 100210
03200 A51: 18 1
[For the code C,, a column operation (e.g. interchange of
columns 3 and 4) is necessary during the reduction of G to
a standard form of G'. So, after applying Theorem 7.6 to
get a parity check matrix H' corresponding to G’, the
above column operation must be reversed in H' in order
to get a parity-check matrix for the original code C,.]
d(C)) =2, d(C,)=3.
(other answers possible)

100111
H=(010123
001134

has the property that any three columns form a linearly
independent subset of V(3,5), and so H is the parity-
check matrix of a [6, 3, 4]-code.
R,=E=(2’— 1 —r)/(2’—1)=1——£——> lasr— .

n 7a g
As in solution to Exercise 7.8, A,(n,3)<g""?. Now
suppose ¢ is a prime power. Then the bound is achieved
for n=¢q +1 by Ham (2, ¢) and for n <q +1 by shorten-
ings of Ham (2, q).

For example,

.-
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8.11 f(¢) =least value of M for which there exists a ternary

8.12

code of length ¢ with M codewords such that any vector in
V(t,3) has distance <1 from at least one codeword. For
such a code the spheres of radius 1 about codewords must
‘cover’ the whole space V(t, 3) and so a lower bound on M

Hgroie M(1+20)>3 )

(This is the sphere-packing bound, but with the inequality

reversed.)

(@) (i) If t=(3—1)/2 then (1) gives f(r)=3""". The
bound is achieved by a perfect [r,7—r,3]-
Hamming code over GF(3). So, for t=(3"—1)/
2, we have f(t) =3"".

(ii) Generating Ham (2, 3) by [(1)(1)};] and replacing
‘0’ by ‘X’, we get the entry
X 1T'X(2-X)8{2)1
XX 11 X520302 02
Xt 111520272 115X
K20 2 T KRS,

(b) The lower bound f(5) =23 is given by (1). A crude
upper bound is f(5)<27. This is obtained by com-
bining each of the 9 bets for ¢ =4 with each of the
forecasts 1, 2, X for the 5th match. The surprising
result proved by Kamps and van Lint is that one
cannot do better than this.

Let C be an (n, M, d)-code with M = A (n, d). Then there

is no vector in V(n,q) with distance =d from all code-

words in C. Thus the spheres of radius d —1 about
codewords cover V(n, q), whence the result. (The proof
shows that a code meeting the lower bound may be
constructed simply by starting with any word and then
successively adding new words which have distance at least
d from the words already chosen).

2
1 .
X

Chapter 9
9.1 Suppose C is a perfect t-error-correcting [n, k]-code, so

that :

2 e 00

i=0 \
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As in Exercise 8.4, for €,

+
af,-=(n ; 1) forO0<i=<t,

and
@y = 2n+l—k_§:o (" :' 1)
-2.3(1)-2(1)-202)-0)
Hence

Po.(C) ='§o (n -:' l)pi(l —p)yti-igy (':)pu-l(l —py
=3 (Mt -pyer

i=0

G s (-
=(1-p)Peor(C)

+(p P ©) = ("o 101 - pY)

+ (':)p’“(l -p)
=P,.(C).

9.2 It is easily checked that w-v=0 for any rows u and v of
G. It follows that G5 = G;;. Now show that Gy, has no
codeword of weight <5 by imitating the proof of Lemma 3
in the proof of Theorem 9.3.

9.3 If H=[I|A] has no 4 columns linearly dependent, then
each column of A has at most one zero, and no two
columns of A can have a zero entry in common (or their
sum or difference would be a linear combination of two of
the columns of ). The hint now follows easily. It then
follows that in each of the undecided columns of A, two of
the *s are 2s and the other * is a 1. The remaining columns
may now be completed, one at a time, in a unique way (up
to equivalence).
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9.4

9.5

9.6

9.7
9.8

9.9

(a) Suppose y has weight 4. Since G, is perfect, there is
a unique codeword x such that d(x,y)=<3, and so
1<w(x)=<7. But every non-zero codeword has we-
ight =7 and so w(x) =7, which implies that x covers
y. The uniqueness of x as a codeword having
distance <3 from y ensures that x is the only code-
word of weight 7 which covers y. Counting in two
ways the number of pairs in the set {(x,y)|x is a
codeword of weight 7, y is a vector of weight 4, x

2
covers y} gives A, (Z) = < Z) -1, whence A, = 253.

