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Editorial Introduction

This volume is based on the proceedings of the Toeplitz Lectures 1999 and of the
Workshop in Operator Theory held in March 1999 at Tel-Aviv University and
at the Weizmann Institute of Science. The workshop was held on the occasion
of the 60th birthday of Harry Dym, and the Toeplitz lecturers were Harry Dym
and Jim Rovnyak. The papers in the volume reflect Harry’s influence on the field
of operator theory and its applications through his insights, his writings, and his
personality. The volume begins with an autobiographical sketch, followed by the
list of publications of Harry Dym and the paper of Israel Gohberg: On Joint Work
with Harry Dym.

The following paper by Jim Rovnyak: Methods of Krein Space Operator The-
ory, is based on his Toeplitz lectures. It gives a survey of old and recents methods
of Krein space operator theory along with examples from function theory, espe-
cially substitution operators on indefinite Dirichlet spaces and their relation to
coefficient problems for univalent functions, an idea pioneered by L. de Branges
and underlying his proof of the Bieberbach conjecture (see [9]).

The remaining papers (arranged in the alphabetical order) can be divided
into the following categories.

Schur analysis and interpolation

In Notes on Interpolation in the Generalized Schur Class. I, D. Alpay, T. Con-
stantinescu, A. Dijksma, and J. Rovnyak use realization theory for operator colli-
gations in Pontryagin spaces to study interpolation and factorization problems in
generalized Schur classes.

In his paper A Generic Schur Function Is an Inner One, V. Katsnelson uses
the Schur parameters to put a probability measure on the set of all Schur functions,
and studies the genericity of inner functions by the methods of multiplicative
ergodic theory.

A. Kheifets, Abstract Interpolation Scheme for Non Analytic Problems, devel-
ops a generalization of the abstract interpolation problem of Katsnelson—Kheifetz—
Yuditskii (see [14, 15]) to handle non analytic interpolation problems such as
the Nehari interpolation problem. One of the key ideas is a systematic replace-
ment of unitary colligations, or equivalently conservative input/state/output sys-
tems, by generally non-orthogonal (non-causal) scattering systems as introduced
by Adamyan—-Arov [1].

Several complex variables and Riemann surfaces

In Concrete Interpolation of Meromorphic Matriz Functions on Riemann Surfaces,
J.A. Ball, K.F. Clancey, and V. Vinnikov investigate the problems of interpolat-
ing matrix pole-zero data with multiple-valued meromorphic matrix functions on
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compact Riemann surfaces. This is related on the one hand to homogeneous in-
terpolation problems for rational matrix functions as studied in [5], and on the
other hand to the study of vector bundles on compact Riemann surfaces initiated
by André Weil in [18] and actively pursued in the last two decades in algebraic
geometry (see, e.g., [17]).

The paper by M.F. Bessmertnyi, On Realizations of Rational Matriz Func-
tions of Several Complexr Variables, is an English translation, prepared by Daniel
Alpay and Victor Katsnelson, of a part of a Ph. D. thesis that was written in
Russian in 1982 and has never been published. It deals with realization theory for
rational matrix functions of several complex variables, especially for functions sat-
isfying positivity conditions; its publication now is especially suitable because of
a recent surge of activity in the area — the works of Agler—McCarthy [4], Alpay—
Kaptanoglu [2], Ball-Sadosky—Vinnikov [6], Ball-Trent 7], Kalyuzhniy [12, 13] —
inspired by the work of Agler [3].

Matrix theory

The paper by D. Hershkowitz, On the Spectral Radius of Multi-Matriz Functions,
deals with the behaviour of the spectral radius of a matrix with positive entries
under multivariable matrix functions, and some other related questions. Mostly a
survey, it contains also original results.

A Class of Robustness Problems in Matrixz Analysis, by A. Ran and L. Rod-
man, is a survey of a class of perturbation problems that has been extensively
studied by the authors and their collaborators over a period of several years. The
stage is set by posing an abstract “metaproblem” followed by a careful review of
results concerning the pervasive question of the stability of invariant subspaces.

System theory

The main part of the paper Stable Dissipative Linear Stationary Dynamical Scat-
tering Systems by D.Z. Arov is an English translation, prepared by D.Z. Arov and
J. Rovnyak, of a highly influential article originally published in Russian in 1979;
it deals with (linear time-invariant) dissipative input/state/output systems, and
their role in electrical networks (Darlington synthesis), operator theory, and func-
tion theory. There are two new appendices, the first one by D.Z. Arov providing a
commentary and an update of the results, and the second one by D.Z. Arov and
J. Rovnyak showing some directions for generalizations and further development.

In Chains of Space-Time Open Systems and DNA, M.S. Livsic discusses a
striking resemblance between chains of overdetermined multidimensional (space-
time) systems, that appear in the spectral analysis of tuples of nonselfadjoint and
nonunitary operators [16], and chains of nucleotides in molecular biology. He shows
that some important properties of the DNA can be given a natural explanation
using the methods of system theory.
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Differential equations and mathematical physics

The paper Dual Discrete Canonical Systems by L. Sakhnovich discusses the notion
of dual canonical systems in the discrete case. The notion was introduced in the
continuous case in a recent paper of Dym and Sakhnovich [10], generalizing (in
that case) the notion of dual string equations which was introduced by Kac and
Krein for scalar strings [11].

In Finite Section Method for Linear Ordinary Differential Equations on the
Full Line, 1. Gohberg, M.A. Kaashoek, and F. van Schagen study solutions of linear
ordinary differential equations on the full line as limits of solutions of corresponding
equations on smaller intervals (with appropriate boundary or initial conditions).
Both the time-invariant and the time-varying cases are considered.

C. Calude and B. Pavlov, The Poincaré—Hardy Inequality on the Comple-
ment of a Cantor Set, derive the Poincaré-Hardy inequality (an important tool in
classical analysis, as well as in quantum mechanics, mathematical hydrodynamics,
and quantum scattering) in R? on the complement of a Cantor set. The approach
to the problem is via a certain relevant dynamical system, inspired by Carleson [8].

Non-Selfadjoint Sturm-Liouville Operators with Multiple Spectra by V. Tka-
chenko is related to the spectral theory of non-selfadjoint Sturm-Liouville opera-
tors. While it was generally believed that an operator with a complex potential can
have spectral points of an arbitrary multiplicity, not a single explicit example of,
say, operator on a finite interval with multiple Dirichlet or Neumann spectra was
previously known. Among other results, this paper constructs a Sturm-Liouville
operator with an arbitrary given (symmetric) Dirichlet spectrum A, subject only
to a restriction dealing with a suitable asymptotic behavior of A,,.
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Looking Back

Harry Dym

I have been asked by the editors to write a few biographical remarks. I have spent
most of my professional life in the Department of Mathematics (née Department of
Pure Mathematics) of The Weizmann Institute. Thirty odd years seem to have sped
by, although the days, weeks, and months often went by very slowly. Moreover, the
events that led to my being at the Institute seemed to fall into place by chance,
not by design, at least not by my design. I never particularly wanted to be a
mathematician, nor did I plan on an academic career. But that is getting ahead
of the story.

Initial conditions

To begin before the beginning: My parents were both born in Poland: my father,
Isaac Dym, in Lisko, my mother, née Anne Hochman, in Kalusz. Their immediate
families moved to Vienna during the First World War, probably to escape from the
front lines and/or the invading Russian army. I know very little about the extended
families of my parents. A book that my cousin Miriam came across recently lists
more than thirty Dyms from the Lisko region who perished in the Second World
War.

My parents were two quite different kinds of people. My mother was a do-er,
an activist and a supreme organizer. In today’s world, she probably would have
been the CEO of some large company. My father was more of a scholar. He was
an avid reader and, in his spare time, was almost always found with a book in his
hands. In his youth, Jewish orthodox families did not encourage their children to
study secular subjects. Nevertheless, my father completed a doctoral dissertation
in Economics at the University of Vienna, presumably as an external student.
I assume that my parents met in the office that my father managed, since my
mother worked as a secretary in that office. One story has it that she organized a
strike of all the other secretaries to improve their conditions. I do not know if the
strike was successful or not. Perhaps the only way to bring this strike to an end
or to avoid future strikes was to marry her. The fact that she was also a rather
attractive young woman must have made this an agreeable solution. (To be honest,
I don’t know if the story is true, but knowing my mother, it is certainly plausible.)
I arrived on the scene a few years later, on January 26, 1938.

I wish to thank Renee and Jay Weiss for endowing the chair that supports my research.
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In the spring of 1939, when the local situation became “uncomfortable”, my
parents and I flew to Hungary for a two-week “vacation”. They had been waiting
for entry permits to England, but decided that the situation in Vienna was too
dangerous and asked the British Consulate to forward the permits to the Consulate
in Budapest. The two-week stay in Hungary was extended illegally to many weeks
and then, asking the local British Consulate to forward the permits, my parents
proceeded to Trieste, where the borders had opened. Sometime later the permits
arrived in Trieste. However, the consular official did not want to issue them because
they were supposed to be issued in Vienna. A loud vocal argument ensued and the
Chief Consul, hearing the commotion, came out to see what all the fuss was about.
Fortunately, he directed his subordinate to authorize the permits, otherwise this
tale might never have been written.

My parents entered England as domestic servants: housemaid and butler.

England

My father’s career as a butler was short lived. His employer dismissed him when
he discovered that he had a university education. He spent the war years working
as a baker in Leeds, where we lived. In 1944 the family was enriched by the birth
of my brother, Lionel Clive (who later changed his name to Clive Lionel). My
father, who was a Zionist, wanted to immigrate to Israel in 1948. However, he was
discouraged by relatives who were living there and also by a second cousin from
the US, Anna Rogoff, who visited us in England after visiting Israel. Aunt Anna,
as we called her, encouraged my parents to move to New York.

New York

In 1949 the family immigrated to New York. I attended Manhattan Day School (a
Jewish Parochial School) for two years and then went on to The Bronx High School
of Science from 1951 to 1955 during the day and to Herzliah Hebrew Teachers
Institute for two evenings per week and Sunday mornings. In High School T did
rather well in the standard Math and Physics courses, but was never invited to
take any of the honors courses in math (not that I had any ambitions in this
direction) because of mediocre grades in French. At that period I developed a
fascination for electronic devices. I can’t remember how or why it began (it had
nothing to do with school), but I do rememember often spending many hours
scouring Cortland Street, a downtown New York electronic parts center at that
time, for inexpensive resistors, capacitors, inductors and vacuum tubes. These were
assembled with mixed degrees of success, following plans in popular electronics
magazines. Thus, electrical engineering was a rather natural choice of vocation. In
any event, at that time, youngsters with an aptitude for math and physics were
steered into engineering, which was viewed as being economically secure. In my
circle of aquaintances, no one had ever heard of mathematics per se as a career.
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Accordingly, I went on to study electrical engineering at the Cooper Union School
of Engineering from 1955 to 1959.

Cooper Union

Cooper Union was my mother’s discovery. In 1955, it was one of two private
schools in the US that did not charge tuition. Consequently it tended to have
fairly able students. In my year, the Engineering School admitted 97 Freshmen
(Freshpersons?). The entering class, which was distributed more or less equally in
chemical, civil, mechanical and electrical engineering, included six young women.
We had to specify our choice on the application forms. Unfortunately, large chunks
of the curriculum in those days left much to be desired.

The first two years of study were devoted mostly to math, physics and chem-
istry with frontal lectures, recitation sections and exams. This part was fairly
normal. The physics was probably very good. The math was mostly calculus plus
a semester of differential equations. It was, at least as far as [ remember, largely a
cookbook approach, learning techniques to solve problems. Basically the strategy
was to look for model problems and imitate. I suppose that the instructors tried
to make the material plausible, but we probably had little patience for long-(or
even short)-winded explanations. I cannot speak for the others, but I certainly had
no understanding of (or interest in) limits. I am pretty sure that I did not really
understand derivatives or integrals either, though I could compute them. Integrals
always existed. After all you could look them up in a table. We did not study
linear algebra, complex variables, probability or numerical methods, let alone the
more exotic subjects such as topology, geometry or modern algebra.

The last two years were devoted mostly to engineering subjects. We worked
our way through fat books on magnetism, electric circuits, electric machines, elec-
tronics and transmission lines, among others. There were hardly any lectures.
Classes were typically three-hour affairs. We would come in and, sitting in groups
around tables, work on problems, calculating away with our thirty dollar Keuffel
& Esser slide rules. (In those days a subway ride was a dime and a typical text
book ran less than ten dollars.) The worst was the weekly (third year) Electric
Machines Lab Report, which through years of “consulting” with the work of pre-
vious generations had become immensely long. Much was written; little was really
understood. In retrospect, it probably was an exercise in obfuscation, at least for
most of us. Not having a clear idea of what we were doing (or why) we tended to
bury it in long rambling discourses adapted from sources presumed to be reliable
that hopefully covered the issues. It probably insured that no one would read the
reports, at least not too carefully.

The program we followed was a little old fashioned. It included surveying (two
weeks in a sleep away camp — great fun), drafting (less fun), descriptive geometry
(even less fun) and was presumably designed to enable you to solve a wide range
of problems with the aid of handbooks. In my time there was no flexibility in the
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program. Everything was completely regimented except that in the fourth year,
we were allowed to select the humanities course of our choice from an offering of
four.

Getting through Cooper Union was an exercise in survival. It was something
akin to Basic Training in the army, except that you could go home at night. There
was even the same sense of camaraderie that comes from being with the same
group in a hazardous environment for an extended period of time.

To be fair, the system was not without merit. It was a difficult program and
those of us who made it through to the end, were very pleased with ourselves for
having completed it. But, as our youngest son Michael once remarked while doing
physiotherapy after a foot operation: “Just because it hurts, does not mean that
its good for you.” What was lacking was an attempt by the Faculty of Engineering
to transmit the benefits of their accumulated experience and personal vision. I am
sure that I would have gotten more out of my stay at Cooper Union had I put more
into it. However, I was not a particularly diligent student, being more interested
in other things that included the athletic program and a certain young lady.

Towards the latter half of my sojourn at Cooper I became more serious and
even applied to a couple of Graduate Schools. Someone must have written a good
letter of recommendation on my behalf, because, in spite of an abundant collection
of “Gentlemen’s C’s” in my first two years, I was awarded an assistantship for
graduate study in electrical engineering at Caltech. In May 1959, a week before
graduation, I married the young lady (née Irene Lillian Rosner). Some dozen days
later, we set out to drive across country to Pasadena, California, where I had a
summer job at the Jet Propulsion Laboratory. My ambition in life at that time
was to design “pulse circuits.” However, the summer job at JPL, attempting to
do just that, cooled my enthusiasm. It was too much like “black magic.” I never
could get anything that I designed to work for two days in a row.

Caltech

At Caltech, T took my first “real” Math course, Math 108, which was an intro-
ductory course on Analysis based mostly on the book Mathematical Analysis, by
T. Apostol. The course was beautifully taught that year by James Knowles. Al-
though I did not know it at the time, this was probably the first step in a career
transition. Another significant course for me that year was Statistical Communica-
tions Theory. It was largely based on the well known book by Davenport and Root.
The material was, as I recall, fascinating but rather murky, at least for someone
with my limited math background.

Caltech also opened up new horizons for Irene, who was a biology major. She
obtained a position as an assistant in the laboratory of Matthew Meselson. This
was just a few years after Watson and Crick elucidated the double helix structure
of DNA. Matthew Meselson and Frank Stahl had just proven that the two strands
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of the DNA molecule separate when it replicates. The experiments in the lab that
were related to this work were very exciting.

The offer of a fellowship for her to pursue doctoral studies at Harvard, and
the news that our first child was expected, arrived at about the same time. Irene
opted to take time out to raise our progeny. Later, when we moved to the Boston
area and Matt moved to Harvard, she carried out a number of special projects
for him on a part-time basis, but gave up the idea of graduate study. Some years
after our third son was born, she switched directions to pursue a career in art and
claims to have no regrets.

In June 1960, I graduated with an MSc in Electrical Engineering and joined
the Technical Staff of the MITRE Corporation in Bedford, Massachusetts. One of
the attractions of MITRE was a program that allowed staff members to take one
course per semester during working hours at local universities, including MIT.

MITRE

At MITRE I had the good fortune to work intensively with Ed Arthurs, then
an Assistant Professor in the Electrical Engineering Department at MIT. Ed had
been hired as a consultant to help prepare a theoretical analysis of digital data
equipment that was being tested by my department. This was roughly a two-year
project and was a wonderful experience for me. I was the liason between him and
the department. It was like having my own personal tutor and gradually I started
to fill in some of the many gaps in my education and began to move forward.
Eventually these efforts led to a long paper that was awarded a prize as the best
paper of the year 1962 in the IRE Transactions on Communications Systems. One
of the Faculty members in the EE Department at MIT even took 60 reprints off
my hands to distribute to his class. It hurt to part with them at the time, but
today I realize that he did me a great favor. Otherwise I would have yet another
pile of clutter in my office.

In the Fall of 1960 I started taking math courses at MIT as a special student;
one per semester. The first year I took Real Variables. The second year I took
Complex Variables the first semester and a course on Information Theory with
Claude Shannon in the second semester. I remember that I did not think that
I had done particularly well on the final exam in Complex Variables. I did not
do all the problems and wasted far too much time trying to get a proof of the
Cauchy—Schwarz inequality to come out. To my surprise I got an A. It seems that
I had solved a complicated conformal mapping problem that no one else had.

Going to school while working full-time was not easy. It involved driving into
Cambridge from Bedford, racing to class and then driving back to Bedford. The
main problem, aside from finding a place to park, was the lack of interaction with
other students that is so useful in the learning process and helps one focus on the
essence. Somewhere in this time period the idea of returning to school on a full-
time basis began to germinate. The Math department was more attractive than
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the EE department, because the latter had an extensive set of qualifying exams in
subjects that held little interest for me. In the early Spring of 1962, armed with my
A in Complex Variables, I went to speak to G.B. Thomas, the Admissions Officer
for the Math Department, to inquire about the possibility of admission sometime
in the distant future. He was vaguely encouraging, but indicated that the sooner I
applied the better my chances. With encouragement from my “significant other”
I went for it. I suspect that my parents and in-laws thought I was crazy. I didn’t
ask.

MIT

In the Fall of 1962 I took a leave of absence from MITRE and returned to full-time
graduate study in the Department of Mathematics at MIT. They were willing to
let me try my luck, but were not willing to support me. Fortunately (thanks to
the recommendation of E. Arthurs), I was awarded a Research Assistantship in
the Information Theory Group of the Research Laboratory for Electronics. As 1
remember, the assistantship carried a stipend of $360 per month from which MIT
took back on the order of $110 per month for tuition and $120 per month for
housing. That didn’t leave much to support the family, which included a young
Jonathan (born November 1960) and a young David enroute (to be born December
1962). I was able to supplement this with summer work at MITRE. Nevertheless,
I was eager to get through and go back to work full-time as quickly as possible.
In view of the MSc from Caltech (which covered the minor requirements) and the
courses that I had taken as a special student, I was able to complete the course
requirements in the first year by taking a year-long course in Probability with Dan
Ray, and semester-long courses in Algebra, the Theory of Distributions, Topolog-
ical Groups with K. Iwasawa and Fourier Analysis with Norbert Wiener. I really
was not ready to absorb most of this stuff and none of it, except for the Proba-
bility, had any long-term effects. There is, as one learns with experience, a vast
difference between being able to follow the formal logic of a proof and developing
a feel for the material. Luckily, most of the grades were based on problem sets
rather than exams, so I was able to get by reasonably well. My objective at that
time was to learn more mathematics to apply to problems in Statistical Commu-
nications Theory. The main gap to be filled was Stochastic Processes. The Algebra
was supposed to help in coding theory, but I lost interest in that early on. I might
have cottoned to it better if the lecturer had not tried to cram a year’s worth of
material into one semester.

