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Preface

The birth of coding theory was inspired by a classic paper of
Shannon in 1948. Since then a great deal of research has been
devoted to finding efficient schemes by which digital information
can be coded for reliable transmission through a noisy channel.
Error-correcting codes are now widely used in applications such
as returning pictures from deep space, design of registration
numbers, and storage of data on magnetic tape. Coding theory is
also of great mathematical interest, relying largely on ideas from
pure mathematics and, in particular, illustrating the power and
the beauty of algebra. Several excellent textbooks have appeared
in recent years, mostly at graduate level and assuming a fairly
advanced level of mathematical knowledge or sophistication. Yet
the basic ideas and much of the theory of coding are readily
accessible to anyone with a minimal mathematical background.
(For a recent article advocating the inclusion of algebraic coding
theory in the undergraduate curriculum, see Brinn (1984).)

The aim of this book is to provide an elementary treatment of
the theory of error-correcting codes, assuming no more than
high school mathematics and the ability to carry out matrix
arithmetic. The book is intended to serve as a self-contained
course for second or third year mathematics undergraduates, or
as a readable introduction to the mathematical aspects of coding
for students in engineering or computer science.

The first eight chapters comprise an introductory course which
I have taught as part of second year undergraduate courses in
discrete mathematics and in algebra. (There is much to be said
for teaching coding theory immediately after, or concurrently
with, a course in algebra, for it reinforces with concrete examples
many of the ideas involved in linear algebra and in elementary '
group theory.) I have also used the text as a whole as a Master’s
course taken by students whose first degree is not necessarily in
mathematics. The last eight chapters are largely independent of
one another and so courses can be varied to suit requirements.
For example, Chapters 9, 10, 14, and 15 might be omitted by
students who are not specialist mathematicians.



viii Preface

The book is concerned almost exclusively with block codes for
correcting random errors, although the last chapter includes a
brief discussion of some other codes, such as variable length
source codes and cryptographic codes. The treatment throughout
is motivated by two central themes: the problem of finding the
best codes, and the problem of decoding such codes efficiently.

One departure from several standard texts is that attention is
by no means restricted to binary codes. Indeed, consideration of
codes over fields of order a prime number enables much of the
theory, including the construction and decoding of BCH codes,
to be covered in an elementary way, without needing to work
with the rather more complex fields of order 2* (h > 1).

Another feature is the large number of exercises, at varying
levels of difficulty, at the end of each chapter. The inclusion of
the solutions at the end makes the book suitable for self-learning
or for use as a reading course. I believe that the best way to
understand a subject is by solving problems and so the reader is
urged to make good attempts at the exercises before consulting
the solutions.

Finally, it is hoped that the reader will be given a taste for this
fascinating subject and so encouraged to read the more advanced
texts. Outstanding amongst these is MacWilliams and Sloane
(1977); the size of its bibliography—nearly 1500 articles—is a
measure of how coding theory has grown since 1948. Also highly
recommended are Berlekamp (1968), Blahut (1983), Blake and
Mullin (1976), Cameron and van Lint (1980), Lin and Costello
(1983), van Lint (1982), McEliece (1977), Peterson and Weldon
(1972), and Pless (1982).

Salford
February 1985
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Notation

For the reader who is unfamiliar with the notation of modern set
theory, we introduce below all that is required in this book.

A set is simply a collection of objects. In this book we shall
make use of the following sets (among others):

R: the set of real numbers.

Z: the set of integers (positive, negative, or zero).

Z,: the set of integers from 0 to » — 1 inclusive.

The objects in a set are often called its elements or its
members. If x is an element of the set S, we write x € S, which is
read ‘x belongs to S’ or ‘x belonging to §’ as the context requires.
If x is not an element of S we write x£S. Thus 2€ Z but $£Z.
Two sets are equal if they contain precisely the same elements.
The set consisting precisely of elements x;, x,,...,x, is often
denoted by {x,,x,,...,x,}. For example, Z;={0,1,2}. Also
Z,={0,2,1} = {2,1,0}.

If §is a set and P a property (or combination of properties)
which elements x of § may or may not possess, we can define a
new set with the notation

{xeS|P(x)}

which denotes ‘the set of all elements belonging to S which have
property P’. For example, the set of positive integers could be
written {x € Z | x >0} which we read as ‘the set of elements x
belonging to Z such that x is greater than 0. The set of all even
integers can be denoted by {2n |n € Z}.

A set T is called a subset of a set S if all the elements of 7
belong to S. We then say that ‘T is contained in S’ and write
T c S, or that ‘S contains 7’ and write S 7.

If § and T are sets we define the union SU T of S and T to be
the set of all elements in either § or 7. We define the intersection
SN Tof S and T to be the set of all elements which are members
of both § and 7. Thus

SUT={x|xeSorxeT},
SNT={x|xeSandxeT}
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If S and T have no members in common, we say that S and T are
disjoint.

The order or cardinality of a finite set § is the number of
elements in S and is denoted by |S|. For example, |Z,| = n.

Given sets S and T we denote by (s,?) an ordered pair of
elements where s €S and te T. Two ordered pairs (s;,4) and
(55, 1) are defined to be equal if and only if s, =5, and 4, =¢.
Thus if S=T=Z, (0,1)#(1,0). The Cartesian product of S and
T, denoted by S X T, is defined to be the set of all ordered pairs
(s, t) such that s €S and t € T. The product § X § is denoted by
§2. Thus

§2={(51,5) |5 €S,5¢€S8}.
If S and T are finite sets, then
IS x T|=|S|-|T|

for, in forming an element (s, ¢) of S x T, we have |S| choices for
s and |T| choices for ¢. In particular [$?| = |S/.
More generally we define the Cartesian product of n sets

S1,5,,...,5, to be a set of ordered n-tuples thus:

Slx52X' 99 XS,,={(S,,.S‘2,. ey ,,)lSiESi,i=1,2,. .. ,n}.
Two ordered n-tuples (s;,s,,...,s,) and (4,4,...,t,) are
defined to be equal if and only if 5;,=¢ for i=1,2,...,n. If
$,=8=---=§,=8, the product is denoted by S". For
example,

R®={(x,y,z)|x€eR,yeR,z€eR)}

is a set-theoretic description of coordinatized 3-space. If § is
finite, then clearly

|S7] = |S]".
Finally we remark that in this book we shall often write an
ordered n-tuple (x;,x,, . .., x,) simply as x,x, - - - x,.

1 Introduction to error-correcting codes

Error-correcting codes are used to correct errors when messages
are transmitted through a noisy communication channel. For
example, we may wish to send binary data (a stream of 0s and 1s)
through a noisy channel as quickly and as reliably as possible.
The channel may be a telephone line, a high frequency radio
link, or a satellite communication link. The noise may be human
error, lightning, thermal noise, imperfections in equipment, etc.,
and may result in errors so that the data received is different
from that sent. The object of an error-correcting code is to
encode the data, by adding a certain amount of redundancy to
the message, so that the original message can be recovered if
(not too many) errors have occurred. A general digital com-
munication system is shown in Fig. 1.1. The same model can be
used to describe an information storage system if the storage
medium is regarded as a channel; a typical example is a
magnetic-tape unit including writing and reading heads.

Figure 1.1
Hoee Received

H Decoded
v essage vector messa
-source ¥ e -DOCOGM __’ge -User

Let us look at a very simple example in which the only
messages we wish to send are “YES’ and ‘NO’.

Codeword

Encoder | =————| Channel

Example 1.2

s=,
Message = YES Encoder: 00000 01001 Decoder: YES
YES or NO —_— YES=00000 —_— m —— | 01001~ - | User
NO=11111 00000=YES -

Here two errors have occurred and the decoder has decoded the
received vector 01001 as the ‘nearest’ codeword which is 00000 or
YES.

e



2 A first course in coding theory

A binary code is just a given set of sequences of Os and 1s
which are called codewords. The code of Example 1.2 is
{00000, 11111}. If the messages YES and NO are identified with
the symbols 0 and 1 respectively, then each message symbol is
encoded simply by repeating the symbol five times. The code is
called a binary repetition code of length 5. This is an example of
how ‘redundancy’ can be added to messages to protect them
against noise. The extra symbols sent are themselves subject to
error and so there is no way to guarantee accuracy; we just try to
make the probability of accuracy as high as possible. Clearly, a
good code is one in which the codewords have little resemblance
to each other.

More generally, a g-ary code is a given set of sequences of
symbols where each symbol is chosen from a set F, = {4, 4,,
.+ Ay} of g distinct elements. The set F, is called the alphabet
and is often taken to be the set Z,={0,1,2,...,9—1}.
However, if g is a prime power (i.e. g =p” for some prime
number p and some positive integer &) then we often take the
alphabet F, to be the finite field of order g (see Chapter 3). As
we have already seen, 2-ary codes are called binary codes; 3-ary
codes are sometimes referred to as ternary codes.

Example 1.3 (i) The set of all words in the English language is
a code over the 26-letter alphabet {A,B,...,Z}.

(ii) The set of all street names in the city of Salford is a
27-ary code (the space between words is the 27th symbol) and
provides a good example of poor encoding, for two street names
on the same estate are HILLFIELD DRIVE and MILLFIELD
DRIVE.

A code in which each codeword is a sequence consisting of a
fixed number n of symbols is called a block code of length n.
From now on we shall restrict our attention almost exclusively to
such codes and so by ‘code’ we shall always mean ‘block code’.

A code C with M codewords of length # is often written as an
M X n array whose rows are the codewords of C. For example,
the binary repetition code of length 3 is

000
111.

Let (F,)" denote the set of all ordered n-tuples a=aya, - a,
where each g; € F,. The elements of (F,)" are called vectors or

Introduction to error-correcting codes 3

words. The order of the set (F,)" is ¢". A q-ary code of length n
is just a subset of (F,)".

Example 1.4 The set of all 10-digit telephone numbers in the
United Kingdom is a 10-ary code of length 10. Little thought
appears to have been given to allocating numbers so that the
frequency of ‘wrong numbers’ is minimized. Yet it is possible to
use a code of over 82 million 10-digit telephone numbers (enough
for the needs of the UK) such that if just one digit of any number
is misdialled the correct connection can nevertheless be made.
We will construct this code in Chapter 7 (Example 7.12).

Example 1.5 Suppose that HQ and X have identical maps
gridded as shown in Fig. 1.6 but that only HQ knows the route
indicated, avoiding enemy territory, by which X can return safely
to HQ. HQ can transmit binary data to X and wishes to send the
route NNWNNWWSSWWNNNNWWN. This is a situation
where reliability is more important than speed of transmission.
Consider how the four messages N, S, E, W can be encoded into
binary codewords. The fastest (i.e. shortest) code we could use is

00=N
_Joi=w
'")10=E
11=S.

Figure 1.6
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That is, we identify the four messages N, W, E, S with the four
vectors of (F,)%. Let us see how, as in Example 1.1, redundancy
can be added to protect these message vectors against noise.
Consider the length 3 code C, obtained by adding an extra digit
as follows.

000

011
Q—101

110.

This takes longer than C, to transmit but if there is any single
error in a codeword, the received vector cannot be a codeword
(check this!) and so the receiver will recognize that an error has
occurred and may be able to ask for the message to be
retransmitted. Thus C, has the facility to detect any single error;
we say it is a single-error-detecting code.

Now suppose X can receive data from HQ but is unable to
seek retransmission, i.e. we have a strictly one-way channel. A
similar situation might well apply in receiving photographs from
deep space or in the playing back of an old magnetic tape, and in
such cases it is essential to extract as much information as
possible from the received vectors. By suitable addition of two
further digits to each codeword of C, we get the length 5 code

00000
_Jo1101
*l10110
1101 1.

If a single error occurs in any codeword of C,;, we are able not
only to detect it but actually to correct it, since the received
vector will still be ‘closer’ to the transmitted codeword than to
any other. (Check that this is so and also that if used only for
error-detection C; is a two-error-detecting code).

We have so far talked rather loosely about a vector being
‘closer’ to one codeword than to another and we now make this
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concept precise by introducing a distance function on (F)",
called the Hamming distance.

The (Hamming) distance between two vectors x and y of (F,)"
is the number of places in which they differ. It is denoted by
d(x, y). For example, in (%)’ we have d(00111, 11001) = 4, while
in (F;)* we have d(0122, 1220) = 3.

The Hamming distance is a legitimate distance function, or
metric, since it satisfies the three conditions:

(i) d(x,y)=0if and only if x=y.
(i) d(x,y)=d(y,x) for all x,ye (F,)".
(iii)) d(x,y)<d(x,z)+d(z,y) for all x,y, z € (F,)".

The first two conditions are very easy to verify. The third,
known as the triangle inequality , is verified as follows. Note that
d(x,y) is the minimum number of changes of digits required to
change x to y. But we can also change x to y by first making
d(x,z) changes (changing x to z) and then d(z,y) changes
(changing z to y). Thus d(x,y) <d(x,z) +d(z,y).

The Hamming distance will be the only metric considered in
this book. However, it is not the only one possible and indeed
may not always be the most appropriate. For example, in (F)?
we have d(428,438) = d(428, 468), whereas in practice, e.g. in
dialling a telephone number, it might be more sensible to use a
metric in which 428 is closer to 438 than it is to 468.

Let us now consider the problem of decoding. Suppose a
‘ codeword x, unknown to us, has been transmitted and that we
‘receive the vector y which may have been distorted by noise. It
seems reasonable to decode y as that codeword x’, hopefully x,
" such that d(x’,y) is as small as possible. This is called nearest
neighbour decoding. This strategy will certainly maximize the
decoder’s likelihood of correcting errors provided the following
assumptions are made about the channel.

: (i) Each symbol transmitted has the same probability p(<3)

. of being received in error.
(i) If a symbol is received in error, then each of the g — 1

 possible errors is equally likely.

Such a channel is called a g-ary symmetric channel. The binary

i - symmetric channel is shown in Fig. 1.7.
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Figure 1.7

1-p
0 > 0
P
p
1 > 1
sent 1-p received

p is called the symbol error probability of the channel.

If the binary symmetric channel is assumed and if a particular
binary codeword of length n is transmitted, then the probability
that no errors will occur is (1—p)", since each symbol has
probability (1—p) of being received correctly. The probability
that one error will occur in a specified position is p(1 -p) L
The probability that the received vector has errors in precisely i
specified positions is p*(1 — p)"~". Since p <4, the received vector
with no errors is more likely than any other; any received vector
with one error is more likely than any with two or more errors,
and so on. This confirms that, for a binary symmetric channel,
nearest neighbour decoding is also maximum likelihood
decoding.

Example 1.8 Consider the binary repetition code of length 3

000
G {111'
Suppose the codeword 000 is transmitted. Then the received
vectors which will be decoded as 000 are 000, 100, 010 and 001.
Thus the probability that the received vector is decoded as the
transmitted codeword 000 is

(1-p)*+3p(1=p)*=(1-p)*(1+2p).

Note that, by symmetry, the probability is the same if the
transmitted codeword is 111. Thus we can say that the code C
has a word error probability, denoted by P (C), which is
independent of the codeword transmitted. In this example, we

Haee P.(C)=1—(1-p)*(1+2p) = 3p* - 2p°.

In order to compare probabilities given by such polynomials in
p, it is useful to assign an appropriate numerical value to p. For
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example we might assume that, on average, the channel causes
one symbol in a hundred to be received in error, i.e. p = 0.01. In
this case P.(C)=0.000298 and so approximately only one word
in 3355 will reach the user in error.

We will show in Chapter 6 that a very important class of codes,
called linear codes, all have the property that the word error
probability is independent of the actual codeword sent. For a
general code, a brute-force decoding scheme is to compare the
received vector with all codewords and to decode as the nearest.
This is impractical for large codes and one of the aims of coding
theory is to find codes which can be decoded by faster methods
than this. We shall see in Chapters 6 and 7 that linear codes have
elegant decoding schemes.

An important parameter of a code C, giving a measure of how
good it is at error-correcting, is the minimum distance, denoted
d(C), which is defined to be the smallest of the distances
between distinct codewords. That is,

d(C)=min {d(x,y) | X,y e C,x#y}.

For example, it is easily checked that for the codes of Example
1.5, d(C) =1, d(C,) =2 and d(C3) = 3.

Theorem 1.9 (i) A code C can detect up to s errors in any
codeword if d(C)=s + 1.

(i) A code C can correct up to 7 errors in any codeword if
d(C)=2t+1.

Proof (i) Suppose d(C)=s-+1. Suppose a codeword x is
transmitted and s or fewer errors are introduced. Then the
received vector cannot be a different codeword and so the errors
can be detected.

(i) Suppose d(C)=2t+ 1. Suppose a codeword x is trars-
mitted and the vector y received in which ¢ or fewer errors have .
occurred, so that d(x,y)<t. If x' is any codeword other than x,
then d(x',y)=t+ 1. For otherwise, d(x’,y) <{, which implies,
by the triangle inequality, that d(x,x’)<d(x,y) +d(x',y)< 2,
contradicting d(C)=2t+ 1. So x is the nearest codeword to y
and nearest neighbour decoding corrects the errors.

[Note: The reader may find Remark 2.12 helpful in clarifying this
proof.]
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Corollary 1.10 If a code C has minimum distance d, then C can
be used either (i) to detect up to d — 1 errors, or (ii) to correct up
to |(d — 1)/2] errors in any codeword.

(lx] denotes the greatest integer less than or equal to x).

Proof (i) d=s+1iffs<sd-—1.(i)d=2t+1iff r<(d—1)/2.
For example, if d(C)=3, then C can be used either as a

single-error-correcting code or as a double-error-detecting code.
More generally we have:

Number of errors Number of errors
detected by corrected by
d(C) C Y

N BN e
W A WD =O
WM = -0

The following notation will be used extensively and should be
memorized.

An (n,M,d)-code is a code of length n, containing M
codewords and having minimum distance d.

Examples 1.11 (i) In Example 1.5, C, is a (2,4, 1)-code, G, a
(3,4, 2)-code and C; a (5, 4, 3)-code.

(i) The g-ary repetition code of length n whose codewords
are

1 1 £ aiteid

@-1 @-1 ... @-1)
is an (n, g, n)-code.

Introduction to error-correcting codes 9

Example 1.12 The code used by Mariner 9 to transmit pictures
from Mars was a binary (32, 64, 16)-code, called a Reed—Muller
code. This code, which will be constructed in Exercise 2.19, is
well suited to very noisy channels and also has a fast decoding
algorithm. How the code was used will be described in the
following brief history of the transmission of photographs from
NASA space probes.

The transmission of photographs from deep-space

1965: Mariner 4 was the first spaceship to photograph
another planet, taking 22 complete photographs of Mars. Each
picture was broken down into 200 X 200 picture elements. Each
element was assigned a binary 6-tuple representing one of 64
brightness levels from white (=000000) to black (=111111). Thus
the total number of bits (i.e. binary digits) per picture was
240 000. Data was transmitted at the rate of 8} bits per second
and so it took 8 hours to transmit a single picture!

1969-1972: Much improved pictures of Mars were obtained
by Mariners 6, 7 and 9 (Mariner 8 was lost during launching).
There were three important reasons for this improvement:

(1) Each picture was broken down into 700 X 832 elements
(cf. 200 x 200 of Mariner 4 and 400 X 525 of US commer-
cial television).

(2) Mariner 9 was the first spaceship to be put into orbit
around Mars.

(3) The powerful Reed-Muller (32, 64, 16)-code was used for
error correction. Thus a binary 6-tuple representing the
brightness of a dot in the picture was now encoded as a
binary codeword of length 32 (having 26 redundant bits).

The data transmission rate was increased from 8} to
16200 bits per second. Even so, picture bits were
produced by Mariner’s cameras at more than 100 000 per
second, and so data had to be stored on magnetic tape
before transmission.

1976: Viking 1 landed softly on Mars and returned high-
quality colour photographs.

Surprisingly, transmission of a colour picture in the form of
binary data is almost as easy as transmission of a black-and-white
one. It is achieved simply by taking the same black-and-white
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photograph several times, each time through a different coloured
filter. The black-and-white pictures are then transmitted as al-
ready described and the colour picture reconstructed back on
Earth.

5 March 1979: High-resolution colour pictures of Jupiter and
its moons were returned by Voyager 1.

12 November 1980: Voyager 1 returned the first high-
resolution pictures of Saturn and its moons.

25 August 1981: Voyager 2 returned further excellent pic-
tures of Saturn.

And to come:
24 January 1986: Voyager 2 passes Uranus.
24 August 1989: Voyager 2 passes Neptune.

Exercises 1

1.1 If the following message were received from outer space,
why might it be conjectured that it was sent by a race of
human-like beings who have one arm twice as long as the
other? [Hint: The number of digits in the message is the
product of two prime numbers.]

001100000110001111111101100100110010011001011110001
00100010010001001001100110

1.2 Suppose the binary repetition code of length 5 is used for
a binary symmetric channel which has symbol error
probability p. Show that the word error probability of the
code is 10p® — 15p* + 6p°.

1.3 Show that a code having minimum distance 4 can be used
simultaneously to correct single errors and detect double
errors.

1.4 The code used by Mariner 9 will correct any received
32-tuple provided not more than . .. (how many?) errors
have occurred.

1.5 (i) Show that a 3-ary (3, M, 2)-code must have M <9.
(ii) Show that a 3-ary (3, 9, 2)-code does exist.

(iii) Generalize the results of (i) and (ii) to g-ary
(3, M, 2)-codes, for any integer g = 2.

2 The main coding theory problem

A good (n,M,d)-code has small n (for fast transmission of
messages), large M (to enable transmission of a wide variety of
messages) and large d (to correct many errors). These are
conflicting aims and what is often referred to as the ‘main coding
theory problem’ is to optimize one of the parameters n, M, d for
given values of the other two. The usual version of the problem
is to find the largest code of given length and given minimum
distance. We denote by A4,(n, d) the largest value of M such that
there exists a g-ary (n, M, d)-code.
The problem is easily solved for d =1 and d = n, for all g:

Theorem 2.1 (i) A,(n,1)=gq". (i) A,(n,n)=gq.

Proof (i) For the minimum distance of a code to be at least 1
we require that the codewords are distinct, and so the largest
g-ary (n, M, 1)-code is the whole of (F,))", with M = g".

(i) Suppose C is a g-ary (n,M,n)-code. Then any two
distinct codewords of C differ in all n positions. Thus the symbols
appearing in any fixed position, e.g. the first, in the M codewords
must be distinct, giving M <g. Thus A (n,n)<gq. On the other
hand, the g-ary repetition code of length n (see Example
1.11(ii)) is an (n, g, n)-code and so A,(n,n)=q.

Example 2.2 We will determine the value A,(S, 3). The code G
of Example 1.5 is a binary (5, 4, 3)-code and so A,(5, 3) = 4. But
can we do better? To show whether there exists a binary
(5,5,3)-code a brute-force method would be to consider all
subsets of order 5 in (F)° and find the minimum distance of each.
Unfortunately there are over 200 000 such subsets (see Example
2.11(iii)), but, by using the following notion of equivalence, the
search can be considerably reduced. We will return to Example
2.2 shortly.
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Equivalence of codes
A permutation of a set S={x,x,...,x,} is a one-to-one
mapping from § to itself. We denote a permutation f by

I 1

! i i

f) f()... f(x)

Definition Two g-ary codes are called equivalent if one can be
obtained from the other by a combination of operations of the
following types:

(A) permutation of the positions of the code;
(B) permutation of the symbols appearing in a fixed position.

If a code is displayed as an M X n matrix whose rows are the
codewords, then an operation of type (A) corresponds to a
permutation, or rearrangement, of the columns of the matrix,
while an operation of type (B) corresponds to a re-labelling of
the symbols appearing in a given column.

Clearly the distances between codewords are unchanged by
such operations and so equivalent codes have the same para-
meters (n, M,d) and will correct the same number of errors.
Indeed, under the assumptions of a g-ary symmetric channel, the
performances of equivalent codes will be identical in terms of
probabilities of error correction.

Examples (i) The binary code

00100

00011
G 11111

11000

is equivalent to the code C; of Example 1.5. (Apply the

permutation
01
Vo
10
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to the symbols in the third position of C and then interchange
positions 2 and 4. Note that the codewords will be listed in a
different order from that in Example 1.5).

(ii) The ternary code Ly

C=4120
201
is equivalent to the ternary repetition code of length 3. Applying

the permutation
012
I
2 01

~ to the symbols in the s.second position and
012

R
120

000
111.
442

2.3 Any g-ary (n,M,d)-code over an alphabet
..,q —1} is equivalent to an (n, M, d)-code which con-
the all-zero vector 0=00---0.

)f Choose any codeword x,x; - - * x,, and for each x; # 0 apply
permutation ‘
0 x j

V1 | forallj#0,x;
_ x 0 j
symbols in position i.
ple 2.2 (continued) We will show not only that a binary

»3)-code must have M <4 but also that the (5, 4, 3)-code is
, up to equivalence.
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Let C be a (5, M, 3)-code with M =4. Then by Lemma 2.3 we
may assume that C contains the vector 0 = 00000, (replacing C by
an equivalent code which does contain 0, if necessary). Now C
contains at most one codeword having 4 or S 1s, for if there were
two such codewords, x and y say, then x and y would have at
least 3 1s in common positions, giving d(x, y) <2 and contradict-
ing d(C) =3.

Since 0 € C, there can be no codewords containing just one or
two 1s and so, since M =4, there must be at least two codewords
containing exactly 3 1s. By rearranging the positions, if neces-
sary, we may thus assume that C contains the codewords

00000
11100
00111

It is now very easy to show by trial and error that the only
possible further codeword can be 11011.

We have thus shown that A,(5, 3) =4 and that the code which
achieves this value is, up to equivalence, unique.

Restricting our attention for the time being to binary codes, we
list in Table 2.4 the known non-trivial values of A,(n,d) for
n <16 and d <7. This is taken from the table on P. 156 of Sloane
(1982) which in turn is an updating of the table on P. 674 of

Table 2.4
n d=3 d=5 d=17
5 4 2 —
6 8 2 —
7 16 2 2
8 20 4 2
9 40 6 2
10 72-79 12 2
11 144-158 24 4
12 256 2 4
13 512 64 8
14 1024 128 16
15 2048 256 E)
16 2560-3276 256-340 36-37
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MacWilliams and Sloane (1977). Where the value of A,(n, d) is
not known, the best available bounds are given; for example, the
entry 72-79 indicates that 72 < A,(10, 3) < 79.