(b) LetP,..., P;bepointsand B,, . .., B,s; be blocks,
and define P, € B if and only if the (i, j)th entry of M
is 1.

(a) Straightforward generalization of the argument of
Exercise 9.4.

(b) Let X be the set of codewords of weight 2¢+ 1
beginning with i 1s. Let Y be the set of vectors in
V(n, 2) of weight ¢ + 1 beginning with i 1s. As in the
proof of Theorem 9.7, counting in two ways the
number of pairs in the set {(x,y)|xeX,yeY, x

1 n—i 2+1-i
v 9w (0 )=(1)
whence the result.

We must show that an arbitrary vector y = y,y, " - * yy Of

weight 5 in V/(24, 2) is covered by a unique codeword of

weight 8 in G, Certainly there cannot be two such
codewords or their distance apart would be <6, a con-
tradiction. If y,, = 0, then since G, is perfect, G,; contains

a codeword x having distance at most 3 from y,y, - * * yz3.

So x has weight 7 or 8; in either case w(X)=8 and X

covers y. If y,, =1, then y, - - - yp; is covered by a unique:

codeword x of weight 7 in G,; and then X covers y.

& 3 2 =1
By a now familiar argument, A; - (2) = ( )

2
5 (11)
. = v 27
e (3) 3
(i) Assume 1111111100 --0€ G,,. Let G be a gener-

ator matrix of G,. Since d(G,;) =8 and since G, is
self-dual, it follows by Theorem 8.4 that any 7
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columns of G are linearly independent. In particular, 10.3 Using Theorem 10.19, a set of three MOLS of order 4 is
the first 7 columns are linearly independent and so
by elementary row operations, G may be trans- 0lab Oab1 g GG
formed to a matrix having its first 7 columns as _10ba ___1 bao _1a0b
shown. Since 1111111100 - - - 0 is orthogonal to every '"abo1 "a 015 *"a1bo0
row of G, the eighth column of G must also be as balo b10a b0al

shown.

(ii) Let the rows of G be I, I, ..., The set of
codewords with one of the given starts is given by
adding to 0, or to one of I, N, ..., 1y, all vectors of
the form $12, Ax,, 4, € GF(2). So for each of the 8
starts, there are 25 codewords.

(iii) Immediate, since d(G,) =8, and any two of the
chosen 256 codewords differ in at most 2 of the first
8 positions.

(iv) Immediate.

10.4 Ham (2, g)* has generator matrix
[0 y e o | Tl ]
14 4 A, Agrd’
where GF(q)={Ag, 4,,... »Aq-1}. Clearly no non-zero
linear combination of these two rows can have more than

one zero and so Ham (2, ¢)* has minimum distance q. If
we list the codewords generated by

9.10 Shorten N4 thrice (cf. Exercise 2.2) to get a (12, =32, 5)- [0 1t 1]
e 101234
9.11 (i) Let the rows of G be I, B, . .., K. To show that G, and then apply Theorem 10.20, we get
generates an [8, 5, 3]-code, it is enough to show that 01234 01234
if x is any non-zero codeword of C generated by
T2, X3, ..., ¥, then x has at least three 1s in the last 8 12340 23401
positions. If x had at most two 1s in the last 8 A1=23401 A,=40123 s
positions, then either x or X +r, would be a code- 34012 12340
word of C having weight <4, a contradiction. 40123 34012
(ii) If there existed a (15, 8, 5]-code, then it could be
twice shortened to give a [13, 6, 5]-code, contrary to 01234 01234
the result of part (j). 34012 40123
(iii) Not immediately, for in this case G, would generate A;=12340 A,=34012
a [7,4,3)-code, and a code with these parameters 40123 23401
does exist. However, further considerations do lead 23401 12340

to a contradiction; see, e.g., van Lint (1982), §4.4.