In the Spring of 1963, Henry McKean agreed to take me on as a PhD student.
The first step was to pass oral exams. My committee was K. Iwasawa, I.E. Segal
and Henry himself. The former two assigned reading material based on one semes-
ter courses that they had given. Henry wanted more: The Carus monograph by
M. Kac on Statistical Independence, Paul Lévy’s book “Processus Stochastiques
et Mouvement Brownien”, Dynkin’s papers on Markov processes (as reproduced



Looking Back 7

in Loeve) and large chunks of both the first volume of Courant-Hilbert and of
Hoffman’s book on Hardy spaces. At that time, Henry was putting the finishing
touches on his book with Ito on Markov processes. This is a marvelous book, chock-
full of information and ideas, but not always easy to read. It has been somewhat
unkindly said that Henry wrote it in Japanese and Ito translated it into English. I
can testify that this is not true. The Oral Exams were taken in pieces, since Henry
was at Rockefeller University during the academic year 1963-1964. The final hur-
dle was overcome in December 1963 when Henry came through Cambridge on his
way to New Hampshire for the Christmas holidays. Henry suggested a number of
possible directions for a thesis. I settled on the study of the trajectory in phase
space of an ordinary differential equation with constant coefficients that was driven
by white noise. This topic was not deemed appropriate for continued support by
the heads of the Information Theory Group at that time and the Research Assist-
antship from RLE was not renewed for a third year. However, by this time I was
far enough along to get Math Department support as a Teaching Assistant.

As I remember, work on the PhD thesis went reasonably well for a while
and then got bogged down. Nevertheless, sometime towards the middle of 1964—
1965, Henry suggested that I report on what had been achieved to that point
to the Probability Seminar. I was not particularly eager to do this. However, to
paraphrase The Godfather, it was an an offer that was difficult to refuse. At the
end of the talk one of the other graduate students began to ask a number of
questions about one of the conjectures that I had raised. It seemed to me that he
was exhibiting excessive interest in what I considered to be my turf. This really
annoyed me (though I don’t think I showed it). I went home and, late that evening,
resolved the conjecture. That essentially completed the thesis.

The thesis seemed to be well thought of and was published in the Transactions
of the American Math. Society. It generated a number of attractive job offers,
including an option to stay on at MIT for two more years as an Instructor, which
I accepted. Thus, began the drift from Industry to Academia.

At MIT, in the academic year 1965-1966, I began to read the Acta paper
on trigonometric approximation by Levinson-McKean and tried my hand at some
of the early de Branges papers on Hilbert spaces of entire functions. I also wrote
an expanded set of lecture notes on a course that Henry was giving on Fourier
Analysis. This was to evolve over a number of years and a number of different
courses that each of us gave into the book Fourier Series and Integrals. Shortly
after the beginning of the first year of that appointment, just after we had moved
into a house that we really liked in Brookline, Henry invited me to join him at
Rockefeller University for the academic year 1966—-1967.

Rockefeller University

I spent the year at “RockTech”, as it was affectionately called in some circles,
working with Henry on applications of de Branges spaces of entire functions to
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prediction theory. We had actually begun to work on this the year before at MIT,
but now there was real progress. That was the good news. The bad news was that
none of the fine job offers/inquiries that I had turned down the year before were
repeated. I also messed up a job interview at Bell Labs. I think, in the arrogance
of youth, I was much too forthright about what I would and would not like to
work on.

It seemed like a good time to travel. I applied for a visiting position at the
Hebrew University in Jerusalem. As fate would have it, there happened to be a
visiting postdoc at Rockefeller from Israel, by the name of Moshe Kugler. When
I mentioned to him that I had applied to the Hebrew University, he encouraged
me to apply to the Weizmann Institute. I had never heard of the Institute at that
time. He supplied a name (Joseph Gillis) and an address and very shortly after
some interchanges of correspondence (shortly in those days meant a few weeks; no
E-mail back then) I was offered a postdoctoral fellowship in the Department of
Applied Mathematics. The offer was sent by telegram and 1 was given a week to
answer. Since the object was to travel and the prospects at Jerusalem were still
uncertain, I accepted.

The Weizmann Institute

The Weizmann Institute was really an odd choice for me at the time. I had never
heard of the Institute or of anyone who worked there. I spent most of that year
working on applications of Hilbert spaces of entire functions to the spectral theory
of second order differential operators. No one else at the Institute was really inter-
ested in such things. Many years later Doron Zeilberger happened to see the paper
that emerged from this work and was prompted to apply for graduate study at the
Institute because of it (though he ended up working on something else). Although
there was no mathematical interaction for me, the atmosphere was pleasant and
there was a great outdoor swimming pool. Moreover, in those days, Rehovot had
a certain rustic charm. (There was only one traffic light.) After a while (it took
a few months) Irene and I began to look favorably on the possibility of returning
some time in the future, if the opportunity were to arise.

New York again

In late August 1968 we returned to New York, where I had accepted a position as
an Assistant Professor of Mathematics at the City College of the City University
of New York. I also had an offer from NYU, which was more attractive mathe-
matically, but at a much lower salary. Since it is expensive to live in New York
with two small children I opted for CCNY. It was a good choice. The department
was friendly and the heads were very generous in assigning me a low teaching load
and also allowing me to teach special topics courses. The collaboration with Henry
McKean on prediction theory resumed.
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In the meantime there were new developments in Rehovot. The Institute had
decided to open a second department of Mathematics. It was to be headed by
Samuel Karlin. Shlomo Sternberg and Yitz Herstein had also agreed to participate
in this “noble venture”, as Sam called it, at least on a part-time basis. All these
“Chiefs” needed some “Indians” and Sam invited me to be one (of the Indians). The
target date was the Fall Semester 1970. Having by this time reentered the Riverdale
community and feeling very much a part of it, it was not an easy decision, but
finally we said yes. After all, if it was a complete disaster, we could always return.
Moreover, to paraphrase one of our young men, “we had to pick up Michael”, who
was to be born in Rehovot on August 1972.

Sam was very excited about what he was going to accomplish at the Institute.
I remember receiving a phone call from him one stormy Sunday evening (Purim,
1970). He had just returned from Israel and was staying with friends in the Village.
He asked me to come down to discuss plans for the new department. This meant
taking a bus to 236th Street and Broadway, a train to West 4th street and then
a walk of a few blocks; at least an hour and a half in each direction. I made the
trip. When I got there Sam said he was too tired to discuss plans. He suggested
that I ride with him to the airport on the following day. I passed that one up.

Back to Rehovot

I was the first member of the newly formed Department of Pure Mathematics to
arrive in Rehovot. Sam came a few weeks later, Yitz came in the second semester
and Shlomo came in the summer. Sam and I never collaborated together on math-
ematical problems. However, he did get me interested in tennis, which became
a major obsession for me for more than twenty years. I spent most of the first
few years at the Institute finishing off projects that had been started with Henry
McKean. The Fourier Series book was sent to the publisher in the Fall of 1971,
and the book on Prediction was shaped when Henry visited Israel for 5 months in
the Spring of 1973. In those days, manuscripts were typed on electric typewriters
which had special inserts for math symbols, and drafts of manuscripts and/or lists
of comments were sent back and forth through the mail. A slow business compared
to today. A close to final draft was submitted to Edwin Beschler, then of Academic
Press, for review in late September 1973, a few days before the Yom-Kippur war
broke out. Although there were still several months of revisions ahead, plus gal-
leyproofs and page proofs, the end was in sight. It was time to look for something
new. By this time, my interests had shifted from probability to analysis. Because
of intensive work on the books, I only published one short paper in the period
between 1970 and 1976. Fortunately, I was awarded tenure a year after arrival.
Otherwise, I might be driving a semi-trailer today, which was one of my childhood
ambitions.
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New vistas

Martin Kruskal spent the academic year 1973-1974 on sabbatical at the Weiz-
mann Institute. In the course of the year he gave a number of interesting lectures
on isospectral problems for the Schrédinger equation and the connections with the
KdV equation. After so many years of living with the string equation, it seemed
natural to explore analogous questions in this setting also. A few hours of cal-
culations (and miscalculations) led to the conclusion that if the density of the
string r(z) is parametrized by ¢ and allowed to evolve according to the partial
differential equation r; — 7374z, = 0, then the eigenvalues of the string equation
~r*1y” = Ay, with appropriate side conditions, would stay fixed in time. In 1974,
Martin reported on these calculations in a series of lectures at the Batelle Institute
and called the PDE the Harry Dym equation. The name stuck, even though I never
wrote any papers on the subject. (Actually a draft of a paper which explored a
number of questions related to the theory of such equations was prepared in col-
laboration with Martin. But Martin took it back with him to Princeton, where it
is presumably still collecting dust in his office.)

The other new projects that I got involved in were an outgrowth of the
interest in reproducing kernel Hilbert spaces and inverse spectral problems that
had been kindled by the work on prediction.

One of the first of these was carried out with Naftali Kravitsky (Z”L), my
first PhD student. We studied the effects of small perturbations on the principal
spectral function A()\) of the vibrating string equation upon the mass distribution
m(z) of the string. The main result was a prescription for computing at least
the initial segment of the perturbed string. The Gelfand-Levitan procedure for
reconstructing the potential of the Schrédinger equation emerged as a pleasing
byproduct of the main theorem. A basic tool was the abstract method of triangular
factorization of Gohberg and Krein that was developed in their monograph on
Volterra Operators. This was my first encounter with the name Israel Gohberg.

The relevance of factorization to inverse problems is a theme which was re-
turned to in a paper with Andrei Iacob. Indeed, this paper was written largely
to emphasize the connections between factorization and three basic techniques for
solving inverse problems: the method of Gelfand-Levitan, the method of Krein and
the method of Marchenko. For pedagogical reasons the paper focused mostly on
discrete problems on the line and on the circle. A second rather long paper with
Andrei focused on inverse problems for canonical systems of differential equations

of the form

1Y — v 420 (@20)

with spectral densities of the form I, + K()\), where K(\) is of Wiener class. A
byproduct of the analysis was a linear fractional representation for the set of all
solutions of a continuous version of the Carathéodory interpolation problem. The
basic strategy was to identify solutions of the interpolation problem with solutions
of the inverse spectral problem. (The maximum entropy solution of the covariance
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extension problem had a particularly pleasing interpretation.) This identification
depended in part on a theorem of M.G. Krein which was not quite correct in
the asserted generality. Nevertheless the representation formula was valid and was
later justified by other methods.

Another project that was initiated in that period started from the observation
that a continuous version of the strong Szegé formula (due to Marc Kac) could
be recast in the language of operators acting on Paley-Wiener spaces. From there
it was a short jump to try to generalize to the setting of de Branges spaces of
entire functions. This involved a healthy dose of reproducing kernel space theory
and estimates of traces and determinants for assorted classes of operators. The
bible for the estimates was the wonderful monograph by Gohberg and Krein on
nonselfadjoint operators. This marked my second encounter with the name Israel
Gohberg. Little did I suspect at the time that there was more to come, much more.

The Odessa connection

I never met M.G. Krein, but he was to be a major influence on my mathematical
life. It began when Loren Pitt discovered the Doklady note of M.G. Krein, “On a
fundamental approximation problem in the theory of extrapolation and filtration of
stationary random processes,” which had appeared in translation. This discovery
caused a major reorientation of the work with Henry on prediction and much
effort was required to fill in the missing details in that note and a number of
other Doklady notes, none of which contained proofs. We didn’t know who Krein
was at the time and Henry even called up Peter Lax to find out if Krein was
reliable. The answer was, of course, yes. The next influence was through the two
marvelous Gohberg-Krein monographs referred to earlier. And then, lo and behold,
fate smiled, and Israel Gohberg showed up in person at the Weizmann Institute.
The story was that in 1974, Israel Gohberg immigrated to Israel and accepted a
full-time position at Tel Aviv University and also, in the Spring of 1975, a half-
time position at The Weizmann Institute. Israel and I started to work together
on assorted problems of extension in the Fall of 1976. It was a bit sporadic at
first. He had a lot of invitations, I had some military obligations, but the die was
cast. The more intensive phase of this collaboration probably began in the Fall of
1977. Israel used to come to the Institute twice a week and we would sit together
several hours each time working together. This was a marvelous way to enter more
deeply into the mathematical world of M.G. Krein, guided by one of his foremost
disciples. Israel was (and still is) a wonderful teacher, both as a lecturer before a
large audience and as a collaborator with an audience of one.

Our work together focused on assorted classes of extension problems, mostly
in the context of matrix valued functions in a Wiener algebra.

The first problem we considered was to establish conditions to guarantee the
existence of an invertible n x n matrix valued function f(¢) in the Wiener algebra
on the circle such that the Fourier coefficients f; of f(¢) are specified for |j| < n
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and the Fourier coefficients g; of g(¢) = f(¢)™! of the inverse are equal to zero
for |j] > mn. It was also required that f(¢) admit a factorization. Necessary and
sufficient conditions for the existence of solutions to this problem were obtained. A
number of analogues were developed in other settings in a subsequent sequence of
papers that were devoted to the Wiener algebra on the line, banded matrices and
Fredholm integral operators, respectively. The first three of these papers contain
maximal entropy principles: The band extension maximizes the entropy. The fourth
paper contained the first abstract formulation of what came to be called Band
Extension Problems. Interestingly enough, the third paper in this series, which
was a relatively easy by product of the first two, is the one that seems to have
attracted the most attention. We later went on to consider a number of other
problems of extension, including triangular extensions, contractive, isometric and
unitary extensions, with and without factorization indices, for assorted classes of
operators. The results were pleasing, but the collaboration slowed down when the
Institute went through a financial crisis and disbanded all part-time positions, and
came to a halt a couple of years later.

The intensive collaboration with Israel lasted for close to ten years. We got
together a few years later on another problem that began with a question that
Israel raised at a conference in Winnipeg and was supplemented by a number of
meetings that were scheduled around Israel’s visits to his dentist in Rehovot. The
friendship continues.

In 1990, Michael Shmoish, a student of Ju.M. Berezanskii, and hence a math-
ematical grandson of M.G. Krein, immigrated to Israel. He ended up at the Insti-
tute, and wrote a nice thesis on inverse problems for block Jacobi matrices and
related issues.

In 1991, there was a rumor afoot at the MTNS meeting in Okeba, Japan, that
both Vadim M. Adamyan and Damir Z. Arov were to attend. That was two out
of the three authors of the famous AAK cycle of papers on matrix (and operator)
versions of the Nehari problem that was one of the cornerstones of H>° control.
This was shortly after Peristroika and possibly the first time that they had ever
been allowed to leave Odessa to travel to the West. The rumor turned out to be
correct. A. Nudelman, Lev Sakhnovich and E. Tsekanovskii were also part of the
group, but they were less well known to that community. Dima Arov, using Israel
Gohberg as a translator, expressed an interest in visiting Rehovot. Between his
knowledge of English and my knowledge of Russian, it wasn’t exactly clear to
me how we would communicate, but I figured we could overcome that difficulty
somehow. There were plenty of Russian students at the Institute who spoke English
and could help out if need be. A visit was arranged and that marked the beginning
of an intensive collaboration that is still running hot to this day. At later periods
both Lev and Vadim also visited Rehovot, as did Israel Kac, yet another member
of the Krein circle.
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The Delft connection

The Delft connection was another act of fate. In some sense the wheels began to
turn when I wrote to Paul Fuhrmann for a reprint. He invited me to BeerSheva
to give a seminar. At BeerSheva I met Abie Feintuch and we got to talking. Some
months later, in a follow up conversation by phone, Abie told me that he had met
someone called Patrick Dewilde at the second MTNS conference in Lubbock Texas
and that Patrick was interested in Prediction Theory. This led to an attempt to
invite Patrick (who I thought to be at Louvaine) to visit Israel for ten days under
the auspices of the Belgian-Israel Cultural Exchange program. The correspondence
was initiated in Autumn 1977.

However, it turned out that Patrick had already moved to Delft. Undaunted
by the facts, we submitted an application to the Belgian authorities anyway. There
was no response. At this point fate and Tom Kailath took a hand. Both Patrick
and I were guests of Tom in the summer of 1978 at Stanford. This is where the
romance with J-inner functions began. It wasn’t love at first sight, but there was
an attraction.

I spent a good part of that summer working through the manuscript of a paper
by Dewilde, Vieira and Kailath that dealt with recursive extraction of elementary
J-inner sections with a single pole at infinity. Nevertheless, I suspect that this
effort might well have ended with the summer had not the Belgian authorities
agreed (several months later) to support Patrick’s visit to Israel. The visit took
place in the Spring of 1979 and during that time a couple of open questions were
resolved. This in turn led to an invitation to Delft and marked the beginning of a
long and fruitful collaboration that lasted many years.

Patrick got me interested in interpolation theory. Our first paper together was
a generalization of the Dewilde, Vieira and Kailath paper referred to earlier. The
objective was to approximate a given function (first scalar and later matrix valued)
S of Schur class or Z of Carathéodory class by a rational function of the same class
that agreed with the given function at a prescribed set of points (and in the matrix
case in a prescribed set of directions at each of these points) and to estimate the
error. The methods were recursive. The approximant was constructed by a variant
of the Schur—-Nevanlinna algorithm. The recursive procedure produced a rational
J-inner matrix valued function, the entries of which were used to display solutions
via a linear fractional transformation of the Redheffer form. A characterization of
the maximum entropy solution was given. The first two papers focused on matching
points in the interior of the open unit disc. The third dealt with matching at one
or more boundary points. In the latter case, the J-inner matrix valued functions
alluded to above were “Brune Sections”, i.e., Blaschke—Potapov factors of the third
kind. Oddly enough, the Pick matrix did not figure in any of these problems.

The problems considered in these papers were all special cases of the LIS
(lossless inverse scattering) problem of network theory, one formulation of which
is: Given S in the Schur class, find a J-inner W such that S = Ty [SL] is a linear
fractional transformation of a passive “load” Sr.. In these papers, the LIS problem
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was solved by setting up a (tangential) interpolation problem with a finite number
of constraints that were obtained from the given S. We worked on a number of
other problems together, the last of which focused on interpolation in the setting
of upper triangular operators, part of this was in collaboration was with Daniel
Alpay. But more about him later. Our active collaboration died down when Patrick
became head of DIMES at Delft and had very little time to call his own.

The French connection

The second dominant influence in my mathematical life, not counting people that
I worked with, is undoubtedly Louis de Branges. His work on reproducing kernel
Hilbert spaces of entire functions played a significant role in the study of prediction
with Henry McKean. Applications of his abstract characterization of reproducing
kernel Hilbert spaces of J-inner matrix valued functions to assorted problems of
interpolation and extension has been one of the major themes in a good part of my
own work. (Reproducing kernel Krein spaces were useful in assorted studies of the
zero distribution of various classes of matrix valued functions, some of which were
carried out with Nicholas Young. The all important R, operator even entered in
another project that was carried out with Malcolm Smith and Tryphon Georgiou.)

The initial exploration of de Branges’ work on reproducing kernel Hilbert
spaces of J-inner matrix valued functions began, appropriately enough, with an-
other Frenchman, Daniel Alpay. Daniel first came to the Institute from Paris to
study for his MSc degree. Daniel had also studied electrical engineering as an un-
dergraduate and and seemed to like the same kind of mathematics that I did. He
stayed on to do a PhD with me and at a later stage was a postdoc at the Institute.

Our first project together focused on an abstract version of an inverse scatter-
ing problem that Patrick and I had worked on earlier. But this was more operator
theoretic and was heavily based on de Branges’ work. In the writing of this pa-
per I think we both learned the power and the beauty of de Branges’ abstract
characterization of the reproducing kernel Hilbert spaces alluded to earlier. It was
to be a major theme in our future work, both together and individually. There
were also interesting applications to the theory of models of operators that were
close to unitary and and operators that were close to self adjoint, which in turn
intersected with work of Moshe Livsic and M.G. Krein. We later went on to put
the Schur algorithm into an abstract reproducing kernel Hilbert space setting and
to further generalize some of these ideas to the setting of Pontryagin spaces.