Many of the entries of Table 2.4 will be established during the
course of this book (we have already verified the first entry in
Example 2.2). In Chapter 16 we shall again consider Table 2.4
and review the progress we have made.

The reason why only odd values of d need to be considered in
the table is that if 4 is an even number, then A,(n,d)=
A,(n—1,d —1), a result (Corollary 2.8) towards which we now
proceed.

Taking F, to be the set {0,1}, we define two operations on
(E)". Let x=xx,--+x, and y=y) -y, be two vectors in
(E,)". Then the sum x +y is the vector in (F)" defined by

x+y=(x1+}’1,xq+}’2, e Xy +y")s
while the intersection x Ny is the vector in (/)" defined by
xny= (xl)’hxz)’z, LI 1xny'l)'

The terms x;+y and xy are calculated modulo 2 (without
carrying); that is, according to the addition and multiplication

tables
+10 1 . 1
0 1.0 & 0 ‘ 0 0
g R4 R AR ¢ y 73 S0 L

For example 11100 + 00111 = 11011

and 11100 N 00111 = 00100.
The weight of a vector x in (F,)", denoted w(x), is defined to be
the number of 1s appearing in x.

Lemma 2.5 If x and y € (E)", then d(x,y) = w(x +y).

Proof The sum x+ y has a 1 where x and y differ and a 0 where "

X and y agree.
Lemma 2.6 If x and y € (E)", then
d(x,y) = w(x) + w(y) — 2w(xNYy).

Proof d(x,y)=w(x+y)=(number of 1s in x) + (number of 1s

|y
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in y)—2(number of positions where both x and y have a
1) = w(x) + w(y) —2w(xNYy).

Theorem 2.7 Suppose d is odd. Then a binary (n, M, d)-code
exists if and only if a binary (n + 1, M, d + 1)-code exists.

Proof ‘only if part: Suppose C is a binary (n, M, d)-code,
where d is odd. Let C be the code of length n + 1 obtained from
C by extending each codeword x of C according to the rule

{x,xq -+ x,0  if w(x) is even
X=XX0 X, k=

xx - x, 1 if w(x) is odd.
Equivalently we can define
R=xX " * XXy

where x, ., = L, x;, calculated modulo 2.

This construction of C from C is called ‘adding an overall
parity check’ to the code C.

Since w(R) is even for every codeword & of C, it follows from
Lemma 2.6 that d(&, év) is even for all &, § in ¢, Hence' d(C) is
even. Clearly d <d(C)=<d +1, and so, since d is odd, we must
have d(€)=d + 1. Thus C is an (n + 1, M, d + 1)-code.

‘if* part: Suppose D is an (n + 1, M,d + 1)-code, where d is
odd. Choose codewords x and y of D such that d(x,y)=d +1.
Choose a position in which x and y differ and delete this from all
codewords. The result is an (7, M, d)-code.

Corollary 2.8 If d is odd, then A,(n+1,d+1)=A,(n,d).
Equivalently, if d is even, then A,(n,d)=A,(n~1,d - 1).

Example 2.9 By Example 2.2, A,(5,3)=4. Hence, by
Corollary 2.8, A,(6,4)=4. To illustrate the ‘only if’ part of
Theorem 2.7 we construct below a (6,4,4)-code from the
(5, 4, 3)-code of Example 1.5.

(5,4, 3)-code (6,4, 4)-code
00000 000000
01101 e 011011
10110 101101
11011 110110
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The trial-and-error method of Example 2.2, which proved that

a binary (5, M, 3)-code must have M <4, would not be practical

~for sets of larger parameters. However, there are some general

. upper bounds on how large a code can be (for given n and d),

“which sometimes turn out to be the actual value of A,(n, d). The

best known is the so-called ‘sphere-packing bound’, which we

will prove after introducing a little more notation.

)

JI
B!

) :," nt (m) pronounced n choose m’, is defined by

i

m!(n—m)!’
=mm-—1)--:3.2.1form>0
.=1.

2.10 The number of unordered selections of m distinct

f _'Jects from a set of » distinct objects is (m)
o |

n!
(n —m)!

‘ways, for the first object can be chosen in any of n ways, then the
second in any of n—1 ways, and so on. Since there are
m(m—1)---2.1=m! ways of ordering the m objects chosen,
the number of unordered selections is

nn=1)---(n—-m+1)=

n!
m!(n—m)!"

les 2.11 (i) We illustrate the proof of Lemma 2.10 by
ling the ordered and unordered selections of 2 objects from 4.
lling the four objects 1, 2, 3, 4, the ordered selections of 2
m 4 are (1,2), (1,3), (1,4), (2,1), (2,3), (2,9, B3,1),
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(3,2), (3,4), (4,1), (4,2),(4,3). The number of them is 12=
4.3=41/2!.

The unordered selections of 2 from 4 are {1,2}, {1,3}, {1, 4},
(2,3}, {2,4}, {3,4}. Each unordered selection corresponds to
21=2 ordered selections and so the number of unordered

dw . hodd 4
selections 18 2 (2> =6.

Note that the unordered selections of m objects from a set S
are just the subsets of S of order m.

(ii) Suppose a bet on a football pool is to be a selection
(unordered) of 8 matches from a large number. The 8 matches
are forecast to be draws (ties). A common plan is to select 10
matches and to ‘choose any 8 from 10°. The number of bets

10
required is ( 8) = 45.
(iii) The number of different binary codes with M =35 and
n=35is (352 ) =201376. Of course the number of inequivalent

codes will be very much smaller than this.

(iv) The number of binary vectors in (F)” of weight i is (’:),

this being the number of ways of choosing i positions out of n to
have 1s. For example, the vectors in (F)* of weight 2 are 1100,
1010, 1001, 0110, 0101, 0011. The one-to-one correspondence
with the list of unordered selections in (i) above should be
evident.

We now introduce the notion of a sphere in the set (F)".
Provided the analogy is not stretched too far, it can be useful to
think of (F,)" as a space not unlike the three-dimensional real
space which we inhabit. The distance between two points of (F,)"
is of course taken to be the Hamming distance and then the
following definition is quite natural.

Definition. For any vector u in (F,)" and any integer r =0, the
sphere of radius r and centre u, denoted S(u,r), is the set
{ve(F)"|d(u,v)<r}.

Remark 2.12 Let us interpret Theorem 1.9(ii) visually. If
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d(C)=2t+1, then the spheres of radius ¢ centred on the
codewords of C are disjoint (i.e. they have no overlap). For if a
vector y were in both S(x, f) and S(x’, t), for codewords x and x'
(see Fig. 2.13), then by the triangle inequality we would have

d(x,x')<d(x,y) +d(x",y)st+t=2,
a contradiction to d(C) =2t + 1.

. /\%&(

Figure 2.13 Figure 2.14

So if ¢ or fewer errors occur in a codeword x, then the received
vector y may be different from the centre of the sphere S(x, f),
but cannot ‘escape’ from the sphere, and so is ‘drawn back’ to x
by nearest neighbour decoding (see Fig. 2.14).

Lemma 2.15 A sphere of radius r in (F,)" (0<r=<n) contains

exactly
)+ (a0 (a1
vectors.

Proof Let u be a fixed vector in (F,)". Consider how many
vectors v have distance exactly m from u, where m <n. The m

positions in which v is to differ from u can be chosen in (")
m

ways and then in each of these m positions the entry of v can be
chosen in ¢ — 1 ways to differ from the corresponding entry of u.
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Hence the number of vectors at distance exactly m from u is

n)(q — 1) and so the total number of vectors in S(u, r) is

() (a-ve-+ (-

Remark The numbers (;) aré “called bihonialicoeMeients

because of their role in the binomial theorem, which for any
positive integer n states that

(e (e (e
(1+x) 1+(1x+ 2 )* 40+ 9t
For x an integer, the binomial theorem follows from Lemma 2.15
by taking x =q —1 and r =n, for S(u, n) is the whole of (F,)"
and so contains ¢" = (1 + x)" vectors.

Theorem 2.16 (The sphere-packing or Hamming bound) A
g-ary (n, M, 2t + 1)-code satisfies

)+ (o=

Proof Suppose C is a g-ary (n,M,2t+1)-code. As we ob-
served in Remark 2.12, any two spheres of radius ¢ centred on
distinct codewords can have no vectors in common. Hence the
total number of vectors in the M spheres of radius ¢ centred on
the M codewords is given by the left-hand side of (2.17). This
number must be less than or equal to ¢”, the total number of
vectors in (F,)".

(':)(q - 1)'} <q". @17)

For future reference, we re-state (2.17) for the particular case
of binary codes. That is, any binary (n, M, 2t + 1)-code satisfies

M{1+(’1') +('2’) PR (':)}sz (2.18)

For given values of ¢, n and d, the sphere-packing bound
provides an upper bound on A,(n,d). For example, a binary
(5, M, 3)-code satisfies M{1+ 5} <2°=32, and so A,(5,3)<S5.
Of course, just because a set of numbers n, M, d satisfies the
sphere-packing bound, it does not necessarily mean that a code
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with those parameters exists. Indeed we saw in Example 2.2 that
there is no binary (5,5, 3)-code and that the actual value of
A,(5, 3) is just 4.

Perfect codes

A code which achieves the sphere-packing bound, i.e. such that
- equality occurs in (2.17), is called a perfect code. Thus, for a
~ perfect t-error-correcting code, the M spheres of radius ¢ centred
~on codewords ‘fil’ the whole space (F,)" without overlapping.
Or, in other words, every vector in (F,)" is at distance <t from
exactly one codeword.

The binary repetition code
11-.-1

j, of length n, where n is odd, is a perfect (n,2, n)-code. Such
- codes, together with codes which contain just one codeword or
- which are the whole of (F,)", are known as trivial perfect codes.
L '. The problem of finding all perfect codes has provided mathe-
- maticians with one of the greatest challenges in coding theory
:""tnd we shall return to thls problem in Chapter 9. We will

 a non-trivial perfect code. An alternative constructnon, as one of
B tlle famlly of so-called perfect Hammmg codes, will be glven m

Inced block designs

A balanced block design consists of a set § of v
nents, called points or varieties, and a collection of b subsets
S, called blocks, such that, for some fixed k, r and A

) each block contains exactly k points

- each point lies in exactly » blocks

- each pair of points occurs together in exactly A blocks.

h a design is referred to as a (b, v, r, k, A)-design.
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Example 2.19 Take S$={1,2,3,4,5,6,7} and consider the
following subsets of S: {1,2,4}, {2,3,5}, {3,4,6}, {4,5,7},
15,6,1),(6,7, 2},{7,1; 3}

It is easily verified that each pair of elements of S occurs
together in exactly one block. Thus the subsets form the blocks
of a (7,7, 3,3, 1)-design.

There is a simple geometrical representation of this design (see
Fig. 2.20). The elements 1,2,...,7 are represented by points
and the blocks by lines (6 straight lines and a circle). This is
known as the seven-point plane, the Fano plane, or the projective
plane of order 2.

Fig. 2.20 The seven-point plane

The elements of the set S of a block design are often called
varieties because such designs were originally used in statistical
experiments, particularly in agriculture. For example, suppose
that we have v varieties of fertilizer to be tested on b crops and
that we are particularly interested in the effects of pairs of
fertilizers acting together on the same crop. By using a balanced
block design, each of the b crops can be tested with a block of k
varieties of fertilizer, in such a way that each pair of varieties is
tested together a constant number A of times. Thus the design is
balanced so far as comparison between pairs of fertilizers is
concerned.

Example 2.21 If we have 7 varieties of fertilizer (labelled
1,2,...,7) and 7 crops, then, using the (7,7, 3, 3, 1)-design of
Example 2.19, we could treat the first crop with the block of
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varieties {1, 2,4}, the second crop with {2, 3,5} and so on. The
schedule can be displayed as follows:

Figure 2.22
Blocks

B, B, B, B, B B B

(1 1 0 0 0 1 0 1

2 1 1 0 0 0 1 0

3 0 1 1 0 0 0 1

Varieties { 4 1 0 1 1 0 0 0

5 0. 1 0 1 1 0 0

6 0 0 1 0 1 1 0

\7 0 0 0 1 0 1 1

The 7 X 7 matrix of Os and 1s thus obtained is called an incidence
matrix of the design. More formally we have:

Definition The incidence matrix A = [a;] of a block design is a
v X b matrix in which the rows correspond to the varieties
X, X,, . . ., X, and the columns to the blocks B,, B,, ..., B,, and
whose i, jth entry is defined by

2 _{l if x; € B;
N0 ifx€B;

We now construct our example of a non-trivial perfect code.

Example 2.23 Let A be the incidence matrix of Fig. 2.22 and let
B be the 7 x 7 matrix obtained from A by replacing all Os by 1s
and all 1s by 0s. Let C be the length 7 code whose 16 codewords
are the rows a,, a,,...,a, of A, the rows by, b,, ..., b, of B and
the additional vectors 0 = 0000000 and 1= 1111111. Thus
C=0000000=0 0101100=as 1001110=hb,
1111111=1 0010110=a,0100111=b,
1000101=a, 0001011=a;, 101001 1=bs
1100010=a,0111010=b; 110100 1=b,

0110001=a;0011101=b, 1110100=b,
1011000=a,

.
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We will show that the minimum distance of C is 3, i.e. that
d(x,y)=3 for any pair of codewords X,y. By the incidence
properties of the (7,7,3,3, 1)-design, each row of A has exactly
3 1s and any two distinct rows of A have exactly one 1 in
common. Hence, by Lemma 2.6,

d(a,-,a,-)=3+3~2.1=4

Since distances between codewords are unchanged if all Os are
changed to 1s and all 1s to Os, we have also that

d(b;, b,') =4

for i #j.

for i#j.
It is clear that
d(0,y) =3, 4 or 7 according as y =a;, b;or 1,

d(1,y) =3, 4 or 7according as y =b;, a; or 0,

and d(a;,b)=7 fori=1,2,.7% 5 1

It remains only to consider d(a;,b;) for i#j. But a, and b;
differ precisely in those places where a; and a; agree and so

d(a,b)=7—d(a,a)=7-4= 3.

We have now shown that C is a (7, 16, 3)-code and since

16((g) + (1) =7

we have equality in (2.18) and so the code is perfect.

The existence of a perfect binary (7,16, 3)-code shows that
A,(7,3) =16 and so we have established another of the entries of
Table 2.4.

In leaving the code of Example 2.23 we note that it has the
remarkable property that the sum of any two codewords is also a
codeword! Interestingly, the (5,4, 3)-code of Example 2.2 has
the same property. Such codes are called linear codes and play a
central role in coding theory. We shall begin to study the theory
of such codes in Chapter 3.

Concluding remarks on Chapter 2

(1) It is not recommended that the reader spends a lot of
time on the unresolved cases in Table 2.4, for many man-hours
have so far failed to improve on the current best bounds.
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However, the manner in which one entry, A,(15,5) =256, was
obtained (Nordstrom and Robinson 1967) might give some
encouragement to the amateur. It was previously known only
that 128 < A,(15, 5) <256 and this case was chosen by Robinson
as an example of a problem which he posed to high school
students in an introductory talk on coding theory. One of them,
named Alan Nordstrom, accepted the challenge and, by trial
and error, constructed a (15,256,5)-code, the now-famous
Nordstrom—Robinson code. A construction of this code will be
given in Exercise 9.9.

It might be felt that all optimal codes of moderate length
should be obtainable by means of exhaustive computer searches.
But an estimate of the time needed to find whether there exists,
say, a binary (10, 73, 3)-code shows how difficult this would be.
In fact, computer-aided searches have so far met with distinctly
limited success; almost all the good codes known have arisen out
of their discoverers’ ingenuity.

(2) For binary codes, the sphere-packing bound turns out to
be reasonably good for cases n=2d+1. Unfortunately, it
becomes very weak for n <2d, but in such cases there is a much
sharper bound, due to Plotkin (1960), which will be derived in
Exercises 2.20-22. [For some recent analogous results on ternary
codes, see Mackenzie and Seberry (1984). For some bounds on
binary (n, M, d)-codes with n slightly greater than 2d, see
Tietdvdinen (1980).]

The reader who wishes to progress quickly to the main stream
of coding theory, which is the theory of linear codes, need not
dwell on the remaining remarks of this chapter for too long and
may also leave Exercises 2.12 to 2.24 for the time being.

(3) The parameters of a (b,v,r, k, A)-design are not inde-
pendent, for they satisfy the following two conditions (see
Exercise 2.13): :

bk =vr (2.24)

r(k—1)=AMv —1). (2.25)

However, if five numbers b, v, r, k, A satisfy (2.24) and (2.25),
there is no guarantee that a (b,v,r,k,A)-design exists. For

example it is known that there does not exist a (43,43,7,7,1)-
design.
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(4) A block design is called symmetric if v=>b (and so also,
by (2.24), k =r), and is referred to simply as a (v, k, A)-design.
There are two types of (v, k, A)-design which will be of particular
interest to us.

(i) A finite projective plane is a symmetric design for which
A=1. If we put k =n + 1, then n is called the order of the plane.
By (2.25), we then have v = n?+n + 1, and so a projective plane
of ordernisa (n*+n+1,n+1, 1)-design. Such a design exists
whenever n is a prime power (see Exercise 4.7).

(i) A (4—1,2t—1,¢t—1)-design is called a Hadamard
design.

We see that the (7,3, 1)-design of Example 2.19 is both a
projective-plane of order 2 and a Hadamard design with = 2.

(5) Further relations on the five parameters of a
(b, v, r, k, A)-design have been found by making ingenious use of
the incidence matrix. The best known is the very simple, but by
no means obvious, result that

v<b (2.26)

obtained by the statistician R. A. Fisher in 1940.
For the particular case of symmetric designs, the following
fundamental theorem was proved by Bruck, Ryser and Chowla

in 1950.

Theorem 2.27 1f a (v, k, A)-design exists, then

(i) if vis even, k — A is a square

(i) if v is odd, the equation z°= (k — Ax2 + (—1)v-D2}y?
has a solution in integers x, y, z not all zero.

It is an unsolved problem to determine whether the necessary
condition of Theorem 2.27, together with (2.24) and (2.25), form
a set of sufficient conditions for the existence of a symmetric
design. There are many parameters for which the existence of the
design is undecided, a particularly interesting case being the
projective plane of order 10, with parameters (v,k, 1) =
(i1, 11,1).

For full details of these, and other, results on block designs the
reader is referred to Anderson (1974) or Hall (1980).

(6) A generalization of block designs to so-called ‘t-designs’
will be considered in Chapter 9.
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Exercises 2

;):estions should not be answered simply by referring to Table
2.1 Construct, if possible, binary (n, M, d)-codes with the
following parameters: (6, 2, 6), (3, 8,1), (4, 8,2), (5, 3,4),

(8, 30, 3). (When not possible, show why not possible).

2.2 Show that if there exists a binary (n, M, d)-code, then
there exists a binary (n —1, M', d)-code with M' = M/2.
Deduce that A,(n,d) <2A,(n — 1, d).

2.3 Prove that A,(3, 2) = ¢* for any integer g =2. [Hint: See
Exercise 1.5].

2.4 Let E, denote the set of all vectors in (F)" which have
even weight. Show that E, is the code obtained by adding
an overall parity check to the code (F)"~!. Deduce that E,
is an (n,2"", 2)-code.

2.5 Consider an entry to a football pool made by selecting 10
matches at random from a total of 50 and ‘choosing any 8
from 10’. Show that if exactly 8 of the 50 matches finish as
draws, the odds against the above entry containing a
winning line are greater than 10 million to 1.

2.6 Show that if there is a binary (n, M, d)-code with d even,
then there exists a binary (n, M, d)-code in which all the
codewords have even weight.

2.7 Show that the number of inequivalent binary codes of
length n and containing just two codewords is 7.

2.8 Show that A,(8,5)=4 and that, up to equivalence, there
is just one binary (8, 4, 5)-code.

2.9 Show that any g-ary (n,q,n)-code is equivalent to a
repetition code.

2.10 Show that a g-ary (¢ + 1, M, 3)-code satisfies M < g9 ".
2.11 Show that A,(8,4) = 16. :
2.12 Listed below are the blocks of an (11,5, 2)-design. Use
this to construct a binary (11, 24, 5)-code.

{1,3,4,5,9}, {2,4,5,6,10}, £3.5.8,7, 11},
{1,4,6,7,8}, {2,5,7,8,9}, {3,6,8,9, 10},
{4,7,9,10, 11}, {1,5,8,10,11}, 11,2,0.9, 11},
{1,2,3,7,10}, {2,3,4,8,11}.

[Remark: We see from Table 2.4 that A,(11,5) =24 and
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so the code constructed here is the largest binary double-
error-correcting code of length 11. We shall prove this in
Exercise 2.22(iv).]

Show that the sphere-packing bound for a binary
(11, M, 5)-code gives only M < 30.

2.13 Show that the parameters of a (b, v, r, k, 1)-design satisfy
(i) bk = vr, (ii) r(k — 1) = A(v — 1). [Hint for (i): Count in
two ways the number of ordered pairs in the set {(x, B): x
is a point, B is a block and x € B}.]

2.14 Show that there do not exist (b, v, r, k, A)-designs with the
parameters: (i) (12, 8, 6, 4, 3), (i) (22,22,7,7,2).

2.15 Show that if there exists a Hadamard (4 —1,2t—1, ¢t —1)-
design, then A,(4¢—1,2t-1)=8t.

2.16 Let C be the binary code consisting of all cyclic shifts of
the vectors 11010000, 11100100 and 10101010, together
with 0 and 1. (A cyclic shift of a,a, - - - a, is a vector of the
form a4, -a,ma,---a,_,.) Show that C is a (8, 20, 3)-
code. When showing that d(C) =3, the cyclic nature of
the code reduces the number of evaluations of d(x,y)

required from (220) to

2.17 [The (u|u+v) construction of Plotkin (1960).] Given
W=y - U,andv=uv, - -v,, let (u|v) denote the vector
U ' Uy, v, of length m +n. Suppose that C, is a
binary (n, M,, d,)-code and that C, is a binary (n, M,, d,)-
code. Form a new code C; consisting of all vectors of the
form (u|u+v), where ue C,, ve C,. Show that C; is a
(2n, M\M,, d)-code with d = min {2d,, d,}.

2.18 Prove that A,(16, 3) = 2560. [Hint: Use Exercises 2.16 and
2.17.]

2.19 Starting from the (4, 8, 2) even-weight code (see Exercise
2.4) and the (4, 2, 4) repetition code, apply Exercise 2.17
three times to show that there exists a binary (32, 64, 16)-
code. [Remark: The (2™, 2™+, 2™~1)-codes, which may be
constructed in this way for each positive integer m =1, are
called first-order Reed—Muller codes.)

-+ (how many?).

The aim of the next three exercises is to derive the so-called
Plotkin bound.
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© 220 Show that if Cis a binary (n, M, d)-code with n <2d, then

M< {2d/(2d —n) if M is even
“l2d/(2d —n) -1 if Mis odd.

, Xy} and let T be the (1;4) Xn

matrix whose rows are the vectors x; +x;, 1<i<j<M.
Estimate the number w(T) of non-zero entries of T in two
ways, via rows and via columns.]

Deduce from Exercise 2.20 that, if n <2d, then

Ay(n,d)<2|d/(2d - n)].

State the upper bounds this gives on A5(9,5) and on
A,(10,6). How can the bound on A,(9,5) be improved?
[Remark: As for this case, it happens in general that the
above bound is good for d even, but is open to improve-
ment for d odd; we make that improvement in the next
exercise. ]

Show that

(i) if d is even and n <2d, then

Ay(n, d)<2|d/(2d —n)],
(ii) if dis odd and n <2d + 1, then
Ay(n,d)<2|(d+1)/(2d +1—-n)],

(iii) if d is even, then A,(2d,d)<4d,

(iv) if d is odd, then A;(2d +1,d)<4d +4.

(i) to (iv) are known collectively as the Plotkin bound.
Show that the (32, 64, 16)-code of Exercise 2.19 is optimal.
Generalize this result by proving that A,(2d,d)=4d
whenever d is a power of 2.

Show that if there exists a Hadamard (4¢—1,2t—1,¢— 1)
design, then A,(4¢, 2t) = 8t¢.

[Hint: let C= {x,,X,,. ..



3 An introduction to finite fields

~ To make error-correcting codes easier to use and analyse, it is
“,'. necessary to impose some algebraic structure on them. It is
- especially useful to have an alphabet in which it is possible to
\ -(add, subtract, multiply and divide without réstriction. In other
~ words we wish to ‘give F, the structure of a field, the formal
~ definition of which follows.

: -—Mﬁon A field F is a set of elements with two operations +
(called addition) and - (multiplication) satisfying the following
properties.
(i) Fisclosed under + and -, i.e.a+banda-b arein F
whenever a and b are in F.
all a, b and c in F, the following laws hold.
(i) Commutative laws: a +b=b+a,a-b=b-a.
(iii) Associative laws: (a +b)+c=a+(b+c),a-(b-c)=
(@-b)-c.
~ (iv) Distributive law: a-(b+c)=a-b+a-c.

a+0=aforallain F.

a-l1=qgforallainF.

For any-a in F, there exists an additive inverse element
(—a) in F such that a + (—a) =0.

For any a#0 in F, there exists a multiplicative inverse
element @~ in Fsuch thata-a'=1.

From now on we will generally write a - b simply as ab.

- We can regard a field F as having the four operations +, —,
+ and +, where — and -+ are given by (vii) and (viii)
- respectively with the understanding that a —b =a + (-b)
- anda+b, oral/b,=a(b™?) for b#0.
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(3) The reader who has done any group theory will recognize
that a field can be more concisely defined to be a set of
elements such that
(a) it is an abelian group under +,

(b) the non-zero elements form an abelian group under -,
(c) the distributive law holds.

(4) The following two further properties of a field are easily

deduced from the definition.

Lemma 3.1 Any field F has the following properties.