Chapter 10 10.5 n:3456789 10 11 12

: f(n): 23416782-9102-11
n: 13 14 15 1617 18 19 20
f(n): 12 2-13 2-14 15 16 2-17 18 3*-19
* Take three MOLS of order 4 and three MOLS of

order 5 and generalize the construction of Theorem
10.10 to get 3 MOLS of order 20.

10.1 Use Theorem 10.8 with pu=1,v=2,
10.2 In Theorem 10.10, take

012 012
A;=Bi=|120]|, A=B,=[201|

201 120
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10.6 The existence of 3 MOLS of order 20 (see previous
exercise) gives the existence of a (5,400, 4)-code, by
Theorem 10.20. Since this code achieves the Singleton
bound, we have A,(5, 4) = 400.

Chapter 11
11.1 0204006910,
11.2

[ 479 1]

1081 2

977 9

im b 121810

197 7%

167 L

11.3 0000001000, 1005000003.
11.4 Identify the letters A,B,...,Z with the field elements
0,1,...,25 of GF(29). Let H be the parity-check matrix

111 1
1120 § Elng
1223 g
1223 g

for an (8, 29% 5)-code over GF(29). Let C be the 26-ary
code obtained by taking only those codewords consisting
of symbols 0, 1,...,25, i.e.

C={x,x2- Toxe | X €100, 1 225},
8 '
2 i, =0(mod29),j=0,1,2, 3}.
i=1

A probabilistic estimate for the number of codewords in

8
C is 29* x (%—g) =295, 253 (it happens that this is a re-

markably good estimate).
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Alternatively we could base our code on 26 of the
elements of GF(27). This would give us more codewords,
but the arithmetic involved in the decoding would be less

straightforward.
115 o(6)=]]1-X0)>0'(0)=- x, [Ta-xe)
i=1 =1 ;;:
>0 =-X ,-H, (I-X.X7").
it

The result now follows from equation (11.10).
7 *24
1.6 H=[3 61894 0].

54327654321

There exists a codeword (x1,. 00 %y9) of weight 2 with
non-zero entries x; and x; if and only if H, = —=(x;/x;)H;,
where H; denotes the ith column of H. In order to
determine which columns of H are scalar multiples of
others, calculate the ratios 4,/h, for each column

]

PRE

They are 5, 10, 2, 6, 9, 7, 3, 4, 8, 6, 0. It follows that a
double-error vector will go undetected if and only if it is
of the form (0, 0, 0, 2, 0, 0, 0, 0, 0, —A, 0) for some
A€l 4, .52 i),

Chapter 12

12.1 (i) No, No (not linear), (ii) No, No, (iii) No, Yes, (iv)
Yes, provided the alphabet is a field, (v) Yes, (vi) No,
No, (vii) Yes.

12.2s0 nad T Qs 1 x  1+x 1 + x has no inverse
0 ¥ 10 v g 0 0
1 0 1 X 1+x
o100, &i 1 1+x

1+x/0 1+x 14+x 0

12.3  Just imitate the proof of Theorem 3.5.

12.4 If f(x) had an even number of non-zero coefficients, then
we would have f(1) =0 and so x — 1 would be a factor of

fG).
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12.5

12.6

12.7

12.8

12.9
12.10

12.11

12.12

12.13
12.14

12.15

A first course in coding theory

Because p(x) = f(x)g(x) = deg p(x) = deg f(x) + deg g(x)
= either deg f(x) <idegp(x) or
deg g(x) <1deg p(x).