There were a number of other projects that we worked on over the years
including general classes of realization formulas, generalizations of the Iohvidov
laws and interpolation theory for upper triangular operators. The latter was in
collaboration with Patrick Dewilde. It was in fact based on work that Patrick and
Daniel had initiated. I came on board a little later.
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The first paper with Daniel was one of the first in our department to be
typed in TEX,! using the computer as a word processor. In those days there was
one printer in the Institute. It was housed in the Computer Center, about a five
minute walk away.

The Kharkov connection

The Kharkov connection began with a letter from Victor Katsnelson that ex-
pressed an interest in visiting the Weizmann Institute. I knew the name from a
private translation of one of his papers by Tsuyoshi Ando. The visit led in due
course to a full-time appointment some years later and then to a progression of
visitors from Kharkov, including V. A. Marchenko, Sasha Kheifets, Peter Yuditskii
and Vladimir Dubovoj. I was particularly impressed by the work of Katsnelson,
Kheifets and Yuditskii on what they called “The Abstract Interpolation Prob-
lem”. To my mind, it is one of the most elegant and far reaching approaches to
interpolation problems that is currently available. In work with Boris Freydin (my
most recent PhD student, who was also from Kharkov) we managed to adapt these
methods to bitangential problems in the setting of upper triangular operators. I
also worked intensively on interpolation problems for degenerate Pick matrices
and on boundary interpolation with another former resident of Kharkov, Vladimir
Bolotnikov, during the two years he spent as a postdoctoral fellow at the Institute.
Vladimir was actually a mathematical grandson, having completed his degree with
Daniel Alpay at Ben Gurion University of the Negev.

The UCSD connection

I first met Bill Helton in 1976 at a meeting in Oberwolfach that Israel Gohberg
helped to organize. Both of us were working on generalizations of the Szeg6 formula
at the time and thought that it would be fruitful to get together. It took almost
twenty years to work this out. A major incentive to finally do something about it
arose when our oldest son Jonathan moved with his family to Los Angeles for an
extended stay. Since 1996, I have spent several weeks of each year at UCSD working
with Bill, in directions that are far different from what we originally envisioned.
So far reproducing kernels have not yet intervened. But its been good fun and, for
me at least, a nice way to enter a new area of mathematics in which I had not
been active before.

11t was typed by Mrs. Ruby Musrie, our department secretary, who deserves a special note of
thanks for having converted thousands of pages of scrawl into elegant manuscripts. In fact, in
thirty odd years I got a lot of help from all our secretaries, as well as our support staff, and I am
grateful to them all. But Ruby bore the brunt.
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0Odd recollections and thoughts with no connection

The student who sat on my left in my home room in my first year of High
School was also born in Vienna and his parents turned out to be friends of
my parents. They had lost contact some dozen years before.

The student who sat behind me in the same class before he moved to New
Jersey was David Trutt, who went on to do a PhD with de Branges in Pur-
due. (We figured this out years later by backtracking when he visited the
Institute.)

One of the real hazards of Cooper Union was the Electric Machines Lab. 1
still remember the day when there was a big flash, followed by a bang as the
circuit breakers went; seeing my lab partner, Steve Hofstein, standing with
a quizzical look on his face and singed eyebrows after he had inadvertently
brought the tips of two cables together that should have been kept apart.
In the days of the German Democratic Republic, contact with Israel was
strictly forbidden for citizens of that “Democracy.” Nevertheless, Bernd Kir-
stein and I used to exchange reprints through mutual friends in Holland, some
through Patrick and some through Rien Kaashoek. Even these shipments
were intercepted and carefully inspected. Several years later, Bernd told me
that one shipment was approved because Dym was regarded as a good Dutch
name. Little did they know that the name is an acronym in Hebrew coming
from the letters Daled, Yud, Mem.

In a paper that I am working on, I just spent the best part of three days
trying to straighten out an erroneous minus sign. It seems like an odd way
for a supposedly grown person to spend one’s time. On the other hand, planes
have been known to crash because of a mistake in sign, or something equally
foolish, in a critical computer program.

A cartoon in the New Yorker in 1957 during the height of the competition be-
tween different branches of the US Armed Forces to put an American satellite
into orbit shows an American Army General looking at the Russian Sputnik.
The caption: “Thank God, for a moment I thought it was the Navy’s.”
Irene’s dictum: “Let’s throw everything away. Then there will be room for
what’s left.”

It has been my observation that those who think they know all the answers,
don’t know all the questions. A Chinese proverb puts it nicely: “Trust only
those who doubt.”

As one gets older one realizes that there are questions that one will never be
able to answer. I, for one, have never understood why I have so many single
socks.
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The last word

Objects seen through a rear view mirror are distorted. Our memories are selective
and play tricks on us. Consequently, everything written above should be taken with
a grain (perhaps several grains) of salt. I have focused mainly on collaborations
and how they came into being and not so much on projects that I carried out on
my own steam. My intentions were not to cast judgement, but rather to indicate
how I muddled into mathematics as a career and some of my experiences enroute,
including the mishaps. There were downs as well as ups, but on the whole it wasn’t
a bad run. What I can say with certainty is that I owe a great deal to the colleagues
that I collaborated with and to my former students, teachers all. Thank you. 2

Harry Dym

Department of Theoretical Mathematics
The Weizmann Institute of Science
Rehovot 76100

Israel

21 owe even more to that young lady that I met while running a waterfront in the Catskills long
long ago, but this is not the place to go into all that.
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On Joint Work with Harry Dym

Israel Gohberg

1. How it started

I immigrated with my family to Israel at the end of July 1974. In the beginning
we studied Hebrew very intensively. I also started to look for work in Israeli in-
stitutions of higher education; very soon I received an offer from the Tel-Aviv
University which I decided to accept. In March 1975 I was invited by the Dean of
the Faculty of Mathematics, Professor S. Karlin, to take a part time position at
the Weizmann Institute of Science. I accepted this position and started working
there two days a week. The Pure Mathematics Department in the Weizmann In-
stitute of Science was very small; apart from S. Karlin the Dean, Harry Dym and
Yakar Kannai were the only senior researchers. There was also a group of doctoral
students. I started to lecture different courses in advanced operator theory and
applications.

I met Harry and from our conversations I understood that he was very well
informed in operator theory in general and in the work of the school of M.G. Krein
especially. Already then he was the author of two books with H.P. McKean and
was active in research.

T accepted a Ph.D. student. This was Sofia Levin and I started to work with
her. During one of my visits to the Institute Harry expressed interest in joint work
with me. I was also interested in this offer and we started to look for an appropriate
problem.

I soon found such a problem during my visit to Amsterdam. The problem was
proposed by a colleague from the Free University, Professor G.Y. Nieuwland. He
in his turn obtained the problem from a colleague who was working in theoretical
chemistry.

2. Band extension problems

The first problem consisted of the following: a function k(t) (=7 < t < T') has to
be extended to the full line to f(t) in such a way that the function 1— f()), where
f is the Fourier transform of f(t), is positive (or more generally different from
zero on the line) and the function 1/(1 — f())) has the form 1 — §()\), where § is
the Fourier transform of a function g(¢) that vanishes outside the interval (=T, T').
Both functions f and g belong to L;(—00, 00).
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In a short time we had a solution to this problem and we started to write it
down. We did not succeed in finishing this work before the summer. One of the
reasons was that Harry decided to take a four month sabbatical. The last half was
spent in Stanford with Tom Kailath.

By a coincidence, in Stanford Harry discovered that the thesis of Tom
Kailath’s doctoral student, A.C.G.Vieira, was relevant to our problem. In fact
he was dealing with a matrix discrete analogue of the above mentioned problem
for the positive definite case. More than that, in applications this problem is impor-
tant and the solution is called the maximum entropy solution, or the autoregressive
extension of statistical estimation theory. The discrete case of the scalar solution
was solved and analyzed before by J.P. Burg in 1975. He came to it within the
framework of spectral analysis in geophysics problems. After Harry returned to
Israel we wrote our first joint paper [1] where we solved the generalized problem
of extension of matrix valued functions, including the positive definite case with
the maximum entropy solution. Explicit formulas for the solution based on Szegd
orthogonal polynomials was also presented.

The following year, 1980, we published the paper [2] which contained the
complete solution of the continuous analogue in the matrix valued case. This is
a large paper (more than 70 pages) and it contains probably the first solution
of the maximum entropy extension problem in this setting, together with a new
definition of entropy under some natural technical conditions.

As a byproduct of the two papers described we obtained new results in the
theory of completion of finite matrices. The results were published in 1981 in [3].
The problem of extension in this case is the following: Let a symmetric band of
width 2m +1 in an n X n matrix with complex entries be given and let the rest of
the entries of this matrix be unspecified. The problem is to complete the matrix in
such a way that the inverse of the completed matrix is a symmetric band matrix
of < 2m + 1. Of special interest is the case where the completion is additionally
required to be positive definite. In this case under natural conditions the solution
exists it is unique and can be characterized to have the maximum determinant
between the determinants of all other positive definite completions. An explicit
algorithm for this solution is also presented. This result contains Burg’s maximal
entropy inequality in theory of covariance extensions. This is a result that follows
from the case that the band is Toeplitz and in this case the solution is also Toeplitz.
The described results are also generalized for block matrices. This paper became
much more popular than the first two. A number of interesting results for the more
general non-band case were obtained by other colleagues. Till today the non-band
case in general has not been solved to the end.

Our next paper [4] can be considered as the solution of a continuous analog
of the previous problem. It is about extensions of kernels of Fredholm integral
operators given in a band. The positive case generalized Burg’s maximal entropy
inequality. This result can be considered for the time dependent noncovariance
case. In this paper is developed the beginning of the general theory of extensions
and completions in an abstract algebra with multiplication subject to some special
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features that generalize the features in the concrete examples. This abstract ap-
proach served to clarify the band extension and completion problem and to unify
the results of the latter paper with the previous ones. The abstract approach be-
came popular. It was used as a basis for a far-reaching development. This led to
the band method presented in a number of papers of I. Gohberg, M.A. Kaashoek
and H. Woerdemann, and of J. Ball, I. Gohberg and M.A. Kaashoek, in which new
extensions and interpolation problems were solved. The results of the beginning
of this section intersect with some results of D.Z. Arov and M.G. Krein.

3. Working together

In the first years of cooperation both of us made serious efforts to progress in
the extension and completion problems mentioned above. The problems were new
in an area which we had not considered before and we worked with interest and
enthusiasm. We presented these results at different conferences and our results
were nicely received by our colleagues.

I came to the Weizmann Institute twice a week and most of this time was
used for joint work with Harry. A small part of the time I spent with my graduate
students. Soon they were three, Sofia Levin, Israel Koltracht and Nir Cohen. The
joint work with Harry was very pleasant. The work was continuing also during
the lunch break and during the tea break in the afternoon. Sometimes we worked
in unexpected places. I remember a few hours work in the foyer of the Van Gogh
museum in Amsterdam (while Harry’s wife Irene was enjoying the exhibition).
Harry is a very fine coauthor; he is talented, has good taste and a wide knowledge
in theoretical mathematics as well as in applications. He is hardworking and has
a wonderful command of English and he very easily puts mathematics on paper.

I learned many things from Harry in mathematics and also in everyday life.
I was used to the Soviet mentality and rules of behavior. Harry helped me to
understand the new situation and to become used to it. In view of our friendly
relations I could ask his advice on any question without hesitation. For instance,
he was the first to notice and explain to me the difference between the practice
regarding very good Ph.D. students in USSR and in the West after graduation. In
the USSR the best Ph.D. students were kept for permanent work in the university
(chair) where they studied. In the West on the other hand they would have to
leave and spend at least a short time in other universities. There is a big difference
between the USSR and the West in the evaluation of various areas of mathematics
and mathematicians. Harry explained these things which looked like contradictions
to me. On my part I told Harry a lot about M.G. Krein, his work and his school,
about the difficulties of Jewish life in the USSR. All of this interested him. He
especially enjoyed hearing jokes from the USSR.
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4. Triangular extensions

Let f(2) (J]z] = 1) be a function with specified Fourier coefficients f; (j =
0,1,2,...) and [fol + |fi| + [fa| + -+ < oo and let p_1,%_9,... also given com-
plex numbers with |¢/_1| + |_2| + -+ < oo. The problem consists of specify-
ing the Fourier coefficients of f{z) with negative indices in such a way that
f(2) # 0 (J]z| = 1) and the Fourier coefficients of 1/f(z) with negative indices
to be equal to ¥_1,1_2,.... Of special interest is this problem with the additional
condition that |f(z)] =1 (|z| = 1).

Our next two papers [5, 6] were dedicated to different generalizations of
this problem. We solved it in the block discrete case as well as for the matrix
continuous analog. In the latter case with the additional condition this result was
stated by M.G. Krein and F.E. Melik-Adamyan without proof in their study of
scattering theory. This is probably the first published proof of this theorem. We
also solved the finite matrix block analog of the triangular extension problem.
As far as we know this was a new result for matrices. The triangular completion
problem for scalar matrices is stated in the following way: Let the entries of the
upper triangular part (including the diagonal) of an n x n matrix be specified.
Complete the matrix in such a way that it is invertible and the inverse has apriori
given entries in the lower triangular part (without the diagonal). We also solved the
problem of completing a matrix to be unitary if the entries of the upper triangular
part is given. In the triangular extension problems some technical conditions were
required. In particular the canonical factorization or the partial indices equal to
zero were required for the solution.

5. Unitary interpolants and factorization indices

Three papers [7, 8, 9] deal with the problem of extending a matrix function
f(2) (|z| = 1) with specified Fourier coefficients fo, fi,...; |fol + [fi| + - < 00
to a unitary matrix function without assumptions of canonical factorization as in
the previous section. The solution if it exists certainly admits a factorization in
general with nonzero partial indices. In paper [7] are described all unitary inter-
polants. One of the central results is the expression of the number of nonnegative
factorization indices of the interpolants and their individual size via the given data
fo, f1, f2,. ... The set of the negative indices when not empty can be chosen arbi-
trarily and hence in this case there exist an infinite number of unitary interpolants.
Paper [8] contains the matrix continuous analogs of the previous results. In paper
[9] is considered a more general problem when the condition |fo| + |f1] + -+ < o0
is eliminated and the factorization is replaced by generalized factorization. The
results of these papers intersect with results of F.E. Melik-Adamyan and M.G.
Krein and is related to a paper of J. Ball.

In 1983 Harry and I organized a workshop on applications of linear operator
theory to systems and networks in the Weizmann Institute; as we now call it, an
IWOTA workshop. It was the second in this series and it was a satellite workshop
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just before the MTNS conference in Beersheva. The workshop attracted mathe-
maticians and engineers. A volume of the proceedings was published in the OT
series — OT12 [13].

6. Contractive interpolants and a maximum entropy principle

This section is based on two papers [10, 11]. In paper [10] are studied all n x n
matrix contractive interpolants on the unit circle when the Fourier coefficients with
positive indices are given. It turns out that for this problem a maximum entropy
solution can be found with an appropriate entropy formula and inequality. The
solution is obtained by a reduction to a generalized band problem. Paper [11]
contains further generalizations of these results.

7. Nevanlinna-Pick problem and maximum entropy

Our last paper was written after a long break. Starting with 1984 I did not work
regularly in the Weizmann Institute. The Institute was going through a financial
crisis and all part time positions were disbanded. For a while, by inertia, I contin-
ued to visit the Institute and by the way continued to work with Harry. During
these visits we wrote papers [10, 11]. Then the breaks became longer, but we again
started to work systematically for a period in 1995. My dentist’s office was located
in Rehovot and for some part of 1995 I had to visit him at least once a week. Some-
times I would visit Harry in his office before the dental appointment, sometimes
after. This time we worked on the Nevanlinna-Pick problem for matrix valued
functions in the disc and we wrote paper [12]. In this paper we studied maximum
entropy solutions and an extremal problem for the Pick matrix. A generalization
for the half plane was also obtained.

8. This is not the end

Harry Dym is a very good friend and an excellent coauthor. We worked together for
almost twenty years. Some of the periods were more intensive, some less. In parallel
with this research, each of us was involved in many other research activities, so
the joint work was never a burden. Our joint work influenced and enriched our
individual research, as well as research with other colleagues, and led to cross-
fertilization and influence.

Now, after going over all our papers as a reader, I look back with satisfaction
and gratitude. This was a fruitful and enjoyful period which I hope will continue.
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Methods of Krein Space Operator Theory

James Rovnyak

Abstract. This paper is a survey of old and recent methods of Krein space
operator theory centering around Julia operators, extension problems for con-
traction operators, Hermitian kernels, and uniqueness questions. Examples
related to coefficient problems for univalent functions are briefly discussed.

1. Introduction

The author was originally led to Krein space operator theory by a problem of
L. de Branges concerning the coefficients of univalent functions. The particular
question was resolved in the negative, but the operator methods used to show
this are related to other areas which remain currently active, such as the study of
generalized Schur and Nevanlinna functions. The methods are of a general nature
and based on familiar Hilbert space concepts, including contraction operators, their
dilations, and reproducing kernel spaces. Today the Krein space counterparts of
many of these ideas are complete to a high degree. As always, there are difficulties
and new issues in the indefinite theory. For example, it turns out that uniqueness
questions play a more important role in the indefinite theory than in the definite
case. In this paper we survey some old and recent results in these areas, with
an aim to show that tools which have found wide applicability in Hilbert space
problems are also available in Krein space operator theory.

In outline, the contents are as follows:

§2. Examples from function theory

Generalizations of the Dirichlet space yield interesting examples, including con-
traction operators on indefinite inner product spaces defined by substitution by
normalized univalent functions. Multiplication by the independent variable on sim-
ilar spaces gives examples of indefinite two-isometries as studied by Agler, Richter,
and others.

This article is an expanded version of the author’s Toeplitz Lectures, which were given at Tel
Aviv University in March 1999. Special thanks are given to Israel Gohberg for organizing the
series of Toeplitz Lectures in commemoration of the impact of Otto Toeplitz, and also to D. Alpay
and V. Vinnikov for their efficient work organizing the Toeplitz Lectures 1999 and Workshop in
Operator Theory in honor of Harry Dym. The author is indebted to D. Alpay, V. Bolotnikov, T.
Constantinescu, A. Dijksma, M.A. Dritschel, and H.S.V. de Snoo for many conversations on the
material of this survey. The author is supported by NSF Grant DMS-9801016.
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§3. Definitions and basic notions
Basic ideas are discussed here in order to make the paper self-contained.

84. Three useful tools of Krein space operator theory

Our goal is to adapt Hilbert space methods to Krein space operators, but some
elementary constructions break down when positivity is abandoned. Here we show
that there are simple replacements in the indefinite theory. For example, the re-
placement for the Hilbert space construction of a nonnegative square root of a
nonnegative operator is a factorization of any selfadjoint operator C on a Krein
space $ in the form C = AA* where A € £(2, ) for some Krein space A and
ker A = {0}. Factorizations of this type are one of the main themes of this survey.
Though elementary, they are extremely useful.

§5. Julia operators and extension problems

In §5.1 and §5.2, we discuss Julia operators and the most basic kinds of row,
column, and matrix completions. In §5.3, we contrast several forms of commutant
lifting in the indefinite setting.

86. Uniqueness questions

A selfadjoint operator C € £(£)) is said to have the unique factorization property
if the representation C = AA*, A € £(2, ), described above can only be changed
by replacing the Krein space 2 by an isomorphic copy. We give necessary and
sufficient conditions for uniqueness and identify situations in which uniqueness is
automatic.

87. Kolmogorov decompositions of Hermitian kernels

L. Schwarz introduced a number of elegant ideas into Krein space operator the-
ory in a 1964 paper, but they have become mainstream only more recently. Here
we present the ideas in the form of the theory of Hermitian kernels. Particular
cases include finite and infinite block operator matrices and reproducing kernels.
A Hermitian kernel is a collection of Krein space operators K;; = KJ; € £($;, 9:),
1,7 € J. A Kolmogorov decomposition is a representation in the form

Ky =ViVj, 4,5 €,
where V; € £(9;,8), j € J, for some Krein space £ such that & = V,csV;9;.