(i) a0=0forallainF.
(ii) ab=0=>a=0o0rb= 0. (Thus the product of two non-zero

elements of a field is also non-zero.)

Proof (i) We have a0=a(0+ 0) = a0 + a0. Adding the addi-
tive inverse of a0 to both sides gives

0=a0+(—a0_)=a0+a0+(—a0)=a0+0=a0.

Thus a0=0.
(ii) Suppose ab=0. If a#0, then a has a multiplicative

inverse and so b=1-b=(a"'a)b=a"'(ab)=a"'0=0. Hence
ab=0=>a=0o0rb=0.

Definition A set of elements with + and - satisfying the field
properties (i) to (vii), but not necessarily (viii), is called a ring.

Remark For convenience, we have defined a ‘ring’ to be a
structure which should properly be called a ‘commutative (or
abelian) ring, with an identity’.

Familiar examples of infinite fields are the set of real numbers
and the set of complex numbers. The set Z of integers is a ring
but is not a field because, for example, 2 does not have a
multiplicative inverse in Z. Another example of a ring which is
not a field is the set F[x] of polynomials in x with coefficients
belonging to a field F. This ring will be of importance in Chapter
12.

Definition A finite field is a field which has a finite number of
elements, this number being called the order of the field.
The following fundamental result about finite fields was proved
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Py Evariste Galois (1811-32), a French mathematician who died
in a duel at the age of 20. Galois is famous also for proving that
the general quintic equation is not solvable by radicals.

Tlfeorem 3.2 There exists a field of order ¢ if and only if g is a
prime power (i.e. ¢ =p", where p is prime and & is a positive
integer). Furthermore, if ¢ is a prime power, then there is, up to
relabelling, only one field of that order.

A field of order g is often called a Galois field of order ¢ and is
denoted GF(q).
The proof of Theorem 3.2 may be found in one of the more
advanced texts on coding theory or in books on abstract algebra.
~ While we shall give a partial proof in Exercise 4.6, and shall give
~ a brief description of fields of order p”*, with A >1, in Chapter
12, it is enough for almost all our purposes to consider only
prime fields, those of order a prime number p. We shall see
b shortly that if p is prime, then GF(p) is just the set
i {0,1,...,p— 1) with arithmetic carried out modulo p. But first
'E,"- we review modular arithmetic in general.

Definition Let m be a fixed positive integer. Two integers a and
b are said to be congruent (modulo m), symbolized by

a=b (mod m),

if @ — b is divisible by m, i.e. if a = km + b for some integer k.
)We write a # b (mod m) if a and b are not congruent (modulo
m).
N Ev'ery integer, when divided by m, has a unique principal
remainder equal to one of the integers in the set Z,, = {0, 1, ...,
- m~—1}. It is easily shown that two integers are congruent
~ (mod m) if and only if they have the same principal remainders
on division by m. '

" Examples 3=24(mod7), 13=-2(mod5), 25%12(mod7),
E 15= 0(mod3), 15= 0(modS), 15# 0(mod2).
- Theorem 3.3 Suppose a=a'(modm) and b=b'(modm).
‘Then

- ) a+b=a'+b'(modm)
(i) ab=a'b' (modm).



34 ' A first course in coding theory

Proof a=a'+km and b=>b'+Im for some integers k and [.
Then (i) a+b=a'+b'+(k+I)m and so a+b=a'+
b’ (modm) and (ii) ab=a'b'+ (kb' +a'l + kim)m and so
ab=a'b’' (mod m).

Theorem 3.3 enables congruences to be calculated without
working with large numbers. Note that if a =a’, then repeated
use of (i) shows that, for all positive integers
n,a"=(a')" (modm).

Examples 3.4 (i) What is the principal remainder when 73 - 52
is divided by 7?
(i) Determine whether (2'°)(14*) + 1 is divisible by 11.

Solution (i) 73=3(mod7) and 52=3(mod7). Hence, by
Theorem 3.3(ii), 73:52=3-3=9=2(mod 7). So the principal
remainder is 2. (There is no need actually to multiply 73 by 52
and divide the answer by 7.)

(i) Note that 25=32=—1(mod11). Also 1£=3=—-
2 (mod 11). Hence

(219)(14%) = (25)*(3)* = (-1)’(-2)*
=(-1)(2) = (-1)(2%*=(-1)(-1)*= -1 (mod 11).

Thus (2'%)(14*) + 1=0(mod 11), i.e. the number is divisible
by 11.

Let us now try to give Z,, = {0,1,...,m — 1} the structure of
a field. We define addition and multiplication in Z,, by: a + b (or
ab) = the principal remainder when a +b (or ab) is divided by
m.
For example, in Z;, we have

8+4=0, 9+11=8, 3:4=0, 3-9=3.

Theorem 3.3 shows that addition and multiplication in Z,, are
well-defined and it is easily verified that the field properties (i) to
(vii) are satisfied for any m (the additive inverse of a is m—a).
Thus, for any integer m =2, Z,, is a ring. It is called the ring of
integers modulo m. But for which values of m is field property
(viii) satisfied? The following theorem gives the answer.
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Theorem 3.5 Z,, is a field if and only if m is a prime number.

Proof First, suppose m is not prime. Then m =ab for some
integers a and b, both less than m. Thus

ab =0 (mod m), with @ # 0(mod m) and b # 0(mod m).

So, in Z,,, the product of the non-zero elements a and b is zero
and so, by Lemma 3.1(ii), Z,, is not a field.

Now suppose that m is prime. By the remarks preceding this
theorem, to show that Z,, is a field it is enough to show that
every non-zero element of Z,, has a multiplicative inverse. Let a
be a non-zero element of Z,, and consider the m — 1 elements
la,2a,...,(m—1)a, These elements are non-zero, for ia
cannot have the prime m as a divisor if i and a do not. Also the
elements are distinct from one another, for

ia=ja=(i—j)a=0(modm)
= m is a divisor of (i —j)a
= m is a divisor of i — j, since m is prime
and does not divide a.
=>i=j,since bothiandje{1,2,...,m—1}.
So, in Z,, the m —1 elements la, 2a,...,(m —1)a must be
equal to the elements 1,2, ..., m — 1, in some order, and one of

them, ja say, must be equal to 1. This j is the desired inverse of
a.

Examples 3.6 (1) GF(2)=Z,= {0, 1} with addition and multi-

+10 1 “It 01
0101 0100
1110 1.1 041

(2) GF(3)=2Z;=1{0,1,2} with tables
+ 1012 - 1012

plication tables
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(3) Z,is not a field by Theorem 3.5 (examination of the
multiplication table of Z, shows that 2 does not have an inverse
and so we cannot divide by 2 in Z,). However, while 4 = 27 is not
prime, it is a prime power, and so the field GF(4) does exist, by
Theorem 3.2. It can be defined as GF(4)={0,1,a,b} with
tables

0labd

We shall meet this field in its natural setting in Example 12.2.

(4) Zsand Z,, are not fields, nor is there any field of order 6
or 10.

(5) GF(11)=2,={0,1,2,..., 10} is a field. We can easily
carry out addition, subtraction and multiplication (modulo 11)
without using tables. But what about division? Remember, to
divide a by b, we just multiply @ by b~'. So how do we find b~'?
The proof of Theorem 3.5 shows the existence of multiplicative
inverses but not how to find them efficiently. Two methods for a
general prime modulus m are described in Exercises 3.8 and 3.9.
For a modulus as small as m = 11 it is easy to construct, by trial
and error, a table of inverses, thus:

x 112345678910

' | 16439287510

To illustrate the use of this table, we will divide 6 by 8 in the field

GF(11). We have
$=6-8"1=6-7=42=9.

We can give an immediate application of the use of modulo 11
arithmetic in an error-detecting code.

The ISBN code

Every recent book should have an International Standard Book
Number (ISBN). This is a 10-digit codeword assigned by the
publisher. For example, a book might have the ISBN

0-19-859617-0

-
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althougl} the hyphens may appear in different places and are in
fact unimportant. The first digit, 0, indicates the language
(English) and the next two digits 19 stand for Oxford University
Press, the publishers. The next six digits 859617 are the book
number assigned by the publisher, and the final digit is chosen to
make the whole 10-digit number x,x; - - - x;, satisfy

10
.~=21 ix,=0 (mod 11). (3.7)

The left-hand side of (3.7) is called the weighted check sum of the
number x;X, - X;. Thus for the 9-digit number x,x,-:-Xo
already chosen, x,, is defined by

9
X10=2, ix; (mod11
{0 get the ISBN. &5 m
The publisher is forced to allow a symbol X in the final
position if the check digit x,, turns out to be a ‘10’; e.g.
Chambers Twentieth Century Dictionary has ISBN 0550-10206-X.
The ISBN code is designed to detect (a) any single error and
(b) any double-error created by the transposition of two digits.
The error detection scheme is simply this. For a received vector
Vb - yo calculate its weighted check sum Y=X2,iy. If
Y#0 (mod 11), then we have detected error(s). Let us verify that
this works for cases (a) and (b) above. Suppose X =X,x, * * - X;o IS
the codeword sent.

(a) Suppose the received vector y =y, - - * yyo is the same as x
except that digit x; is received as x;+a with a#0. Then
Y =319 iy = (2}, ix) + ja =ja#0 (mod 11), since j and a
are non-zero.

(b) Suppose y is the same as x except that digits x; and x, have
been transposed. Then .

10 10
Y=§iy.-=2 ix; + (k = j)x; + ( — k)x,

i=1
=(k —j)(x—x)#0 (mod1l),
if k #j and x; ¥ X;.
Note how crucial use is made of the result (Lemma 3.1(ii)) that

n a field, the product of two non-zero elements is also non-zero.
This does not hold in Z, in which, for example,
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2.5=0 (mod 10), and this is why we work with modulus 11 rather
than 10. We shall discuss some further codes based on modulo 11
arithmetic in Chapters 7 and 11.

The ISBN code cannot be used to correct an error unless we
know that just one given digit is in error. This is the basis of the
following party trick.

Ask a friend to choose a book not known to you and to read
out its ISBN, but saying ‘x’ for one of the digits. After a few
seconds working you announce the value of x. For example, if
the number read out is 0-201-1x-502-7, your working is:

1:0+2:2+3-0+4:1+5-1+6-x+7-5+8:0+9:2+10-7=0.
Hence 6x +4=0, and so

x=:6ﬁ=7-6"'=7-2=l4=3.

Concluding Remark 1t is hoped that the reader is beginning to
appreciate the power and versatility of finite fields, which the
author believes to be among the most beautiful structures in
mathematics. One remarkable property of any finite field, not
needed in this book and so not proved here, is that all the
non-zero elements can be expressed as powers of a single
element, which is called a primitive element; i.e. there exists
g€ GF(q) such that the non-zero elements of GF(q) are
precisely 1,8,8%,...,8772, with g¢~' =1. This result is by no
means obvious, even if we restrict our attention to the case of
prime fields. One application of this result is that in a large or
complicated field a table of indices of the non-zero elements,
with respect to a fixed primitive root, can be constructed, and
this can be used, in the same way as logarithms, to carry out
multiplication in the field.

For an encyclopaedic volume on finite fields the reader is
referred to Lidl and Niederreiter (1983).

Exercises 3

3.1 Find the principal remainder when 2 is divided by 7. Find
the units digit of 3'%.
3.2 Show that every square integer is congruent (mod 4) to
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either 0 or 1. Hence show that there do not exist integers x
; and y such that x2 + y2 = 1839. !
3.3 Construct a table of multiplicative inverses for (i) GF(7),
(ii) GF(13).
- 3.4 (i) Whatis the minimum distance of the ISBN code?
B (ii) What proportion of books would you expect to have
: an ISBN containing the symbol X?
Check whether the following are ISBNs.

0-13165332-6
0-1392-4101-4
07-028761-4

The following ISBNs have been received with smudges.
What are the missing digits?

0-13-1@9139-9

0-02-326880-0

Consider the code C of all 10-digit numbers over the
10-ary alphabet {0, 1, . . . , 9} which have the property that
the sum of their digits is divisible by 11; that is,

10
2 x;=0 (mod 11)}.

i=1

C={x1x2- ' X0

Show that C can detect any single error. What would be
the disadvantage of using this code for book numbers
~ rather than the ISBN code?

.8 Let a be a non-zero element of GF(p), where p is prime.
By considering the product of the p—1 elements
la,2a,...,(p —1)a, prove that

a*~'=1 (modp)

Deduce that a~!=4?"2(mod p). [Remark: for p large, a
more efficient method of finding a~! is given in the next
~ exercise].

) The Euclidean algorithm is a well-known method of
i finding the greatest common divisor d of two integers a
- and b. It also enables d to be expressed in the form

d=ax + by

(Fermat’s theorem).
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for some integers x and y. Show that the Euclidean
algorithm can therefore be used to find the inverse of an
element a#0 in the field GF(p), where p is prime. If you
know the Euclidean algorithm, use it to calculate
237! (mod 31).

Find a primitive element for each of GF (3), GF(7) and
GF(11).

Suppose F is a finite field. Given that aoeFand nis a
positive integer, let na denote the element a+a+- -+
« (n terms). Prove that there exists a prime number p such
that pa =0 for all a € F. This prime number p is called
the characteristic of the field F.

Suppose p is a prime number. Show that (a+by=a?+

b? (mod p). [Hint: show that (’;)EO(mod pRifsis

p —1.] Deduce that a?=a(modp), for any integer a.
(This gives an alternative proof of Fermat’s theorem,
Exercise 3.8.)
In the field GF(q), where g is odd, show that the product
of all the non-zero elements is equal to —1.
Show that in a finite field of characteristic p,

(i) if p =2, then every element is a square

(i) if p is odd, then exactly half of the non-zero elements

are squares.

- In addition to carrying out arithmetical operations within the
E g_l_pha{bet of a f:ode, it is also very useful to be able to perform
~ certain operations with the codewords themselves. We have
lrf,all'eady benefited from this in making use of the ‘sum’ of two
- binary vectors to prove Lemma 2.6.

qj 'Ihroughout this chapter we assume that g is a prime power
nd we let GF(q) d'enote the finite field of ¢ elements. The
ments of GF(gq) will be called scalars. The set GF(q)" of all
e red n-tuples over GF(g) will now be denoted by V(n,q)
‘and its elements will be called vectors.

‘We define two operations within V(n, q):

,@ addition of wvectors: if x=(x,x,...,x,) and y=
‘!&k, ale vyn) € V(n’ q)’ then
X+ty=+y, %+, ..., % +Y)

; f'ii) multiplication of a vector by a scalar: if
X=(x,%,...,x,)€V(n,q) and aeGF(q),

§;= (ax,, ax,, . . . ,ax,).

e reader should have no difficulty in verifying that V(n, q)
tisfies the axioms for a vector space; i.e. that, for all u,v,we
(r _b) and for all a, b € GF(q),

() u+veV(n,q)

(u+v)+w=u+(v+w)

.the all-zero vector 0= (0,0,...,0)e V(n,q) and sat-
isfiesu+0=0+u=nu.

; Given w= (4, %, ...,u,)€V(n,q), the element —u

=‘()—ul, —Uy,...,—u,) € V(n,q) and satisfies u + (—u)
ut+v=v+u.

- (Properties (i)~(v) mean that V(n, q) is an ‘abelian
group’ under addition).
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(vi) (Closure under scalar multiplication) ave V(n, q).
(vii) (Distributive laws) a(u+v)=au+av, (a+bu=au+
bu.
(viii) (ab)u= a(bu).
(ix) lu=wu, wherel is the multiplicative identity of GF(q)-
A subset of V(n, q) is called a subspace of V(n, q) if it is itself
a vector space under the same addition and scalar multiplication
as defined for V(n, q).
Trivially, the set {0} and the whole space V(n,q) are
subspaces of V(n, q). A subspace is called non-trivial if it
contains at least one vector other than 0.

Theorem 4.1 A non-empty subset C of V(n, q) is a subspace if
and only if C is closed under addition and scalar multiplication,
i.e. if and only if C satisfies the following two conditions:

(1) Ifx,yeC,thenx+ye€ C.

(2) faeGF(q)andxe C, thenaxeC.

Proof It is readily verified that if C satisfies (1) and (2), then C
satisfies all the axioms (i)—(ix) (with V(n, q) replaced by C) for a
vector space. (To show that 0 e C, choose any x € C; then, by
(2), 0=0xe C. Property (2) also shows that if ve C, then
—veC, for —v=(-1)v.)

Readers familiar with the theory of vector spaces over infinite
fields, such as the real or complex numbers, will find that
definitions and results generally carry over to the finite case, €.8.
the following.

A linear combination of r vectors vy, ¥z, . . ., Vr in V(n,q)is a
vector of the form ayv,+@&v,+ - +av, where the a; are
scalars.

It is easily verified that the set of all linear combinations of a
given set of vectors of V(n, q) is a subspace of V(n,q)-

,v,} is said to be linearly

A set of vectors {vy,Va ...
,a,, not all zero, such

dependent if there are scalars a,, 4, . - .

t
the av, + @y, + -+ av,=0.

A set of vectors {V, Va, . - . , V,} is called linearly independent if
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it is not linearly dependent; i.e. if
avitayv,+---+av,=0a=a=---=a=0.

A Let Cbe a subspace of V(n, g). Then a subset {v,,v,,...,V,}
~of Cis called a generating set (or spanning set) of C if every

ig!ﬂector in C can be expressed as a linear combination of
Vi, V2, ..., V.

- A generating set of C which is also linearly i ;
 called a basis of C. y independent is
~ For example, the set

L {(1,0,0,...,0,0,1,0,...,0),...,0,0,...,0,1)
a basis of the whole space V(n, q).

Theorem 4.2 Suppose C is a non-trivial subspace of V(n,q).
] any generating set of C contains a basis of C.
Pr f _Suppose {V;,V;, . ..,V,} is a generating set of C.

If it is linearly dependent, then there are scalars 4, a,, . . . , 4,

not all zero, such that
Pio
vyt av,+---+av,=0.

@ is non-zero then

r

v=—a;7') av

i=1,i4j

S0 v; is a linear combination of the other v;. Thus v; is
‘;7:-3, as a generator and can be omitted from the set
V2, ..., V,} to leave a smaller generating set of C. In this
¢ can omlt. redundant generators, one at a time, until we
9. a linearly _mdependent generating set. The process mus
 since we begin with a finite set. :

nce any subspace C of V(n, q) contains a finite generating °

2 C itself), it follows from Theorem 4.2 that every
al subspace has a basis.

Dasis can be thgught of as a minimal generating set, one
~does not contain any redundant generators.

4.3 Suppose {vy,V, ..., V.} is a basis of a subspace C
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M ”H of V(n, q). Then if we either \ '
ki (i) every vector of C can be expressed uniquely as a linear (a) replace an x; by a non-zero scalar multiple of itself,
5\%,”“\\ ‘ combination of the basis vectors. or AT
H (ii) C contains exactly g* vectors. (b) replace an x; by x; + ax;, fqr some scalar a, with j#i.
”l' 4.6 Suppose Fis a field of characteristic p. Show that F can be
‘ II’ 1\ Proof (i) Suppose a vector x of C is represented in two ways regarded as a vector space over GF(p). Deduce that any
| as a linear combination of v,, v,, . . ., v,. That is, ﬁmt"i) field has order equal to a power of some prime
I number.
' | “ K SRV tipupt O i iy, 4.7 From the vector space V(3, g), an incidence structure P, is
“ il and x=b,v, + by, + - - + bv,. defined as follows.

The ‘points’ of P, are the one-dimensional subspaces of

Then (a, — by)vy + (a, = by)vy + « - - + (a, — b, )v, = 0. But the set
{vi,¥2,...,v} is linearly independent and so a,—b,=0 for
el 2. 4.0, kyiiesiassb for ik, 2uin sk

(i) By (i), the g* vectors Lk, a,v, (4, € GF(q)) are precisely
the distinct vectors of C.

V(3, g). The ‘lines’ of P, are the two-dimensional sub-

spaces of V(3; g). The point P ‘belongs to’ the line L if

and only if P is a subspace of L. :
Prove that P, is a finite projective plane of order g. List

the points and lines of P and check that it has the same
structure as the seven-point plane defined in Example

It follows from Theorem 4.3 that any two bases of a subspace 2.19

C contain the same number k of vectors, where |C| = g*, and this
number k is called the dimension of the subspace C; it is denoted
by dim (C).

We have already exhibited a basis of V(n, ¢) having n vectors
and so dim (V(n, q)) =n.

Exercises 4

4.1 Show that a non-empty subset C of V(n, q) is a subspace if
'l and only if ax+bye C for all a, b€ GF(q) and for all
;j “ x,yeC.
| 4.2 Show that the set E, of all even-weight vectors of V(n,2)
is a subspace of V(n,2). What is the dimension of E,?
Il [Hint: See Exercise 2.4.] Write down a basis for E,.
h -3 Let C be the subspace of V(4, 3) having as generating set
‘ ,‘\‘1 {(0,1,2,1), (1,0,2,2), (1,2,0,1)}. Find a basis of C.
i What is dim (C)?
“N’, ‘ I 4.4 Letuand v be vectors in V(n, g). Show that the set {u, v}
H is linearly independent if and only if u and v are non-zero
\’IH‘ i and v is not a scalar multiple of u.
‘ 4.5 Suppose {x,%,...,X:} is a basis for a subspace C of
V(n, q). Show that we get a basis for the same subspace C

'




5 Introduction to linear codes

Throughout this chapter, we assume that the alphabet F, is the
Galois field GF(q), where g is a prime power, and we regard
(F,)" as the vector space V(n,q). A vector (x;,x,,...,x,) will
usually be written simply as x,x, - - - x,,.

A linear code over GF(q) is just a subspace of V(n,q), for
some positive integer-n.

Thus a subset C of V(n, g) is a linear code if and only if .

(1) u+veC, foralluandvin C, and
(2) aueC,foralueC, ae GF(q).

In particular, a binary code is linear if and only if the sum of
any two codewords is a codeword. It is easily checked that the
codes C,, G, and G; of Example 1.5, and the code C of Example
2.23, are all linear.

If C is a k-dimensional subspace of V(n,q), then the linear
code C is called an [n, k]-code, or sometimes, if we wish to
specify also the minimum distance d of C, an [n, k, d]-code.

Notes (i) A g-ary [n, k,d]-code is also a g-ary (n, g*, d)-code
(by Theorem 4.3), but, of course, not every (n, ¢g*, d)-code is an
[n, k, d]-code.

(ii) The all-zero vector 0 automatically belongs to a linear
code.

(iii) Some authors have referred to linear codes as ‘group
codes’.

The weight w(x) of a vector x in V(n, q) is defined to be the
number of non-zero entries of x. One of the most useful
properties of a linear code is that its minimum distance is equal
to the smallest of the weights of the non-zero codewords. To
prove this we need a simple lemma.

Lemma 5.1 If x andye V(n,q), then
d(x,y) =w(x—y).
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Proof The vector x—y has non-zero entries in precisely those
places where x and y differ.

Remark For q=2, Lemma 5.1 is the same as Lemma 2.5,
bearing in mind that ‘plus’ is the same as ‘minus’ when working
modulo 2.

Theorem 5.2 Let C be a linear code and let w(C) be the
smallest of the weights of the non-zero codewords of C. Then

d(C) = w(C).

Proof There exist codewords x and y of C such that d(C)=
d(x,y). Then, by Lemma 5.1,

d(C) = w(x—y)=w(C),

since x —y is a codeword of the linear code C.
On the other hand, for some codeword x € C,

w(C) = w(x) = d(x, 0) = d(C),

since 0 belongs to the linear code C. Hence d(C)=w(C) and
w(C) =d(C), giving d(C) = w(C).

We now list some of the advantages and disadvantages of
restricting one’s attention to linear codes.

Advantage 1 For a general code with M codewords, to find the
minimum distance we might have to make (A;) =IMM -1)

comparisons (as in Example 2.23). However, Theorem 5.2
enables the minimum distance of a linear code to be found by
examining only the weights of the M — 1 non-zero codewords.

Note how much easier it is now to show that the code of
Example 2.23 has minimum distance 3, if we know that it is
linear.

Advantage 2 To specify a non-linear code, we may have to list
all the codewords. We can specify a linear [n, k]-code by simply
giving a basis of k codewords.

Introduction to linear codes 49

Definition A k X n matrix whose rows form a basis of a linear
[n, k]-code is called a generator matrix of the code.

Examples 5.3 (i) The code C, of Example 1.5 is a [3,2,2})-
code with generator matrix [(1) (1) i]
(i) The code C of Example 2.23 is a [7,4,3]-code with
generator matrix
18111 N X

1000101
1100010
110001

(iii) The g-ary repetition code of length n over GF(q) is én
[n,1, n]-code with generator matrix

11---1]

Advantage 3 There are nice procedures for encoding and
decoding a linear code (See Chapters 6 and 7).

Disadvantage 1 Linear g-ary codes are not defined unless g is a
prime power. However, reasonable g-ary codes, for g not a
prime power, can often be obtained from linear codes over a
larger alphabet. For example, we shall see in Chapter 7 how
good decimal (i.e. 10-ary) codes can be obtained from linear
11-ary codes by omitting all codewords containing a given fixed
symbol. This idea has already been illustrated in Chapter 3, for
the ISBN code can be obtained in such a way from the linear
11-ary code

10
{xlez -+ X0 € V(10,11): 2 ix; =0}_

i=1

Disadvantage 2 The restriction to linear codes might be a
restriction to weaker codes than desired. However, it turns out
that codes which are optimal in some way are very frequently
linear. For example, for every set of parameters for which it is
known that there exists a non-trivial perfect code, there exists a
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perfect linear code with those parameters. Notice also how often
the value of A,(n,d) in Table 2.4 is a power of 2. It is usually,
though not always, the case that such a value of A,(n,d) is
achieved by a linear code.

Equivalence of linear codes

The definition of equivalence of codes given in Chapter 2 is
modified for linear codes, by allowing only those permutations of
symbols which are given by multiplication by a non-zero scalar.
Thus two linear codes over GF(q) are called equivalent if one
can be obtained from the other by a combination of operations of
the following types.