x, 1+x, 1+x+x% 1+x+x3 1+x24+x3 1+x+x*,
1+x3+x% 14+x+x?+x*+x* (Using Lemma 12.3 and
Exercise 12.4, it easily follows that the irreducible
polynomials of degrees 2, 3 and 4 are precisely those with
constant coefficient 1 and with an odd number of
non-zero coefficients, with the exception of (1+x+
x?)?2=1+x*+x%. For example, F[x]/(1+x+x>) is a
field of order 8.
(i) By Exercise 3.12, (x* = 1) = (x — 1)~.
(i) From Fermat’s theorem (Exercise 3.8) and Lemma
12.3(i), it follows that x*~'=(x = 1)(x —=2) * - (x —
@ -1)).
By Lemma 12.3(i)), x* = 1=(x—-1)x*+x*+x2+x +1),
and the second factor is irreducible by Exercise 12.6. So
the only cyclic codes are {0}, (x —1) (the even weight
code), (x*+x*+x*+x+1) (the repetition code), and
the whole of V (5, 2).
Yes, (x —1)g(x).
2. (In a factor of x" — 1, each of the ¢ distinct irreducible
factors may or may not be present).
(1) = whole space
(xj— 1) = even weight code E,
é; 1;2113) }both are Hamming codes Ham (3, 2)
(x=Dx*+x+1)) }both are even weight subcodes of
((x =1)(x*+x2+ 1)) Ham (3, 2) (alternatively, both are
duals of Ham (3, 2))
((x*+x +1)(x* + x> + 1)) = repetition code of length 7
(x7-1) ={0}.

¥B=1=x*-1D)Ex*+1)=(x-1)(x+ 12 3
2)(x*+2x + 2),)(32. o § b o e
Straightforward application of Theorem 12.15.

Not 'in general; Yes, C* is obtained from (h(x)) by
writing the codewords backwards.

Let g(x) be the generator polynomial of C. Then g(x) is a
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12.16

12.17

12.18

12.19

divisor of (x —1)(x""'+ -+ +x+1). If g(x) is a mul-
tiple of x — 1, then so is every codeword, and so every
codeword has even weight. So if there exists a codeword
of odd weight, then x"~! + - - - +x + 1 must be a multiple
of g(x), i.e. 1€ C. The reverse implication is immediate
since w(1) is odd.

Let g, ...,8 denote the rows of G. Let X denote a
cyclic shift of x. f x=Y A,g; e C, thenX=L Ag; e C.
Check that 2°,2!,...,2° are precisely the distinct non-
zero elements of GF(11). Hence the code of Example
7.12 is equivalent to the code C with parity-check matrix

N bk B 1
[2021 2 2k

(2°,20,2,...,28 =292 2,...,2)

Now

and so C* is cyclic by Exercise 12.16. Therefore Cis
cyclic by Theorem 12.15(ii). The result for Example 11.3
follows similarly.
The subcode D of G,; consisting of codewords of even
weight is ((x —1)g,(x)). Thus D* = (g;(x)) = (8:(x))
and so D < D*. Hence u- v =0 if u and v are codewords
of even weight. Since 1€ G,;, any codeword of odd
weight is of the form u + 1 for some codeword u of even
weight. If u +1, v +1 are codewords of odd weight, then
(u+1)-(v+l)=u-v+l-v+n-l+l-l=0+0+0+ 1
=1. Also if u+1 has odd weight and v has even weight,
then (u+1) .v=u-v+1:v=0+0=0. Now let x,y be
any codewords of G,; and let &, § be the corresponding
codewords of G,s. Then &+§=xX-y+X5,4=0, since
x-y=1&x,y both have odd weight &x, =y =1. So
Ga < G2 and since dim (G,,) = dim (G34) = 12, it follows
that Gu = Gzﬂ
x*+x+1 is a generator polynomial for Ham (4,2).
Dividing x'* — 1 by x* + x + 1 (e.g. by long division) gives
h(x)=x"+x3+x"+x°+ x>+ 2 +x +1.