The general theory is concerned with criteria for existence and uniqueness. Our
account is expository and follows recent work of Constantinescu and Gheondea.

88. Framples of Hermitian kernels

The theory of Kolmogorov decompositions is illustrated with reproducing kernel
spaces and holomorphic kernels. Another special case yields criteria for existence
and uniqueness of completions of pre-Krein spaces, which behave differently from
pre-Hilbert spaces.

89. The contractive substitution property

We return to the coefficient problems discussed in §2 and show, by numerical
evidence, that the contractive substitution property, while not sufficient to char-
acterize coefficients, nevertheless does an excellent job constraining low order co-
efficients. Some open questions are stated.
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Related topics appear in the six lectures of Dritschel and Rovnyak [37]. De-
finitive accounts of the general theory of operators on indefinite inner product
spaces, along with authoritative literature notes, are given in the books by Azizov
and Iokhvidov [12], Bognér [14], and Iokhvidov, Krein, and Langer [47]. Azizov,
Ginzburg, and Langer [11] discuss M. G. Krein’s vision and contributions in this
area. These and other sources should be consulted to see the great diversity of
Krein space operator theory and something of the many topics that are omitted
here.

2. Examples from function theory

We give some examples which arise from coefficient problems for univalent func-
tions. For the author personally, these examples were a compelling reason to under-
take learning the indefinite theory. A deeper understanding of them is a long-range
goal and challenge for the subject.

A holomorphic function f(z) is univalent if it takes distinct values at distinct
points. Coefficient problems play a central role in the theory of univalent functions
which are defined on the unit disk D = {z : |z] < 1}. A highlight of the theory is
de Branges’ proof [16] of the Bieberbach conjecture: Let f(z) be univalent on D
and normalized so that f(0) = 0 and f'(0) > 0. If f(z) = a1z + agz® + - -+, then
lan| < nay for all n > 2. The inequality, however, is satisfied by many functions
which are not univalent. Ideally we would like to find stronger conditions which
are more characteristic of univalent functions. We restrict attention to the subclass
of functions which are bounded by one in D. The following problem is classical.

Coefficient Interpolation Problem: For any positive integer r, characterize all
complex numbers Bi,...,B. (B1 > 0) such that there exists a univalent and
normalized function B(z) satisfying |B(z)] < 1 on D and such that B(z) =
Biz + -+ By2" + O(z"1).

Necessary conditions follow from a generalized form of the area theorem.
Assume that such a function B(z) exists for given numbers By, ..., B, (B1 > 0).
For any real number v, consider an arbitrary generalized power series

h(z) = a1 2"t +ag2? 2 4 - (2.1)

with complex coefficients (constants terms, which arise when v is a negative in-
teger, are identified to zero). Define h(B(z)) = b1z¥*! + bgz**2 + .- by formal
substitution. Then

-

S wAn)bal? <Y (v +n)lanl*

n=1 n=1
Equivalently,
(h(B(2), h(B())y < (h(2),h(2))py (2.2)
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where D is the linear space of series (2.1) in the inner product

(h(2),h(2))py = Y (v +m)an|”.
n=1

The inequality (2.2) is proved by de Branges [17] when v > —r — 1, and the re-
striction on v is removed by Li and Rovnyak [51]; for a proof, see [65, Section
7.5]. Nikolskii and Vasyunin [59, 60] give another view of these inequalities and
explain their connection with subordination (see Section P45, p. 1202, in the Eng-
lish translation of [60]); see also Ghosechowdhury [43, 44] and Rovnyak [67]. The
conditions (2.2) depend only on By,..., B, and are thus necessary conditions on
these numbers for the existence of an interpolating function B(z). It is natural to
ask if the necessary conditions are sufficient:

Problem (de Branges [17, 19]). Let By, ..., B, be complex numbers with B; > 0
such that (2.2) holds for all real numbers v and all generalized power series (2.1).
Does it follow that B(z) = Biz + -+ + Br2z" + O(2"11) where B(z) is univalent
and |B(z)| £1 on D?

The simple answer is negative (see §9).
The main point here, however, is that we obtain a large class of examples of
contraction operators. Namely, by (2.2) the operator

T : h(z) — h(B(2)) (2.4)

is a contraction on the space D% for any positive integer r, any real number v, and
any function B(z) which is univalent, normalized, and bounded by one in D. The
space ®Y is indefinite when v < —1. In the same way, (2.4) acts as a contraction in
the infinite-dimensional space D of series (2.1) such that > - (v +n)la,|? < 0o
in the inner product

(h(2),h(2))pe = D (v +n)lanl?,

and this inner product is indefinite when v < —1. Another interesting example in
DY is multiplication by z:

S: f(z) = 2f(2).

In the classical case (v = 0), this is the Dirichlet shift. In general, S is a two-
isometry in the sense that §*252% — 28*S 4+ 1 = 0, or in terms of inner products,

(22(2),2°£(2)) g — 22 (2), 2 (2)) g + (f(2), f(2))p. = O

for all f(z) in ®". Two-isometries and more general operators on Hilbert spaces
are studied by Agler and Stankus [1]. A two-isometry is called analytic if the
intersection of the ranges of its powers is zero. Richter [63] constructed a model
theory for cyclic analytic two-isometries on a Hilbert space, the Dirichlet shift
being the motivating example [62, 64]. The beginnings of an indefinite theory have
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been made by Chris Hellings [46]. See also McCullough and Rodman [54, 55], who
earlier proposed to extend Agler’s ideas into the indefinite domain.

Such examples suggest the need for an approach that emphasizes the analo-
gies with the Hilbert space case, and our purpose here is to outline such a view-
point.

3. Definitions and basic notions

Inner products are assumed to be linear and symmetric. The antispace of an inner
product space (ﬁa <'> )) is (ﬁ) - (‘7 ))

As we use the term, a Krein space is an inner product space which is ex-
pressible as an orthogonal direct sum $ = $; & H_ of a Hilbert space $H4+ and
the antispace $_ of a Hilbert space (for simplicity, Hilbert spaces are assumed
to be separable). Any such representation is a fundamental decomposition. The
induced Hilbert space topology is the strong topology of §). The dimensions of
are the indices of . A Krein space is also called a Pontryagin space if it has fi-
nite negative index. These definitions do not depend on the choice of fundamental
decomposition. When nothing is said, underlying spaces are assumed to be Krein
spaces (which might be Pontryagin spaces or finite-dimensional).

Spaces £(9) and £(9, ) of continuous operators and adjoint operators are
defined for Krein spaces in the same way as for Hilbert spaces. Thus if A € £(9, ),
then A* € £(8,9) and (Af,g) = (f, A*g) for all f in $ and g in & An operator
Ae £(9)is

selfadjoint if A* = A,

a projection if A is selfadjoint and A? = A, and

nonnegative if (Af, f) > 0 for every f € $.
If A € £(9) is selfadjoint, let ind; A (ind_ A) be the supremum of all r such that
there exists an r-dimensonal subspace of § which is a Hilbert space (antispace
of a Hilbert space) in the inner product (f,g), = (Af,9), f,g9 € $. An operator
B e £(%,R) is

isometric if B*B = 1g,

partially isometric if BB*B = B,

unitary if both B and B* are isometric,

a contraction if B*B < 14, and

a bicontraction if both B and B* are contractions.

An isomorphism of inner product spaces is a one-to-one and onto linear map-
ping which preserves inner products. As in the Hilbert space case, the class of
isomorphisms between two Krein spaces $ and £ coincides with the set of unitary
operators between the spaces.

Orthogonality is defined for Krein spaces as for Hilbert spaces. The relation
H = M ML is not always true for all closed subspaces M of a Krein space 9,
however. It is true for an important subclass of subspaces. A linear subspace 9t of
a Krein space §) is a Krein subspace, or a regular subspace, if 9t is closed and a
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Krein space in the inner product of §. If 901 is a linear subspace of §, the following
assertions are equivalent:

(1) 2 is a Krein subspace;
(2) H=mmo M,
(3) M =ran P, where P € £(%) is a projection operator.
In this case, restriction of the strong topology of $ to 9 coincides with the strong

topology of 9 as a Krein space. For details and other basic notions, see [12, 14,
36, 47].

4. Three useful tools of Krein space operator theory

Krein space operator theory is much like the Hilbert space special case despite
failure of some of the most basic notions in the indefinite situation. The explanation
is that there are effective substitutes for the missing Hilbert space results.

Tool #1: a factorization theorem for selfadjoint operators.

One of the cornerstones of Hilbert space operator theory is that every non-
negative operator has a nonnegative square root. The Krein space counterpart
is a factorization theorem for any selfadjoint operator. The result is old, but its
systematic use is more recent [26, 37, 36].

Theorem 4.1. Every selfadjoint operator C € £(9), $ a Krein space, can be written
C = AA* where A € £(%, H) for some Krein space A and ker A = {0}.

The first step in the proof, reduction to the Hilbert space case, is worth

separate notice:

Every selfadjoint operator on a Krein space is congruent to a self-

adjoint operator on a Hilbert space.
That is, if § is a Krein space and C € £() is a selfadjoint operator, there is
a Hilbert space K, a selfadjoint operator B € £(R), and an invertible operator
X € £(%, R) such that

C=X*BX.

In fact, let X be any invertible operator from $ onto any Hilbert space K, and
take B = X*"1CX 1.

Proof of Theorem 4.1. It is sufficient to prove the theorem when £ is a Hilbert
space. In this case, we can decompose §) into spectral subspaces for C for the sets
(0,00), {0}, (—00,0), say 5 = H4 & Ho @ H_. Define A = H, & H_ in the inner
product

<f)g>2[:i<fag>fy f’geﬁﬂ:-

We easily check that the operator A defined by Af = |C|'/2f, f € 9, has the
required properties. ]
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Tool #2: extension theorems for densely defined operators.

A different factorization occurs in Hilbert space operator theory. In a typical
situation, we are given Hilbert space operators A € £(9,2) and B € £($,B) with
B*B < A*A. If A has dense range, then the partially defined operator

Co: Af — Bf, fe#,

has a contractive (hence continuous) extension C' € £(2,B) such that B = CA.
When the underlying spaces are Krein spaces, Cp may not be well defined (that
is, Afi = Afs and Bf; # Bf, for some f1, fo € $), and even if it is it may not
have a continuous extension. See [6, p. 429] for examples.

What is needed is a means to define continuous contraction operators by
specifying their action on dense sets. An index condition resolves the difficulties.
A linear relation from $) to K is a linear subspace R of $§ x &. The domain of R
is the set of all first elements f of the pairs (f,g) in R.

Theorem 4.2. Let $ and K be Pontryagin spaces such that ind_ $ = ind_ K. Let
R be a linear relation such that

(1) R has dense domain,
(2) (9,905 < (f; f)g for all (f,9) € R.
Then the closure of R is the graph of a contraction C € £(9, R).

See [5, 6] for two different proofs ofTheorem 4.2. The known Krein space
generalizations of Theorem 4.2 require strong hypotheses which are difficult to
verify in applications (Shmul’yan [70], Dritschel and Rovnyak [37, Theorem 1.4.4]
and [36, Supplement]). An exception here is the following nice result which is given
in Constantinescu and Gheondea [25, Lemma 2.3].

Theorem 4.3. Let $ and R be Krein spaces. Let R be a linear relation such that

(1) R has dense domain and dense range,

(2) <gag>ﬁ = (f) f)f) fOT‘ (lll (f:g) € R:

(8) the domain of R contains one of the subspaces $H+ in some fundamental
decomposition = Hy S H-.

Then the closure of R is the graph of a unitary operator U € £($), R).

A finite-dimensional example in [6, p. 429] shows that Theorem 4.2 is not valid
if ind_ $) # ind_ K. The same example shows that the conclusion of Theorem 4.3
can fail if all conditions are met except the range of R is not dense.

Typical applications of Theorems 4.2 and 4.3 arise from inequalities B*B <
A*A, where A € £(H,%) and B € £(9,B) are Krein space operators. Under
suitable conditions, the linear relation

R ={(Af,Bf): f € 5}
satisfies the hypotheses of the theorems. Then we obtain a factorization B = CA

with C € £(2,%B) a contraction operator or unitary operator, as in the Hilbert
space case.
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Tool #3: continuous isometries and partial isometries.

Recall that a partial isometry is defined as a Krein space operator A € £(9, R)
such that AA*A = A. Such operators have properties much the same as in the
Hilbert space case.

Theorem 4.4. If A € £($,8), $ and K Krein spaces, the following assertions are
equivalent:
(1) A is a partial isometry;
(2) A*A is a projection operator and ker A*A = ker A;
(3) AA* is a projection operator and ker AA* = ker A*;
(4) there exist Krein subspaces M of $ and N of K such that A maps M in
a one-to-one way onto N with (Af, Ag)z = (f,9)¢ for all f,g € M, and
Af =0 for all f € M.
In this case, A*A and AA* are the projections onto M and N. If, in fact, A is an
isometry, then in addition

(5) A maps closed subspaces of $ onto closed subspaces of &;
(6) A maps Krein subspaces of ) onto Krein subspaces of K.

In particular, the range of an isometry A € £(9, R) is a Krein subspace of R.

The conditions on kernels in parts (2) and (3) of Theorem 4.4 do not appear in
the Hilbert space case because they hold automatically when £ and K are Hilbert
spaces. For proofs of the assertions in Theorem 4.4, see the Supplement and errata
cited in [36, pp. 156-57].

Theorem 4.4 plays a greater role in the indefinite theory than in the spe-
cial case of Hilbert spaces. It can only be appreciated in the light of patho-
logical examples of “isometries” on Krein spaces: if § is an infinite-dimensional
Hilbert space and R is an infinite dimensional Pontryagin space with ind_ & = 1,
there exists an everywhere defined linear transformation V on $) into & such that
(V,Vg)g=(f9)g for all f and g in §, yet V is not continuous with respect to
the strong topologies of ) and K& (for example, see [36, Supplement]). Obviously
all manner of bad behavior is to be expected in such a situation, and the point of
Theorem 4.4 is that order is restored with the hypothesis of continuity. While our
definition of an “isometry” presumes continuity, this practice is not universal, and
in other sources the meaning of the term should be verified.

5. Julia operators and extension problems
5.1 Defect and Julia operators

Much of the theory of contraction operators on Hilbert spaces in Sz.-Nagy
and Foias [72] carries over to the indefinite setting. Dilation properties and model
theory are discussed in Davis [28], Davis and Foias [29] and McEnnis [56, 57, 58].
We focus on more recent developments in the Krein space theory that include no-
tions of defect and Julia operators, matrix extension theorems, and the commutant
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lifting theorem. In the definite case, the history of results in this area is long and
complex and closely connected with interpolation theory; for example, see Foias
and Frazho [40]; a recent sequel to this standard source is given in Foias, Frazho,
Kaashoek, and Gohberg [41]. The indefinite theory for these areas originates with
Constantinescu and Gheondea [22, 24] and Dritschel [32].

Defect and Julia operators play an even greater role in Krein space operator
theory than in the Hilbert space case. The first constructions are due to Arsene,
Constantinescu, and Gheondea [10]. Let T € £($), &), where $ and £ are Krein
spaces. By a defect operator for 7" we mean any operator De 2(’}5, $), where D
is a Krein space, such that ker D = {0} and the operator

T -
V= (D*) € L(HRDD) (5.1)
is an isometry, that is, T*T 4+ DD* = 1. A Julia operator for T is any unitary

operator

T D ~
U= (D* —L*) ELHDPD,RBD), (5.2)
where © and D are Krein spaces, such that the operators D € £(9,9) and De
E(f), $) have zero kernels. Julia operators are also called elementary rotations in
the literature.

The preceding definitions of defect and Julia operators apply to any opera-
tor T € £(9,R), and they do not presume that T is a contraction operator. So
even when §) and K are Hilbert spaces, the definitions are more general than the
standard definitions which are given in the Hilbert space case.

Theorem 5.1. Let T € £(9), R), where $ and & are Krein spaces.
(1) A defect operator D € £(D,9) for T exists, and for any such operator

ind: ® = indy (1 — T*T).
(2) A Julia operator U € £(H DD, R P D) for T exists, and for any such operator
ind: ® =indy (1-7TT*)  and ind+ ® = indy (1 — T*T).

Proof. We obtain (1) by applying Theorem 4.1 to C = 1 — T*T. To prove (2),
apply Theorem 4.1 a second time to C =1 —VV™*, where V is given by (5.1). For
details, see Dritschel and Rovnyak [36, Theorem 2.3]. O

We give an elementary illustration how Theorem 5.1, combined with the good
behavior of isometric and unitary operators, can be used to obtain information
about general operators. The result itself is old and has a simple direct proof [10].

Theorem 5.2. If T' € £(9, R) for any Krein spaces $) and R, then
indg §+indy 1 —TT*) =indg K+ indy (1 = T7T).
In particular, if ind— $H = ind_ R < oo, then T*T < 1 implies TT* < 1.
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Proof. Choose a Julia operator (5.2) for T. By the unitarity of U and Theo-
rem 5.1(2), ind4 $H +ind1 (1 = T7*) = ind+ H +ind+ D = ind K +ind+ D =
indy R +indy (1 — T*T). O

Another basic problem is to describe all contractive row, column, and matrix
extensions

(T F)e £5H®38),
(g) € £,/ ),

T F
(¢ 7)< oot

of a given contraction operator T' € £($, &), where $ and & are Krein spaces. The
problem has several variants, such as dropping the hypothesis that T is a contrac-
tion. We can alternatively consider operators T such that ind_. (1—T*T') < co and
ask for contractive extensions or extensions which also satisfy index conditions.

5.2 Basic extension theorems
Let T € £($, &), where ) and R are Krein spaces. Choose a Julia operator
(o7 2
Dy —Lp
for T'. This is, of course, a particular extension of 7. When 9, &, §, & are Hilbert

spaces and T is a contraction, it is a well-known result that all contractive row,
column, and matrix extensions are given by

) €L(HDDr, Ao D) (5.4)

(T DrX)eg(®oF R), (5.5)
T
(Y*D;) €L(HRDG), (5.6)
and ¥
T Dr
(Y*D* Y LLX 4 Dy 2D ) €ELHOT,RDB), (5.7)

where XY, Z are contraction operators on appropriate spaces as required to make
the formulas meaningful and Dx and Dy are defect operators for X and Y.
The next result describes the situation when T is a contraction.

Theorem 5.3. Assume that T € £($, R) is a contraction, 9, &, § are Krein spaces,
and & is a Hilbert space. Then all contractive row, column, and matric extensions
of T are given by (5.5), (5.6), and (5.7) again where X,Y, Z are contraction oper-
ators on appropriate spaces as required to make the formulas meaningful and Dx
and Dy are defect operators for X and Y.

The asymmetry in Theorem 5.3 is due to the fact that the adjoint of a
contraction operator on Krein spaces is not necessarily a contraction. Thus, for
example, the row extension theorem cannot be deduced by applying the column
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extension to T*; the row and column extensions need separate proofs. When & is
a Krein space, the conclusions can fail [36, p. 172]. Nevertheless, a more general
result holds and provides another illustration of the role played by index conditions
in Krein space operator theory.

When T is not necessarily a contraction, or & is not a Hilbert space, similar
conclusions hold but with other hypotheses in the form of index conditions.

Theorem 5.4 (Row extensions). Assume that $, R, § are Krein spaces. Let T €
£(9, R) (not necessarily a contraction), and let Dy € £(D 1, $H) be a defect operator
forT*. Let R = (T F) e L(HDF,R) be a row extension of T satisfying at least
one of the conditions

ind_ (1 — RR*) +ind_§ = ind_ (1 — TT") < o0, (5.8)
ind_ (1 — R*R) = ind_ (1 — T*T) < oo. (5.9)

Then R has the form (5.5), where X € L£(F,®71) is a contraction. Conversely,
every such operator (5.5) satisfies both of the equalities in (5.8) and (5.9) (with
possibly infinite values).