(A) permutation of the positions of the code;
(B) multiplication of the symbols appearing in a fixed position
by a non-zero scalar.

Theorem 5.4 Two k Xn matrices generate equivalent linear
[n, k]-codes over GF(q) if one matrix can be obtained from the
other by a sequence of operations of the following types:

(R1) Permutation of the rows.

(R2) Multiplication of a row by a non-zero scalar.

(R3) Addition of a scalar multiple of one row to another.
(C1) Permutation of the columns.

(C2) Multiplication of any column by a non-zero scalar.

Proof The row operations (R1), (R2) and (R3) preserve the
linear independence of the rows of a generator matrix and simply
replace one basis by another of the same code (see Exercise 4.5).
Operations of type (C1) and (C2) convert a generator matrix to
one for an equivalent code.

Theorem 5.5 Let G be a generator matrix of an [n, k]-code.
Then by performing operations of types (R1), (R2), (R3), (C1)
and (C2), G can be transformed to the standard form

[Ik [ A]v

where I, is the k X k identity matrix, and A is a k X (n —k)
matrix.

<

&
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Proof During a sequence of transformations of the matrix G,
we denote by g; the (i, j)th entry of the matrix under considera-
tion at the time and by ry,r,,...,r;, and ¢, ¢,, ..., ¢, the rows
and columns respectively of this matrix.

The following three-step procedure is applied for j=1,
2,...,k in turn, the jth application transforming column ¢; into
its desired form (with 1 in the jth position and Os elsewhere),
leaving unchanged the first j — 1 columns already suitably trans-
formed. Suppose then that G has already been transformed to

’_1 0 “ee 0 gl, oo glllT
0.1 3+ 0 gy ' ga
0 O ces l gj—lJ co e gj—l.n d
q 0 oo e 0 gii & ol _g/"

-0 0o .. 0 glq oo gkn_

Step 1 If g;#0, go to Step 2. If g;=0, and if for some
i>],g;#0, then interchange r; and r;. If g; =0 and g, =0 for all
i >j, then choose h such that g;, #0 and interchange ¢; and c;,.
Step 2 We now have g;#0. Multiply r; by g;.
Step 3 We now have g;=1. For each of i=1,2,...,k, with
i#j, replace r; by r; — g,r;.

The column ¢; now has the desired form.

After this procedure has been applied for j=1,2,...,k, the
generator matrix will have standard form.

Notes (1) If G can be transformed into a standard form matrix
G' by row operations only (this will be the case if and only if the
first k columns of G are linearly independent), then G’ will
actually generate the same code as does G. But if operations
(C1) and (C2) are also used, then G’ will generate a code which
is equivalent to, though not necessarily the same as, that
generated by G. The procedure described in the preceding proof
is designed to give a standard form generator matrix for the same
code whenever this is possible.

(2) In practice, inspection of the generator matrix G will
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often suggest a quicker way to transform to standard form, as in
Example 5.6(iii) below. :

(3) The standard form [/ | A) of a generator matrix is not
unique; for example, permutation of the columns of A will give a
generator matrix for an equivalent code.

Examples 5.6 (i) See Example 5.3(i). Interchanging rows
gives the standard form generator matrix

[1 0 1]
011
for the code C,.

(ii) We will use the procedure of Theorem 5.5 to transform
the generator matrix of Example 5.3(ii) to standard form.

AP Y Py f e 1
1000101 enon 0111010
1100010 bl 0011101
0110001 [ 011000 1
1000101

ot 0111010

Gavin iy 0011101

000101 1.

10001017

. 0100111

T A 0011101

0001011

10001017

frAmEREn 0100111

Lkt 0010110

000101 1.

(iii) Consider the [6,3]-code over GF(3) having generator

matrix
000111
011012]}.
102011

Introduction to linear codes 53

An obvious permutation of the columns gives the standard form

generator matrix
100011
[010112]
001211

5.1 Is the binary (11,24,5)-code of Exercise 2.12 linear?
(There is no need to examine any codewords).

5.2 Exercise 4.2 shows that E,, the code of all even-weight
vectors of V(n,2), is linear. What are the parameters
[n, k,d] of E,? Write down a generator matrix for E, in
standard form.

5.3 Let H be an r X n matrix over GF(q). Prove that the set
C={xeV(n,q)|xHT =0} is a linear code. [Remark: we
shall show in Chapter 7 that every linear code may be
defined by means of such a matrix H, which is called a
parity-check matrix of the code.]

5.4 (i) Show that if C is a binary linear code, then the code
obtained by adding an overall parity check to C is
also linear.

(ii) Find a generator matrix for a binary (8,4, 4]-code.

5.5 Prove that, in a binary linear code, either all the code-
words have even weight or exactly half have even weight

for an equivalent code.

Exercises 5

and half have odd weight.
5.6 Let C, and C, be binary linear codes having the generator
- matrices
1001101
il DL and v [0101011].
0010111

List the codewords of C; and C, and hence find the
minimum distance of each code. (Use Theorem 5.2.)
57 Let C be the ternary linear code with generator matrix

[1011]
0112f
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List the codewords of C and use Theorem 5.2 to find the
minimum distance of C. Deduce that C is a perfect code.

Let B,(n, d) denote the largest value of M for which there
exists a linear g-ary (n, M, d)-code (g is a prime power).

Clearly the value of B,(n,d) is less than or equal to the -

value of A,(n,d), which was defined in Chapter 2.
Determine the values of By(8, 3), B»(8, 4) and B,(8, 5). Is it
true that By(n, d) = A,(n, d) for each of these cases?

Exercise 2.3 shows that A,(3, 2) = ¢* for any integer g =2.
Show that, if ¢ is a prime power, then B,(3,2) = ¢°.

Suppose [/, | A] is a standard form generator matrix for a
linear code C. Show that any permutation of the rows of A
gives a generator matrix for a code which is equivalent to

C.
Let C be the binary linear code with generator matrix

111000

1001100

1000011
1010104

Find a generator matrix for C in standard form. Is C the
same as the code of Example 5.6(ii)? Is C equivalent to
the code of Example 5.6(ii)?
Suppose C, and C, are binary linear codes. Let C; be the
code given by the (u | u + v) construction of Exercise 2.17.
Show that C, is linear.
Deduce that B,(2d, d) = 4d when d is a power of 2.

6 Encoding and decoding with a linear code

Encoding with a linear code

Let C be an [n, k]-code over GF(q) with generator matrix G. C
contains ¢* codewords and so can be used to communicate any
one of g* distinct messages. We identify these messages with the
q* k-tuples of V(k,q) and we encode a message vector u=
U, -+ - u simply by multiplying it on the right by G. If the rows
of G arery,r,,...,1, then i

k
uG = E UK;
i=1

and so uG is indeed a codeword of C, being a linear combination
of the rows of the generator matrix. Note that the encoding
function u—uG maps the vector space V(k,q) on to a k-
dimensional subspace (namely the code C) of V(n, q).

The encoding rule is even simpler if G is in standard form.
Suppose G = [l | A], where A=[a,] is a k X (n— k) matrix.
Then the message vector u is encoded as

x=nG=x1x2- . .xkxk+! .. -x’"

where x; = u;, 1 <i <k, are the message digits

1<sisn-—k,

k
and Xi+i = 2 au;,

j=1
are the check digits. The check digits represent redundancy which
has been added to the message to give protection against noise.

Example 6.1 Let C be the binary [7, 4]-code of Example 5.3(ii), A
for which we found in Example 5.6(ii) the standard form
generator matrix 1000101

0100111
0010110(
0001011

G=




56 A first course in coding theory
A message vector (i, U, Us, Us) is encoded as
(U, U, Un, Usy Uy + Up + Us, Uy + Uy + Uy, 1y + Uy + ).
For example,

0000 is encoded as 0000000,
1000 3 2 - 1000101,
Hhieiso 3 £ 5 1110100.

For a general linear code, we summarize the encoding part of the
communication scheme (see Fig. 1.1) in Fig. 6.2.

Fig. 6.2
Noise
" ? Codeword .
vector = lewor
ge > | Encoder, | ———>| channel
sowee U=U UpUy X=Xy X

Decoding with a linear code

Suppose the codeword X = x.x; - * * X, is sent through the channel
and that the received vector is y = y,)» - * * ¥,. We define the error
vector e to be
e=y—X=¢e¢&" "¢

The decoder must decide from y which codeword x was
transmitted, or equivalently which error vector e has occurred.
An elegant nearest neighbour decoding scheme for linear codes,
devised by Slepian (1960), uses the fact that a linear code is a
subgroup of the additive group V(n, ¢). The reader who is not
familiar with elementary group theory should not be deterred as
we shall not be assuming any prior knowledge of the subject
here.

Definition Suppose that C is an [n, k]-code over GF(q) and
that a is any vector in V(n, ¢). Then the set a + C defined by

a+C={a+x|xeC}

is called a coset of C.

Lemma 6.3 Suppose that a+ C is a coset of C and that

E.
b
4
x
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bea+ C. Then R

Proof Since bea+ C, we have b=a+ x, for some x € C. Now
ifb+yeb+ C, then
b+y=(a+x)+y=a+(x+y)ea+C.
Hence b+ C ca+ C.On the other hand, if a+zea+ C, then
atz=(b—-x)+z=b+(z—-x)eb+C.
Hencea+ Ccb+C,andsob+C=a+C.
The following theorem is a particular case of Lagrange’s
well-known theorem for subgroups.
Theorem 6.4 (Lagrange) Suppose C is an [n,k]-code over
GF(q). Then

(i) every vector of V(n, q) is in some coset of C,
(ii) every coset contains exactly q vectors,
(iii) two cosets either are disjoint or coincide (partial overlap is
impossible).

Proof (i) IfaeV(n,q),thena=a+0eca+C.
(i) The mapping from C to a + C defined by

b rrcal T

|foxi all x € C, is easily shown to be one-to-one. Hence |a+ C|=
-

(m) Suppose the cosets a+ C and b+ C overlap. Then for
some vector v, we have ve(a+ C)N(b+ C). Thus, for some
x,yeC,

v=a+x=b+y.
Hence b=a+ (x—y)ea+C, and so by Lemma 6.3, b+ C=
a+C.
Example 6.5 Let C be the binary [4,2]-code with generator
matrix S

G [0 10 1]‘
i.e. C= {0000, 1011, 0101, 1110}.




58 A first course in coding theory

Then the cosets of C are
0000 + C = C itself,
1000 + C = {1000, 0011, 1101, 0110},
0100 + C = {0100, 1111, 0001, 1010},
and 0010 + C = {0010, 1001, 0111, 1100}.

Note that the coset 0001 + C is {0001, 1010, 0100, 1111}, whi.ch is
the same as the coset 0100 + C. This could have been predicted
from Lemma 6.3, since 0001 € 0100 + C. Similarly we must have,
for example, 0111+ C = 0010 + C.

Definition The vector having minimum weight in a cqset is
called the coset leader. (If there is more than one vector with the
minimum weight, we choose one at random and call it t.he coset
leader. For example, in Example 6.5, 0001 is an alternative coset
leader to 0100 for the coset 0100 + C).

Theorem 6.4 shows that V(n,q) is partitioned into disjoint
cosets of C:

V(n,q)=(0+C)U(a,+C)U---U(a,+C),

where s=g¢"%-1, and, by Lemma 6.3, we may take
0,a,,...,a to be the coset leaders. : e
A (Slepian) standard array for an [n, k]-code Cis a ¢"™" X g
array of all the vectors in V(n,q) in which the first row consists
of the code C with 0 on the extreme left, and the other rows are
the cosets a; + C, each arranged in corresponding order, with the
coset leader on the left. A standard array may be constructed as

follows:

Step 1 List the codewords of C, starting with 0, as the ﬁr.st. TOW.
Step 2 Choose any vector a,, not in the first row, of minimum
weight. List the coset a, + C as the second row by putting a;
under 0 and a, + x under x for each xe C.

Step 3 From those vectors not in rows 1 and 2, choose a, of
minimum weight and list the coset a, + C as in Step 2 to get the
third row. .

Step 4 Continue in this way until all the cosets are listed and
every vector of V(n, q) appears exactly once.
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Example 6.6 A standard array for the code of Example 6.5 is

codewords — 0000 1011 0101 1110
1000 0011 1101 0110
0100 1111 0001 1010
0010 1001 0111 1100

coset leaders

Note that in a standard array, each entry is the sum of the
codeword at the top of its column and the coset leader at the
extreme left of its row. We now describe how the decoder uses
the standard array.

When y is received (e.g. 1111 in the above example), its
position in the array is found. Then the decoder decides that the
error vector e is the coset leader (0100) found at the extreme left
of y and y is decoded as the codeword x=y —e (1011) at the top
of the column containing y.

Briefly, a received vector is decoded as the codeword at the
top of its column in the standard array.

The error vectors which will be corrected are precisely the
coset leaders, irrespective of which codeword is transmitted. By
choosing a minimum weight vector in each coset as coset leader,
we ensure that standard array decoding is a nearest neighbour
decoding scheme.

In Example 6.6, with the given array, a single error will be
corrected if it occurs in any of the first 3 places (e.g. (a) below)
but not if it occurs in the 4th place (e.g. (b) below).

Message Codeword Channel Recewved Decoded Received

+ noise vector word message

@ o1 - 0101 — | 0101 . 0001 — 0101 . 01
® o1 —- 0101 - | 0101 -~ 0100 - 0000 . 00

Notes (1) In practice, the above decoding scheme is too slow
for large codes and also too costly in terms of storage require-
ments. A more sophisticated way of carrying out standard array
decoding, known as ‘syndrome decoding’, will be described in
Chapter 7.

(2) In Example (b) above, the message symbols 01 were
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actually unaffected by noise anfi yet, after decoding, ;he th'ggxg‘
message 00 was received. This is an instance of more arn:1 ;

good ensuing from the addition of redundapcy. But in or e; o
get a sensible measure of how good a codg is, we must calcu al:e
the probability that a received vector will be decoc!ed a§“tbe
codeword which was sent. Since thg error vectors which will be
corrected by standard array decoc.hng are the same whlcbever
codeword is sent, this calculation is extremely easy for a linear

code, as we now show.

Probability of error correction

implicity, we restrict our attention for the remainder of th{s
fl?;pstlerpto b)i(nary linear codes. We assume .tl}at the channel is
binary symmetric with symbol error probability p. We saw in
Chapter 1 that the probability that the error vector is a given
vector of weight i is p'(1—p)" and so the following theorem

follows immediately.

Theorem 6.7 Let C be a binary [n,k]-code, and for i= 0,
1,...,n let a; denote the number of coset leaders of weight i.
Then the probability P (C) that a received vector decoded b.y
means of a standard array is the codeword which was sent is

given by y
Pcorr(C) 5 Z alpi(l "P)"_i-

i=0
Example 6.8 For the [4,2]-code of Example 6.6, the coset
leaders are 0000, 1000, 0100 and 0010. Hence ap=1, a;=3,

a,=ay=a,=0, and so
Peorr(C) = (1 = p)* +3p(1 —p)’
=(1-p)’(1+2p).
If p=0.01, then P (C)=0.9897. The probability that. a de-
coded word is not the word sent, i.e. the word error rate, is
Pl €) = 1= Pur(C),

which, for p =0.01, is 0.0103. b :
Without coding, the probability of a 2-digit message being
received incorrectly is 1 — (1 — p)? which, for p = 0.01, is 0.0199.
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So, for p =0.01, we have nearly halved the word error rate at the

expense of having to send two check symbols with every 2-digit
message.

Remark 6.9 1f d(C)=2t+1 or 2t +2, then C can correct any ¢
errors. Hence every vector of weight <t is a coset leader and

n . ;
SO @, = ; for 0<i=<t. But for i >, the @; can be extremely

difficult to calculate and are unknown even for some very
well-known families of codes. One case for which there is no
such difficulty is that of perfect codes; since the error vectors
corrected by a perfect [n,k,2t+ 1]-code are precisely those

: n
vectors of weight <t, we have a;, = ( ) for 0<i<f and a,=0
fori>1. l

A linear [n,k]-code C uses n symbols to send k message
symbols. It is said to have rate R(C)=k/n. Thus the rate of a
code is the ratio of the number of message symbols to the total
number of symbols sent and so a good code will have a high rate.

Example 6.10 Let us return to Example 1.5 and consider how a
route can most accurately be communicated if we impose the
condition that the rate of the code used must be at least 1, ie.
that there is time enough to send only as many check symbols as
there are message symbols. We will assume the channel to be
binary symmetric with p = 0.01.

It might at first appear that we can do no better than to use the
[4, 2]-code of Example 6.6, for which we found in Example 6.8
that P, = 0.0103. It is not hard to see that this is the best we can
do if we limit ourselves to using just four codewords, one for
each possible message N, W, E or S. But consider the following
strategy.

We first identify N, W, E and S with the message vectors 00,
01, 10 and 11 and convert the route (e.g. NNWN - -:) to a long
string of message symbols (00000100 - ). We then break the
string into blocks of 4 and encode each block into a length 7
codeword by means of the [7, 4]-code C considered in Examples
2.23, 5.6 and 6.1. By Remark 6.9, since C is a perfect
[7,4,3]-code, we have ay=1, @, =7 and a; =0 for i >1. (Note
that there is no need to construct a standard array to find the a,
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in this case.) Hence
Pen'(c) =1- (1 _P)7 o 7p(1 "P)6
=0.002 if p =0.01.

s the number of codewords (and hencq messages) received
in?::or after decoding with this (7, 4]-c9de is about one-ﬁfthdof
the number received in error when using the best [432]-00 -
And yet we are sending the information at a more efficient rate,

=>4, :

for()’:lfacl)essgn t?a be learned from this ex_ample i§ that 1f' we first
represent our information by a long string of binary digits, we
need not be too restricted in our choice of [r.t , k]-code, for we can
just encode the message symbols k at a time. We shall see 1n
Exercise 6.6 that by using a [23, 12]-code, which has rate >3, Oxge
can get the word error rate P... down to approximately 0.(()100 :

It is beginning to look as though we can make the wor errqlr]
rate as small as we wish by using a long enough code (but sti
having rate =3%). Indeed it is a consequence of the follqwmg
remarkable theorem of Shannon (1948) that, for a binary

symmetric channel with symbol error probability p, we can

communicate at a given rate R with as small a word error rate as

we wish, provided R is less than a certain function of p called the
capacity of the channel.

Definition 'The capacity €(p) of a binary symmetric channel
with symbol error probability p is

€(p)=1+plogp+(1—p)log.(1 -p)

Fig. 6.11
€(p) 1

1

Ay

0 3 1 P

Theorem 6.12 (Shannon’s theorem; proof omitted) Suppose a
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channel is binary symmetric with symbol error probability p.
Suppose R is a number satisfying R < €(p). Then for any £ >0,
there exists, for sufficiently large n, an [n, k]-code C of rate
k/n = R such that P, (C) <e.

(A similar result holds for non-binary codes, but with a
different definition of capacity).

The proof of this result may be found in van Lint (1982) or
McEliece (1977). Unfortunately, the theorem has so far been
proved only by probabilistic methods and does not tell us how to
construct such codes. It should be borne in mind also that for
practical purposes we require codes which are easily encoded and
decoded and that this is less likely to be the case for long codes
with many codewords.

Example 6.13 It may be calculated that €(0.01)=0.92. Thus,
for p =0.01, even if we insist on transmitting at a rate of 5, we
can, in theory, make P, as small as we wish by making » (and k)
sufficiently large.

Symbol error rate

Since some of the message symbols may be correct even if the
decoder outputs the wrong codeword, a more useful quantity
might be the symbol error rate P,,,, the average probability that
a message symbol is in error after decoding. A method for
calculating P, is given in Exercise 6.7, but it is more difficult to
calculate than P, and is not known for many codes. Note also
that the result of Exercise 6.9 shows that Shannon’s theorem
remains true if we replace P, by P,,.

Probability of error detection

Suppose now that a binary linear code is to be used only for error
detection. The decoder will fail to detect errors which have
occurred if and only if the received vector y is a codeword
different from the codeword x which was sent, i.e. if and only if
the error vector e =y — x is itself a non-zero codeword (since C is
linear). Thus the probability P,,4...(C) that an incorrect code-
word will be received is independent of the codeword sent and is
given by the following theorem.
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Theorem 6.14 Let C be a binary [n, k]-code and_ let .A,- dencf;te
the number of codewords of C of weight' i. Then, if C is used for
error detection, the probability of an incorrect message being
received undetected is s
Pundelec(c) i 2 A,p'(l “P)"_i-

i=1
(Note that, unlike the formula of Theorem 6.7 for P.n(C), the
summation here starts at i=1).

Example 6.15 With the code of Example 6.6,
Pundetec ¥ pZ(l —p)z . 2P3(1 i P)
=p*- p.
=(.000 099 99 if p=0.01,

and so only one word in about 10 000 will be accepted with errors

undetected.

In the early days of coding theory, a.popula_r scheme, whedrz
possible, was detection and retransmission. With only a mo &
erately good code, it is possible to run such a schgme f‘or §evte}:at
hours with hardly any undetected errors. The finfﬁcu.ty. is y
incoming data gets held up by requests for retransmission an

is can cause buffer overflows. b0
tm’i‘:: retransmission probability for an [n, k]-code is given by

Pretrnns =1- (1 =7 p)" — P yndetec

ith the [4,2]-code of Example 6.6, if p=0.01,

fl?;ne);’i:f:f ’z;)“(t)g and [so lbout 4% of messages have. to b_e%
retransmitted. This percentage increases for longer codes; €.8. 1

we used a [24, 12]-code, then  — would be over 20%. )
A compromise scheme incorporating both error correct}ondaq

detection, called ‘incomplete decoding’, will be described 1n

Chapter 7.

Concluding remark on Chapter 6

i i inspi he classic paper of
The birth of coding theory was inspired by the class

Claude Shannon, of Bell Telephone Laboratories, In 1948. In
fact, this single paper gave rise to two whole new subjects. The
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first, information theory, is a direct extension of Shannon’s work,
relying mainly on ideas from probability theory, and this will not
be pursued here. The second, coding theory, relies mainly on
ideas from pure mathematics and, while retaining some links
with information theory, has developed largely independently.

Exercises 6

6.1 Construct standard arrays for codes having each of the
following generator matrices:

10 101 10110
R A
=101l “=lo11) ©@“lo1011

Using the third array:
(i) decode the received vectors 11111 and 01011,
(ii) give examples of
(a) two errors occurring in a codeword and being
corrected,
(b) two errors occurring in a codeword and not
being corrected.

6.2 If the symbol error probability of a binary symmetric
channel is p, calculate the probability, for each of the
three codes of Exercise 6.1, that any received vector will
be decoded as the codeword which was sent. Evaluate
these probabilities for p = 0.01.

Now suppose each code is used purely for error
detection. Calculate the respective probabilities that the
received vector is a codeword different from that sent (and
evaluate for p =0.01). Comment on the relative merits of
the three codes.

6.3 We have assumed that, for a binary symmetric channel,
the symbol error probability p is less than . Can an
error-correcting code be used to reduce the number of °
messages received in error if (i) p =3, (i) p >3?

6.4 Suppose C is a binary [n, k]-code with minimum distance
2t + 1 (or 2t +2). Given that p is very small, show that an
approximate value of P,..(C) is
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6.7

6.8

A first course in coding theory

where @, is the number of coset leaders of C of weight
t+1.
Show that if the perfect binary [7, 4]-code is used for error
detection, then if p = 0.01, Pundetec =0-00 000 68 and about
7% of words have to be retransmitted.

[Hint: The codewords of such a code are listed in
Example 2.23.]
We shall see in Chapter 9 that there exists a perfect binary
(23,12, 7)-code, called the binary Golay code. Show that,
if p=0.01, the word error rate for this code is about
0.000 08.
If standard array decoding is used for a binary [n, k]-code
and the messages are equally likely, show that Py does
not depend on which codeword was sent and that

1&
Psymb g 'lzgl F;Ph

where F, is the weight of the first k places of the codeword
at the top of the ith column of the standard array, and P, is
the probability that the error vector is in this ith column.
Show that if p =0.01, the code of Example 6.5 has

Py =0.0053.

6.9 Show that for a binary [n, k}-code,

1
= Py < Py < Perr-

k

The dual code, the parity-check i
and syndrome decodinr;y ol

As well as specifying a linear code by a generator matrix, there is

another important way of specifying i i
: pecifying it—| - i
First we need some deﬁnitions.fy A Ao

The inner product u-v of vectors w=ul, - u, and v=

vy, v, in V(n, i i
d:», ﬁ; M (n,q) is the scalar (i.e. element of GF(q))

u-v=‘:u,vl+u2v2+ st Uy,

For example, in V (4, 2), (1001) - (1101) =0,
(1111) - (1110) =1,

and in V(4, 3), (2011) - (1210) =0,
(1212) - (2121) = 2.

If u-v=0, then u and v are called orthogonal.

The proof of the following I i i
e g g lemma is left as a straightforward

Lemma 7.1 For any u, vand w i
roizbdin y win V(n,q) and A, u € GF(q),

(i) (Au+pv)-w=2i(-w)+pu(v-w).

Given a linear [n, k]-code C, the d

: - A ual code of C, denoted b
C*, is defined to be the set of those vectors of V(n, q) wl(l)iceh arz
orthogonal to every codeword of C, i.e. :

Ct={veV(n,q)|v-u=0 forallueC}.

After a preliminary lemma, we shall 1 :
code of dimension n — k. , oll,show that C1is 3 lincar

f!,;t:uﬁn;‘aGZ%h Suppose C is an [n, k]-code having a generator
‘ . Then a vector v of V(n, g) belongs to C* if and only if
vis orthogonal to every row of G; i.e. ve C*&vG” =0, wh

GT denotes the transpose of G. e
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Proof The ‘only if’ part is obvious since the rows of G are

codewords. For the ‘if’ part, suppose that the rows of G are
P8 TRRY and that v - r, = 0 for each i. If u is any codeword of

C, then u= Lk, A;x; for some scalars A; and so

k
viu=3 A(ver)  (by Lemma 7.1(i)
i=1
k
= Z A,O = 0.
i=1

Hence v is orthogonal to every codeword of C and so is in Ct.