12.20 Ham(r,2) is a [2"—1,2"—r—1,3]-code. By Exercise

12.9, {(x — 1)g(x)) is the subcode of codewords of even
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weight. This subcode must have dimension 27 — r—2and
minimum distance 4.
12.21 It is enough to show that no vector of the form

(" + X + ( + ) = (x + 1)(x' + x%)

is a codeword of ((x + 1)g(x)) (then all vectors of the
form 0, x', and x'+x*! will be coset leaders). But
(x +1)(x' +x’) is a codeword > (x +1)(x' +x/) is a mul-
tiple of (x + 1)g(x) >x' +x/ is a multiple of g(x)=>xi +
x' € (g(x)), contradicting d( (g(x)))=3.

12.22 (van Lint 1982, solution to Exercise 6.11.7). Show that
every non-zero codeword of C has exactly one zero
entry. Show also that there is exactly one codeword
€=coCy * - * ¢, such that ¢y = Cq+12=1 [Consider the g2
ordered pairs (c,, C(g+1y2) s ¢ runs over all codewords of
C]. If C were cyclic, then a cyclic shift of ¢ through
(g +1)/2 positions would yield the same codeword ¢, but
this is not possible if ¢ contains only one zero entry. Thus
C is not cyclic and so Ham (2, g), being the dual code of
C, is not cyclic by Theorem 12.15(ii).

Chapter 13

13.1 The mapping x— x+1 gives a one-to-one correspon-
dence between the set of codewords of weight i and the
set of codewords of weight n — i.

13.2 (b) C* is generated by

[10010]
11101F

and so C+* = {00000, 10010, 11101, 01111). Hence
Wei(z)=1+224224 So

152
fa 1y st
Welz) =4(1+ 2y W (1)
=1 +20°+ (1 +2)°0 -z +201 + z)(1-2)4
=14+322+323+ 25,
13.3 C* is generated by

[001111110]
1100111010
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13.4

13.5

13.6

13.7

% ’1{.{ 3

13.9

and so We:(z)=1+32% Hence Wc(z)=3[(1+2)°+
3(1+2)’(1-2)%], whence A,=1, A,;=0, A,=}[36+
3(3+15-18)]=9, A;=27. The sum of all the rows of
the generator matrix of C is 1. By Exercise 13.1,
A;=Ag_;, and 50 2(Ag+ A, + Ay + A3+ A,) =27, which
gives A, =27. Hence

We(z) =1+4922 42723 + 2724 + 2725 + 2725 + 927 + 2°.

Adding an overall parity check increases each odd weight
by 1 and leaves each even weight unchanged. So
We(z) =1+ 1424 + 28,

Let C be Ham (7, 2). Then by Theorem 13.10, Wei(z) =
14+ (2" =1)z7" =1+ nz"*12_§o '

Wele) = [(1+ 2"+ n(1 = 2)m(1 4 2)o-02

= 21, [A+2)"+n(1 - 25)"-D2(1 - 2)].

We(2) = 16[(1 + 2)° + 15(1 ~ 2)(1 - 2)]. (1)
Ao=1, A, = A, =0 (either from (1) or because we know
d(C)=3), A;=35, A, = 105.

The coefficient of 2z’ in the right-hand side is A4,(1 +
(—1)) = A, if i is even, 0 if i is odd.

If We(z) =Y Az, then

We(z)= 2 (Ai+A)7

ieven

= E A,‘Zi+l 2 A]Zj

ieven jodd

=3[ We(z) + We(—2)] +32[We(z) — We(—2)].

From equation (13.12),
n_1 By
PundeteC(C) - (1 _p) 2n—k (1 +ﬁ)
W e L))
XWCL(<1‘ 1-p / 1+1_p
-(1-pr

=5 Weil=2) ~ (1-p)".
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13.10 By Lemmas 1, 3, and 4 in the proof of Theorem 9.3, G,,

13.11

13.12

is self-dual, A;# 0 only if i is divisible by 4, and A, =0.
Since 1€ Gy, it follows from Exercise 13.1 that A,,=0
and that A =A; So We(z)=1+A2%+ A2+
Agz'®+ 2. Applying the MacWilliams identity and
equating coefficients of Wc(z) and W,.(z) (since C is
self-dual) gives: 2+2A3+ A, =21 (constant
coefficients) 0 =0 (coefficients of z) and 138 + 1044 —
3A,, =0 (coefficients of z?). Solving these gives Az =759,
An = 2576.

