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Abstract. The wel l  known link between Korteweg-de Vries and HD (Harry Dym) 
equations is improved in this paper by the introduction of a suitable spectral pare 
meter in the corresponding B;iddund relationship. Thin additional spectral parame- 
ter allows the complete transfer of the group theoretical structure between the two 
equations. As an application we give new solutions of the H D  on finite intervals. 
Several plots are included. The method of solution is also applied to the Kawamoto 
equation. 

1. In t roduct ion  

The Harry Dym (HD) equation [15] for e = e ( t , ( )  is 

Seemingly [12], this nonlinear PDE was found by Harry Dym while trying to transfer 
some results about isospectral flows to the string equation. The relationship between 
the HD and the classical string problem, with variable elastic parameter, was pointed 
out again in 1979 by Sabatier [24]. Since thcn, a wealth of information has been gath- 
ered on this equation: its bi-Hamiltonian formulation [19], its complete integrability 
[26] together with infinitely many conservation laws [27], and the applicability of the 
spectral gradient method [16, 171. Direct links were found between either the KdV 
and HD [22, 111, or the mKdV and HD [14]. A relationship between the HD, with an 
additional potential term, and the KdV w a  given earlier [3]. 

There seems to be considerable interest in explicit solutions for the HD equation. 
However, such solutions are difficult to obtain because this equation is not a quasi- 
linear equation (nor an equation with a constant sepamni in the terminology of [l3]). 
As a consequence, many of the well known structural properties, which are important 
for obtaining explicit solutions, do fail; in particular the method for finding Bickluud 
transformations via the prolongation scheme [17] (see also [la]). The structural reason 
for the exceptional position of the HD equation is that it has two scaling symmetries 
which makes i t  different from the folklore equations in 1 + 1 dimensions. This is also 
the reason why some other established methods fail, such as the validity of the Tu 
theorem [25] (see also [13, p 2691 for a more careful version of this theorem), or have 
to be modified, such as the exact Painlev6 test ([29] or [21]). 
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Today, up  to a certain order there are complete catalogues of equations with such 
exceptional behaviour [lo, 281 and we are certain that the results exhibited in this 
paper can also be transferred, after slight modifications, to these equations. As one 
example we present the Kawamoto equation [14] a t  the end of this paper. 

The essential tool for obtaining explicit solutions for these equations is the well 
known method of reciprocal transformation (see 1111, [22] or (231). By use of this 
method, and by the introduction of an additional spectral parameter, which is intrin- 
sically related to the reciprocal transformation, we construct explicit solutions in such 
a way that they can he easily plotted. These plots then open new avenues for the 
study of qualitative behaviour of soliton interaction. 

2. Principal result 

Fir&, a dmple s,ethod be &seri:e: io so;u~;ous of the e q u a ~ ~ o n  frorn 

(2.1) 

known solutions of the KdV equation 

U, = uzzz + ~ u u , .  

Let U = u(z , t )  be such a solution, then define p to be the solution of the following 
Riccati equation 

(2.2) 4 u - 2 p s + p  a -  - c  z 

where c is some spectral parameter. Then choose s to be a solution of 

where! for later convenience, the constant of integration is fixed in such a way that 
tm 1, s(z, t )  dz = 2 4 .  (2.4) 

This choice of integration constant corresponds to a normalization of s such that i t  
has the same mass (i.e. integral from -CO to +CO) as a single soliton. Now, use the 
well known reciprocal transformation 

2- 

E := s(t,i:)di: (2.5) 1, 
and 

e(E,t) := s(z , t ) .  (2.6) 

Theorem 2.1.  e( f , t )  defines a solution of the HD equation on the interval [ 0 , 2 & l .  