Theorem 5.5 (Coh~1mn exte~nsions). Let $), R, ® be Krein spaces. Assume that T €
£(9, R) and that Dr € £(D71,9) is a defect operator for T'. Let

C= (g) € L(5,RD6)

be a column extension of T satisfying at least one of the conditions

ind_(1-C*C)+ind_& =ind_ (1 -T"T) < o0, (5.10)
ind_ (1-CC*)=ind_ (1 - TT") < 0. (5.11)

Then C has the form (5.6), where Y € £(6,Dr) is a contraction. Conversely,
every such operator (5.6) satisfies both of the equalities in (5.10) and (5.11) (with
possibly infinite values).

A similar result holds for matrix extensions of the form (5.7). Dritschel [33]
has given a beautiful method of proof of such theorems. The results are first proved
in the special case when the given operators are isometries; in this simple case we
are able to use what are essentially Hilbert space methods, and these methods
work for Krein spaces because by Theorem 4.4 the properties of continuous partial
isometries on Krein spaces are much the same as in the Hilbert space case. The
second step is to reduce the general results to the case of isometries by means of
extensions using defect and Julia operators. It is only necessary to prove Theorems
5.4 and 5.5 and the counterpart for (5.7), as these imply Theorem 5.3; for example,
the row and column statements in Theorem 5.3 follow when the equalities in (5.9)
and (5.10) hold with the value zero. Full details are given in [36, Lecture 3].
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5.3 Commutant lifting

Commutant lifting provides operator extensions with additional properties. Al-
ready in the definite case, the commutant lifting theorem has a number of formu-
lations, but the different versions have essentially the same content. In the case
of Krein space operators, there are several natural extensions of the commutant
lifting theorem. While obviously related, however, they are not easily compared.
A survey of this area by itself would be a sizable undertaking, and we limit this
discussion to several results and some citations to other sources.

One result simply says that the theorem of Sz.-Nagy and Foias [72] remains
true if Hilbert spaces are replaced by Krein spaces. If £ is a Krein space with Krein
subspace 9, let Py be the projection operator on f with range $. A minimal
isometric dilation of an operator A € £(9), $ a Krein space, is an isometric
operator U € £(R), where Ris a Kreln space containing 3 as a Krein subspace, such
that A™ = PaU"|g for alln = 1,2,..., and V22 ,U"$H = K. A minimal isometric
dilation exists for any Krein space operator A € £($); if A is a contraction, it is
essentially unique as in the Hilbert space case [37].

Commutant Lifting Theorem I (Dritschel [32]). Let $1 and $H2 be Krein spaces,
and let T € £(91,92) be a contraction operator such that TA; = AT for some
contraction operators Ay € £(91) and As € £(9H2). Let Uy € L£(R1) and Uy €
£(R2) be minimal isometric dilations of A1 and Ag. Then there is a contraction
T € £(81, Ra) such that UyT = TU; and Pg,T = TPy, .

The proof is an application of Theorems 5.4 and 5.5. It is simplified in
Dritschel and Rovnyak [37]. For different proofs, see Dijksma, Dritschel, Mar-
cantognini, and de Snoo [30], and Marcantognini [52]. A module formulation has
been given by Dritschel [35]. Earlier results in the same direction were obtained
by Constantinescu and Gheondea; see [22, 24].

Another version of the commutant lifting theorem also starts with the Sz.-
Nagy and Foias theorem and weakens the hypothesis that the intertwining operator
T is a contraction. In its original form, the underlying spaces are again Hilbert
spaces.

Commutant Lifting Theorem II (Ball and Helton [13]). Let 1 and $2 be Hilbert
spaces, A1 € £(91) and Az € £(92) contractions with minimal isometric dilations
Uy € £(81) and Uy € L£(R2). Assume that T € £(H1,52) is a contraction operator
such that

ind_ (1-T*T) <k
for some nonnegative integer k. Then there is a Uy -invariant subspace a1 of Rl of

codimension at most & and a contraction operator T: ﬁl — Ro such that U2T =
TU1|ﬁl and PszT = TPy, |z

Independently, Gheondea [42] and Arocena, Azizov, Dijksma, and Marcan-
tognini [7, 8] have extended the Ball and Helton theorem to allow $; and ) to
be Krein spaces. In the generalization, the subspace £ is not necessarily a Krein
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subspace, but with a natural interpretation of contraction operator the statement
is otherwise identical. The formulation in [8] is more general in another direction,
namely, a broader notion of isometric dilation is adopted.

Canonical models also provide a setting for commutant lifting [72]. In Alpay
[3] and de Branges [20], generalizations of the commutant lifting theorem in canon-
ical model spaces are constructed. Concerning canonical models in Krein spaces,
see also Yang [74].

6. Uniqueness questions

6.1 General results

While factorizations as in Theorem 4.1 always exist, they are not in general unique
even up to appropriate notions of isomorphism. Indices of the underlying Krein
space, at least, are unique [37, Theorem 1.2.1]:

Theorem 6.1. Let C € £(5) be a selfadjoint operator on a Krein space ). In any
way, factor C in the form C = AA* where A € £(%,9) for some Krein space A
and ker A = {0} as in Theorem 4.1. Then

indi A= indi C.
In particular, the indices ind+ 2 do not depend on the choice of factorization.

We turn to conditions which imply that a factorization C = AA*, A €
£(2, 9), ker A = {0} is unique up to replacement of 2 by an isomorphic copy. Ex-
amples show that this is not always the case (see [34, p. 217] and [38, p. 891]). Such
a notion of uniqueness is of interest in its own right and also because some appli-
cations use special properties of the particular factorization which is constructed
in the proof of Theorem 4.1; see Dritschel and Rovnyak [38, Lecture 6].

Definition 6.2. A selfadjoint operator C € £(%)) is said to have the unique factor-
ization property if for any two factorizations

C= AjA;-(, Aj € E(Q(j,f)), kerAj = {O}, i=12 (61)
there is an isomorphism U € £(%1,%Us) such that A; = AJU.

This property holds in many naturally occurring situations. In fact, it is
possible to completely characterize when the property holds.

Theorem 6.3. Let § be a Krein space, and let C € £(%) be a selfadjoint operator.
The following conditions are equivalent:
(1) C has the unique factorization property;
(2) for some Hilbert space selfadjoint operator B congruent to C, a(B) omits
an interval of the form (—e,0) or (0,€) with € > 0;
(3) for some factorization C = AA* as in Theorem 4.1, ran A* contains one of
the subspaces U+ or ~A_ in some fundamental decomposition A = AL DA_.

In this case, (2) holds for any selfadjoint operator congruent to C, and (3) holds
for any factorization of C' as in Theorem 4.1.
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For a proof see [26, Theorem 2.8]. Condition (2) in Theorem 6.3 was given
by Constantinescu and Gheondea [23, 25|, Curgus and Langer [27], and Hara
[45]. Condition (3) is given in a different form in Dritschel [34] and Dritschel and
Rovnyak [38].

Theorem 6.4. Let § be a Krein space, and let C € £(9)) be a selfadjoint operator.
Each of the following conditions is sufficient for C to have the unique factorization
property:

(1) C>0;
(2) one of the indices indy C is finite;
(3) c* <.

Sketch of proof. (1), (2) Assume that ind_ C < oo. We check condition (2) in
Theorem 6.3. Suppose that B is a selfadjoint operator on a Hilbert space & which
is congruent to C. Then o(B) N (—00,0) is a finite set, and so (2) holds. We obtain
(1) as a special case of (2).

(3) We deduce this from Theorems 6.5 and 6.6 below. Assume that C? < C.
Suppose that we have two factorizations C = A; A%, A; € £(;,9), ker A; =
{0}, 5 = 1,2. For j = 1,2, let &; be the range of A; in the inner product that
makes A; an isomorphism from 2; onto &;. Then &; is a Krein space which is
contained continuously in $), and C' = E;E7, where E; : &; — § is the inclusion
mapping. The inequality C? < C implies that the inclusion operators E; are
contractions. Applying Theorems 6.5 and 6.6 with P = C, we see that C has the
unique factorization property. |

Alternatively, to prove Theorem 6.4(2) we can verify condition (3) in Theo-
rem 6.3 with the aid of

Pontryagin’s Theorem: Let D be a dense linear subspace of a Pontryagin space &.
Then © contains the negative subspace &_ in some fundamental decomposition
B=6,006_.

Suppose again that ind_ C' < oo, and let C = AA* be any factorization as in
Theorem 4.1. By Theorem 6.1, ind_ 2 = ind_ C < o0. Since ker A = {0}, ran A*
is dense in 2, and so (3) follows from Pontryagin’s theorem.

6.2 Examples of uniqueness results
(i) Continuous inclusion of Krein spaces and complementation in the sense of
de Branges. The simplest case here comes from a Krein subspace & of a Krein
space ). The inclusion mapping F : & — § is a continuous isometry in this case.
The operator P = EE* is the projection on $ with range &. These notions have
far-reaching generalizations in the work of de Branges [18]. We follow the operator
range view in [38] in which P can be any selfadjoint operator on a Krein space.
A Krein space & is said to be contained continuously in a Krein space ) if &
is a linear subspace of $ and the inclusion mapping F : & — $) is continuous. In
this situation P = FE* is a selfadjoint operator on . It is not hard to see that
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the range of P is contained in & as a dense subspace, and

<Pf’Pg>QS:<Pfag)fJ7 f,gEf). (62)
We call P the generalized projection operator for the inclusion of & in .

It is easy to see that every selfadjoint operator P € £($)) arises as a general-
ized projection operator. In fact, if P € £(9) is a given selfadjoint operator, write
P =AA* A€ £X,9), ker A = {0}, as in Theorem 4.1. Let & be the range of A
in the inner product which makes A an isomorphism. It is not hard to see that &
is a Krein space which is contained continuously in ), and P = EE* where FE is
the inclusion mapping.

Uniqueness questions arise. In the preceding situation, the indices ind+ & are
determined by P. However, & itself is not necessarily determined by P: it may
occur that P is the generalized projection operator for distinct Krein spaces &,
and &, which are contained continuously in $); that is, P = E1 Ef = ExE5, where
Ei:6; — 9 and E; : &3 — § are the inclusion mappings.

Theorem 6.5. Let ) be a Krein space, and let P € £($) be a selfadjoint operator.
The following conditions are equivalent:

(1) P is the generalized projection operator for a unique Krein space which is
contained continuously in 9H;
(2) P has the unique factorization property.

Uniqueness is automatic in some cases. Suppose that & is contained contin-
uously in $. We say that the inclusion is contractive if

(9,9)6 < (9,9)¢» 9EG,

that is, the inclusion mapping is contractive; by (6.2), this occurs if and only if
the associated generalized projection operator P satisfies P2 < P. The notion
of an isometric inclusion is defined similarly but with equality in the preceding
inequalities.

Theorem 6.6. Conditions (1) and (2) in Theorem 6.5 are satisfied if P is the gener-
alized projection operator for some Krein space & which is contained continuously
and contractively in $. In particular, such a space & is unique.

Let 91, %2 be Krein spaces which are contained continuously and contrac-
tively in a Krein space §). We say that $); and £)2 are complementary in the sense
of de Branges or simply complementary if the mapping (hy,hs) — hy + he is a
contractive partial isometry from £); x £2 onto §). In this case, for every h € 9,

(hyh)g = h:I’IllliilM ((h1,hi)g, + (ha, ha)g. ),

and ind_ $ = ind_ $; + ind_ $H2. Examples appear in the theory of reproducing
kernel spaces (see §8). The general theory is given in [5, 18, 38].

(ii)) Defect and Julia operators. Defect and Julia operators can be changed by
replacing the underlying Krein spaces by isomorphic spaces. It is of interest to
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know if any two defect or Julia operators for a given operator T' € £($, R) are
related in this way.

Definition 6.7. Let T € £(9, 8), where § and & are Krein spaces.
(1) We say that T has an essentially unique defect operator if any two defect
operators D; € S(’D],f)) j =1,2, are related by Dy = D2V, where V is
an isomorphism from i)l onto 532
(2) We say that T' has an essentially unique Julia operator if any two Julia
operators

T D ~ :
(D; _L;)esmea@j,ﬁemj), j=1,2,

are related by

T D1\ _(la O\(T D2\(15 0
pr —rx) = \o v J\Ds —-Lz)\0o Vv

where V is an isomorphism from D, onto Dy and V is an isomorphism
from D1 onto Dq

A complete analysis of these conditions is given in Dritschel [34]. The follow-
ing result probably covers the most important special cases

Theorem 6.8. Let T € £(9,R), where $ and K are Krein spaces. Each of the
following conditions is sufficient for T' to have essentially unique defect and Julia
operators:

(1) T is a contraction;
(2) T* is a contraction;
(3) one of the four indices indy (1 — T*T), ind4 (1 — TT™) is finite.

Conditions (1) and (2) in Theorem 6.8 are included for emphasis, but they
are special cases of (3). In the case of Julia operators, Theorem 6.8 is given in
Dritschel and Rovnyak [37, p. 298]. The result for defect operators can be deduced
from this and the fact that a Julia operator (5.2) can be constructed with any
prescribed defect operator D for T.

7. Kolmogorov decompositions of Hermitian kernels

The theory of Hermitian kernels provides a unified environment for common con-
structions that appear in a number of areas including the study of reproducing ker-
nels, inner products, and selfadjoint operator matrices. The indefinite theory origi-
nates with Schwartz [69]. We follow the approach of Constantinescu and Gheondea
[26]. The form of the uniqueness result in Theorem 7.3 is implicit in [26] and was
communicated privately by the authors.

A (Hermitian) kernel is an indexed collection

K = {Kij}ijeJ, Ki; € £(9;,9:), (7.1)
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of operators satisfying K;; = KJ; for all ¢,j € J. Here J is an index set, and the
underlying spaces §);, j € J, are Krein spaces. We say that K has a Kolmogorov
decomposition if there exist a Krein space £ and operators V; € £(8;,R), j € J,
such that
K =V 'V, i,j € J, (7.2)

and B = V;c;V;$9;. The term “Kolmogorov decomposition” is derived from a
theorem of Kolmogorov [48] as it appears, for example, in Martin and Putinar [53,
p. 34]. Two Kolmogorov decompositions with operators V1; € £(;, 1) and Va; €
£($;,8R2), j € J, are called equivalent if there is an isomorphism W € £(f:, R2)
such that Vo; = WVy; for all j € J. If any two Kolmogorov decompositions are
equivalent, we say that K has an essentially unique Kolmogorov decomposition.

Sums and differences of kernels are defined in the obvious way when the
underlying spaces are the same, and the set of such kernels has the structure of a
linear space. Given a Hermitian kernel (7.1), let § be the linear space of all finitely
nonzero indexed sets f = {f;}jes of vectors f; € $;, j € J. Define a K-inner
product on § by

f9x=> (Kijfisg)g,, f9€F
i,jeJ

We call K nonnegative and write K > 0 if the K-inner product (7.3) is nonnega-
tive. The inequality K7 < K3 for two Hermitian kernels means that Ko — K; > 0

A nonnegative majorant for a Hermitian kernel K is a Hermitian kernel L
having the same underlying spaces such that L > 0 and —L < K < L. In this
situation, we associate a Hilbert space $; with L by a standard construction. A
dense set in $;, is the quotient space §/9y, where § is as above and 91y the
subspace of elements which are orthogonal to all of § in the L-inner product. If
f € %, let [f] be the corresponding coset in §F/9t;. The inner product in $z, is
given on the dense set by

([f])[gbf)L =<fag>L7 f,gEg-

Arguments in [26, p. 929] show that there is a unique operator G € £(f)1,) such
that

(Glfl,lghg, =(f9)k,  f9€T.

The operator G is selfadjoint and satisfies ||G|| < 1. It is called the Gram operator
of the kernel K for the majorant L.

To avoid repetitive statements, throughout §7 the underlying spaces for Her-
mitian kernels are assumed to be as in (7.1), and § has the same meaning as above.
We likewise use the same notation §/91;, for the dense set in the Hilbert space i,
as in the definition of a Gram operator.

Theorem 7.1. If K is a Hermitian kernel, the following assertions are equivalent:

(1) K has a Kolmogorov decomposition;
(2) K has a nonnegative majorant;
(3) K = Ky — K_ for some Hermitian kernels Ky > 0 and K_ > 0.
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In this case, the decomposition in (3) can be chosen such that the only Hermitian
kernel M such that 0 < M < K4 is M = 0.

Proof. (1) < (2) Assume that a Kolmogorov decomposition (7.2) exists. In any
way construct a Hilbert space 9t and an invertible operator X € £(8&,9M) such
that

|k kY g | < (XE, XE)gp , ke R
Define L = {Li;}ijes by Lij = V*X*XV; € £(8;,9:), i,7 € J. It is easy to see
that L is a nonnegative majorant for K.

Counversely, let K have a nonnegative majorant L, and let G € £($1) be the
associated Gram operator. Using Theorem 4.1, factor G = AA* with A € £(&, 91)
and ker A = {0}. For each j € J, there is a natural continuous embedding operator
E; from $; into $r, namely, F;u = (f,|, where f, is the element of § whose j-th
component is u and all other components are zero. Then V; = A*Ej, j € J, defines
a Kolmogorov decomposition.

(2)e 3)UfK=K;—K_asin(3), L = K+ K_ is a nonnegative majorant
for K.

Conversely, suppose that K has a nonnegative majorant L, and let G be the
corresponding Gram operator. In terms of the embedding operators E;, j € J,
defined above, we have

K;; = E!GE;, 1,j € J.
Let Py, Py be the spectral projections for (0,00), (—00,0), {0} for G. Then the
formula
K:I:'ij :E;(ipﬂ:)GEjv i?j €J.
defines kernels K such that Ku >0and K = K, — K_.
The kernels K1 constructed in this way have the property in the last state-

ment of the theorem. For assume that 0 < M < K. Since ||G|| <1, K* < L, and
thus 0 < M < L. The Gram operator H € £(£1,) of M relative to L satisfies

0 < (H[f], Dy, < (EPClfLfg,, [T

Since Py G and P_G are supported on orthogonal subspaces of £, H = 0. Hence
(£,9)p = (H[f), 9]}y, =0 for all f,g € F, and so M = 0. O

Let K be a Hermitian kernel with nonnegative majorant L. A Kolmogorov
decomposition (7.2) for K is said to be L-continuous if the mapping [f] into
3 jeq Vifion§ /My, extends to a continuous operator from on Hy, into K.

Lemma 7.2. Let K be a Hermitian kernel.

(1) If K has a Kolmogorov decomposition (7.2), the decomposition is L-conti-
nuous with respect to the nonnegative majorant L constructed in the proof
of Theorem 7.1, (1) implies (2).

(2) If K has a nonnegative majorant L, the Kolmogorov decomposition of K
constructed in the proof of Theorem 7.1, (2) implies (1), is L-continuous.
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Proof. (1) In the notation of Theorem 7.1, (1) implies (2),

(1) 8o, = (X yes Vifs X Dies Vi) o L9 €5,

Thus the mapping [f] into X }° jes Vif; is a Hilbert space isometry from §;, into
2; the mapping [f] into D, ; V;f; on §/Ny into K is the composite of this
isometry and X ~! and hence is continuous.

(2) We wish to show that, in the proof of Theorem 7.1, (2) implies (1), the
mapping [f] into 3 ; Vjf; on §/My extends to a continuous operator from Hy,
into K. In fact, we show that the mapping is A*. Since R is the closed span of the
ranges of the operators Vj, it is sufficient to show that for any f,g € §,

(A s Vig,->m = <Zj6J Vifis2ies Vigi>ﬁ :

Since V; = A*E; for each i € J and ), ; Eig; = [g], it is the same thing to show
that

(), AA" D5, = (Tyes Vids Ties Vigi) -
This holds because AA* = G, and so both sides are equal to (f, g) x- O

Thus L-continuous Kolmogorov decompositions always exist. Uniqueness de-
pends on the Gram operator.