Theorem 7.3 Suppose C is an [n, k)-code over GF(q). Then the
dual code C* of C is a linear [n,n— k]-code.

Proof First we show that C* is a linear code.
Suppose ¥y, V2 € C* and A, u € GF(q). Then, forallueC,
(Avy + uvy) 0= A(vy - u) + p(vy ) (by Lemma 7.1)
=10+ u0=0.
Hence Av, + uv, € C*, and so C* is linear, by Exercise 4.1.

We now show that C* has dimension 7 — k.Let G=|[g;] be a
generator matrix for C. Then, by Lemma 7.2, the elements of C+

are the vectors V=0,V * " Up satisfying

zg;jvi=0 fOl’i=l,2,...,k.

1=3

This is a system of k independent homogeneous equations in n
dard result in linear algebra that the

solution space C* has dimension n — k. For completeness we

unknowns and it is a stan

show this to be so as follows.
It is clear that if codes C,

n — k in the case where C has a standard form generator matrix
! o ae q a.“ ioe  Qgpk

Gm
0 R 1 Bl ¥ ak,n-—k

and G, are equivalent, then so also
are Ci+ and C#. Hence it is enough to show that dim (CH=
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Then

Ci= {(v,, Vay...,U,)€V(n,q)|v
n—k
+I-21 a,,vk+j=0, i=1,2,.. .,k}-
E,l;;;lz fo(r:t each of the ¢"~* choices of (vi,,,...,v,), there is a
vector i s
ot —(z,, vy, ...,V,) in C*. Hence |[C*|=¢"* and so
Erqmpla 7.4 1t is easily checked that
(i) if
0000
'C__ 1100
=Y 0011 ° then C+ = C.
1111
(i) if
000
110 000
C= =
ih ¢ otben e {111'
101

Theorem 7.5 For any [n, k]-code C, (C+)*=C.

Proof Clearly Cc (C-*)l since every vector in C is orthogonal
to every vector in Ct. But dm(CHY)=rn-(n-
k)=k=dim C, and so C= (C*)".

Definition A parity-check matrix H i
generator matrix of C*. Tven B Plafeas
Thus H is an (n — k) X n matrix satisfyin
g GH" =0, where H*
;lrc:)r:;)tﬁ the trz;n.;posc:,1 of H and 0 is an all-zero matrix. It follows
mma 7.2 and Theorem 7.5 if H i i “
i b B that if H is a parity-check

C={xeV(n,q)|xHT =0}.

In this way any linear code is compl i
parity-check matrix. pletely specified by a
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In Example 7.4(), 1100]
s

is both a generator matrix and a parity-check matrix, while in
i), [111] is a parity-check matrix. .

: ?l"h[e rows of a parity check matrix are parity chgcks on tl;‘e
codewords; they say that certain linear combma}xons of tle
co-ordinates of every codeword are zero. A code is completely

specified by a parity-check matrix; e.g. if

et [1100]
~ Loo11y’
then C is the code

(G 20 %20 %) € V(4,2) | 2y #2, = 0,33 + X4 = 0}.

The equations x; + X = 0 and x; +x,=0 are called parity-check

tions.
eq,llfa I: =([111], then C consists of those vectors of V(3,2) whose

i lly, the even
ordinates sum to Zero (mod 2). More generally,

(\:voeight code E, of Exercise 5.2 can be defined to be the set of a::
vectors XX, * * * X, of V(n,2) which satisfy the single parity-chec

equation £ ¥t 4rie s 0;

The following theorem gives an easy way of constructing a
parity-check matrix for a linear code with given generator matrix,

or vice versa.

= i dard form generator
Theorem 7.6 1f G=[L|A] is the stan : '
matrix of an [n, k]-code C, then a parity-check matrix for C is

H = ["AT ‘ In—k]'

Proof Suppose
1 0 ‘_111 v e al.’:_k
G= N ; i |
0 1 @iy A n—k

Zon e Sme | et 49
H=| : e '
ik 0t e 0 1

Let
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Then H has the size required of a parity-check matrix and its
rows are linearly independent. Hence it is enough to show that
every row of H is orthogonal to every row of G. But the inner
product of the ith row of G with the jth row of H is

0+---+0+(—a;)+0+-+--+0+4a;,+0+---+0=0.

Example 7.7 The code of Example 5.6(ii) has standard form
generator matrix

[% 1017
111
G= s
L1110
L 011
Hence a parity-check matrix is
(1110 1
H=|0111| L
1101 3

(Note that the minus signs are unnecessary in the binary case.)

Definition A parity-check matrix H is said to be in standard
form if H =B |1,_].

The proof of Theorem 7.6 shows that if a code is specified by a
parity-check matrix in standard form H =[B|/l,_], then a
generator matrix for the code is G = [I, | =B”]. Many codes, e.g.
the Hamming codes (see Chapter 8), are most easily defined by
specifying a parity-check matrix or, equivalently, a set of
parity-check equations. If a code is given by a parity-check
matrix H which is not in standard form, then H can be reduced
to standard form in the same way as for a generator matrix.

Syndrome decoding

Suppose H is a parity-check matrix of an [n, k]-code C. Then for
any vector y € V(n, g), the 1 X (n — k) row vector

S(y)=yH"
is called the syndrome of y.
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Notes (i) If the rows of H are hy,h,, ..., h,, then S(y)=

(y-hy,y-hy,... ,y-h&.k)-
ii) S(y)=0&yeC.
82) S(gr)ne authors define the syndrome of y to be the column

vector Hy (i.e. the transpose of S(y) as defined above).

Lemma 7.8 Two vectors u and v are in the same coset of C if
and only if they have the same syndrome.

Proof w and v are in the same coset
Su+C=v+C
Su-vel
Su-v)H" =0
&uHT =vH"
& S(u) = S(v).

Corollary 7.9 There is a one-to-one correspondence between
cosets and syndromes.

In standard array decoding, if n is small there i:s no'difﬁculty in
locating the received vector y in the array. But if n is l:-.uge,h yv;
can save a lot of time by using the syndro.me to find out whic
coset (i.e. which row of the array) contains y. We do this as

follows.
Calculate the syndrome S(e) for each coset leader e and

extend the standard array by listing the syndromes as an extra
column.

Example 7.10 In Example 6.5,

G_[wu]
“Lo101)’

and so, by Theorem 7.6, a parity-check matrix is

H_[IOIO]
L1ttt
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Hence the syndromes of the coset leaders (see Example 6.6) are

5(0000) = 00
$(1000) = 11
$(0100) = 01
5(0010) = 10.

The standard array becomes:

coset leaders syndromes

0000 P41 IDRE NPT 00
1000 011 1101 0110 1 |
0100 O30 1 o0 LE: TD0 o) 0:1:
0010 100 a1 517580 L0

The decoding algorithm is now: when a vector y is received,
calculate S(y) =yH" and locate S(y) in the ‘syndromes’ column
of the array. Locate y in the corresponding row and decode as
the codeword at the top of the column containing y.

For example, if 1111 is received, $(1111)=01, and so 1111
occurs in the third row of the array.

When programming a computer to do standard array decod-
ing, we need store only two columns (syndromes and coset
leaders) in the computer memory. This is called a syndrome
look-up table.

Example 7.10 (continued) The syndrome look-up table for this
code is

syndrome z coset leader f(z)
00 0000
11 1000
01 0100
10 0010

The decoding procedure is:

Step 1 For a received vector y calculate S(y) = yH”.
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Step 2 Let z=S5(y), and locate z in the first column of the
look-up table.

Step 3 Decodey asy— f(z).

For example, if y=1111, then S(y)=01 and we decode as
1111 = 0100 = 1011.

Incomplete decoding

This is a blend of error correction and .detection, the latter ben:jg
used when ‘correction’ is likely to give the wrong codﬁwoF A
More precisely, if d(C) = 2A+lor2t+2, we adopt the fo owing
scheme whereby we guarantee the correction of <t errors in any
codeword and also detect some cases of more than ¢ errors. s
We arrange the cosets of the standard array, as 'u.sual, l:n order
of increasing weight of the coset leaders, and divide dt e al:'raz
into a fop part comprising those .c.osets whose lf:a ers ) avIf
weights <t and a bottom part comprising the remaining COSELs. 1
the received vector y is in the top part, we decode it as ulsu;x
(thus assuming <t errors); if y is in the bottom part, we conc ude
that more than ¢ errors have occurred and ask for re-

transmission.

Example 7.11 Let C be the binary code with generator matrix
[10110]
01011}

codewords— | 00000 10110 01011 11101 W
10000 00110 11011 01101
01000 11110 00011 10101
00100 10010 01111 11001
00010 10100 01001 11111
00001 10111 01010 11100 |

A standard array for C is

L top part

} bottom part

coset leaders
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If 11110 is received, we decode as 10110, but if 10011 is
received, we seek re-transmission. Note that in this example, if a
received vector y found in the bottom part were ‘corrected’, then
owing to the presence of two vectors of weight 2 in each such
coset, we would have less than an ‘evens’ chance of decoding y to
the codeword sent; e.g. if 10011 is received, then, assuming two
errors, the codeword sent could have been 01011 or 10110.

An incomplete decoding scheme is particularly well-suited to a
code with even minimum distance. For if d(C) =2+ 2, then it
will guarantee to correct up to ¢ errors and simultaneously to
detect any ¢ + 1 errors.

When we carry out incomplete decoding by means of a
syndrome look-up table, we can dispense with the standard array
not only in the decoding scheme but also in the actual construc-
tion of the table. This is because we know precisely what the
coset leaders are in the top part of the array (namely, all those
vectors of weight <t), while those in the bottom half are not used
in decoding and so need not be found. In other words we just

store the ‘top part’ of a syndrome look-up table as we now
illustrate.

Example 7.11 (continued) By Theorem 7.6, a parity-check

matrix is 10100
H=1]11010].

01001

Calculating syndromes of coset leaders via S(y) =yH”, we get

(the ‘top part’ of) the syndrome look-up table thus (the second
column was written down first):

syndrome z coset leader f(z)
000 00000
110 10000
011 01000
100 00100
010 00010
001 00001

When a vector y is received, we calculate S(y) and decode if S(y)
appears in the z column. If S(y) does not appear, we seek
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re-transmission. For example, (i) if y= 11111, then S(y)=010
and so we decode as 11111 — 00010 = 11101.

(ii) if y=10011, then S(y) =101, which does not appear in
the table and so we conclude that at least 2 errors have occurred.

We next consider an interesting non-binary code having a neat
syndrome decoding algorithm which does not even require a
Jook-up table. This is the decimal code promised in Example 1.4.
Because 10 is not a prime power, the code will be derived from a
linear code over GF(11), as was the ISBN code described in
Chapter 3, but here the codewords satisfy two parity-check
equations instead of just one.

Example 7.12 Consider the linear [10,8]-code over GF(11)
defined to have parity-check matrix

_[111111111 1]
“l123456789 100

H is deliberately chosen not to have standard form here in order
to get a nice decoding algorithm later.

Let C be the 10-ary code obtained from this 11-ary code by
omitting all those codewords which contain the digit 10’. In
other words, C consists of all 10-digit decimal numbers X =

X)X+ * Xy Satisfying the two parity-check equations

10 10
S x,=0 (mod1l)  and S ;=0 (mod11).

i=1 i=1

It can be shown, e.g. via the inclusion—exclusion principle, that ¢
contains 82644629 codewords, but we omit the proof of this
here. The codewords of C can be listed by finding a generator
matrix in standard form. To do this we first put H into standard
form via elementary row operations.

[2345678910 O]
12345678 910

[9876543210]
10987654321

H n—ntn

—_—
= (—1n

(- r,

B R [9876543 210]
e (3456789100171
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Using Theorem 7.6,
u 2 87
37
46
G= I 9.5
6 4
73
8 2
i 91
and' 50" C&={(x, %), ') Xgy 200+ 3y O By T, +
-+ ++xg)}, where x,, x5, . . . , Xg run over the values b, 13 12, , 4 .2, 9

and those words are omitted which give the digit ‘10 in either of
the last two coordinate places.

We now describe an incomplete syndrome decoding scheme
\dvhtlcht will czrreg; any single error and which will simultaneously

etect any double error arising from the transposition

. . O
digits of a codeword. S ooy

fuppose X= (x,,J.rq, ...,Xp) is the codeword transmitted and
y= (1, %2, - - - » Y1o) is the received vector. The syndrome

(A,B)=yH" = (§ Yis § iyi)

i=1 i=1
is calculated (modulo 11).
Suppose a single error has occurred, so that for some non-zero

jand k,
(,Vh)’z,--',Ym)=(x1,---,x,-—n,x;+k,x,-+|,-..,x,o).
Then

10 10
A=2y.-=(2x,-)+k =k (mod11),

i=1 i=1

10 10
B=3 iy= (2 ixf) +jk =jk (mod11).

i=1 i=1

Sf) the error magnitude K is given by A and the error position j is
given by t}.le value of B/A. (The latter is calculated as BA™" as
described in Chapter 3). Hence the decoding scheme is, after
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calculating (A, B) from y, as follows:

(1) if (A,B)= (0,0), then y is a codeword and we assume no
errors,

(2) if A#0 and B#0, then we assume a single error which is
corrected by subtracting A from the (B/A)th entry of y,

(3) if A=0or B =0 but not both, then we have detected at
least two €rrors.
Case (3) always arises if two digits of a codeword have been
transposed, for then A =0 and (as for the ISBN code)
B#0.

For example, suppose y = 0610271355. We calculate that A = 8
and B =6. Hence B/A=6-81=6-7=42=9, and so the 9th
digit should have been 5-8=-3=8.

Remarks on Example 7.12 (1) Note how much faster is this
decoding scheme than the brute-force scheme of comparing the
received vector with all codewords. There is no need to store a
list of codewords in the memory of the decoder, nor is there even
any need to store a syndrome look-up table.

(2) The fact that we are able to correct any single error gives
an indirect proof that the minimum distance of the code is at
least 3. We will see in Example 8.8 that the minimum distance
could have been deduced directly by inspection of the parity-
check matrix H.

(3) Some further decimal codes will be discussed in Chapter
11.

Exercises 7

7.1 Prove Lemma 7.1.

72 Prove that if E, is the binary even weight code of length 7,
then E: is the repetition code of length n.

7.3 Give a very simple scheme for error detection with a linear
code, making use of the syndrome.

7.4 For a binary linear code with parity-check matrix H, show
that the transpose of the syndrome of a received vector is
equal to the sum of those columns of H corresponding to
where the errors occurred.
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7.5 Construct a syndrome look-u
i -up table for the perfect bi
[7, 4, 3]-code which has generator matrix perfect binary

1-0-0-0-1.1-1
0100110
0010101
000101 14

Use your table to decode the following received vectors:

0000011, 1111111, 1100110, 1010101.

7.6 Let C be the ternary linear code with generator matrix
[1 11 0]
2.0.1 4.
(a) Find a generator matrix for C in standard form.
(b) Find a parity-check matrix for C in standard form.
(c) Use syndrome decoding to decode the received
2 4% vectors 2121, 1201 and 2222.
. sing the code of Example 7.12, d i
vector 0617960587. ; T ki n oo
7.8 Example 7.12 shows that A,,(10,3)=82644629. Prove
that A,,(10, 3) < 10%. Prove also that 4,,(10,3)=11%
7.9 Show that the decimal code ’ :

10

{(xhxfza ++ + 3 X10) € (F)*° Z X

10
=0 (mod 10), D, ix; =0 (mod 10)}

i=1

is not a single-error-correcting code.

7.10 Suppose a certain binary channel accepts words of length 7

and that'the only kind of error vector ever observed is one
of the eight vectors 0000000, 0000001, 0000011, 0000111
9001111, 0011111, 9111111, 1111111. Design a binar):
linear (7, k]-code which will correct all such errors with as
large a rate as possible.

7.11 Suppose C is a binary code with parity-check matrix H.

Show that the extended code C, obtained from C by
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adding an overall parity-check, has parity-check matrix

8 The Hamming codes

The Hamming codes are an important family of single-error-
correcting codes which are easy to encode and decode. They are
linear codes and can be defined over any finite field GF(q) but,
for simplicity, we first restrict our attention to the binary case.

A Hamming code is most conveniently defined by specifying its
parity-check matrix:

Definition Let r be a positive integer and let H be an
rX (2" —1) matrix whose columns are the distinct non-zero
vectors of V(r,2). Then the code having H as its parity-check
matrix is called a binary Hamming code and is denoted by
Ham (r, 2).

(We shall later generalize this to define Ham (r, q) for any
prime power q.)

Notes (i) Ham (r,2) has length n=2"—1 and dimension k =
n—r. Thus r=n—k is the number of check symbols in each
codeword and is also known as the redundancy of the code.
(ii) Since the columns of H may be taken in any order, the
code Ham (r, 2) is, for given redundancy 7, any one of a number
of equivalent codes.
s 110

Examples 8.1 (i) r=2:H= [101].
By Theorem 7.6, G = [111], and so Ham (2, 2) is just the binary
triple repetition code.

(ii) r=3: a parity-check matrix for Ham (3, 2) is

0001111
H=|0110011}|.
1010101

Here we have taken the columns in the natural order of
increasing binary numbers (from 1 to 7). To get H in standard
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form we take the columns in a different order:

0111100
H=|1011010}.
1101001

Hence, by Theorem 7.6, a generator matrix for Ham (3, 2) is

1000011
fo1o00101
YE0 170 110

0001111

It is easily seen that Ham (3,2) is equivalent to the perfect
[7,4,3]-code of Example 5.6 (and Examples 2.23 and 5.3). We
show next that all the binary Hamming codes are perfect.

Theorem 8.2 The binary Hamming code Ham (7, 2), for r =2,
(@) isialf2w b2t ol r]-code;

(ii) has minimum distance 3 (hence is single-error-correcting);

(iii) is a perfect code.

Proof (i) By definition, Ham (r,2)* is a [2"—1,r]-code and
so Ham (r,2)isa[2"—1,2" =1~ r]-code.

(i) Since Ham(r,2) is a linear code, it is enough, by
Theorem 5.2, to show that every non-zero codeword has weight
>3, We do this by showing that Ham (r, 2) has no codewords of
weight 1 or 2.

Suppose Ham (r, 2) has a codeword x of weight 1, say

x=00---010---0 (with 1in the ith place).

Since x is orthogonal to every row of the parity-check matrix H,
the ith entry of every row of H is zero. Hence the ith column of
H is the all-zero vector, contradicting the definition of H.

Now suppose Ham (7, 2) has a codeword x of weight 2, say

x=0---010---010---0 (with 1sin the ith and jth places).

Denoting the sth row of H by [Agihga =« - hsn], we have, since X is
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orthogonal to each such row,

hg +h; =0 (mod?2) for §i=15:2; 1w s

hy; = hy; (mod 2)

Hence 'the ith and jth columns of H are identical, again
contradicting the definition of H.

Thl:lS d(Ham (r,2)) =3. On the other hand, Ham (r, 2) does
contain codewords of weight 3. For example, if the first three
columns of H are

that is
fors=1,2,...,7

000
000
011
101

then the vector 11100 - - - 0 is orthogonal to every row of H and
so belongs to Ham (r, 2).

(m). To shoy Ham (r, 2) is perfect, it is enough to show that
equality holds in the sphere-packing bound (2.18). With =1,
n=2"—1and M =2""", the left-hand side of (2.18) becomes

n—r n -
2 (l + (1)) =2 (1+n)=2""(1+2 —1)=2",

which is equal to the right-hand side of (2.18).

Decoding with a binary Hamming code

Since Ham (r,2) is a perfect single-error-correcting code, the
coset leaders are precisely the 2(=n + 1) vectors of V(n,2) of
weight <1.

The syndrome of the vector 0---010- -0 (with 1 in the jth
place) is (0---010---0)H”, which is just the transpose of the
jth column of H.

.Hence, if the columns of H are arranged in order of increasing
binary nun}bers (i.e. the jth column of H is just the binary
representation of j), then we have the following nice decoding
algorithm.

Step 1 When a vector y is received, calculate its syndrome
S(y)=yH".
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Step 2 If S(y) =0, then assume y was the codeword sent.
Step 3 1f S(y)#0, then, assuming a single error, S(y) gives the
binary representation of the error position and so the error can
be corrected.
0001111
For example, with H=| 0 1 1 00T1l
1010101

if y=1101011, then S(y) = 110, indicating an error in the sixth
position and so we decode y as 1101001.

Extended binary Hamming codes

The extended binary Hamming code Ham (r, 2) is the code
obtained from Ham (r, 2) by adding an overall parity-check.

As in the proof of Theorem 2.7, the minimum distance is
increased from 3 to 4. Also, by Exercise 5.4, the extended code
is linear and so Ham (r,2)isa [2",2" = 1~—r, 4]-code.

We shall see in Exercise 8.4 that the extended code Ham (r, 2)
is no better than Ham (7, 2) when used for complete decoding. In
fact, it is inferior since an extra check digit is required for each
codeword, thus slowing down the rate of transmission of infor-
mation. However, having minimum distance 4, Ham (r,2) is
ideally suited for incomplete decoding, as described in Chapter 7,
for it can simultaneously correct any single error and detect any
double error.

Let H be a parity-check matrix for Ham (r,2). By Exercise
7.11, a parity-check matrix H for the extended code may be

obtained from H via
0
0

11 .-+ 11

The last row gives the overall parity-check equation on code-
words, i.e. X; + X+ + X1 =0.
If H is taken with columns in increasing order of binary

|
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numbers, there is a neat incomplete decoding algorithm, illus-
t.rated for r = 3 below, to correct any single error and at the same
time detect any double error.

Example 8.3 Ham (3, 2) has the parity-check matrix

00011110
01100110
10101010
hilid 115 1,1

'Fhe syndro'me. of the error vector 00---010- - -0 (with 1 in the
{th place) is Just'the._transpose of the jth column of H. The
ln?orx:iplete decoding algorithm is as follows. Suppose the re-
ceived vector is y. The syndrome S(y)=yH7 is calculated
Suppose S(y) = (51 3,53 ). Then '
?.)) lffs4 = % am':j ((s,, S, 83) = 0, assume no errors,
i) if s, =0 and (s, 5, 53) #0, assume at least two
occurred and seek retransmission, Kol
(iii) if s,=1 and (s, 5,, 53) =0, ass i i
0 1,82, 83) =0, assume a single error in the
Gv) ifs;= 1 z.md (81, 55, 53) #0, assume a single error in the jth
{)lace, v;here J is the number whose binary representation is
815 52, 83).

H=

A fundamental theorem

Before defining Hamming codes over an arbitrary field GF(q)
we establish a fundamental relationship between the minimun;
distance of a linear code and a linear independence property of
?he columns of a parity-check matrix. This result will also be
important in later chapters. :

The.orem 8.4 Suppose Cis a linear [n, k]-code over GF(q) with
panty-che_ck matrix H. Then the minimum distance of C is d if
and only if any d — 1 columns of H are linearly independent but
some d columns are linearly dependent.

Proof By Theorem 5.2, the minimum distance of C is equal to
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the smallest of the weights of the non-zero codewords. Let
X=X%,* * * X, be a vector in V(n,q). Then

xeCoOxHT=0
oxH +xH + - +xH,=0,
where H, Hy, . .., H, denote the columns of H.

Thus, corresponding to each codeword x of weight d, there is a
set of d linearly dependent columns of H. On the other hand if
there existed a set of d — 1 linearly dependent columns of H, say
H,H,..-» H, ,, then there would exist scalars X;;, Xip -« - »
X;,.,» not all zero, such that

xi,l'l,-‘ + x,-zﬂiz + -0+ x,‘_ll'l,d_l =0.

But then the vector x=(0---0x,,0---0x,,0---Ox,‘_IO---O),
having x; in the ijth position for j=1,2,...,d—1, and Os
elsewhere, would satisfy xHT =0 and so would be a non-zero
codeword of weight less than d.

Theorem 8.4 not only provides a means of establishing the
minimum distance of a specific linear code when H is given, but
also provides a means of constructing the parity-check matrix to
provide a code of guaranteed minimum distance. We concentrate
here on the case d =3, leaving a discussion of the general case
until Chapter 14.

g-ary Hamming codes

In order that C be a linear code with minimum distance 3, we
require that any two columns of a parity-check matrix H be
linearly independent. Thus the columns of H must be non-zero
and no column must be a scalar multiple of another (cf. Exercise
4.4). For fixed redundancy r, let us try to construct an [n,n—
r,3)-code over GF (q) with n as large as possible by finding as
large a set as possible of non-zero vectors of V(r,q) such that
none is a scalar multiple of another.

Any non-zero vector v in V(r,q) has exactly ¢ — 1 non-zero
scalar multiples, forming the set {Av| A € GF(q), A#0}. In fact,
the ¢" — 1 non-zero vectors of V(r,q) may be partitioned into
(¢ -D/@g-1 such sets, which we will call classes, such that
two vectors are scalar multiples of each other if and only if they
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are in the same class. For example, in V(2,3 .
written as columns, thode classs ziid ’ ( s ), with vectors

(@-OF (0@ (GG} = {G}G)

By choosing one vector from each class w i
/ e obtain a set of
(¢" — 1)/(q — 1) vectors, no two of which are linearly dependen(:.
He{lce, by Theore.m 8.4, taking these as the columns of H gives a
gm’-:he;;s m:r;x for :al{(g'— Dig-1), (@ -DI(g-1)-r
. e is ed a g- i s
e gy g-ary Hamming code and is
Note that different parity-check matrices

P may be chosen t

define Ham (r,.q) for given r and g, but any such matrix ma(}3
clearly be obtained from another one by means of a permutation
of the columns and/or the multiplication of some columns by
nclJ‘t.l-lz‘ero scalars. Thus the Hamming codes are linear codes

which are uniquely defined, up t i i
R oo p to equivalence, by their

An easy way to write down a i i

: ‘ parity-check matrix fo

Ham (7, q) is to hgt as columns (e.g. in lexicographical order) alli
non-zero r-tuples in V(r, g) with first non-zero entry equal to 1.
This must work because within each class of g —1 scalar

Lt:l\:lrtiples there is exactly one vector having 1 as its first non-zero
y.