G,, is self-dual by Exercise 12.18. By Lemma 12.19,
codewords of G,; of even weight have weight divisible by
4. Since 1(=g,(x)g(x)) € G, it follows by Exercise 13.1
that any odd weight of a codeword of G,; is congruent to
3 (mod 4). Consequently, all codewords of G,, have
weight divisible by 4. Also A,=0, since d(G,;) =8. The
result now follows exactly as in Exercise 13.10.

By Exercise 13.10 (or 13.11) the only A;s in W, (2)
which can be non-zero are Ay, A, Ag, Ay, Az, Ags, Ay
and A,;. Also A;+Ag=759 and A, + A,,=2576. By
Exercise 9.4(a), A; =253 and so Az = 506. Since 1 € G,s,
we have A, = A,, = 1288, A5 =506, and A, = 253. So

W, (z) =1+ 25327 + 5062® + 12882 "
+ 12882'2 + 506z '5 + 253216 + z23,

Chapter 14

14.1

14.2

No; Exercises 9.9 and 9.11 show that A,(15, 5)= 256,

B,(15, 5)=128.

(i) V(n,q)isan [n,n,1]-code.

(i) C={xx; - x,|x;+x3+:--+x,=0} is an
[n,n—1,2]-code. Since there cannot exist an
[, n,2]-code, we have B,(n,2)=q""".
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14.4

14.5

14.6

14.7

143 By Theorem 14.4, there exists an [n, n — r, 3]-code over

GF(g)en<(q"-1/(g—-1)
&r=log, {n(g—1)+1}
on—r<n-log, {n(g—1)+1}.

So Bq(n, 3) - q[n—log,(n(q—l)+1)j_

Let ¢ be the number of planes in which a given line L lies.

Counting in two ways the number of members of the set

{(P, )| P is a point not on L, & is a plane containing

both L and P} gives ¢*+q*+q+1—(q+1)=t[g*+

qg+1—(q+1)],whence t=g+1.

The Golay code G, is a ternary [11, 6, 5]-code, showing

that max, (5, 3) = 11. If max, (5, 3) were =12, then there

would exist a ternary [12,7, S]-code, contradicting the

sphere-packing bound.

Use Theorem 14.18. Since 2 is a non-square in GF(5),

the 4 %26 matrix whose columns are (0,0,0,1)” and

(x,y,1,x2=2y?)7, for (x,y)eV(2,5), is the parity-

check matrix of a [26, 22, 4]-code.

(i) By Theorem 14.16, a plane can contain g + 2 points
of a cap.

/i) By Exercise 3.14, if g is even, then every element of

14.8

14-9 If {Xl, x21 L4

GF(q) is a square. [Remark: a version of Theorem
14.18 does hold for g even, with an elliptic quadric
specified in a different way].
Let H be the parity-check matrix whose columns form the
(g* + 1)-cap defined in (14.19). Label the column (0001)”
by « and each column (x,y,1,x*=by*)7" by (x,y). A
decoding algorithm is the following. Calculate the syn-
drome s =yH7” = 5,5,5:5,. If s=0, assume no errors. If i
s#0, calculate @ =s,5,—s?+bs3. If =0 and s5;=0,
assume an error of magnitude s, in position . If 8 =0
and s, # 0, assume an error of magnitude s; in position
(s,/s3, $2/s3). If 8# 0, then there are =2 errors.
.., X0} is a 10-cap in PG(3, 3) then the set

{(Xll()), (le()), GRad ’(XIOIO)’(xlll)’(lel)" DcHe

X0 1
is a 20-cap in PG(4, 3). (x| 1D}
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14.10 For a given t-space, the number of ways of choosing an
extra point of PG(m, q) to generate a (¢ + 1)-space is
qm+1 - 1 —ql+] = 1
g— 1 g1

Many of these extra points generate the same (t+1)-
space, and so we must divide by

ql+2_1_qx+1_1
q =1 q+~1

the number of points in such a (¢ + 1)-space not lying in
the given f-space.
(i) 40, (i) 13, (iii) 4.