Theorem 7.3. Let K be a Hermitian kernel with nonnegative majorant L and Gram
operator G. Any two L-continuous Kolmogorov decompositions are equivalent if
and only if G has the unique factorization property.

Proof. Assume that G has the unique factorization property. Let
Kij =ViiVij, Vi; € £(95,R1), 1,5 €, (7.6)
Kij =VyVaj, Vo € £(9;,R2), 4,5 € J, (7.7)

be two L-continuous Kolmogorov decompositions. By hypothesis, the mapping [f]
into Y jed Vi, f; on §/Mp extends to a continuous operator from £y, into £;.
Denote its adjoint A; € £(R1,91). Since &1 = Ve Vi;9;, ker A; = {0}. For all
[9€F,

<[f]’ Ay Z@‘GJ %igi)zw = <Z]‘6J ‘/ljfja Zie] ‘/'ligi>ﬁ1 .
Thus
(GIA) [aD)s, = {5200k = ( yes Vi Ties Viigs) . = {[f], 4141 lg]),

and so G = A;Aj. Construct a factorization G = Ay A} in a similar way from

(7.7). Since G has the unique factorization property, there is a unitary operator
W € £(R;, Rs) such that Ay = A;W. For all j € J,

Vaj = A3E; = WATE; = WV,

and thus the two Kolmogorov decompositions are equivalent.
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Assume that any two L-continuous Kolmogorov decompositions of K are
equivalent. Let

G = A1 A} = Ay A}

with 4; € S(Rl,f)L), Ay € S(ﬁg,f)L), kerA; = {0}, and ker 4, = {0} By
Lemma 7.2, we can construct L-continuous Kolmogorov decompositions (7.6) and
(7.7) by setting Vi; = ATE; and Vo; = ASE; for all j € J. By hypothesis, there is
a unitary operator W € £(f1, &) such that Vo; = WVy; for all j € J. Using the
properties £ = V;esV1;9; and R = V,c1V2;9; of the Kolmogorov decomposi-
tions, we obtain WA} = A} and hence A; = AW, and thus G has the unique
factorization property. O

A stronger uniqueness result holds with a stronger hypothesis.

Theorem 7.4. A Hermitian kernel K has an essentially unique Kolmogorov de-
composition if and only if the Gram operators for all nonnegative majorants have
the unique factorization property.

Proof. If some Gram operator does not have the unique factorization property,
Theorem 7.3 implies that there exist nonequivalent Kolmogorov decompositions,
which proves necessity.

Conversely, assume that every Gram operator has the essential uniqueness
property. Let (7.6) and (7.7) be any two Kolmogorov decompositions of K. By
Lemma 7.2, the decompositions are continuous relative to some nonnegative ma-
jorants Ly and Lo for K. Then L = L; + Lo is a nonnegative majorant for K.
Since L1 < L, the “identity mapping” on §/Mr to §/N, is a densely defined
contraction from $y, into $Hz,. Since these are Hilbert spaces, the mapping [f]
into Zje s Vi f; on §/My into R is a composition of continuous operators, and
so (7.6) is L-continuous. Similarly, (7.7) is L-continuous. By Theorem 7.3 and our
hypothesis on Gram operators, the two Kolmogorov decompositions are equiva-
lent. O

The following sufficient condition for essential uniqueness is given in [26,
Theorem 4.3].

Theorem 7.5. Let K be a Hermitian kernel, and assume that there exists a Kol-
mogorov decomposition (7.2) such that the linear span of the subspaces V;$);,j € J,
contains contains one of the subspaces R+ in some fundamental decomposition
R =R @ R_. Then K has an essentially unique Kolmogorov decomposition.

Proof. Suppose that the given Kolmogorov decomposition is relabeled as (7.6),
and let (7.7) be any second Kolmogorov decomposition. Define a linear relation R
from K; into K by

R= {(ZjeJ Vljfjﬂzj'e,] V2jfj) 1 fe S}
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By the definition of a Kolmogorov decomposition, R has dense domain and dense
range. For all f € §,

(Sies Vil Ties Viifi) . = (. Die = (Sies Vasfin Ties Vaili) -

By hypothesis, the domain of R contains one of the subspaces &4 in some fun-
damental decomposition &) = K1+ @ K1—. Hence by Theorem 4.3 the closure of R
is the graph of a unitary operator W € £(£1, R2). By construction, Va; = WV;;
for all 7 € J, and so the two Kolmogorov decompositions are equivalent. a

Corollary 7.6. If a Hermitian kernel K has a Kolmogorov decomposition (7.2) such
that R is either a Pontryagin space or the antispace of a Pontryagin space, then
K has an essentially unique Kolmogorov decomposition.

Proof. Since R is a Pontryagin space for the given Kolmogorov decomposition, the
hypotheses of Theorem 7.5 are satisfied by Pontryagin’s theorem (see §6). O

8. Examples of Hermitian kernels

8.1 Reproducing kernel Krein spaces

The definite theory is classical and has many applications. In addition to the
standard source of Aronszajn [9], see also, for example, Dym [39] and Saitoh [68].
The indefinite theory is due to Schwartz [69] and Sorjonen [71] and also also owes
much to a series of papers in the 1970’s by Krein and Langer including [49, 50]
and the thesis of Alpay [2]. The theory of §7 allows a quick derivation of the main
results.

Consider a Hermitian kernel K(s,t), s,t € Q, with values in £(F) for some
fixed Krein space § and nonempty set 2. We call K (s,t) a reproducing kernel for
a Krein space $x of §-valued functions on  if

(1) for each s € Q and f € §, K(s,-)f belongs to Hx, and

(2) (h(-), K(5,)f) g = (h(s), f)g for every A(-) in .
These conditions are equivalent to the existence of a Kolmogorov decomposition
with a Krein space i and operators V: § — Hx such that

Vof =K(s,)f,  f€F, (8.1)

for all s € Q. In other words, V; = E(s)*, where E(s): h(-) — h(s) is evaluation
at any point s € ) (the evaluation mappings are continuous by the closed graph
theorem).

Conversely, one can start with a Krein space of functions:

Theorem 8.1. Let §) be a Krein space of functions on a set Q@ with values in a Krein
space §. Then $) has a reproducing kernel if and only if all evaluation mappings
E(s), s € Q, belong to £(9,F). The reproducing kernel is uniquely determined by
the space and given by K (s,t) = E(t)E(s)*, s,t € Q.
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Notions of nonnegative kernels and nonnegative majorants have the same
meaning as in the general case. The definite case is well known: a nonnegative
kernel L(s,t) is the reproducing kernel for a unique Hilbert space 5 (this also
follows from the results of §7).

Existence and uniqueness are separate issues in the indefinite case. A repro-
ducing kernel for a Krein space, when it exists, is uniquely determined by the
space. However, unlike the Hilbert space case, two distinct Krein spaces can have
the same reproducing kernel. The uniqueness of a Krein space with given repro-
ducing kernel can be restored in a restricted sense if suitable conditions are met.

Theorem 8.2. If K(s,t), s,t € Q, is a Hermitian kernel with values in £(F) for
some Krein space §, the following assertions are equivalent:

(1) K(s,t) is the reproducing kernel for some Krein space Hx of functions
on Q;
(2) K(s,t) has a nonnegative majorant L(s,t) on Q x Q;
(3) K(s,t) = Ky(s,t) — K_(s,t) for some nonnegative kernels Ki(s,t) on
Q x Q.
When these conditions hold, then moreover:

(4) For a given nonnegative majorant L(s,t) for K(s,t), there is a Krein space
Ax with reproducing kernel K (s,t) which is contained continuously in the
Hilbert space $1, with reproducing kernel L(s,t).

(5) In the same situation, there is a continuous selfadjoint operator G on Ht
such that G: L(s,-)f — K(s,")f, s € Q, f € §. The space Hx in (4) is
unique if and only if G has the unique factorization property.

When the equivalent conditions in Theorem 8.2 hold, then for any space $x
as in (1), the decomposition in (3) can be chosen so that + K (s,t) are reproducing
kernels for the spaces Y_):Ih( in a fundamental decomposition Hx = 55} D©H%. In
fact, we need only choose £K (s,t) to be the reproducing kernels for the spaces
in a fundamental decomposition.

Proof. The equivalence of (1)—(3) follows from Theorem 7.1.

(4) We use L(s,t) to construct a reproducing kernel Krein space $g for
K(s,t) as in the proof of Theorem 7.1. The reproducing kernel Hilbert space $r,
is naturally identified with the abstract space denoted in the same way in §7, and
the associated Gram operator G has the action described in (5). By Lemma 7.2(2)
there is a continuous operator A* on £z, into $Hx such that

A" L(s,-)f = K(s,))f, s€Q, fe3

The adjoint of this operator is the inclusion mapping A from $Hx into $r. Thus
G = AA* and $Hk is contained continuously in $y .

(5) Assume that G has the unique factorization property, and let $% and
% be two Krein spaces with reproducing kernel K (s,t) which are contained con-
tinuously in $z. The two Kolmogorov decompositions induced as in (8.1) are
equivalent by Theorem 7.3. It follows that the identity mapping on the linear span
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$o of all functions K(s,-)f, s € Q, and f € §, extends to a unitary operator from

' onto $H%. The continuity of evaluation mappings for any reproducing kernel
Krein space implies that whenever W: hy(-) — hq(-), then h(1(s) = ha(s) for all
s € Q. Thus 9% and $H% are identical.

In the other direction, the existence of distinct Krein spaces $% and %, with
reproducing kernel K (s,t) contained continuously in £ implies the existence of
two nonequivalent L-continuous Kolmogorov decompositions. By Theorem 7.3,
the Gram operator G does not have the essential uniqueness property in this
situation. d

Suppose that 2 is an open set in the complex plane. A Hermitian kernel
K(w, z) on  x Q with values in £(F) for some Krein space § is holomorphic if it
is a holomorphic function of z and .

Theorem 8.3. Let Q) be an open set in the complex plane, and let K(w, z), w, z € Q,
be a holomorphic Hermitian kernel with values in £(F) for some Krein space §.
The following assertions are equivalent:

(1) K(w,z) is the reproducing kernel for some Krein space Hx of holomorphic
functions on €2;
(2) K(w,z) has a nonnegative holomorphic majorant L(w, z) on £ x §;
(3) K(w,z) = Ki(w,z)—K_(w, z) for some nonnegative holomorphic kernels
Ki(w,z) on Q2 x Q.
When these conditions hold, then moreover:

(4) For a given nonnegative holomorphic majorant L(w, z) for K(w, z), there
is a Krein space 9 of holomorphic functions with reproducing kernel
K(w,z) which is contained continuously in the Hilbert space 9y, with re-
producing kernel L(w, z).

(5) In the same situation, there is a continuous selfadjoint operator G on 9,
such that G: L(w, ) f — K(w,-)f, w e Q, f € §. The space Hx in (4) is
unique if and only if G has the unique factorization property.

Proof. 1t is well known that the reproducing kernel Hilbert space associated with a
nonnegative holomorphic Hermitian kernel consists of holomorphic functions, and
conversely. Given this, we proceed as in the proof of Theorem 8.2 to obtain the
result. O

The conditions for existence of a reproducing kernel Krein space are auto-
matically satisfied in many cases of interest. Suppose that {2 is an open set in the
complex plane.

Theorem 8.4 (Alpay [4]). Let K (w, z) be a holomorphic Hermitian kernel on Q@ x
with values in £(F) for some Krein space §. Assume that Q is a disk or half-
plane, and that K(w, z) is bounded relative to some and hence any norm which
determines the strong topology of §. Then there exist nonnegative holomorphic
Hermitian kernels Ky (w, z) such that K(w, z) = Ky (w, 2) — K_(w, z), w,z € Q.
In particular, K(w, z) satisfies the equivalent conditions (1)—(3) of Theorem 8.2.
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Proof. Without loss of generality, take 2 = D. It is also sufficient to prove the re-
sult when § is a Hilbert space, since otherwise we need only consider X*K(w, 2) X,
where X is an invertible continuous operator on § onto a Hilbert space. Let H %
be the Hardy space of holomorphic §-valued functions on D.

For any polynomial p(z) with coefficients in § and 0 < r < 1, the formula
1 27

=5 ): K(re®, 2)p(r~te') dt

hp(2)
defines a holomorphic function on the disk |z| < r. This function is independent

of r. It is enough to show this for a monomial p(z) = fz™, f € §. If K(w, 2) =
30 An(z)w", then in this case

1 [ . .
hp(z) = o /. Z Ap(2)rte iy met £ gt = A, (2)f,
0

which is independent of r.
Let p(z) be any polynomial with coefficients in §. We show that the function
hp belongs to HZ and ||hpl| ;. < M ||p||H§, where M > 0 is a constant. Given any
§

pe(0,1)and p<r <1,

2

dg
3

1P 0 (]2 I it i —1 it
Py A th(pe )H3 dGS% A K(re™, pe®)p(r—"e) dt

27 Jo

M2 27 1 27 iy 2
Sg/g {g/o 112G 1et)”@} df

M2 27 1 27 1 2m 1 9

M2

27 a2
— - 2
i A |lp(r~'e )”3 dt.

The constant M in the estimate is any bound for |[K(w, 2)| gz on D x D. The
assertion follows on letting » T 1 and using the arbitrariness of p. It follows that
there is a bounded operator P on H. é such that P: p — hy, on polynomials. The
operator P is selfadjoint by the symmetry of the kernel K(w,z). Applying P to
monomials of the form fw"z"™ and summing over n > 0, we find that

P:(1—w2)71f - K(w,2)f, weD, feg,
and so for any f,g € § and a, 8 € D,

(K (@, 0)F,9)5 = (P{(1 = a2) 71}, (1= ) ) s
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In any way write P = P, — P_, where Py are nonnegative selfadjoint operators
on H§ Then kernels K (w, z) of the required type are defined by requiring

(Kx(0,0)f,9)5 = (Pel(1 = 32)7 1}, (1= B2)9) s
for all f,g € §F and o, 8 € D. O
Theorem 8.4 can be used for unbounded as well as bounded kernels.

Corollary 8.5. Let S(z) be a holomorphic function on Q = D, with possibly an
isolated set of points Z omitted. Assume that there is a bounded scalar-valued
Junction u(z) on D which is nonvanishing on Q and such that uw(2)S(z) is bounded
relative to some and hence any norm which determines the strong topology of §.
Then the kernels

1—2w 1—zw

satisfy the equivalent conditions (1)-(3) of Theorem 8.2 on 2 x Q. In particular,
they are reproducing kernels for Krein spaces $(S) and IM(S) of functions on €.

Proof. Each of the kernels has the form K(w,z) = L(w,z)/(1 — wz), where
u(z)L(w, z)u(w) is a bounded holomorphic Hermitian kernel on D x D (any re-
movable singularities of u(z)S(z) are presumed to be removed). By Theorem 8.4,
u(z)L(w, 2)u(w) = My (w,z) — M_(w, z), where My (w,z) are nonnegative holo-
morphic kernels on D x D. Thus

'Z% ’)((m)—‘éiu(>‘“””(<>)_'

The two sums on the right define nonnegative holomorphic kernels Ky (w, z) such
that K(w,z) = Ki(w,z) — K_(w,z) on Q x §. This verifies condition (3) in
Theorem 8.2, and the each of the kernels (8.3) is the reproducing kernel for some
Krein space of functions on Q. O

8.2 Reproducing kernel Pontryagin spaces

Again consider a Hermitian kernel K(s,t), s,t € Q, with values in £(F) for
some fixed Krein space § and nonempty set 2. Stronger results than those above
hold when K (s, t) has k negative squares, that is, the maximum number of negative
eigenvalues of all matrices

((K(83781)f.77f1>3):]=17 817""571 € Q7 fl,"‘)f’n € 8:7 n Z 1’

is a nonnegative integer x. In this case, we write sq_ K = . An associated repro-
ducing kernel space x automatically exists. It is unique and a Pontryagin space
of negative index k. Conversely, the reproducing kernel of any given reproducing
kernel Pontryagin space is a Hermitian kernel which has x negative squares [71].
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The classical Aronszajn theory of sums and differences of kernels has a natural
generalization in the present setting.

Theorem 8.6. Let K(s,t), Ki(s,t), Ka(s,t) be Hermitian kernels on Q x Q with
values in £(F) for some Krein space §. If K(s,t) = K1(s,t) + Ka(s,t), then

sq_ K <sq_ K;j +sq_ K.

Suppose these numbers are finite, and let 91,52, 9 be the associated reproducing
kernel Pontryagin spaces. Then the following conditions are equivalent:
(1) sq_ K =sq_ Ky +sq_ Ks;
(2) $1 and H2 are contained continuously and contractively as complementary
spaces in ;
(3) the intersection R = $H1 N Ha2 is a Hilbert space in the inner product

(b, k) = (hy k) g, + (D, k) g, h,k e R

Theorem 8.7. Let 9,1 be Pontryagin spaces of functions defined on a set Q
with vaelues in a Krein space § and such that $1 is contained continuously and
contractively in $. If the spaces have reproducing kernels K(s,t), K1(s,t), then

Ks(s,t) = K(s,t) — K1(s,t)

defines a Hermitian kernel such that sq_ Ko = sq_ K —sq_ Ky. The associated
reproducing kernel Pontryagin space $o is also contained continuously and con-
tractively in £, and $1 and Hg are complementary spaces in 5.

Theorem 8.8. Let K (w,z) be a holomorphic kernel on Q x § with values in £(F)
for some Krein space § and region € in the complex plane. Let Qg be a subregion
of Q, and assume that the restriction of K (w, z) to Qo x Qo has k negative squares.
Then K (w, z) has k negative squares on € x €.

Proofs. See [5, Theorems 1.1.4, 1.5.5, 1.5.6]. O

8.3 On pre-Krein spaces

Another special case of the general theory of Kolmogorov decompositions
gives results on completions of inner product spaces. We again follow [26].

If an inner product space $3g is nonnegative, a standard quotient-completion
construction produces an essentially unique Hilbert space. More generally, let $;
be any linear and symmetric inner product space. Define a quotient space $o/,
where 91 is the set of elements of 3y which are orthogonal to the full space. If [f]
is the coset determined by any f € $)o, we obtain an inner product on $o/9 by
writing

<[f]a[g]>f)0/m:<fag>_607 f,geﬁo-
The quotient space is nondegenerate: the only element which is orthogonal to the
full space is the zero element. In the nonnegative case, this means that the inner
product is strictly positive, and therefore ¢ has an essentially unique completion
to a Hilbert space. In general, we are interested to know, under what conditions
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does a nondegenerate inner product space have a “completion” to a Krein space,
and when is such a completion unique?

We first give formal definitions. Let $¢ be a nondegenerate inner product
space with inner product (,-) 5o+ A completion of §)o is a Krein space ) which
contains £)o isometrically as a dense subspace (that is, o is a dense linear subspace
of $ and (f, 9)5 = (f, g)j60 for all f, g € $0). By a nonnegative majorant for (-,-)
we mean a nonnegative inner product (-,-), on £)o such that

_<f7f)+S<faf)f)0§<faf>+y f€f60~

Since we assume that §)¢ is nondegenerate, such a majorant is strictly positive
[26, p.929]; thus $o has a completion to a Hilbert space §);. relative to (-,-) , and
there is a Gram operator G € £($) such that

<f7g>f)0:<vag>+a 159 € $Ho.

The Gram operator G is selfadjoint and satisfies ||G|| < 1. Two completions $; and
o of Hy are equivalent if the identity mapping on $y extends to an isomorphism
from $; onto . We call $g a pre-Krein space if it has a completion and any two
completions are equivalent.

These notions correspond to their counterparts in §7 for an associated Her-
mitian kernel. Namely, given a nondegenerate inner product space $)y as above,
we define a Hermitian kernel by setting

Kor =(f,9)g,»  [f+9 € Ho-

The index set for the kernel is ¢ itself, and the underlying spaces are all chosen
to be C, the complex numbers in the Euclidean metric. It is immediate from the
definitions that £ has a completion if and only if the Hermitian kernel has a
Kolmogorov decomposition. The definitions of nonnegative majorant and Gram
operator for the inner product correspond to the same notions for the Hermitian
kernel.