Examples 8.5 (i) A parity-check matrix for Ham (2, 3) is
[0 11 1]
10121
(ii) A parity check matrix for Ham (2, 11) is

[011111111111
1012345678910]'

(iii) A parity-check matrix for Ham (3, 3) is

0000111111111
0111000111222:].

1012012012012
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Theorem 8.6 Ham(r,q) is a perfect single-error-correcting
code.

-code with
Ham (r, g) was constructed to be an (n, M, 3)-co :
Sr:czj;r * 1)/(51 —ql)) and M=q"". Withr=1, the left-hand side

of the sphere-packing bound (2.17) becomes
g (+n@-1))=q""(1+q = 1)
=q",
which is the right-hand side of (2.17), and so Ham (r,q) is a
perfect code.

Corollary 8.7 If gisa prime power and itn=(qg"—1l(g—1),
for some integer r =2, then
Ay n,3)=q"".

if g i i =3, then the main coding
Thus, if g is a prime power and d =3, t codir
theory problem, that of finding A,(n,3), is solved for an infinite

sequence of values of n. In particular, we have now established a

further entry of Table 2.4, namely A,(15,3) =21 =2048.

Decoding with a g-ary Hamming code

Since a Hamming code is a perfect single-error correcting code,
the coset leaders, other than 0, are precnsely the vectors of
weight 1. The syndrome of such a coset leader is

§(0---0b0---0)=(0+--0b0- - O)HT =bH],

1
jth place

_denotes the jth column of H.
Wh;;et::, g::oding schleme is as follows. Given a received vector
y, calculate S(y)=yH T, If S(y)=0, assume no errors. I;
S(y)#0, then S(y) =bH] for some b and j and' the assur;\e
single error is corrected by subtracting b from the jth entry of y.

For example, suppose g =5 and

_[011111]
H=1101234)
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Suppose the received vector is y =203031. Then S(y) =(2,3) =
2(1, 4) and so we decode y as 203034.

Shortening a code

Shortening a code can be a useful device if we desire a code of
given length and minimum distance and if we know of a good
code with greater length and the same minimum distance.

Suppose C is a g-ary (n, M, d)-code. Consider a fixed coor-
dinate position, the jth say, and a fixed symbol A of the alphabet.
Then, if we take all the codewords of C having A in the jth
position and then delete this jth coordinate from these code-
words, we will get a code C' of length n — 1 with, in general,
fewer codewords but the same minimum distance. C’ is called a
shortened code of C.

If C is a linear [n, k, d]-code, and if the deleted symbol is 0,
then the shortened code C' will also be linear; C’ will be an
[n =1,k —1,d"']-code, where d’ will in general be the same as d
(it may occasionally be greater than d). If C has parity-check
matrix H, then it is easy to see that a parity-check matrix of C’ is
obtained simply by deleting the corresponding column of H.

Example 8.8 Let us have another look at the [10, 8]-code over
GF(11) considered in Example 7.12. This was defined to have
parity-check matrix

H_[1111111111]
12345678910

and it now follows instantly from Theorem 8.4 that this code has
minimum distance at least 3, for clearly any two columns of H
are linearly independent. In fact, we see that it is a doubly
shortened Hamming code, for H is obtained from the parity-
check matrix of Ham (2, 11), as given in Example 8.5(ii), by
deleting the first two columns. This doubly shortened Hamming
code has two practical advantages over Ham (2, 11); first, it has
an even simpler decoding algorithm, as described in Example
7.12, and, secondly, it not only corrects any single error but also
detects any double error created by the transposition of two
digits. On the other hand, Ham (2, 11) has far more codewords
than its doubly shortened version.
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The 11-ary [10, 8, 3]-code of Example 8.8 is optimal in that the
number of its codewords is equal to the value pf A,,(IQ, 3) (see
Exercise 7.8), a result which is generalized_ in Exerpxse 8.10.
While shortening an optimal code will certainly not in general
produce an optimal code, it is interesting to note a recent r.esult
of Best and Brouwer (1977) that the triply shortened binary

Hamming code is optimal; thus
A2 -5,3)=22"7"" fors=1,23,4. (8.9)

For s = 1, (8.9) merely states the optimality of Ham (r, 2), of
which we are already aware, while for s =2, 3 and 4, (8.9) tells
us that three successive shortenings of Ham (r, 2) are also
optimal. The result was proved by the use of linear program-
ming, a technique which has been used to great effect recently in
obtaining improved upper bounds on A,(n,d) for a number of
cases. For a good introduction to the method, see Chapter 17 of

acWilliams and Sloane (1977).

MTaking r=4 in (8.9) gives the values of Az(lft, 8); A2(13’3f)
and A,(12,3) as shown in Table 2.4. However, if Ham (t.t, 2) is
shortened four times, the resulting (11,128, 3)-90de is not
optimal, for we see from Table 2.4 that there exists a binary
(11, 144, 3)-code.

Concluding remarks on Chapter 8

(1) Hamming codes were discovered by Hamming (1950) and
Golay (1949). . . .

(2) For simplicity, we began this chapter by mtroduqug only
the binary Hamming codes. In a sense some of that mfitenal was
made redundant by the treatment of g-ary Hammmg‘ cgdes,
which included the case ¢ = 2; for example, Theorem 8_.2 is just a
particular case of Theorem 8.6. However, the disc.:ussmn of the
extended Hamming code is applicable only to the binary case, for
we cannot in general add an overall parity-chec!( to a g-ary code
in such a way as to guarantee an increase in the minimum
distance. This is because Lemma 2.6 and hence Theorem 2.7 do
not have suitable analogues for non-binary codes. :

(3) By Theorem 8.4, we can construct the pant.y-::heck
matrix of a g-ary linear code of redundancy r and minimum
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distance d by finding a set of (column) vectors of V(r,q) such
that any d — 1 of them are linearly independent. As we have
seen, it is easy to write down such a set of N vectors for d =3 of
any size N we wish up to a maximum value of (g"—1)/(q - 1).

For d =4 also, it is easy enough to construct a set of vectors of
V(r,q), any d — 1 of which are linearly independent, simply by
writing down vectors of V(r, g), one at a time, each time making
sure that the new vector is not a linear combination of any d —2
earlier ones. However, this approach is a little naive for d =4,
for we are likely to run out of choices for the new vector at a
relatively early stage. In fact, the problem of finding the
maximum possible number of vectors in V(r, q) such that any
d — 1 are linearly independent is extremely difficult for d =4 and
very little is known except for cases r <4. The problem is of
much interest in other branches of mathematics, namely in finite
geometries and in the theory of factorial designs in statistics. We
shall return to it in Chapter 14.

We can at least use the above-mentioned naive approach to
get a lower bound on the maximum size of a code for given
length and minimum distance. This is the Gilbert bound (also
called the Gilbert-Varshamov bound), discovered independently
by Gilbert (1952) and Varshamov (1957).

Theorem 8.10 Suppose g is a prime power. Then there exists a
g-ary [n, k]-code with minimum distance at least d provided the
following inequality holds:

42—:2 e l)i(n l— 1) <qnk, (8.11)

i=0

Proof Suppose g, n, k and d satisfy (8.11). We shall construct
an (n—k) X n matrix H over GF(g) with the property that no
d — 1 columns are linearly dependent. By Theorem 8.4, this will °
establish the theorem. Put r =n — k. Choose the first column of
H to be any non-zero r-tuple in V(r, g). Then choose the second
column to be any non-zero r-tuple which is not a scalar multiple
of the first. Continue choosing successive columns so that each
new column is not a linear combination of any d —2 or fewer
previous columns. There are ¢ — 1 possible non-zero coefficients
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and so when we come to try to choose the ith column, those
r-tuples not available to us will be the

vo=1+(7)a-v+(3 )a-1?

5 B (;:12>(q —1)é-2

linear combinations of d —2 or fewer columns from the i —1
columns already chosen. Not all of these linear combinations
need be distinct vectors, but even in the worst case, where they
are distinct, provided N (i) is less than the total number ¢" of all
r-tuples, then an ith column can be added to the matrix. Thus,
since (8.11) holds, we will reach a matrix H having n columns, as

required.

The following is an immediate consequence of Theorem 8.10.

Corollary 8.12 If g is a prime-power, then
Aq(” ,d)= qk"

where k, is the largest integer k satisfying

r< /(S a-v("7))

Corollary 8.12 gives a general lower bound on A,(n, d) when g is
a prime-power and is the best available for large n (see, e.g.,
Chapter 17, Theorem 30 of MacWilliams and Sloane 1977).
However, for specific values of ¢, n and d one can usually do
much better by constructing a good code in some other way. For
example, taking ¢ =2, n =13 and d = 5, Corollary 8.12 promises
only the existence of a binary (13, M, 5)-code with M =16,
whereas we see from Table 2.4 that the actual value of A,(13,5)
is 64. We shall construct such an optimal binary (13, 64, 5)-code
in Exercise 9.10.

For a weaker version of the Gilbert-Varshamov bound, but
one which applies for any size g of alphabet, see Exercise 8.12.
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Exercises 8

8.1 Write c'lown a parity-check matrix for the binary [15, 11]-
Hamming code. Explain how the code can be used to

correct any single error in a codeword. What happens if
two or more errors occur in any codeword?

8.2 With the. code of Example 8.3, use an incomplete decod-
ing algorithm to decode the following received vectors.

11100000, 01110000, 11000000, 00110011.

8.3 Show that the code of Examples 2.23, 5.3(ii) and 5.6(ii) is
a Hamming code.

8.4 §uppqse C is a binary Hamming code of length n and that
Cis lts.extended code of length n+1. For a binary
symmetric channel with symbol error probability p, find
Pwn(Q and P, (C) in terms of p and n, and show that,
surprisingly, Peore(C) = Peorr(C)-

8.5 (i) Write down a parity-check matrix for the 7-ary

[8,_6]-Hamming code and use it to decode the re-
i ceu{ed vectors 35234106 and 10521360.
(i) Write down a parity-check matrix for the 5-ary
[31, 28]-Hamming code.

8.6 Use Theorem 8.4 to determine the minimum distance of

the binary code with generator matrix

B 120,00
1010
0110
L ) iy o
R
0101
L 100 1.

8.7 Let C, be the code over GF(5) generated by

12403
0214 71%.
20314
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Let G, be the code over GF(3) generated by

120210
201201}
14101 2°1:2

Find a parity-check matrix for each code and determine
the minimum distance of each code.

8.8 Use Theorem 8.4 to construct a [6, 3, 4]-code over GF (5).

8.9 Let R, denote the rate of the binary Hamming code
Ham (r, 2). Determine lim,_ R,.

8.10 Prove that if g is a prime power and if 3<n<gq +1, then

A n,3)= Qs

8.11 (The ‘football pool problem’) Suppose there are ¢ football
matches and that a bet consists of forecasting the outcome,
home win (1), away win (2) or draw (X), of each of the ¢
matches. Thus a bet can be regarded as a ternary t-tuple
over the alphabet {1,2, X}.

The ‘¢-match football pool problem’ is the following.
“What is the least number f(t) of bets required to
guarantee at least a second prize (i.e. a bet having at most
one incorrect forecast)?’

(a) (i) By using Hamming codes over GF (3), find the
value of f(t) for values of f of the form (3" —1)/2
for some integer r=2; i.e. for t=4, 13, 40,
1214 .5
(ii) Enter in the coupon below a minimum number
of bets which will guarantee at least 3 correct

forecasts in some bet.

Arsenal Luton |
Coventry Ipswich
Liverpool Chelsea

[Watford Everton l l

(b) Show that 23 <f(5)< 2N
[Remark: 1t was shown by Kamps and Van Lint

(1967) that f(5) = 27, the proof taking ten pages. The
value of f(t) is unknown for ¢t >5 except for values
13, 40, 121, etc., covered by part (a). For some
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recent work on the bounds for f(6), f(7) and f(8

Fernandes and Rechtschaffen (1983), Weberf((138s36)e

and Blokhuis and Lam (1984).] ;

8.12 (A weaker, but more general, version of the Gilbert-
Varshamov bound). Prove that, for any integer g =2

A =g/ (d a-v(}))

[Remark: When q is a prime i i

[Rem power, this bound is much
inferior to tha't of Corollary 8.12. For example, it g::r-
antees the existence of a binary (13, M, 5)-code having
only M =8, compared with M =16 given by Corollary
8.12 and a largest possible value of M of 64.]
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9 Perfect codes

We recall from Chapter 2 that a g-ary r-error-correcting code of
length n is called perfect if the spheres of radius ¢ about
codewords fill the space (F,)” with no overlap; thus a g-ary
(n, M, 2t + 1)-code is perfect if and only if the sphere-packing
condition

mit+@-vn+ G-+ +@-0 (")} =g O

is satisfied.

Apart from being the best codes for their n and d, perfect
codes are of much interest to mathematicians, largely because of
their associated designs and automorphism groups.

The problem of finding all perfect codes was begun by M.
Golay in 1949 but not completed until 1973 (and then only in the
case of prime-power alphabets) by J. H. van Lint and A.
Tietdvdinen. Before giving their final result (Theorem 9.5) we
review the perfect codes we already know of and describe two
new ones.

The trivial perfect codes were defined in Chapter 2 to be
binary repetition codes of odd length, codes consisting of a single
codeword, or the whole of (F,)".

In Chapter 8 we defined the perfect g-ary Hamming codes with

parameters ., M,d)=((q’ - 1)/(q - 1),q"", 3),

for any integer r =2 and any prime power ¢.

Note that the Hamming parameters satisfy (9.1) for any
positive integer ¢ and, while it is conjectured that there do not
exist any codes having these parameters for g not a prime-power,
this is known to be the case only for g =6 and r=2 (see
Theorem 9.12).

A natural approach in looking for further perfect codes was
first to seek solutions of (9.1) in integers g, M, n and ¢; i.e.

to find ¢, » and ¢ such that ¥!_, (g — 1)’(’;) is a power of g. A
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1 limited search by Golay (1949) produced only three feasible sets and so both m and 91—m are is i
| . : oW \
.” | of parameters (n, M, d) other than the above-mentioned. These impossible for any integer m an(f soeifleOfcjezsir;I;jh 1lsi 2 Clear(:y
‘} i were (23,22,7) and (90, 27%, 5) with ¢ =2 and (11,3%,5) with cannot exist. near code
Rl =3,

| q Remark The non-existence of a non-linear (90, 27%, 5)-code will

i [Remark: A computer search carried out by van Lint in 1967 g '
Il <howed that these are the only further solutions of the sphere- e demonstrated in Theorem 9.7.

packing condition with n < 1000, ¢ < 1000 and g < 100.]

In his 1949 paper, Golay was concerned only with linear codes.
He exhibited generator matrices, which he presumably had found
by trial and error, for codes having the parameters (23,22, 7)
and (11,3%5), and he also showed that a linear [90, 78, 5]-code
over GF(2) could not exist. Remarkably, he did all this, together
with generalizing the Hamming codes from those over GF(2) to
those over any prime field, in less than one page!

Before describing the two perfect Golay codes, we give a
proof, based on that of Golay, of the non-existence of a linear
code having the third feasible set of parameters.

Theorem 9.2 There does not exist a binary linear [90,78, 5]-
code.

Proof Suppose H were a parity-check matrix for a binary
[90, 78, 5)-code. Then H is a 12 X 90 matrix, whose columns we
denote by H;, H, . . ., Hoo. By Theorem 8.4, any four columns
of H are linearly independent and so the set

X={0,H,.,H,.+Hk|1sis90,1sj<ks90}
90
is a set of 1+90+ (2) distinct column vectors. But 1490+

(9;) ) =212 and so X is precisely the set V(12,2) of all binary

12-tuples. Hence the number of vectors of odd weight in X is 2"
(see e.g. Exercise 2.4 or Exercise 5.5). We now calculate this
number in a different way. Suppose m of the columns of H have
odd weight, so that 90 —m of them have even weight. As in
Lemma 2.6, w(H, + H,) = w(H,) + w(H,) — 2w(H; N Hy), and so
w(H, + Hy) is odd if and only if exactly one of w(H,) and w(H,)
is odd. Thus another expression for the number of vectors of odd
weight in X is m + m(90 — m). Hence

m(91 — m)=2"

The binary Golay [23, 12, 7]-code

We present here the binary Golay code, as did Golay in his 1949
paper, by exhibiting a generator matrix. This is a little unsatis-
factory in that it is not clear where the matrix has come from, but
it should at least satisfy the reader that the code exists (it wi’ll be
deﬁneq in a more natural way, as a cyclic code, in Chapter 12).
Following the treatment of Pless (1982) and MacWilliams and
Sloar_le (1977), we give a different, though equivalent, generator
mat‘nx'from that given by Golay in order to facilitate the
dgnvanon of the code’s properties and particularly its minimum
distance.

By Theorem 2.7 and Exercise 5.4, the existence of a
[23d, 12, 7]-code (IJ implies the existence of a [24, 12, 8]-code ¢
and vice versa. It turns out to be adv
extended Golay code C first. PR P RS

Theorem 9.3 The code G,, having generator matrix G = I, | A]
&l 011111111111'}
1 i A (R 10 00 T ot JC N o ST,
1 110111000101
1 0 1#0.1.:1710.0:0 1:0°11

1 111100010110

1 TUEST 00N 0001 515 O

1 1.1'09.0.1:071:1 Q-1

1 100010110111

10707170 170111 U
1 101011011100
1 110110111000
1<) 140" PR 1°TCF 0Y9°071

-

is a [24, 12, 8]-code.
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Proof We are required to show that d(G,;) =8, and by
Theorem 5.2 it is enough to show that every non-0 codeword has
weight at least 8. The above generator matrix has been chosen so
that this can be done without having to list all 2'* codewords. We
proceed by a sequence of four lemmas.

Lemma 1 G3 = Gy, i.e. Gy is self-dual.

Proof 1t is readily checked that u -v=0, or equivalently that
w(uNv) is even, for every pair of (not necessarily distinct) rows
u and v of G. (The amount of checking involved here can be
much reduced by observing that each of rows 3 to 12 of matrix A
can be obtained from the second row by means of a cyclic shift of
the last 11 coordinates. For, by symmetry arguments, it is then
sufficient to calculate w(u Nv) only for those pairs of rows u, v of
G in which u is one of the first two rows.) Hence, each row of Gis
orthogonal to all the rows of G and so, by Lemma 7.2,
G,sc G4. But, by Theorem 7.3, Gy and G3; both have
dimension 12 and so Gy, = G3;.

Lemma 2 [A|I] is also a generator matrix for Gyy.

Proof By Theorem 7.6, G3; has generator matrix [AT | 1], and
so the result follows from Lemma 1 and the observation that

AT=A.
Lemma 3 Every codeword of G,, has weight divisible by 4.

Proof If u and v are any two codewords of G,,, then w(un
v)=u-v=0 (mod2), since Gy is self-dual. Observe that all
the rows of G have weight divisible by 4. Let u and v be two such
rows. Then, by Lemma 2.6, w(u+v) = w(u) + w(v) —2w(unNyvy),
and since we have just shown that w(uv) is divisible by 2, it
follows that w(u + v) is divisible by 4. The same argument, with
u a row of G and v the sum of two rows of G, shows that the sum
of any three rows of G has weight divisible by 4, and so on. Thus
every linear combination of rows of G has weight divisible by 4.

Lemma 4 G,, has no codewords of weight 4.
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Proof We vxfrite a codeword x=xx,---x,, as (L|R) where
L=x, - xp, is the left half of x and R=1x,, - - * X4 is the right

half of x. Suppose x is a codeword of G,, of wei
of the following cases occurs. 24 Of weight 4. Then one

Case 1 ;v(L) =h 0, w(R)=4. This is impossible since we see
rom the generator matrix G that 0 is th
S0 T s the only codeword

Case 2 w(L)=1, w(R)=3. If w(L)=1, then x is one of the
rows of G, none of which has w(R) = 3.

Case 3 w(L)=2, w(R)=2. If w(L)=2, then x is the sum of
two rows of G, but it is easily seen that no sum of two
rows of A has weight 2.

Case 4 w(L)=3, w(R)=1. It would be tedious to check that
thg sum of any three rows of G has w(R) > 1. But by
using Lemma 2 we can avoid this. For if w(R) = 1, then
X must be one of the rows of [A4 | /], none of which has
weight 4.

Case 5 w(L)_= 4, w(R) =0. Again by looking at the generator
matrix [A | I] we see that 0 is the only codeword having
w(R) =0.

Theorgm 9.3 now follows immediately from Lemmas 3 and 4.
Th‘? binary Golay code G,; is obtained from G,, simply by
omitting the last coordinate position from all codewords. Gy i

thus a (23,2'%,7)-code whose parameters sati
. 125 sfy th -
packing condition i

i.e, 2‘2{1 +23+ (223) + <233)} =2%
So Gy, is a perfect code.

Re{nark The. omission of any other fixed coordinate from Gy,
(this process is called puncturing) would also give a (23,2%2,7)-

tcodé and it happens that any such punctured code is equivalent
0 23-

The ternary Golay [11, 6, 5]-code

With just a little trial and error it is not difficult to make use of
Theorem 8.4 and to construct the parity-check matrix of an
[11, 6, 5]-code over GF(3) (see Exercise 9.3).
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However, to bring out the similarities of the binary and ternary
Golay codes, we exhibit a generator matrix for a ternary
(12,6, 6]-code Giz, which may be punctured to get the perfect
ternary Golay code Gy, with parameters [11,6,5].

Theorem 9.4 The ternary code G,, having generator matrix
il oul=1.d3a 1"1
1 0 01224
1 1103122

1 121012
Qi 1:2°2 47071
L o by Wl 1 B 31 2

G=[k|Al=

is a [12, 6, 6]-code.

Proof This is left to Exercise 9.2.

Are there any more perfect codes?

It was conjectured for some time that the Hamming codes
Ham (r,q) and the Golay codes G,; and G,, were the 9nly
non-trivial perfect codes. However, in 1962, J. L. Vasil'ev
constructed a family of non-linear perfect codes with the same
parameters as the binary Hamming codes. Then'Schénheim
(1968) and Lindstrom (1969) gave non-linear codes w:tt_l the same
parameters as Hamming codes over GF(q) for any prime power

The conjecture was weakened to: ‘any non-trivial perfect code
has the parameters of a Hamming or Golay code’. The proqf of
this, for g a prime power, was finally completed by Tietdvéinen
(1973) following major contributions by van Lint (see van Lint
(1975)). Thus we have the following result, which was also
proved independently by Zinov'ev and Leont’ev (1973).

Theorem 9.5 (van Lint and Tietidviinen) A non-trivial perfect
g-ary code, where ¢q is a prime power, must have the same
parameters as one of the Hamming or Golay codes.

B

t
{
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The proof of Theorem 9.5 is rather complicated and the
details, which may be found in MacWilliams and Sloane (1977),
are omitted here. One important ingredient of the proof is
Lloyd’s theorem, which we also state without proof, which gives
a further necessary condition on the parameters for the existence

of a perfect code. The binomial coefficient (:1) in the following
is defined by
(’J:')_x(x—l)-'-(x—m+1)

m!

if m is a positive integer
=1 if m=0.

Theorem 9.6 (Lloyd (1957)) If there exists a perfect (n, M, 2t +
1)-code over GF(g), then the polynomial L,(x) defined by

Lw=3 ya-0(" )} 1)

j=0 ]

has ¢ distinct integer roots in the interval 1 <x<n.

Using Lloyd’s theorem, it was shown that an unknown perfect
code over GF(q) must have r <11, ¢ <8 and n <485. However,
by the computer search mentioned earlier, the only parameters
in this range satisfying the sphere-packing condition are those of
trivial, Hamming or Golay codes and also the parameters
(n,M,d)=(90,27,5) with g =2. [Remark: It has been shown
by H. W. Lenstra and A. M. Odlyzko (unpublished) that the
computer search can be avoided by tightening the inequalities.|

We have already established the non-existence of a linear
(90, 278, 5)-code. The non-existence of a non-linear code with
these parameters follows from Lloyd’s theorem, for with t=2
and n =90,

L,(x)=0 if and only if x*—91x +2048=0

and this equation does not have integer solutions in x.

We give below a self-contained proof of this non-existence,
avoiding Lloyd’s theorem, and relying only on a simple counting
argument. We first give a simple definition.
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Definition 1f u and v are binary vectors of the same lengtl.l,
then we say that u covers v if the 1s in v are a subset of the 1s in

u. In other words,
u covers v if and only if unv=yv.

For example 111001 covers 101000.
Theorem 9.7 There does not exist a binary (90, 278, 5)-code.

ose, for a contradiction, that C is a (90, 278 5)-code.
g;oi{:mf:: r2).3, we may assume that 0 € C. Then every non-zero
codeword in C has weight at least 5. Let Y be the set of vectors
in V(90, 2) of weight 3 which begin with two 1s. Clearly |Y|=88.
Since C is perfect, each vector y of Y lies in a unique sphere
S(x, 2) of radius 2 about some codeword x. Such a codeword x

must have weight 5 and must cover y. i _ ;
Let X be the set of all codewords of C of weight 5 which begin
with two 1s. We will count in two ways the number of ordered

pairs in the set
D={(x,y)|xeX,yeY,xcoversy}.

By the previous remarks, each y in Y is covered by a unique x in
X and so
|D|=|Y]|=88.

On the other hand, each x in X (e.g. 1111100 - -0) covers
exactly three ys in Y (111000 - - 0,110100 - - -0 and

110010 - - - 0), and so
ID| =3X].
ivi = ich i diction
Hence 3 |X|=88, giving |X|=88/3, which is a contra .
since |X| must be an integer. Thus a (90, 278, 5)-code cannot
exist.

t-designs

The counting argument, which will be generalized in Exerci§e
9.5(b), of the proof of Theorem 9.7 is reminiscent of tha} used in
proving the relations (2.24) and (2.25) for block designs (see
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Exercise 2.13). This is not just a coincidence, for we can
associate with any perfect code a certain design called a r-design.

Definition A t-design consists of a set X of v points, and a
collection of distinct k-subsets of X, called blocks, with the
property that any t-subset of X is contained in exactly A blocks.
We call this a t-(v, k, A) design.