A direct proof of this statement is possible; however it involves tedious computa- 
tions. The result is, up t o  the influence of the spectral parameter c ,  the one obtained 
in [ I l l ,  so a direct proof will, more or less, follow the lines exhibited in that paper. I t  

c-.."J 4 L - r  iL^ _ _ ^ _ 1 _ ^ 1  L"^ - . l - c . . : L -  " &L.......,.+:"", .-..""Z"" cr. wea  L V U l l U  b,Lc%L LllC spec',", pa,ca,,,cbc, ,163 a U C I I I I I K  5LU"p I I IG"I=YILaI  L"'c.""L6. O", 

instead of giving a direct proof, we will show how this result follows by taking into ac- 
count the known facts from the group analysis of the equations under consideration. 
When U is a multi-soliton solution of the KdV, we exhibit, later, a more simplified 
method for performing the necessary computations in order to find explicit solutions. 
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3. Justification of the method 

It is well known [3, 11 (see also [SI) that  

Q + U + cD-'(ii - U) + f(D-'(ii -U))' = 0 (3.1) 

constitutes an autWBacklund transformation of the KdV. Here, as usual, D-' denotes 
the inverse of differentiation with respect to  I. This means that,  if U is a solution 
of the KdV, then ii is another solution (one where a soliton with speed c has been 
added). Furthermore, we know that when sz is an eigenvector, with eigenvalue c ,  of 
the recursion operator of the KdV 

4(G) = DZ + 26 + 2DiiD-' 

the, 8 ,  m:st he in the kerne! of the viriationa! derivztive of (3.1) with respect to 8 
(see [6], [7] and (21). To be precise, we then have 

sc + cs + sD-'(ii - U) = 0.  (3.2) 

From this equation we can express D-'(ii - U )  in terms of s and insert that result in 
(3.1). This leads to  

S D- 1 -  (U- U) = - (1 + c )  
S 

and 

2 U + )  + - ( - + c ) 2 - c ( s , + c )  1 s, = o .  
= 2 s  s (3.3) 

If we define 

9 = % I S  (3.4) 

then we obtain (2.2). This consideration shows that the function s, which we obtain 
from eqsation 9 3 ) ,  m x t  be the integra! of the eigenvertor of G ( 8 ) ;  with eigenval~ue 
c i.e. an eigenvector of the recursion operator of the field ii, which arises when one 
soliton with speed c is added to the field U. It is well knomi that the dynamics of 
an eigenvector of the recursion operator is the same as the dynamics of an infinites- 
imal generator of a one-parameter symmetry group [ 5 ] .  Hence we can rewrite the 
u-dynamics from (2.1) into a dynamical law for the variable s. This (see [7]) leads to 
the following PDE 

3s,s,, 3s; 3 
s, = szs= - - + 7 + -cs=. 

S 2s 2 (3.5) 

I f s  = += is inserted, then this gives, up to the additional term ($)cs., the well known 
dynamics of the singularity manifold equation of the K d V  130) (see also [SI), Another 
well known fact of Painlev6 analysis [23] is that a suitable reciprocal transformation 
leads from the singularity manifold equation to the HD equation. In addition, we know 
([SI or 141) that allgenerators of the translation group are annihilated by the reciprocal 
transformation given by (2.6). Hence, putting all these transformations together, we 
indeed arrive, with the reciprocal transformation of s, a t  a solution of the HD equation. 
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Figure 1. Three-solitonof the KdV: c1 = 0.4; cz = 0.6; c3 = 0.8; and -10 < z < 10, 
-10 < t < 10,O < U < 6. 

Figure 2. Interacting soliton of the Kdv for (a) 
c = 0 . 4 , ( b ) c = 0 . 6 a n d ( c ) c = 0 . 8 .  

4. The multi-soliton case 

However, the method presented in  the last section still does not give us explicit solu- 
tions directly since a Riccati equation (2.2) has to be solved. However, this Riccati 
equation can be solved explicitly in special cases, among others, when U is a multi- 
soliton solution of the KdV. 