Theorem 8.9. If §o is a nondegenerate inner product space, the following are equiv-
alent:

(1) $o has a completion to a Krein space;
(2) the inner product of $o has a nonnegative majorant (-,-) , ;
(3) the inner product of $o is a difference of nonnegative inner products.

If these conditions hold and (-,-), is a nonnegative majorant as in (2), there is a
completion $) of Ho which is contained continuously in the Hilbert space completion
4 of Ho in the (necessarily strictly positive) inner product (-,-) . Any two such
completions are equivalent if and only if the associated Gram operator for the
nonnegative majorant has the unique factorization property.

Theorem 8.9 is a special case of Theorems 7.1 and 7.3. It can also be proved
directly by repeating arguments in this special case. In a similar way, Theorem 7.4
yields:
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Theorem 8.10. A nondegenerate inner product space $g is a pre-Krein space if
and only if (i) it satisfies the conditions (1)—~(3) of Theorem 8.9, and (ii) the Gram
operator for every nonnegative majorant has the unique factorization property.

9. The contractive substitution property

We return to the problem of de Branges on the coefficients of univalent functions
(see §2): do the conditions (2.2) characterize initial segments B, ..., B, of the
coefficients of a normalized univalent function which is bounded by one in the unit
disk? The answer, as already indicated, is negative, but there is more to the story.
It is not hard to see that the conditions are sufficient for r = 1,2 [51, Theorem
3.4], and they are also sufficient in the limit as r — oo [15]:

Theorem 9.1 (de Branges). Let B(z) = Byz+ Bz?+ B32® +- - - be a formal power
series such that By > 0 and (2.2} holds for allT = 1,2,..., everyv = —1,-2,...,
and every generalized power series (2.1). Then B(z) represents a univalent func-
tion which is bounded by one in the unit disk.

See [66] for an account of the original proof by de Branges; a different proof is
due to Nikolskii and Vasyunin in their work on coefficient problems and functional
analytic aspects of the proof of the Bieberbach conjecture [59, 60] (see Theorem
D180, p. 1219, and the remark D270, p. 1225, in the English translation of [60]).

The conditions (2.2) are reduced to a procedure which is analogous to the
Schur algorithm in Christner, Li, and Rovnyak [21]. The classical Schur algorithm
does not make sense in the present context, but the operator transcription in
Foias and Frazho [40] can be adapted to the indefinite situation using properties
of Julia operators as discussed in §5. The outcome is that if By,...,B,, By > 0,
are given numbers satisfying (2.2) for all real numbers v, then the set of numbers
B,.+1 such that Bs,..., B, B,;1, satisfy the same conditions with r replaced by
r + 1 is the intersection of a family of closed disks A,(v), —o0 < v < oo. The
centers and radii of the disks A, (v) are functions of By, ..., B, which are given by
recursive formulas. The formulas were implemented in a Mathematica program by
an undergraduate student, A. Pitsillides [61]. A typical run is shown in the Figures
1-5 below. In each case, the white oval region inside the system of circles shows
the possible values of B,.;; for the given numbers By, ..., B,.. The same formulas
produced a counterexample when r = 3 in another undergraduate project by D.
Dreibelbis [31]: the numbers
1 1 4 i
B; = & = B3 = TRBT 9.1)
satisfy (2.2) with » = 3 for all real v, but there is no univalent function which has
the form ) ) A )

2 ¢ 3 4
B(z)—gz—l—zz +(E+T8-) 2°+ 0(2%)
and is bounded by one in the unit disk.
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—0.2+0.15%

FIGURE 1. Possible values of B3 if B; = 0.2 and B,

.8

-3

3

0.1-0.2¢

FIGURE 2. Possible values of By if Bs
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60

FIGURE 3. Possible values of By if By = —0.02+0.21

—0.05 -0.15%

FIGURE 4. Possible values of Bg if By
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FIGURE 5. Possible values of By if Bg = 0.06 + 0.05%

Nevertheless, there is numerical evidence in favor of something like (2.2). The
most basic example of a normalized univalent function which is bounded by one in
the unit disk is a bounded Koebe mapping, by which we mean a solution B(z) =
Bt q,(2) of the functional equation f, 4,(2) = fp.(B(2)), where 0 < a < b < 00,
lu| =1, and

feu(2) = tz2/(1 —uz)?, 0<t<oo,
is a Koebe function [65, §8.1]; that is,
Bb,a,u(z) = fz:;(fa,u(z)) (9~2)

Compositions of bounded Koebe mappings provide many data sets for numerical
experiments. It appears that counterexamples such as (9.1) are only possible when
numbers are chosen very close to the boundaries of the regions predicted by (2.2).
In private discussions, M.A. Dritschel and the author have considered possible
variations of (2.2), including:

Problem. Let By, By, B3, By be given numbers with By > 0. If (2.2) holds for
r = 4, all real numbers v, and all generalized power series (2.1), are By, Ba, Bs
the coefficients of a normalized univalent function which is bounded by one in the
unit disk?

The numbers (9.1) are not a counterexample because there is no way to
choose B, to meet the conditions. More generally, if (2.2) holds for some numbers
By, ..., B, (B1 > 0), are some of these numbers the coefficients of a normalized
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univalent function which is bounded by one in the unit disk? A related problem
asks if, in some sense, the bounded Koebe mappings (9.2) play a role analogous
to single Blaschke factors.

Problem. Let Bi,...,B, be numbers with By > 0. If there exists a univalent
and normalized function B(z) satisfying |B(z)| < 1 on D and such that B(z) =
Biz+---4 B.z"+ O(2"1), can B(z) be chosen to be a composition of v bounded
Koebe mappings?

The answer is affirmative for » = 2, and numerical evidence for r = 3 seems
strong.

The coefficients of univalent functions, and in particular bounded univalent
functions, are extensively studied in the literature on classical function theory. The
first four coefficients are investigated by {73]; connections with the problems stated
above may be present but are not transparent to the author.
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Notes on Interpolation
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I. Applications of Realization Theory

D. Alpay, T. Constantinescu, A. Dijksma, and J. Rovnyak

To Harry Dym: teacher, colleague and friend, in appreciation and with best wishes.

Abstract. Realization theory is used to study Nevanlinna-Pick and Carathéo-
dory-Fejér interpolation problems for generalized Schur classes. In the first
part of the paper, conditions are given for the existence of a solution of a
factorization problem that includes Nevanlinna-Pick interpolation and factor-
ization problems of Leech type for operator-valued functions. In the second
part, an analysis is made of the numbers of positive and negative eigenvalues
of classical matrices which arise in coefficient problems. The complete solution
of an indefinite Carathéodory-Fejér problem is obtained.

Introduction

The classical approach to functions S(z) in the generalized Schur class S, is by
means of the Schwarz-Pick kernels on the unit disk D. In the scalar case, which
for the moment we assume, recall that these are defined by

Ks(w,z) = 1—_1—‘%2—(’9—) Ks(w,z) = 1 _155232(10)’
Ds(w,2) Ks(w, 2) &2%@ (1)
S FORY-(C) :
——a K2

where S(z) = S(z). If S(z) is analytic on an open subset  of D and one of
the three kernels has x negative squares, then all three kernels have x negative
squares [3, Theorem 2.5.2]. In this case S(z) has an extension to a meromorphic
function on D, and S, is defined as the set of all such functions. The general
theory and interpolation properties of generalized Schur functions are developed

A. Dijksma is grateful to Mr. Harry T. Dozor for supporting his research through a Dozor
Fellowship at the Ben-Gurion University of the Negev, Beer-Sheva, Israel. J. Rovnyak is supported
by NSF Grant DMS-9801016.
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in well-known papers including Adamjan, Arov, and Krein [1], Ball and Helton [7],
Krein and Langer [17, 18], Nudel’'man [19], and Takagi [21], to name a few. The
Schwarz-Pick kernels also arise in the realization theory of co-isometric, isometric,
and unitary colligations [3], where they are reproducing kernels for state spaces.
In this paper we study problems of the Nevanlinna-Pick and Carathéodory-Fejér
types in which realization theory and kernels such as (1) and their generalizations
play an important role.

In Part I we consider a form of the Nevanlinna-Pick interpolation problem
which can also be viewed as a factorization problem: given functions A(z) and
B(z) on a subset Q of the unit disk, we seek a function S(z) in S, such that

B(z) = A(2)5(2) (2)
on €. Nothing is assumed about the set €2, and so the factorization problem in-
cludes Nevanlinna-Pick interpolation. When 2 is an open set and A(z) and B(z)
are holomorphic, (2) is a factorization problem of Leech type [3, 5]. Set
_ A(2)A(w) — B(2)B(w)
- 1— 2w ’

K(w,z)

w,z € Q.

If a solution S(z) of (2) exists, then K (w,z) = A(z)Kgs(w,z)A(w). Therefore a
necessary condition for the existence of a solution is that the kernel K (w, z) has k
negative squares. In Part I we show that when this necessary condition is satisfied
and additional properties hold, it is possible to construct a solution of (2) in the
form of a characteristic function

S(z) = H+wG(1 —wT)™'F

of a partially isometric operator colligation V' = {T, F, G, H}. We note that such
expressions appear in many places in interpolation theory and applications in
systems theory (for example, see Ball, Gohberg, and Rodman [6]). In systems
language, we may think of the function A(z) as an input, and then the problem (2)
is to find a system whose transfer function produces the output B(z) = A(2)S(2).
The results of Part I are presented for operator-valued functions.

In Part IT we discuss coefficient problems and their connection with the ker-
nels (1). In this case also realization theory plays a role in establishing analytic-
ity (see Theorem 8). Necessary conditions for the existence of solutions derived
from the three kernels (1) are shown to be equivalent (Theorem 7). Using re-
sults of Iokhvidov [13], we provide a complete solution to an indefinite form of
the Carathéodory-Fejér problem analogous to results of Woracek [22, 23] for the
Nevanlinna-Pick problem. The solution is obtained by means of an equivalence of
two matrix extension problems, one involving lower triangular Toeplitz matrices
and the other Hermitian Toeplitz matrices. Scalar-valued functions are assumed
in Part II.

An Appendix is devoted to a result that identifies the number of negative
squares of a holomorphic kernel K (w, z), |w| < R, |z| < R, in terms of the coeffi-

cients in the Taylor expansion K(w,2) = 3" _; Crnz™ @™
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I. Interpolation and factorization

The most natural setting for the factorization problem (2) uses operator-valued
functions. Let § and & be Pontryagin spaces having the same negative index (in
most of our applications these are Hilbert spaces). For any integer k > 0, the
generalized Schur class S, (§F, ®) is the set of functions S(z) with values in £(F, ®)
which are holomorphic on some subregion 2 of the open unit disk D such that the
kernel

1—-5(2)S(w)*

1—zw

Ks(w,z) = (3)
has k negative squares. If S(z) belongs to S.(F, &), H(S) is the Pontryagin space
with reproducing kernel (3). Terminology and notation follow [3] (the definition of
S« (3, ®) in [3] requires the functions to be holomorphic at the origin, and we do
not require this now). In particular, sq_H is the number of negative squares of a
Hermitian kernel H. In the scalar case, that is, when § = & = C is the space of
complex numbers in the Euclidean metric, we write S, instead of S, (F, &).

Our first result contains the main construction, and it is in some sense the
most general possible for the method. In Theorem 2 we recast the conditions in a
more geometrical form in a particular case.

Theorem 1. Let §, &, & be Hilbert spaces, and let Q0 be a subset of the unit disk
containing the point wo. Let A(z) and B(z) be functions on Q with values in
£(8, R) and £(F, R). Assume that the kernel

A(z)A(w)* — B(z)B(w)*
1—zw

K(w,2) = (4)

has k negative squares on Q x Q, and let Hx be the associated reproducing kernel
Pontryagin space. Let I be the subspace of Hx & & consisting of all elements
k(z) ® g such that

Z — Wo
\/ 1—- ]w0l2

Let N be the subspace of Hx O F consisting of all elements h(z) @ f such that

A(wp)g=0 and k(z)+ [A(z) — A(wo)lg=0 on Q.

1~ 2t h(z) + B(z)f =0 on Q.

V1 = |wol?

Assume that I and N are Hilbert spaces in the inner products of the larger spaces.
Then there is a function S(z) € S/ (§, &) for some k' < Kk such that

B(z) = A(2)S(2)

for z = wo and for all but at most k points z of @\ {wo}. In this case, &' = K if
and only if the elements h of H(S) such that A(z)h(z) = 0 on Q form a Hilbert
subspace of H(S).
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The function S(z) which is constructed in the proof is holomorphic at wy.
The subspaces 91 and 9 defined in the statement of the theorem are automati-
cally closed by the continuity of function values in a reproducing kernel space [3,

Theorem 1.1.2].

Proof. 1t is sufficient to prove the result when 0 € Q and wy = 0. For suppose
that the result is known in this case, and consider the general situation. Let ¢ be
the linear fractional mapping of D onto itself given by ¢(z) = (wo — 2)/(1 — 2zwo).
Thus @(wo) = 0 and =1 = . Put Q' = p(Q), wh = 0, and

A(2) = Alp™1(2)), 2ze,

B'(z) = B¢ '(2)), ze.
Define K'(w,z) on ' x ' by (10) using A’(z) and B’(z) in place of A(z) and
B(z). A short calculation shows that
1-— |w0]2

(1 = zwe)(1 — wwyp)

K'(w,2) = K(o Y w), ¢ 1(2)), w,z €,
and so sq_K’' = k; write $x- for the associated reproducing kernel Pontryagin
space. The preceding reproducing kernel identity may be used to show that the

mapping
VI—lwol?
Vi f(2) = = f(e '(2))
— ZWo

acts as an isometry from $) g onto . Writing 9t and I for the subspaces defined
in the theorem for the original functions A(z) and B(z) and point wy € €, and
P and N’ for the corresponding subspaces relative to A’(z) and B’(z) and point
wj € &, we find that

(V& —1g) M= and (V'@ 159N =90

Since we assume the result when 0 € Q and wy = 0, we can find a function
S'(z) € Sx/(F,®) for some k' < k such that S’(z) is holomorphic at wy = 0 and
B'(z) = A'(2)S'(2) for z = wj and for all but at most x points z of @\ {wj}.
Then S(z) = S'(¢(z)) has the required properties.

Thus without loss of generality, we may assume that 0 € Q and wy = 0.
Define a linear relation R in ($Hx @ &) x (Hx @ F) as the span of all pairs

K(a, ')Ul K(a)') —K(Ov')

A) —AO" o) | Ble) = BOY

uy + K (0, -)u2
(5)
B(0)*
Z uy + B(0)*ug
with o € Q\ {0} and uy,ug € R. A direct calculation shows that R is isometric.
In fact, consider a second pair with o replaced by 3 and u1, us replaced by vy, vs.
Expand and simplify the inner products of the first members in ) x ®® and second
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members in Hx O F. After simplification, in both cases we obtain
(K (0, Bur, 01} + <A(ﬂ)A(a>* — ABAQ" - AQA) + AOAOF >
 (AQA) AN, L | (ABAOY AOAOY

£ £

«

g
+ (A(0)A(0) uz, v2) 5, (6)

and this verifies the assertion. The orthogonal complement of the domain of R. is
M, and the orthogonal complement of the range of R is 91. Since these are Hilbert
spaces, it follows from [3, Theorem 1.4.2] (or [4, Theorem 2.2]) that there is a
continuous partial isometry

-3 3)-(0) ()

such that V* has initial space dom R and final space ran R and

K(a,-)m K(av)gK(Ov )

Aa)* - A(0)* B(a)* — B(0)*

Uy + K(O, ')U2

uy + A(O)*Ug uy + B(O)*Ug

for all @ € 2\ {0} and uy,uz € R Calculating as in [3, p. 51], we find that

h(z) — A(z)Gh
2 ?

(Ff)(z) = B(z) - A)H

A(0)Gh = h(0),

A(0)Hf = B(0)f,

for all h € Hx and f € F.

Since V is a partial isometry whose kernel is a Hilbert space, V is a contrac-
tion. The embedding mappings Fz and Eg from $Hi into Hx & F and Hx © &
are contractions (in fact isometries), and their adjoints act as projections. The
adjoints are also contractions because we assume that § and & are Hilbert spaces.
Therefore

(Th)(z) = z € 0\ {0},

f, z € Q\ {0},

T=EzVE;

is a contraction on the Pontryagin space $x. By [15, Lemma 11.1 (p. 75)], the
part of the spectrum of T that lies in [A| > 1 consists of normal eigenvalues. By
[15, Theorem 11.2 (p. 84)], the span of root manifolds for eigenvalues in |A] > 1
is contained in a nonpositive subspace, and hence the number of such eigenvalues
is at most sq_$Hx = k. It follows that 1 — 2T is invertible for all but at most &
points in D. Since these exceptional points obviously do not include 0, 1 — 2T is
invertible for all z € Q\ {A1,..., Ay} for some nonzero numbers Ay, ..., A, in D;
here ¢ < k and possibly ¢ = 0 when there are no exceptional points.
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Claim 1: If w € Q\ {M\1,..., A}, h € 9k, and (1 —wT)"th =g, then

o() = R ARG o\ (w), )

and h(w) = A(w)Gy.

Since this is trivially true if w = 0, assume that w # 0. Then

h(z) = g(z) —w g(z)——;ﬁl(z)gg’ z € Q\ {0}. (8)

Since w # 0, we can take z = w in (8) to get h(w) = A(w)Gg. Again by (8),
(2 — w)g(2) = 2h(2) — wA()Gg
for z € Q\ {0}. Trivially the last identity holds for z = 0 as well, and we obtain
(7).
Claim 2: Define S(w) = H + wG(1 — wT)7'F for allw € D\ {)\1,...,A;}. Then
B(w) = A(w)S(w)

for allw e Q\ {A1,..., A\qg}.

The case w = 0 is clear. Assume w € Q\ {A1,..., A} and w #0. Fix f € §.
We use Claim 1 with g = (1 —wT)~th, h = Ff. Thus
wA(w)G(1 —wT) 'Ff = wA(w)Gg = wh(w) = w (Ff)(w) = Bw)f — A(w)Hf.
Claim 2 follows.
Claim 3: S € S, for some k' < k.

It is clear from the definition of S(z) that it is a holomorphic function on
D\ {\i,...,Ag}. For all w,z € D\ {\1,..., A}, by the identity [3, (1.2.9)],

1- S(2)S(w)* = (G —2T)~1 1) ((1 - m:/;*)*(;*)

—(:G(1=2T)"t 1)VV* (w(1 - 'LDIT*)—lG*)
=(G(L-2zT)" 1) ((1 - @1;*)—10*>

— (:G(1-21)"' 1) (w(1 - wip*)_lG*)
1

+ (zG(l 7 1) (1-VV*) (117(1 - u—)T*)_lg*)

~ (1= 20)G(1 — 7)1~ )"
R ] G

Since 1 -V V* > 0in the partial ordering of selfadjoint operators, 1 -VV* = MM*
for some operator M € £(D, Hx BS), where D is a Hilbert space (see, for example,
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[12, Theorem 2.1]; we can choose M so that it has zero kernel, but this property
is not needed. Therefore
P(2)®(w)"

_ _ —1 Y e e Wt
Ks(w,2) = G- 2T) 7 (1 - al") 16" + ===

, w,ze D\ {A,..., 0},
9)

where
®(2) = (2G(1 —2T)"" 1) M, ze€ D\ {A1,..., A},

is a holomorphic function with values in £(®,®). The first summand on the right
of (9) has «” negative squares for some " < k by [3, Lemma 1.1.1'], and the second
summand is nonnegative because D is a Hilbert space. Thus by [3, Theorem 1.5.5]
the kernel (9) has k' negative squares, where ¥’ < k" < k. Hence S € S/, which
proves Claim 3.