Thus 2-designs are the same as balanced block designs, which
were defined in Chapter 2.

Definition A Steiner system is a t-design with A=1. A ¢—
(v, k, 1) design is usually called an S(z, k, v).
For example, the Fano plane of Example 2.19 is an S(2, 3, 7).
The following theorem shows how Steiner systems can be
obtained from perfect codes.

Theorem 9.8 (Assmus and Mattson 1967) If there exists a
perfect binary t-error-correcting code of length n, then there
exists a Steiner system S(¢+ 1,2t + 1, n).

Proof This is left to Exercises 9.4(b) and 9.5.

Assmus and Mattson (1969) later gave an important sufficient
condition on a code, which is not necessarily perfect, for the
existence of associated t-designs. For the details, see
MacWilliams and Sloane (1977, Chapter 6) or Assmus and
Mattson (1974). Many new 5-designs have been obtained in this
way. [Remark: it was a long-standing conjecture that r-designs
having ¢=6 did not exist; however the discovery of a 6-design
has recently been announced by Magliveras and Leavitt (1983).]

Remaining problems on perfect codes

Theorem 9.5 leaves the following problems unresolved.

Problem 9.9 Find all perfect codes having the parameters of the
Hamming and Golay codes.

It was observed after the definition of the g-ary Hamming
codes in Chapter 8 that any linear code with the Hamming
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parameters is equivalent to a Hamming code. But the problem of
finding all non-linear codes with these parameters appears to be
very difficult and is unsolved. It is believeq that there are (at
least) several thousand inequivalent perfect bl_nary codes with the
parameters (15,2',3). For supporting evidence see Phelps
) .
(lglgozvever, the two perfect Golay codes are unique,‘ i.e. any
code with the parameters of a Golay code must ‘be equwale:nt. to
a Golay code. This was proved by Pless (1968) in the restriction
to linear codes (see also Exercise 9.3 for the ternary case). For
unrestricted codes, the uniqueness of G,; was proved by Snover
(1973), while that of both Gs; and G,, was demonstrated by
Delsarte and Goethals (1975).

Problem 9.10 Find all perfect codes over non-prime-power
alphabets.

It is conjectured that there are no non-trivial perfect .codes
over non-prime-power alphabets. The best result to c!ate is the
following theorem of Best (1982), the proof of which is too
involved to include here. For an outline, see Best (1983).

Theorem 9.11 For t=3 and t#6 or 8, the only non-t.rivial
perfect t-error-correcting code over any alphabet is the binary
Golay code. j

It is likely that the cases ¢ =6 and t=8 (and possibly even
t=2) will be settled fairly soont, but for t=1, the problem
appears to be extremely difficult. We have already observed that
the parameters

(n,M,d)=((g" = 1)/(g—1),q""",3)

satisfy the sphere-packing condition for integers g and r =2. Ij'or
q a prime-power, these are the parameters of the Hamming
codes, but for g not a prime power, very little is known about tl}e
existence or otherwise of codes having these parameters; only in
the smallest case, g =6, r =2, is the problem resolved, as we
now describe.

The possible existence of a 6-ary (7,6% 3)-code was first

# Cases t = 6, 8 have now been settled by Y. Hong (Ph.D. Dissertation,
Ohio State University, 1984).
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considered explicitly by Golay (1958) and answered in the
negative by Golomb and Posner (1964), who reduced the
problem to one from recreational mathematics, posed by Euler
in 1782 and solved in 1901, as follows.

Theorem 9.12 There does not exist a 6-ary (7, 6°, 3)-code.

Proof Suppose, for a contradiction, that C is a (7, 6°, 3)-code
over the alphabet F; = {1, 2, 3, 4,5, 6}. Consider the 6° vectors of
length 5 obtained by deleting the last two coordinates of each
codeword of C. These must be precisely the 6° distinct vectors of
(F)°, for if two of these 5-tuples were the same, then the
corresponding two codewords in C would be distance at most 2
apart. Hence there are 6° codewords of C beginning with any
fixed triple. If we now take those 36 codewords of C beginning
with 111 and then delete these first three positions, we will have
a (4, 6%, 3)-code, which we denote by D. By the same argument
as above, the 36 ordered pairs given by deleting any two fixed
coordinates from the codewords of D will be precisely the 36
distinct ordered pairs in (F;)>. Hence, if a codeword (ijkl) of the
code D is identified with an officer whose rank is { and whose
regiment is j and who stands in the kth row and /th column of a
6 X 6 square, we have a solution to the following problem:

Euler’s ‘36 officers problem’ (1782) There are 36 officers, one
from each of 6 ranks from each of 6 regiments. Can these officers
be arranged in a 6 X 6 square so that every row and every column
of the square contains one officer of each rank and one officer of
each regiment?

It was conjectured by Euler that the answer is ‘no’, and this
was proved to be the case (by exhaustive search) by Tarry
(1901). For a fairly short, self-contained proof, see Stinson
(1984).

Hence a 6-ary (7, 6°, 3)-code cannot exist and Theorem 9.12 is
proved.

Remark The ‘36 officers problem’ is equivalent to a problem
concerning mutually orthogonal Latin squares, a topic whose
connection with codes is the subject of the next chapter, where it
will be seen why the method of proof of Theorem 9.12 cannot be
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used to rule out the existence of g-ary (¢ +1, q?", 3)-codes for
values of g other than 6.

Concluding remarks

(1) The Golay codes have been constructed in a number of
different ways, most naturally as cyclic codes (see Chapter 12) or
as quadratic residue codes. A less obvious, but neat elementary
construction is given in van Lint (1982).

(2) A number of special algorithms have been devised for
decoding G,; and G, some of them making ingenious use of the
properties of the associated S-design. Among these are
Berlekamp’s (1972) algorithm, Goethals’ (1971) majority logic
algorithm, and Gibson and Blake’s (1978) method using ‘miracle
octad generators’.

(3) The probability of error correction when using G,; was
found in Exercise 6.6. By Exercise 9.1, there is no advantage in
using G, rather than G, for complete decoding.

Exercises 9

9.1 (Generalization of Exercise 8.4) Suppose C is a perfect
binary linear code of length n and that C is its extended
code. Prove that, for a binary symmetric channel,

P €) = Peor(©).

[Hint: Use the Pascal identity for binomial coefficients,

n+1 n n .
(P )=(7)+(, ) forn>i=1]
i i =]

9.2 Prove Theorem 9.4; i.e. show that d(G;) = 6. [Hint: Show
that G, = Gy, so that [-AT | 1] is also a generator matrix
for Gy,. Then use the fact that if w(x)=<35, then either
w(L) <2 or w(R) <2, where x= (L | R)].

9.3 Use Theorem 8.4 to construct Gy,; i.e. find 11 vectors of
V(5,3) such that any 4 of them are linearly independent.
Furthermore show that this can be done in essentially only
one way, thus proving the uniqueness of G;, as a linear
[11,6, S}-code. [Hint: Show first that, up to equivalence,
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we may assume that H = [;| A], where

—1111101
1***0*
1**01‘
1

‘O*it

10**#‘J

L

and the asterisks represent non-zero entries. )

9.4 (a) Show that if y is a vector in V(23,2) of weight 4,

9.5

9.6

9.7

9.8

9.9

then there exists a unique codeword x of weight 7 in
G,; which covers y. Deduce that the number of
codewords of weight 7 in G,; is 253.

(b) Let M be a matrix whose columns are the codewords
of w.elght 7 in G,;. Show that M is the incidence
matrix pf a design which has 23 points, 253 blocks, 7
points in each block, and such that any 4 points lie
together in exactly one block; thus we have con-
structed a Steiner system S(4, 7, 23).

Show that if there exists a perfect binary z-error-correcting

code of length n, then

(a) there exists a Steiner system S(¢ + 1,2t + 1, n);

(b) (tn—i 2t +11 —d\ ), h ;
A xd S o 1100 is an integer fori =0,1,...,¢.

[Remark: Putting n =90, t =2 and i =2 in part (b) is
the case considered in proving Theorem 9.7.]
Construct a Steiner system S(5, 8,24) from the extended
binary Golay code G,,.
Show that the number of codewords of weight 3 in the
Hamming code Ham (7, 2) is (2" —1)(2"* = 1)/3.
Show that the number of vectors of weight 5 in the ternary
Golay code is 132. '
We shall construct the Nordstrom-Robinson (15, 256, 5)-
code N,s in the following steps.

(i) Show that if the order of the coordinates of the
binary Golay code G, is changed so that one of the
weight 8 codewords is 1111111100 -0, then Gy
has a generator matrix having its first 8 columns as
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shown below.

. T

(13,64, 5)-code. [Hint: Suppose C is a binary
[13, 6, 5]-code with generator matrix

[11111 00000000
Gl Gz ]

Show that G, generates an [8,5, 3]-code, whose
| parameters violate the sphere-packing condition. ]
(i) Deduce that there is no linear code with the
parameters of the Nordstrom—Robinson code.
(iii) Can the non-existence of a [12, 5,5]-code (i.e. a
linear code with the parameters of the Nadler code)
be proved by the method of (i)?

fun—ry
= == i i o

! !

[Hint: Since Gy, is self-dual, (a) the first seven
columns of G must be linearly independent and (b)
the codeword 1111111100---0 is orthogonal to
every codeword.]

(i) Show that the total number of codewords of Gy
whose first eight coordinates are one of 00000000,
10000001, 01000001, 00100001, 00010001, 00001001,
00000101 or 00000011 is 256.

(iii) Take these 256 codewords and delete the first 8
coordinates of each of them. Show that the resulting
code is a (16,256,6)-code. This is the extended
Nordstrom—Robinson code Nie.

(iv) Puncture Ny (e.g. delete the last coordinate) to get
the (15,256, 5)-code Nis.

[Remark: N,s and N;s are non-linear codes. They are

both optimal, cf. Table 24
9.10 Construct from N;s a (12, 32, 5)-code. [This code is called
the Nadler code, having originally been constructed in
another way by Nadler (1962). The Nadler code is both
optimal (see Chapter 17, §4 of MacWilliams and Sloane

1977) and unique (Goethals 1977).]

9.11 (i) Show that there does not exist a binary linear

o
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1 0 Codes and Latin squares

The main aim of this chapter is to show how codes can be
constructed from certain sets of Latin squares and vice versa. In
particular, we shall completely solve the ‘main coding theory
problem’, over any alphabet, for single-error-correcting codes of
length 4.

Latin squares -

Definition A Latin square of order q is a q X q array whose
entries are from a set F, of ¢ distinct symbols such that each row
and each column of the array contains each symbol exactly once.

Example let F;={1,2,3}. Then an example of a Latin square
of order 3 is

123

2ot 1

3:.142;

Latin squares, like balanced block designs (see Chapter 2), can
be used in statistical experiments.

Example 10.1 Three headache drugs 1, 2, 3 are to be tested on
subjects A, B, C on three successive days M, T, W. One
possible schedule is

M T W
ALV LS
B 1725
G, Lar @1 63

But in addition to testing the effect of different drugs on the same
subject, we also want to have some measurement of the effects of

- the drugs when taken on different days of the three-day period.

So we would like each drug to be used exactly once each day, i.e.
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we require a Latin square for the schedule, e.g.
ML W

A—1—2--3
.2 3 4
s bl AN G 2

Theorem 10.2 There exists a Latin square of order g for any

positive integer g.

Proof We cantake 12---qas the first row and cycle this round
once for each subsequent row to get

234 g1l
345./-q12
q12... q—]

Alternatively, the addition table of Z, is a Latin square of order
q.

Mutually orthogonal Latin squares

Definition Let A and B be two Latin squares of o'rder q. Let a;
and b; denote the i, jth entries of A and B respectively. Then A
and B are said to be mutually orthogonal Latin squares (abbre-
viated to MOLS) if the g¢> ordered pairs (& by),i,j= 5,
2,...,q, are all distinct.

In other words, if we superimpose the two squares to form a
new g X ¢ square with ordered pairs as entries, then these g’
ordered pairs are all distinct.

Example 10.3 The Latin squares

123 123
A=231 and B=312
6 3 25

form a pair of MOLS of order 3, for when superimposed they give
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the array

(1,1) 2,2) (3,3)
2,3 G,1) (1,2
(3,2) (1,3) @,1).

Application Suppose three headache drugs, labelled 1, 2, 3,
and three fever drugs, also labelled 1, 2, 3, are to be tested on
three subjects A, B, C on three successive days M, T, W. As in
Example 10.1, we shall use a Latin square of order 3 for the
headache drug schedule and another one for the fever drug
schedule. Since each subject takes a headache drug and a fever
drug each day we have the opportunity of observing their
combined effect. Can we test each of the 9 combinations of
headache drug/fever drug exactly once? Yes, by using the above
pair of MOLS.
M T W

A (1,1)(2,2) +(3:3)

B (2,3) (3,1) (1,2) Here (i,j) denotes

C (3,2) (1,3) (2,1) (headache drug i, fever drug j).

Example 10.4 There does not exist a pair of MOLS of order 2,

for if F, = {1, 2}, then the only Latin squares of order 2 are ; f and

1
12 and these are not mutually orthogonal.

Optimal single-error-correcting codes of length 4

Over an arbitrary alphabet F,, let us consider the ‘main coding
theory problem’ for codes of length 4 and minimum distance 3;

i.e. the problem of finding the value of A,(4, 3). First we find an
upper bound.

Theorem 10.5 A, (4,3)<g? for all g.

Proof Suppose C is a g-ary (4, M, 3)-code and let X = x,x,X3X4
and y=y»y); be distinct codewords of C. Then
(%1, %) # (%, »»), for otherwise x and y could differ only in the last
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two places, contradicting d(C)=3. Thus the M ordered pairs
obtained by deleting the last two coordinates from C are all
distinct vectors of (F,)? and so we must have M < g°.

Example 10.6 For g =3, the bound of Theorem 10.5 is
attained, for the Hamming code Ham (2, 3) is a (4,9, 3)-code:

0000
0112
0221
j 8L B
1112 .0
1 242
2022
2101
2210.

Note that the ordered pairs in any two fixed coordinate positions
are precisely the distinct vectors of (F;)*>. The argument of the
proof of Theorem 10.5 shows that this must be so.

Remark For q=4, the bound of Theorem 10.5 is a big
improvement on the sphere-packing bound, which gives only that

A,(4,3)<q%(4q - 3).

Our next task is to determine those values of g for which a
g-ary (4, ¢, 3)-code exists. Since the g* ordered pairs starting off
the codewords of such a code are distinct, such a code must have

the form

{(i,jv aij’ bij) | (lv]) € (E])z}
We now demonstrate the connection between such codes and
pairs of mutually orthogonal Latin squares.

Theorem 10.7 There exists a g-ary (4, g, 3)-code if and only if
there exists a pair of MOLS of order q.

Proof We will show that a code
C={(i,), a5 by) | (i,)) € (F)?)
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is a (4, ¢*, 3)-code if and only if A = [¢;] and B = [b,] form a pair
of MOLS of order q.

As in the proof of Theorem 10.5, the minimum distance of C is
3 if and only if, for each pair of coordinate positions, the ordered
pairs appearing in those positions are distinct. Now the g2 pairs
(i, a;) are distinct and the g2 pairs (j, a;) are distinct if and only if
A is a Latin square. The ¢ pairs (i, b;) are distinct and the g2
pairs (j, b;) are distinct if and only if B is a Latin square. Finally
the g? pairs (a;, b;) are distinct if and only if A and B are
mutually orthogonal.

Theorem 10.7 shows that A (4,3) =g if and only if there
exists a pair of MOLS of order g. We shall show (in Theorem
10.12) that such a pair of MOLS is easily constructed for three
quarters of all cases, or more precisely, whenever q=0,1, or
3 (mod 4).

Theorem 10.8 If q is a prime power and g # 2, then there exists
a pair of MOLS of order gq.

Proof Let F, be the field GF(q)={Ag, Ay, ..., A, ,}, where
Ao =0 (if g is prime, we may take A, =i for each i). Let u and v
be two distinct non-zero elements of GF(q). Let A = [a;] and
B =[b;] be g X g arrays defined by

ay=A+pd; and  by=A,+VA,.

(The rows and columns of A and B are indexed by 0,1,...,q —
1.) We first verify that A and B are Latin squares. If two
elements in the same row of A are identical, then we have

A,‘ ~+ ”AI = A,‘ + ﬂlj', i.e. “A'l = l.‘l,",

implying that j =j', since u#0. Similarly, if two elements in the
same column of A are identical, then we have

At uhi=he+ph, ie. A=A

implying that i =i'. Thus A, and similarly B, are Latin squares.
To show that A and B are orthogonal, suppose on the contrary
that (a;, b;) = (a;;., b;;;), i.e. assume that the same ordered pair
appears twice in the superposition of the squares. Then

Ai+ pd; = A + ud;
and l,’ + V}sl = A,‘r + VAI-',
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which on subtraction implies that
(= V)= (1= V)
Since u # v, we have j =j' and, consequently, i =i".
Remark Notice how the important field property of being able
to cancel non-zero factors was used in the above proof. A similar

construction using Z,, where n is not a prime, would fail to give a
pair of MOLS.

Example 10.9 With GF(3)={0,1, 2}, the construction of
Theorem 10.8 gives, taking u =1, v=2,

012 021
A=120 ad B=102
201 210.

The corresponding (4,9, 3)-code, given by Theorem 10.7, is
precisely the Hamming code as displayed in Example 10.6.

We next describe a construction which yields pairs of MOLS of
order g for many more values of g.

Theorem 10.10 If there exists a pair of MOLS of order m and
there exists a pair of MOLS of order #, then there exists a pair of
MOLS of order mn.

Proof Suppose A,, A, is a pair of MOLS of order m and By, B,
is a pair of MOLS of order n.
Denote the (i, j)th entry of A, by a{® (k=1,2)
and the (i,j)th entry of B, by b{Y (k=1,2).
Let C, and C, be the mn X mn squares defined by

Ck - (aﬁ)a kaasli), Bk) A (aslr‘rz’ Bk)

(ag.;)v Bk)
(agl‘?’ Bk) 5l (agx;;an Bk)

where (a{, B;) denotes an n Xn array whose r,sth entry is
(af?,b®) forr,s=1,2,...,n.
In other words, C, is obtained from A, by replacing each entry
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a of A, by the n X n array (a, B,), where
(a’ Bk) W (a’ bi’f))(a, bi’i)) MY (a’ bi’,‘,))

(a, b%)
@b®) -+ (a,b%).

It is a straightforward exercise to verify that C, and C, are Latin
squares and that they are mutually orthogonal.

Example 10.11
012 B33 &

A=120 and A,=201 lsapairof

fruntcate 271, MOLS of order 3.
0123 | 0123
1032 2301 isa pair of

B, = d = pair o

e Rl o o2 3210 MOLS of order 4.
3210 1032

The construction of Theorem 10.10 gives the following pair of
MOLS of order 12 in which the entries are ordered pairs from
the Cartesian product F; X F, = {00, 01, 02, 03, 10, 11, 12, 13, 20,
21, 22, 23}. (We could relabel these elements as the integers
1,2,...,12 if we wished).

00 01 0203; 10 11 12 13
01 00 03 02

20 21 22 23

10 11 12 13
11

G=12

'
[
'
'
'
'
'
'
'
'
'
'
'

4
1
'
'
'
'
'
1
'
'
'
'
'
'
'
'
'

-
[
'
'
'
'
'
'
'
'
il
'
'
'
'
'
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00 01 02 03¢ 10 {20
02 03 00 01 | §
03 02 01 00 | ;
01 00 03 02 | g
20 L 00 L 10
G= g g
00

—
(=]
B . 1
[\
(==}

Bt o

It should be clear to the reader how to complete the remaining
entries in the above squares.

The construction of Theorem 10.10 can be repeated any
number of times. For example, we can get a pair of MOLS 9f
order 60 by taking the pair of MOLS of order 12 constructefi in
Example 10.11 together with a pair of MOLS of order 5 as given
by Theorem 10.8. The following result tells us precisely for Wth.h
values of g a pair of MOLS of order g can be constructed by this
method.

Theorem 10.12 1f g =0, 1 or 3 (mod 4), then there exists a pair
of MOLS of order q.

Proof Suppose g =0, 1 or 3 (mod 4). Then g is either odd or is
divisible by 4. Hence, if g = piip% - - - pi* is the prime factoriza-
tion of g, where p,p,,...,p, are distinct primes and
hy, h,, . . . , h, are positive integers, then pj*=3 for each i. Thus,
by Theorem 10.8, there exists a pair of MOLS of order p} for
each i. Repeated application of Theorem 10.10 then gives a pair
of MOLS of order p’'ph:- - pl'=gq.

Theorem 10.12 leaves cases g=2(mod4), ie. ¢g=2,6,
10, 14, . . ., unresolved. It was shown in Example 10.4 that there
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does not exist a pair of MOLS of order 2. A pair of MOLS of
order 6 is equivalent to a solution of Euler’s ‘36 officers
problem’. As we saw in Chapter 9, Euler’s conjecture that no
such pair exists was proved by Tarry. Euler conjectured further
that there does not exist a pair of MOLS of order ¢ for any
q =2 (mod 4). For such g =10, he could not have been further
from the truth, though it was not until 1960 that his conjecture
was finally disposed of in the following result.

Theorem 10.13 (Bose, Shrikhande and Parker (1960)). There
exists a pair of MOLS of order ¢ for all g except ¢ =2 and g =6.

The proof of Theorem 10.13 for cases g =2 (mod4) is rather
complicated and is omitted here.

Corollary 10.14 A,(4,3)=q* for all g#2,6.

Proof This is immediate from Theorems 10.5, 10.7, and 10.13.
Finally we find the values of A,(4,3) forg=2 and ¢ =6. It is

a very easy exercise to show that A,(4,3) =2 (see Exercise 2.1),

while the following gives the value of A¢(4, 3).

Theorem 10.15 Aq(4,3)=34.

Proof The arrays

123456 123456
214365 345612
346512 214365

ot 5 I e g el A BRI
562143 436521
651234 5621:34

form a pair of Latin squares which are as close to being .'
orthogonal as is possible. They fail only in that (ags, bes) =
(013, b13) and (066, b66) 5 (a14, bl4)' Thus the code

{(i1j’ aij’ bu) I (l’]) € (F6)27 (’,]) # (61 5) or (67 6)}
is a (4, 34, 3)-code.
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Now if there existed a (4, 35, 3)-code C over F, then C would
have the form
{(i’j’ a,-,-, bij) | (l,]) € (F.6)2$ (l,]) # (iOst)}
for some (ig, jo). After a little thought, the reader should be able
to show that the partial 6 x 6 arrays A =[a;] and B = [b], eagh
having the (i, jo)th entry missing, can be completed to Lgtm
squares which must be mutually orthogonal. This contradicts

Tarry’s non-existence result.
Summarizing our results concerning A,(4, 3), we have

Theorem 10.16 A,(4,3) =g, for all g#2,6,
A2(4’ 3) = 2?
Al4,3)=34.

Remark We now see why the non-existence of a perfect g-ary
(g +1,9%°",3)-code cannot be proved by using the method of
proof of Theorem 9.12 except when g = 6.

In the remainder of this chapter, we generalize some of the
earlier results. First we give a generalization of the bound of
Theorem 10.5, due to Singleton (1964).

Theorem 10.17 (The Singleton bound)
Aq(n’ d) < qﬂ—d+l'

Proof Suppose C is a g-ary (n, M, d)-code. As in the proof of
Theorem 10.5, if we delete the last d — 1 coordinates from each
codeword (i.e. puncture C d —1 times), then the M vectors of
length n — d + 1 so obtained must be distinct and so M < gt

Sets of t mutually orthogonal Latin squares

Definition A set {A,, A,,...,A,} of Latin squares of ord.er qis
called a set of mutually orthogonal Latin squares (MOLS) if each
pair {A,, A,} is a pair of MOLS, for 1<i<j=<t.

Theorem 10.18 There are at most ¢ — 1 Latin squares in any set
of MOLS of order q.

el

s —————

{
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Proof Suppose A;,A,,...,A,is a set of t MOLS of order gq.
The orthogonality of two Latin squares is not violated if the
elements in any square are relabelled. So we can relabel the
elements of each square so that the first row of each A, is
12---q. Now consider the ¢ entries appearing in the (2, 1)th
position of the ¢ Latin squares. None of these entries can be a 1,
since 1 already appears in the first column of each A;. Also, no
two of these entries can be the same, because for any two of the
A;, the pairs (1,1), (2,2),...,(q, q) already appear in the first
row of the corresponding superimposed matrix. Hence we must
have t<gq — 1.

Definition 1f a set of g — 1 MOLS of order g exists, it is called a
complete set of MOLS of order gq.

Theorem 10.19 1f q is a prime power, then there exists a
complete set of ¢ —1 MOLS of order q.

Proof Consider the field GF(q)= {A,A,...,A,—;} where
Ao=0. Let A}, A,,...,A,; be g Xq arrays, with rows and
columns indexed by 0,1, ..., — 1, in which the (¢, j)th entry of
A, is the element of GF(q) defined by

afd = A+ Ay,

It follows exactly as in the proof of Theorem 10.8, that
A, A, ..., A, form a set of MOLS of order q.

Remark 1t is not known whether there exist any complete sets
of MOLS of order ¢ when g is not a prime power. Surprisingly, a
complete set of MOLS of order ¢g=3 is equivalent to a
projective plane of order g (see e.g. Ryser (1963), p. 92 for.a
proof of this). Thus one approach towards finding a projective
plane of order 10 (the lowest-order unsolved case, as mentioned °
in Chapter 2) is to try to find a set of 9 MOLS of order 10.
However, no-one has yet succeeded in finding even a set of 3
MOLS of order 10.

Theorem 10.20 A g-ary (n, g% n — 1)-code is equivalent to a set
of n —2 MOLS of order q.
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Proof As in Theorem 10.7, an (n, q*,n — 1)-code C over F, has
the form

(G, a0, af, . .. aff D) | (i) € (F)*)-

It is left as an exercise for the reader to show that d(C) =n — 1 if
and only if A,,A,,...,A, , where A, = [a{], form a set of
MOLS of order q.

Corollary 10.21 A,(3,2)=gq*forall q.