Instead of going through the necessary computations, we will present here an 
abbreviated method for that  case. We start with an arbitrary N-soliton solution 
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G N ( z , t )  of the KdV. Such a solution is explicitly obtained, for example, by the Hirota 
bilinear formula [I]. We parametrize this solution by its asymptotic speeds (cl ,  . . . , c N )  
and its phases (ql, . . . , q N ) .  Then we know ([9] and [ZO]) that  the partial derivative 
of (iN),, with respect t o  any of the q i ,  gives eigenvectors of the recursion operator 
with corresponding eigenvalues ci. These eigenvectors coincide with the result of 
(2.3), where the normalizion had been fixed by a suitable choice of the constant of 
integration. So we have 

si. = a(cN)z/a'?i. (4.1) 

Now, performing the reciprocal transformation (2.6), we directly obtain the desired 
solution of the HD equation. Even if the reciprocal transformation may be difficult 
t o  handle from the analytic viewpoint, it is a very simple operation from the point of 
view of plotting these solutions, since all one has to do is t o  use parametric plots. If 
one does that in case of a threesoliton solution of the KdV (figure 1)  with asymptotic 
speeds cl = 0.4, c2 = 0.6, c3 = 0.8 one obtains, by taking partial derivatives with 
respect to the three phases ql, q 2 ,  q3, the plots (figure 2) for the interacting solitons 
sir i =  1,2 ,3 .  

Figure 3. Solution of the HD equation for (a )  
c = 0.4, ( a )  c = 0.6 and ( c )  c = 0.8. 

By application of the reciprocal transformation we then find the corresponding 
solutions of the HD equation (figure 3). 

A look at these plots shows where some of the computational difficulties with the 
HD equation arise. Since the dents, which are the results of additional solitons added 
t o  a one-soliton of the KdV, disappear exponentially for t - f m  it becomes quite 
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clear that, in general, the solution of the HD equation is not stable with respect to 
initial data because small changes can grow exponentially. 

5. Concluding remarks 

We have already given one solution of this kind for the HD equation in [8], therefore 
we conclude this paper by pointing out its novel features. First of all, we have shown 
how, in general, by use of Riccati transcendauts, KdV solutions can be transformed 
into HD solutions by simple methods. In [8] this was only possible for multi-solitons. 
Here, the method is shown to be of general validity. We needed multi-soliton solutions 
for the abbreviated computation. In [8] we still had to solve the eigenvector problem 
for the recursion operator in order t o  arrive at  the interacting soliton S .  Here, we 
only have to compute a simple derivative for functions which are well known from the 
literature. Thus the computation of those explicit solutions for HD, which are related 
to KdV multksolitons, has been trivialized. 

Figure 4. Two-soliton of the CDGSK:  c1 = 0.5;  c1 = 1.0; c3 = 0.8 with -13 < z < 
13, -15 < t < 15,O < U < 6 .  

Figure 5 .  Interacting soliton of the CDGSK:  ( a )  c = 0.5 and ( a )  c = 1.0. 

It  is interesting whether or not by using the same method multi-solitons of, say, 
the Caudrey-Dodd-Gibbon-Sanada-Kotera (CDGSK) equation can be transformed 
into solutions of its reciprocal counterpart [14], i.e. the Kamamoto equation [14, 41 

(5.1) 
4 5 e, = 10e4e.,~,,, + s e  e,e zzzz + e  e DID=z. 
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Figure 6 .  Solution of the Kawamoto equation ( a )  c = 0.5 and ( 6 )  c = 1.0. 

This question is not completely trivial. Although we know that in this case a reciprocal 
transformaton of the singularity manifold equation leads to the Kawamoto equation, i t  
is not that easy to see whether the additional terms by which the singularity equation 
differs from the interacting soliton equation are cancelled by the reciprocal transfor- 
mation. However, a detailed analysis shows that this is indeed the case, and that  the 
method goes through without any change. Explicit solutions from this procedure look 
very much like those for the HD case. For example (figure 4), when a two-soliton for 
the CDGSK is undergoing a similar sequence of transformations as those described in 
this paper, we first obtain interacting solitons of the CDGSK (figure 5). And then, by 
reciprocal transformation, solutions of the Kawamoto equation as given in figure 6. 
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