14.11 (Bruen and Hirschfeld 1978). Suppose K is a cap in
PG(5,3). We shall show that |K| <56. We may assume
some plane & meets K in four points, for otherwise
|[K| <42 (two points on some line L plus at most one
further point on each of the 40 planes through L).
Similarly, we may assume some 3-space contains at least
8 points of K, for otherwise |K| =<4 +3 - 13 =43, Finally,
since max; (5, 3) = 20, we have |K| <8+ 4(20 — 8) = 56.

14.12  By(n,4) =3""* for 5<n <10, 3”5 for 11<n <20, 3¢
for 21sn <56, 3"~7 for 57<n<112. (It is not known
whether B;(113, 4) = 3'% or 3195

Chapter 15

15.1 [L|A] (L] A7),

15.2 Suppose, for a contradiction, that max,,,_, (g +2-
r,q)=q +2. Then there exists a lg+2,r,g+3-r)
code whose dual is a [g+2,g+2—7r,r+ 1}-code, con-
tradicting max, (r,g) =gq + 1.

153 max,_,(g—1,9)=qg+2 by Corollary 15.9. If there ex-
isted a [ + 3, 4, g]-code over GF(g), then its dual would
be a [¢ +3, g — 1, 5]-code, contrary to max, (4,q9)=q +
1.
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15.4 Lyt |
1'a;"a5
H= 17 1 as a'% .
1 a4 a

15.5 Let H =[A|I] be a standard form parity-check matrix for
an [n,n—r,r+1]-code with n=max, (r,q). .Deletmg
the last row and last column of H gives a matrix whose
columns form an (n —1,r—1)-set in V(r—1,q) and so
n—1<max,_, (r—1,9).

15.6 Let C be an [8,3, 6]-code over GF(7). By Corollary 15.7,
C* is an [8,5,4]-code. Let Wc(z)=YX Az' and
Wci(z) = X Biz'. By Theorem 13.6,

73(1 +3 B,.z") = (14+62)° + Ag(1 — 2)%(1 + 62)2
o +A,(1-2)(1+62) + A1 —2)* (1)
Equating coefficients of 1, z and z* and solving for A¢, A,
and Ag gives Wo(z) =1+ 1682°+ 4827 +1262°. Wu(2)
/. /5 now easily obtained directly from (1).
15.7 For2=<k=l1l,
1 1 10

1
T 2805 M0 T0M0
] 261 ... 10571 0 1
generates a [12, k, 13 — k]-code.

For k =11, 17] generates a [k + 1, k, 2]-code.
1
Ly
1
Chapter 16

16.1 If x#0(modp), then x"@~D@-D+1= (xp-lyla=by=x
(modp) by Fermat's theorem. If x=0(modp), then
x"P=1@-D*+1 = x (mod p) holds trivially. So p is a factor
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16.2
16.3

16.4

16.5
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of x"®=D@=D+1 _ x for any integer x. Similarly g is also a
factor for any integer x. Since p and q are distinct prime
numbers, pq is a factor of x"¢=1@-D+1 _ y for any x.
LEAVING TOMORROW.

When the subscriber R (of the text) has encrypted a
message he is to send to § (using S’s encryption
algorithm) he signs it with a further message z which he
sends in the form z‘ (mod 1) (i.e. via R’s own decrypting
algorithm). The receiver S verifies the signature by
calculating. (z'Y =z (mod n). Only R could have sent the
message, since only R knows ¢.

B, C and D are uniquely decodable. B and C are
prefix-free. Average word-lengths of B, C and D are 2,
1.75 and 1.875, respectively. [Remark: It is a conse-
quence of Shannon’s ‘source coding theorem’ (see, e.g.,
Jones 1979) that the ‘source entropy’, —¥i, p, log, p,
(=1.75 here), gives the smallest possible average word
length. So the above code C here is best possible. ]

THE END.
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