Proof A (3, ¢?,2)-code is equivalent to a single Latin square of
order g, which exists by Theorem 10.2. The Singleton bound
shows that such a code is optimal.

Corollary 10.22 1If g is a prime power and n<g +1, then
Ay (n,n—-1)=q>

Proof This is immediate from Theorems 10.17, 19 and 20.

For other connections between Latin squares and error-
correcting codes, see Dénes and Keedwell (1974).

Exercises 10

10.1 Construct a pair of orthogonal Latin squares of order 7.

10.2 Use a pair of MOLS of order 3 and the construction of
Theorem 10.10 to construct a pair of MOLS of order 9.

10.3 Using the field GF(4) as defined in Example 3.6(3),
construct a set of three MOLS of order 4.

10.4 Show that the dual of the Hamming code Ham (2, ¢) is a
(q +1,4% q)-code. List the codewords of (Ham (2,5))*
and hence construct a set of four MOLS of order 5.

10.5 Define f(g) to be the largest number of Latin squares in a
set of MOLS of order g. On the basis of results stated in
this chapter, write down all the information you can
about the values of f(n) for 3=<n <20; i.e. give values of
f(n) where known, otherwise give the best upper and
lower bounds you can.

10.6 Show that A,,(5, 4) = 400.

A double-error-correcting decimal code
1 1 andan introduction to BCH codes

In Chapter 3 we met the ISBN code, which is a single-error-
detecting decimal code of length 10. Then in Example 7.12 we
constructed a single-error-correcting decimal code of length 10.
Our first task in this chapter will be to construct a double-error-
correcting decimal code of length 10 and to determine an efficient
algorithm for decoding it. As before, the code will really be a
linear code defined over GF(11).

We shall then generalize this construction to a family of
t-error-correcting codes defined over finite fields GF(q), where
2t +1<gq. These codes are particular examples of BCH codes
(BCH codes were discovered independently by Hocquenghem
(1959) and by Bose and Ray-Chaudhuri (1960)) or Reed-
Solomon codes.

We shall see that the decoding of these codes depends on
solving a certain system of simultaneous non-linear equations, for
which coding theorists have devised some clever methods of
solution. Surprisingly, such a system of equations was first solved
by Ramanujan (1912) in a seemingly little-known paper in the
Journal of the Indian Mathematical Society. We shall present
here a decoding algorithm based on Ramanujan’s method, which
is easy to understand and makes use of the method of partial
fractions which the reader will very likely have met.

Historical Remark 1In 1970, N. Levinson wrote an expository
article entitled ‘Coding Theory—a counterexample to G. H.
Hardy’s conception of applied mathematics’, in which he showed -
how theorems from number theory play a central role in coding
theory, contrary to Hardy’s (1940) view that number theory
could not have any useful application. It is of particular interest,
therefore, to see a result of Hardy’s great protegé, Ramanujan,
also finding an application in coding theory. Incidentally, perhaps
contrary to popular belief, Ramanujan was not completely
unknown before his discovery by Hardy. He had already
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The .matrix iq this last expression is again of Vandermonde type
and if we similarly subtract a, X row i from row (i + 1) fori =1 to

’J\ ‘1 | published three papers, all in the above-mentioned journal,
r —2, and then take out factors, we get

‘H before he first wrote to Hardy in January, 1913. It is the third of
‘ these papers, published in 1912, which is of interest to us here. It
“ was just two pages long and gave neither references nor any
motivation for solving the given system of equations. detA=(a,—a,)(a;—a,) - (a,—a,)(as—a,) - - (a, — a,)

| AR [ Sl |

‘ ) Some preliminary results from linear algebra
a3 a4 PR a’

X
We shall construct a code of specified minimum distance d by dgt

constructing a parity-check matrix H having the property that
MH ‘H‘ any d — 1 columns of H are linearly independent (see Theorem
“ IH “: 8.4). The following well-known result concerning the deter-
| “' minant of a Vandermonde matrix enables us to make this
construction in a natural way. The determinant of a matrix A will
10 be denoted by det A.

05—3 i ar—3
r
Repeating the process until the determinant becomes unity,
det A = (a,~a,)(a;—a,) - - (a,—ay)
' (ag“—az)---(a,—az)

Theorem 11.1 Suppose a,,4,, . ..,a, are distinct non-zero ele- 3 8. Sy
(a,—a_;)x1

ments of a field. Then the so-called Vandermonde matrix

= H (a; — a)).

it ganmgRcianey 3
" a; ai 3.5 a; Hence det A is non-zero, since the a; are distinct non-zero
’\}; A=|a 6 - g elements of a field. [Remark: the reader who is familiar with the
| : . ; method of proof by induction should be able to shorten the
M | e A length of the above proof.|
il : The following is another standard result f li 2
‘ \‘ | has a non-zero determinant. its converse i i bty
1 e is also t
j ‘ “ Proof By subtracting a, X row i from row (i+1) for i=1 to s 3 by o ot oy
1 5‘ I r—1, we ha:/e Theon(n 11.2 If A is an r Xr matrix having a non-zero
"‘M\; | 1 1 s 1 ] determinant, then the r columns of A are linearly independent.
Il 0 a—a b s a,—a
l] 1 o (:1 _; yol.tbp Hors _; ) Proof Suppose A is an rXr matrix such that detA#0.
l‘i‘w izt # ; 2— 4 ; , — ay Supgose, for a contradiction, that the columns ¢;,¢,,...,¢c,0of A
i . (1_2(a2 -a,) ‘- a.,(a, —a,) are hpearly dependent. Then some column of A can be expressed
i \‘ ‘ pivy 3 - as a linear combination of the other columns, say 3
| HI}’H”‘ ‘; |0 a5 Ha—ay) +++ a;7a, — &) I 4
| ‘;“‘m‘ ISPty T 6=2 ac;
il \‘ ‘H B .. % s Or & ;;;

‘I‘M‘ Il |

— — — [ ) — 2 2 2 i
| ““‘Hw = (a,— a;)(a3 — ay) - - (@, — a,) det aj a; ay { Then replacing column ¢; by ¢; — E,f;, a,c; gives a matrix B whose
[ . . 2 \ 4 { 7]
| | | a;‘z a;“z L determinant is equal to that of A and which also has an all-zero
L | 2 043 r | column. Thus det A = det B =0, giving the desired contradiction.
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A double-error-correcting modulus 11 code

We are now ready to construct our double-error-correcting
decimal code. The code will consist of those codewords of the
single-error-correcting code of Example 7.12 which satisfy two
further parity-check equations. A similar code was considered by
Brown (1974).

Example 11.3 Let C be the linear [10, 6]-code over GF(11)
defined to have parity-check matrix

baadon: it

123---10
A=l1232..0f

1223 ... 10°

As usual, if we desire a decimal code rather than one over
GF(11), we simply omit those codewords containing the symbol
10 so that our decimal code is

10

D= {xlxz' «+ X0 € (Fo)* Z X

i=1

10 10 10
= ix;=, %=, i’x; =0 (mod 11)}
i=1 i=1 i=1
where F,={0,1,2,...,9}.

Note that any four columns of H form a Vandermonde matrix
and so, by Theorems 11.1 and 11.2, any four columns of H are
linearly independent. Thus, by Theorem 8.4, the code C (and
hence also D) has minimum distance 5 and so is a double-error-
correcting code.

Remark The 11-ary code C contains 11° codewords and so is
optimal by the Singleton bound (Theorem 10.17). The decimal
code D does not achieve the Singleton bound of 10° but
nevertheless contains over 680 000 codewords.

We next construct a syndrome decoding scheme which will
correct all double (and single) errors in codewords of C.

Suppose X=XX,**X;o is the transmitted codeword and
Y=Y, Yo is the received vector. We calculate the syndrome
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of y 10 10 10 10
(51,82, 83, 8) =yH" = (Z Yis 2 ¥ Z i2y;, Z ia}'/)-

i=1  i=1 i=1 i=1

Sup_ppse two errors of magnitudes a and b have occurred in ‘
positions i and j respectively. Then

a+b=3S, (1)
ai+bj=35, ()
ai’ + bj2= S, (3)
ai® + bj* = §,. 4)

We are required to solve these four equations for the four
unknowns a, b, i, j and at first sight this looks rather difficult as
the equations are non-linear. However, we can eliminate a, b
and j as follows.

iX(1)=(2) gives b(i —j)=iS, — S, (5)
i X(2) - (3) gives bj(i — j) =iS, — S, (6)
i X (3) — (4) gives bj*(i —j) =iS; — S,. )

Comparing (6)* with (5) X (7) now gives
(i85 = 83)% = (i, — $,)(iS; - S4),
which implies that
(53 — 8182)i% + (8,54 — $:85)i + 53— 5,5, = 0. (8)

It is clear that if a, b and i were eliminated from (1) to (4) in
similar fashion, then we would get the same equation (8) with i
replaced by j. Thus the error locations i and j are just the roots of
the quadratic equation (8). Once i and j are found, the values of
a and b are easily obtained from (1) and (2).

: Let P=55-5,5;, Q =85,5 — 5.5; and R = §2~ 5,S,. Note that
if just one error has occurred, say in position i of magnitude a,
then we have "

Si=a, S,=ai, S;=ai®* and S,=ai’

and so P=Q =R =0.

Thus our decoding algorithm is as follows.
From the received vector y, calculate the syndrome S(y) = (S,,
$,, S5, S,) and, if this is non-zero, calculate P, Q and R.
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—

(i) If S(y)=0, then y is a codeword and we assume no errors.

(ii) If S(y)#0 and P=Q =R =0, then we assume a single
error of magnitude S, in position S,/S,.

(iii) If P#0 and R#0 and if Q%> — 4PR is a non-zero square in

GF(11), then we assume there are two errors located in

positions i and j of magnitudes a and b respectively, where

_—Q+V(Q*-4PR)

i,] >p )
b=(8,—5)/(i—]) (10)
and a=S$,-b. (11)

(iv) If none of (i), (ii) or (iii) applies, then we conclude that at
least three errors have occurred.

Notes (1) It does not matter which way round we take i and j
in (9); we need not insist, for example, that i <j.

(2) As usual, all arithmetic is carried out modulo 11, division
being carried out with the aid of the table of inverses as in
Example 7.12. We need further here a table of square roots
modulo 11. By first calculating the squares of the scalars as

shown below
X | 12345678910

149533594 1
we may take the table of square roots to be

x 13459

V. [ 15243
We could equally well use the negative of any of these square
roots; the presence of the ‘£’ in (9) shows that it does not matter
which of the two roots is taken. Note that if, in (9), Q* —4PR is

not a square (i.e. it is one of 2, 6, 7, 8, 10), then at least three
errors must have occurred.

9

x°

A class of BCH codes

Let us now consider how the code of Example 11.3 might be
generalized. Generalizing the construction of the code to a
t-error-correcting code of length n over GF(g) is very easy
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provided
2t+1lsnsq-1.

Generalizing the decoding algorithm is less straightforward but
can nevertheless be done in an ingenious way.

The codes defined below belong to the much larger class of
BCH codes. By restricting our attention to these easily defined
codes we can demonstrate in an elementary way the essential
ingredients of the important error-correction procedure for the
more general BCH codes.

We will assume for simplicity that g is a prime number, so that
GF(q)={0,1,...,q — 1}, but there is no difficulty whatsoever
in adapting the results to the general prime-power case.

Let C be the code over GF(q) defined to have the parity-check
matrix

41 I el
162 3 n
H={1 22 3 n? |,
i 2d—2 3d—2 nd-—z

where d <n <gq — 1. That is,

C={x1x2- x,€V(n,q)|D ix;=0forj=0,1,... ,d—2}.
i=1
Any d — 1 columns of H form a Vandermonde matrix and so
are linearly independent by Theorems 11.1 and 11.2. Hence, by
Theorem 8.4, C has minimum distance d and so is a g-ary
(n,q"?*',d)-code. Since C meets the Singleton bound
(Theorem 10.17), we have proved

Theorem 11.4 If q is a prime-power and if d <n <g — 1, then
Ay(n,d)=q" """ .'

From now on we will assume that d is odd, so that d =2t + 1
and H has 2t rows. Let us try to generalize the decoding
algorithm of Example 11.3.

Suppose the codeword x=xx,- - - x, is transmitted and that
the vector y=y,y, - -y, is received in which we assume that at
most ¢ errors have occurred. Suppose the errors have occurred in
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positions  X;, X;,...,X, with  respective  magnitudes
my,ms, . ..,m, (if e<t errors have occurred, we just assume
that m, ., =m,., ="+ =m,=0). From the received vector y we

calculate the syndrome
(81,8, .-, S)=yHT,

i.e. we calculate )

§;=2 yi'=2 mXi™
i=1 i=1
forje=1.2, ...,
Thus, to find the errors, we must solve for X; and m; the
following system of equations

m, +m, *radmy =5
m1Xx +m2X2 +ooe +m,X, =S2

mX: +mXi +--+mX: =S, (11.5)

m X3+ m XY 4 m X =S,

This is precisely the system of equations solved by Ramanujan in
1912 and we follow exactly his method of solution below (for
t =3, the equations are too complicated to eliminate 2t — 1 of the
unknowns as we did for the case ¢ = 2).

Consider the expression

1 m; m,
o= ...+ & 1
¢(6) 1-—X,t9+1—)(20+ 1-X6 @
Now ——'—"1—=m,(1+)go+X}92+---)
1- X0
and so

p(O)=(m,+my+---+m)+(mX, +mX,+---+mKX)60
+ (M X3+ mX3+  +mX)O0*+---.
By virtue of equations (11.5), we get
P(0)=5,+50+ 850>+ -+ 501+ ... ()
Reducing the fractions in (1) to a common denominator, we have

A +A0+A0°+---+A0!
14 B,8 + B,6*+ - -+ BO"

$(6)= (€)
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Hence
(S;+ 5,6 +85;6°+---)(1+B,6+B,0*+ - -+ B
=A,+A4,0 +A,60°+ .-+ A6,
Equating like powers of 6 we have:

A,=Sl i)
A, =8+ 5,8,
As - S+ 8,B; + 5B, > (11.6)

A =8+ St—lBl xif SI—ZBZ bl T A

0=St+1"fSrBl+sl-—le+"'+slBr ]

0‘—TS,+2’}‘S:+IBI+SA’BZ+' + 5B, 4 (11.7)

0=SZI+SZI—IBI +S2,_sz+ L +S,B,. 4

Since Sy, S5, ..., S, are known, the ¢ equations (11.7) enable
us to find By, B,,..., B, and then A,,A,,...,A, are readily
found from equations (11.6).

Knowing the values of the A, and B,, we can split the rational
function of (3) into partial fractions to get

P P2 P:
0) = + o
¢(6) 1-¢,06 1-—q,6 1-¢q.06

Comparing this with (1), we see that
my =P Xi=q,
m=p, X;=q

m; = p, X =q
and the system (11.5) is solved.

Remark 11.8 The polynomial
0(6)=1+B,60 +B,6*+ .-+ B
=(1-X6)1-X,0)---(1-X.6)

is what coding theorists call the error-locator polynomial; its
zeros are the inverses of the error locations X, X, ..., X,. The
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polynomial
w(0)=A,+A,0+---+A0"!

is what coding theorists call the error-evaluator polynomial.
Once we have found the error locations, we can use the
evaluator polynomial to calculate the error magnitudes.

Let us illustrate the above method by an example.

Example 11.9 Consider the 3-error-correcting code over
GF(11) with parity-check matrix

73 14 B e A8
b2+ 3+ 10
1223 ...10
WP 2+ HPL
1:2%:3% ;.. . 40¢
12%3%... 10

Suppose we have received a vector whose syndrome has been
calculated to be

(Sh s2’ SB’ S4, SSa So) o (2, 8y 4, 5, 3. 2)
Assuming at most 3 errors, in positions X;, X,, X; of respective
magnitudes m,, m,, m; we have
m, m, ms A+ A0 + A,6°
= + + = s

where, by 11.6 and 11.7, the A, and B, satisfy

Al = 2

A, =8+2B,

A;=4+8B, +2B,

0=2+3B,+ 5B, +4B,.

Solving first the last three equations for B;, B, and B; gives
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B,=5,B,=10, By;=8, A, =2, A,=7 and A, =9. Therefore

2+76 +962
¢(0)—1+50+1062+803'

To split this into partial fractions we must factorize the de-
nominator. Because there is only a finite number of field
elements, the simplest way to find the zeros of the denominator
is by trial and error. In this case we find that the zeros are 4, 5
and 9. The error positions are the inverses of these values, i.e. 3,
9, and 5, and we now have
2476 + 962 m m; ms
= + + (1)

(1-36)(1~-56)(1-96) 1-36 1-560 1-96
Now m, is given by multiplying through by 1—36 and then
putting 30 =1, i.e. 6 =371 =4, to get
S 247:449-4 o

(1-5-49(1-9-4) =
The reader familiar with partial fractions may recognize this
method as a ‘cover-up’ rule. Similarly, m, is obtained from the
left-hand side of (1) by ‘covering up’ the factor 1—56 and
putting 6 =5""'=9. This gives m,=2 and similarly we get
ms="7. Thus the error vector is

0040200070.

¢(6) =

m,

Notes (1) If the number of errors which actually have oc-
curred is e, where e <t, then m,,.;=m,.,=---=m,=0 so that
¢(6) becomes
A +A0+---+A,0"
1+B6+:--+B6O°

We therefore require a solution of equations (11.7) for which

B = e+2="'=Bl=0'

It will not be obvious from the received vector, nor from the
syndrome, what the number e of errors is, but if e <¢, then only
the first e equations of (11.7) will be linearly independent, the
remaining ¢ —e equations being dependent on these. So when
solving the system (11.7) we must find the maximum number e of
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linearly independent equations and put B,,, = B,.,="""= B, =
0

'For example, suppose in Example 11.9 that the syndrome has
been found to be (5, 6,0, 3,7,5). Then equations (11.7) become

6B, +5B;=8
3B, +6B;=4
7B, + 3B, =6.
Eliminating B, from the last two equations gives
3B,+8B;=4

which is just a scalar multiple of the first. So we put B;=0 and
solve the first two equations for B; and B, to get B, =35 and
B,=5. We then have A, =5 and A,=9. So

5+96
PO =1 50+s07°

which gives, on splitting into partial fractions,
2 3

1-6 1-56°
Thus we assume that there are just two errors, in position 1 of
magnitude 2, and in position 5 of magnitude 3.
(2) When the error-locator and error-evaluator polynomials
o(0) and w(0) (defined in Remark 11.8) have been found, and

the error locations X, X, . . . , X, determined, then, as we saw in
Example 11.9, the error magnitudes are given by
w(X)
i\ L A
m; =—
[Ta-Xxx;" forj=1,2,...,e. (11.10)
i=1
it]

This is why w(0) is called the error-evaluator polynomial.
We now summarize the general algorithm.

Outline of the error-correction procedure (assuming <t
errors)

Step 1 Calculate the syndrome (S;, S5, . . ., S,,) of the received
vector.
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Step 2 Determine the maximum number of equations in system
(11.7) which are linearly independent. This is the number e of
errors which actually occurred.

Step 3 Set B,.,, B..,,...,B, all equal to zero and solve the
first e equations of (11.7) for B,, B, . . ., B..

Step 4 Find the zeros of the error locator polynomial

1+B,6+B,6%>+---+B6°

by substituting each of the non-zero elements of GF(q).

Step 5 Find A, A,, ..., A, from system (11.6) and find each
error magnitude m; by substituting X;! in the error-evaluator
polynomial A, + 4,6 + - - -+ A,0°7" and dividing by the product
of the factors 1 — X, X! fori=1,2,...,e with i#j.

Notes (1) If in Step 3 we solve the system (11.7) by reducing
to upper triangular form, then we can automatically carry out
Step 2 at the same time.

(2) The above procedure is essentially that used by coding
theorists today, although Ramanujan’s consideration of partial
fractions is not used explicitly.

(3) The computations involved in the above scheme may all
be performed very quickly with the exception of Step 3, in which
we are required to solve the matrix equation

sl SZ S3 N Se Be —'Se+1
Sz Ss S4 ol se+l Be—l "Se+2
S5 =

Se Sz+l S¢+2 P sZe—l Bl —S&

For example, if we were to solve the system by inverting the
e X e matrix, then the number of computations needed would be
proportional to e*. This might be reasonable for small ¢, but if we
need to correct a large number of errors we require a more
efficient method of solution. Various refinements have been
found which greatly reduce the amount and complexity of
computation.

Note that the e X e matrix above is not arbitrary in form, but
has the property known as ‘persymmetry’; that is, the entries in
any diagonal perpendicular to the main diagonal are all identical.
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Berlekamp (1968) and Massey (1969) were able to use this
additional structure to obtain a method of solving the equations
in a computationally much simpler way. This involved converting
the problem to one involving linear-feedback shift registers;
details may be found in Peterson and Weldon (1972),
MacWilliams and Sloane (1977) or Blahut (1983). An alternative
algorithm (see same references) involves the clever use of the
Euclidean algorithm for polynomials. This algorithm is perhaps
easier to understand than the Berlekamp-Massey algorithm,
though it is thought to be less efficient in practice.

(4) Since we require that n <g — 1 in constructing the above
codes, it may look as though the methods of this chapter have no
applicability to binary codes. However, binary BCH codes
indeed exist and are extremely important. A binary BCH code
may be defined by constructing a certain matrix whose entries
belong to a field of order 2" and then converting this to a
parity-check matrix for a binary code by identifying each element
of GF(2") with a binary h-tuple (written as a column vector) in a
natural way. These BCH codes are discussed extensively in
several of the standard texts on coding theory. It is hoped that
for the reader who wishes to study BCH codes further, the above
treatment will facilitate his understanding of the more general
case.

Concluding remarks

(1) Apart from the ISBN code, modulus 11 decimal codes are
now widely used, mainly for error detection rather than correc-
tion. One of the earliest uses was in the allocation of registration
numbers to the entire population of Norway in a scheme devised
by Selmer (cf. 1967). Selmer’s code, defined in Exercise 11.6,
satisfies two parity-check equations and is designed to detect all
single errors and various types of commonly occurring multiple
errors. Before devising his code, in order to ascertain which
psychological errors occurred most frequently, Selmer analysed
the census returns of 1960 for the population of Oslo. In this
census, the public had filled in the date of birth themselves, and
comparison of these entries with those in the public register had
revealed about 8000 inconsistencies, which were on record in
Oslo. Selmer actually received only 7000 of these; the remaining
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thousand were people who had also written their name incor-
rectly and so belonged to another file!

(2) For a survey of various types of error-detecting decimal
codes, see Verhoeff (1969). This includes, in Chapter 5, the first
example of a pure decimal code which detects all single errors
and all transpositions.

(3) In 1970, Goppa discovered codes which are an important
generalization of BCH codes, and whose decoding can be carried
out in essentially the same way. McEliece (1977) asserts that ‘it is
fairly clear that the deepest and most impressive result in coding
theory is the algebraic decoding of BCH-Goppa codes’. It has
been the aim of this chapter to give the essential flavour of this
result assuming nothing more than standard results from first-
year undergraduate mathematics.

Exercises 11

11.1 Using the code of Example 11.3, decode the received
vector 1204000910.

11.2 Find a generator matrix for the [10, 6]-code of Example
11.3.

11.3 For the code of Example 11.9, find the error vectors
corresponding to the syndromes

(1,7.5,2,3,10) and (9,7,7,10,8,3).

11.4 Suppose we wished to give each person in a population of
some 200000 a personal identity codeword composed of
letters of the English alphabet. Devise a suitable code of
reasonably short length which is double-error-correcting.

11.5 When decoding a BCH code of minimum distance 2¢ + 1,
suppose the error locations are found to be
X, X5,...,X,. Show that the error magnitude m; in
position X; is given by

m; = -Xo(X;")/o'(X;?),

where @(6) is the error-evaluator polynomial and o’(6)
denotes the derivative of the error-locator polynomial
o(6).

11.6 Every person in Norway has an 11-digit decimal registra-
tion number x,x, - - - x,;, where x,x, - - - x4 is the date of
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birth, x,xgxs is a personal number and x;o and x,, are
check digits defined by

X10= —(2xo + Sxg + 4x7 + 9x6 + 8xs + x4 + 6x; +7x, + 3x,)
(mod 11)
and
Xy3 = —(2xy0 + 3xg + dxg + 5x; + 6x6 + 7xs
+ 2x4 + 3x3 + 4x, + 5x,) (mod 11).

Write down a parity-check matrix for the code (regarded
as a code over GF(11)). If the code is used only for error
detection, will all double errors be detected? If not,
which double errors will fail to be detected?

1 2 Cyclic codes

Cyclic codes form an important class of codes for several reasons.
From a theoretical point of view they possess a rich algebraic
structure, while practically they can be efficiently implemented
by means of simple devices known as shift registers. Further-
more, many important codes, such as binary Hamming codes,
Golay codes and BCH codes, are equivalent to cyclic codes.

f‘ Definition A code C is cyclic if (i) C is a linear code and (ii) any

cyclic shift of a codeword is also a codeword, i.e. whenever
aga, - - - @, isin C, then so is a, a4, * * * @p2.

Examples 12.1 (i) The binary code {000,101,011,110} is
cyclic.

(i) The code of Example 2.23, which we now know as the
Hamming code Ham (3, 2), is cyclic. (Note that each codeword
of the form a; is the first cyclic shift of its predecessor and so is
each b;.)

(iii) The binary linear code {0000,1001,0110, 1111} is not
cyclic, but it is equivalent to a cyclic code; interchanging the third
and fourth coordinates gives the cyclic code {0000, 1010,
0101, 1111}.

(iv) Consider the ternary Hamming code Ham (2, 3) with
1011

0112 .
Exercise 5.7, we see that the code is not cyclic. But is Ham (2, 3)
equivalent to a cyclic code? The answer will be given in Example
12.13 (see also Exercise 12.22).

When considering cyclic codes we number the coordinate
positions 0,1,...,n—1. This is because it is useful to let a
vector. aga, -+ - @,—, in V(n,q) correspond to the polynomial

ag+ax+---+a,x"

generator matrix [ ] From the list of codewords found in