The function S(z) has the required properties by Claims 2 and 3. The last

statement, which gives the condition for k' = k, follows from [3, Theorem 1.5.7].
O

The next result identifies a case in which the conditions in Theorem 1 can be
verified. Namely, we assume that the values of A(z) are “square” in the sense that
A = & and so the values of A(z) are in £(®). We also assume that one of these
values is invertible, and we take this to be 1.

Theorem 2. Let § and & be Hilbert spaces, and let A(z) and B(z) be functions
which are defined on a subset Q) of D with values in £(&) and L£(F, ). Assume
that the kernel
A(z)A(w)* — B(z) B(w)*
1—2w
has k negative squares on Q2 x Q, and let Hi be the associated reproducing kernel
Pontryagin space. Assume that there is a point wo € 2 such that
(1) A(wo) =1le, and
(2) the set of elements of Hx which vanish on Q\ {wo} is a Hilbert subspace
of Hx.
Then there is a function S(z) € S/ (F, ®) for some &' < k such that

B(z) = A(2)S(2)

for z = wo and for all but at most k points z of Q\ {wo}. In this case, k' = k if
and only if the elements h of $(S) such that A(z)h(z) = 0 on Q form a Hilbert
subspace of 5(S).

K(w,z) = (10)

The function S(z) constructed in the proof is holomorphic at wp.

Proof. The last statement follows from [3, Theorem 1.5.7]. It is convenient to
assume that 0 € Q and wg = 0. If the result is known in this case, then as in
the proof of Theorem 1, define A’(z) and B’(z) on @ = (), where ¢(z) =
(wo — 2)/(1 — ztwp). As in the same proof, introduce the kernel K'(w,z) and
isomorphism V' from i onto Hk-. Under V', the functions in $Hx which vanish
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on 2\ {wg} correspond to the functions in $x+ which vanish on Q' \ {wj}, where
wp = 0. Then as before, the special case implies the general result.

In what follows, we assume that 0 € Q and wy = 0. We apply Theorem 1
in this situation and also with R = &. It is easy to see that the subspace M in
Theorem 1 coincides with the the set of elements of $x which vanish on Q\ {0} and
is thus a Hilbert space by hypothesis. We show that the subspace 9t in Theorem 1
is a Hilbert space. By the first part of the proof of Theorem 1, 91 is the orthogonal
complement of the range of the relation R in $x @ §, and therefore it is the
same thing to show that the range of R contains a strictly negative subspace of
dimension «. By [3, Lemma 1.1.1'], it is sufficient to show that some Gram matrix
of elements of the range of R has x negative eigenvalues. In fact, consider two of
the second members of the pairs (5) that define R, say

K(ﬂa ) — K(O? )
B
B(B)* - B(0)"
B

By (6), since now A(0) = 1g, the inner product of these elements in §x & F is
equal to

K(o,-) —K(0,-)

w1 + K (0, )usg vy + K(0,)v2
and
B(a)* — B(0)*

uy + B(O)*UQ v+ B(O)*Ug

(K (0, B)ur, o1) g + <A(/3)A(oz)* _ Aég) — A()* + 1o ul,v1>®

+ <é(a)*_——1qS u1,vz> + <m u2,1)1> + (u2,v2) g
[ & &

B
Ala)* —1 AB)* —1
= (K(a, ﬂ)ul,m)@ + <M U1 + ug, —(—ﬁl—évl +v2> .
a Jé] s
Here we can choose «, 8 and w1, us arbitrarily, and then choose v, v2 so that
Ala)* —1 A(B)* -1
%gul +ug = %—E'Zh + vy = 0.

Since we assume that sq_K = &, it follows that some Gram matrix of elements
of the range of R has s negative eigenvalues, as was to be shown. This completes
the proof that D is a Hilbert space.

The hypotheses of Theorem 1 are thus met, and Theorem 1 yields a function
S(z) € S84/ (F,8), ' < k, such that B(z) = A(2)S(z) for z = 0 and for all but at
most £ points z of Q \ {0}. O

We give another condition for interpolation. Suppose that S(z) belongs to S,
and is holomorphic at the origin. Then zS(z) also belongs to S, and thus both
kernels

1—5(2)S(w) 1 —2wS8(2)S(w)
1—zw 1—zw
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have k negative squares (see [3, Example 1 on p. 132]). In the other direction, a
condition on two kernels is sufficient for interpolation from an arbitrary set Q with
at most a finite number of exceptional points.

Theorem 3. Let A(z) and B(z) be functions defined on a subset Q of the unit disk
D with values in £(8, R) and £(F, &), where §, &, & are Hilbert spaces. Assume
that both
A(z)A(w)* — B(z)B(w)*

1—-zw

Kl(w,z) =

and
A(z)A(w)* — zwB(z)B(w)*
1—2zw

KQ(’U),Z) =

have k negative squares on Q x Q. Then there is a function S(z) in S« (F,®),
k' < K, such that

B(z) = A(2)S(z)

for all but at most k points z of Q. In this case, k' = k if and only if the elements
h of $(S) such that A(z)h(z) =0 on Q form a Hilbert subspace of $(S).

The proof uses a different colligation from that of Theorem 1. It is adapted
from the work of V.E. Katsnelson, A. Kheifets, and P.M. Yuditskii; see Kheifets
[16] for an account and references to earlier works. The idea is used by Ball and
Trent [8], who extend it to a several variable setting and apply it in a form for
reproducing kernel functions that is close to our situation.

Theorem 3 is a non-holomorphic analog of [5, Theorem 11]: there the co-
efficient spaces are indefinite, but we have the stronger hypothesis that € is a
neighborhood of the origin and A(z) and B(z) are holomorphic. Now the func-
tions A(z) and B(z) are not assumed to be holomorphic, but in compensation §
and & are required to be Hilbert spaces (for simplicity we have taken £ to be a
Hilbert space also, but this plays no role in the argument). The proof of Theorem 3
runs along the same lines.

Proof. Write $(K1) and $(K3) for the Pontryagin spaces with reproducing kernels
Ki(w, 2) and Ka(w, 2). Define a relation

o ((57E) (5852 e v

c (ﬁ(éﬁ)) o (ﬁ(gl))

It is easy to see that R is isometric. We show that the domain 9t of R contains a
maximal uniformly negative subspace of §(K;) @ F. To this end, consider a Gram
matrix of the form

(e

i,5=1



76 D. Alpay, T. Constantinescu, A. Dijksma, and J. Rovnyak

where w1, ...,w, are any points in  and k,...,k, are arbitrary vectors in K.
Thus

% n n
M = (1K (wg,w) + Blw) Buwy)' Tk ki) = ((Kalwy wiky ki)

Since we assume that Ks(w, z) has k negative squares, M has at most « negative
eigenvalues no matter how wi,...,wy, and ki,...,k, are chosen, and some such
Gram matrix has exactly k negative eigenvalues. By [3, Lemma 1.1.1’], 9 contains
a k-dimensional subspace which is the antispace of a Hilbert space in the inner
product of $H(K;) & F. Since

sq_(H(K1) &) =k,

this verifies the assertion. It follows that the closure of 91 in $(K1) ©F is a regular
subspace whose orthogonal complement 9+ is a Hilbert space.

By [3, Theorem 1.4.2], the closure of the range of R is likewise a regular
subspace 91 of (K1) @ &, and we can construct a partial isometry

- 5) () ~(4)

with initial space 9 and final space 2 such that

. T G* ) u‘;Kl(w,)k . Kl(w,~)/~c
Y _(F* H*) ( A(w)*k ) (B(w)*k)

for all £k € & and all w € €. Thus for w € Q,

T* {wK1(w, Yk} + G* {A(w)*k} = Ky (w, )k, (11)
and

F*{wK1(w, )k} + H* {A(w)*k} = B(w)*k. (12)
Hence

(1 —aT") {Ki1(w, YA(w)k} = G* {A(w)*k}. (13)

Since ker V' is a Hilbert space, V is a contraction. As in the proof of Theorem
1, because we assume that § and & are Hilbert spaces, T is a contraction, and
the part of the spectrum of T that lies in |A| > 1 consists of at most x normal
eigenvalues.

Let ' = Q\ {A1,..., g}, where Ay, ..., Aq are the points A of the unit disk
at which 1 — AT is not invertible (¢ < k). For all w € @ and all k € £,

Ki(w, Yk = (1 —aT*) 'G*{A(w)*k}
by (13). Define
S(z) = H +2G(1 — zT)"'F, z€ D\ {A,..., A}

Then
B(w) = A(w)S(w), we,

by (11) and (12). The proof that § € S, for some &’ < & is the same as in the
proof of Theorem 1. The last statement follows from [3, Theorem 1.5.7]. g
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In the next theorem, we allow §, &, 8 to be indefinite, but the functions A(z)
and B(z) are required to be holomorphic. This yields a new result of Leech type
factorization theorems as a companion to those of [5].

Theorem 4. Let §, &, & be Krein spaces with sq_F = sq_® < co. Let Q be a
subregion of the unit disk containing the origin. Let A(z) and B(z) be holomorphic
functions on Q1 with values in £(®, R) and £(F, R). Assume that the kernel
_ A(z)A(w)" — B(z) B(w)*

K(w,2) 1— 2w

(14)

has k negative squares on  x Q, and let i be the associated reproducing kernel
Pontryagin space. Let I be the subspace of Hx ® & consisting of all elements
k(z) ® g such that

A(0)g=0 and zk(z)+[A(z) —A(0)]g=0 on Q.
Let M be the subspace of Hx ® F consisting of all elements h(z) @ f such that
h(z)+B(z2)f =0 on Q.

Assume that M and N are Hilbert spaces in the inner products of the larger spaces.
Then there is a function S(z) € S./(F, ®) for some k' < Kk which is holomorphic
at the origin and such that

B(z) = A(2)5(2)
for all but at most k points z of Q). In this case, &' = k if and only if the elements
h of $(S) such that A(z)h(z) =0 on Q form a Hilbert subspace of $H(S).

Proof. We repeat the constructions in the proof of Theorem 1. The partial isometry
V is again a contraction in the present situation. In general, the operator T is not
a contraction, but it is a bounded operator and so (1 — wT)~?! is defined for |w|
sufficiently small. The argument goes through if we restrict attention to a suitable
neighborhood of the origin. At the end, the identity B(z) = A(2)S(z) extends to
all but at most x points of Q2 by analytic continuation. O

IT. Coefficient and moment problems

Let z1,..., 2z, be points in the unit disk, and let wy, ..., w, be any complex num-
bers. If we specialize Part I to the scalar case and set Q = {z1,...,2,}, A(z;) =1,
and B(z;) = w; for all j = 1,...,n, then the interpolation problem in Part I
reduces to the Nevanlinna-Pick problem. The indefinite form of interpolation was
introduced by Takagi [21], and it has been studied by Adamjan, Arov, and Krein
[1], Krein and Langer [18], and others. A rather complete picture of the solution of
the indefinite Nevanlinna-Pick problem emerged from this work. A remaining issue
concerning the degenerate case was recently settled. Namely, one can ask, for which
nonnegative integers x can the Nevanlinna-Pick problem be solved in S, for given
data z1,..., 2, and wy,...,w,? A more precise question can be posed. Define S, .
as the class of all meromorphic functions S(z) on the unit disk for which the kernel
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Kgs(w, z) has v negative squares and 7 positive squares (thus S, » is a subclass
of S,). For which nonnegative integers v and 7 can the Nevanlinna-Pick problem
be solved in S,  for given data z1,...,2, and wy,...,w,? These questions were
answered by Woracek {22, 23] (with the disk replaced by the upper half-plane),
yielding a complete solution of the Nevanlinna-Pick problem in the scalar case.

We consider analogous questions for the indefinite Carathéodory-Fejér prob-
lem and obtain a complete solution in the scalar case. The solution depends on
results of Tokhvidov [13] on a related trigonometric moment problem. In the posi-
tive definite case this connection is well known. We refer to [13] for references to
the original papers {some jointly with M.G. Krein) pertaining to this problem. A
key step involves another application of the characteristic function of a partially
isometric operator colligation, which was the principal tool in Part I.

Problem I (Carathéodory-Fejér problem). Let ag,a1,...,an—1 be n complex num-
bers. For which nonnegative integers k is there a function S(z) in S, which is
holomorphic at the origin and such that S(z) = ag+ a1z +-++ +an—12""1 +O(2")
in a neighborhood of the origin? For which v and w do there exist solutions in
Sur?

Necessary conditions on coefficients are obtained from the series expansions
of standard kernel functions. Suppose that S(z) is a holomorphic (scalar-valued)
function defined in a neighborhood of the origin. Let S(z) = ap + a1z +a22? +- - -
be its Taylor series expansion, and write

ag 0 0 -ee 0 ao 0 0 .- 0
aq ag 0 - 0 — a1 ag 0 N |
Tr = cen ’ = ’
Qr_1 Qr_2 Gr-3 *** Qg Ar—1 Qpr—2 Gr-3 -+ Qo
(15)
a1 ag as e (429
az a3 ag -+ Grp1
Qr = . ) (16)
Qr  Qry1 Qr42 0 G2r—1

r=1,2,.... Set 5’(2) = S(Z2). Straightforward calculations yield the expansions

Ks(w,z) = EM Z Chpq 2P,

1—zw a0
Ks(w,z) = 1——1%“ Z Cpg2Pw,
p,q=0
Kooy 5D =5@)
Ds(IU,Z) =13 2 - oW = Z quzp,u—)q,
S(z) = S() Kg(w, z) P,q=0

zZ—Ww
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where
[Coa]l Ly = In =TT}, [Coal” L =1, — T\ Tn,
Ir - T’I'T: Qr

r—1

[DM],,,q:o = , 1<r<n/2

-
Q: I T T’r Tr
Thus the coefficients ag, a1, ... of S(2) give rise to three families of matrices:

— % Ir - T’I'T: Q'r
In_TnT:, I, -T,T,, — —x ] 137‘Sn/2,
Q: Ir - Tr Tr
(17)
n=20,1,.... For fixed n, the matrices (17) depend only on ag,...,an_1.

If S(z) belongs to S, then the three kernels each have x negative squares [3,
Theorem 2.5.2]. It follows that the number of negative eigenvalues of each of the
matrices in (17) is a nondecreasing function of the order of the matrix, and this
number is ultimately equal to k in each case (see the result in the Appendix at
the end of the paper).

If S(z) belongs to S, r, similar remarks apply not only to the number of
negative squares but also to the number of positive squares. For simplicity, suppose

that S(0) # 0, and note the identities
Ks(’LU,Z) = _S(Z)KI/S(w7 Z)S(U)),

K3(w,2) = —8(2) K, 3(w, 2)S(w),

S(z) 0 Sw) 0
DS(U),Z) = — ( 0 g(z)) Dl/s('w,Z) ( O —Sm) .

The numbers of positive squares of
Ks(w,z),Kz(w,z), Ds(w, 2)
thus coincide with the numbers of negative squares of
Kys(w, 2), Ky 5(w, 2), Dyys(w, 2),

respectively. Hence if one of the three kernels has 7 positive squares, then all
do. In this case, applying the previous assertions concerning negative squares, we
see that the number of positive eigenvalues of each of the matrices in (17) is a
nondecreasing function of the order of the matrix, and this number is ultimately
equal to 7 in each case.

This raises questions concerning the general behavior of the numbers of neg-
ative and positive eigenvalues for the matrices (17) whenever (15) and (16) are
defined for any complex numbers ag, a1, ..., whether these numbers are the Tay-
lor coefficients of a holomorphic function or not. We show that the behavior is
indeed always similar to the special cases noted above: the numbers of negative
(positive) eigenvalues for the three types are nondecreasing functions of the order,
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and if one eventually has some constant value, then all have the same constant
value eventually. These questions are purely algebraic. There is a separate conver-
gence question, namely, under what conditions are the given numbers ag, a4, ...
the Taylor coefficients of a holomorphic function S(z) in S, or S, ,? Finally, if
we only define (15), (16), and (17) as far as we can go with a finite sequence

ag, - --,0n_1, what are the possible extensions to an infinite sequence ag,ay,...7
To answer such questions, we relate given complex numbers ag, ..., 0,1 to
a trigonometric moment problem. Define ¢y = 1,¢1,...,¢, by
Cy = ].,
€1 = Coao,
ca = cpai + ciag, (18)

Cpn = CoGn—1+C1Qp_2+ -+ Ch_100,

This correspondence is one-to-one and has the property that if ag, ..., a,—1 corre-
sponds to ¢g = 1,¢1,...,¢, then for each 1 < k < n, ag,...,ax—1 corresponds to
co = 1,c1,...,ck also via (18) with n replaced by k. We consider the associated
matrix

Co C1 Co e Cn,

Cc1 Co C1 ver Cp—1

M, =] c C1 Cco ce. Cp—2 (19)
Cn Cp—1 Cp—2 ... Co

In the sequel J,, stands for the selfadjoint and unitary n x n matrix

00 ... 01
J, = 00 ... 10
10 ... 00
Also define
co 0 ... 0
s=|oo 0 a=(5 5) (0 0
Cr Cr-1 ... C
Theorem 5. Let ag, a1, ...,a,—1 be complex numbers and define co = 1,c1,...,¢pn
by (18). The following equalities hold:
M, = B, (é I _QAFTT:) B} = B; (IT _(;‘F:TT (1’) B., 1<r<n, (20
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and
L. T, T O Qr

My, = C, 0 1 0 c*, 1<r<n/2 (22)
— —x
Q: 0 Ir - Tr TT
In (21) as in (15), a bar on a matrix indicates that all entries of the matrix
are replaced by their complex conjugates.

Proof. The first equality in (20) can be shown by induction. The second equality
follows from the first. To see this, use the identities

— —x —x
JT+1MTJT+1 = Mra Jr+1BrJr+1 = B,, J I J, = T,

and
0 J.\ (1 0 0 N\ _(1.-T'T. o
1 0 0 Ir—TTTT* J. 0) 0 1
to obtain
- - I, —T*T, 0 —x
M'r: r+1MrJr+1:Jr+lBrJr+1( 0 1> Jr—l-l Br Jr—f-l
- ]T—TT*TT 0
(O

which is the second equality in (20). We get (21) on replacing the entries of the
matrices by their complex conjugates.
We prove (22). Assume 1 < r < n/2. Then

Cr Cr—-1 C2 C1
M, —1 S* Cr4+1 (& C3 C2
Moy = ("0 r S, ="t " : 23
=s M) (23)
Cr C2r—1 ... Cr42 Crq1

In (23) we use the first equality in (20) to obtain
M,_4 Sk

T

My, = 1 0 \
5 Br (0 I - TTT;‘) B;

* x—1
_(Ir O) M, . STBrO (Ir 0)
= -1 * .
0 B,)|\BS, (0 IT_TTT:> 0 B

Due to the lower triangular form of B,., we get

1 0 ... 00 Cr Cpr—-1 ... (5] Cr Cp—1 ... C1
—1 o * 1 ... 00 _
B, "5, = .. * o Zy

* % .. x 1
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Cr

Mr~1

Cr—1
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Cr
: 7
C1 I,
C1 1 0 0 (
0 0
: I, - T. T
0
Z*
I. 0
0 0
0 B
I, —T,T*
Yo | 7
I. 0
0 0
0 0 B
: I, —T,T*
0
I, —=T*T, 0 .1 zZr
(")
0 0
0
z. | B I, —T,T*
0
0\ /I,
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Here the matrix

I, O By
Cl =
0 B, 0
is invertible. Note also that

0 0 1 0

_1 * 1
Zy S B = Zy : o

0 0/ \x «

so that with Y, defined in this way, we have

I.-TXT, 0O Y
My, = C.. 0 1 0

Y, 0 I, -T,T*

We now identify Y, as

(2% ar—1
a. a.
Yr — r+1 T
a2r—1  G2r—2

From the definition of B, we find that

1 0
_ —a 1
Br 1 _ 0
—Qr—-1 —Gpr-2
It follows that
(er €1
_1 ar Ar_1
BT Sy = Gr41 Qr
A2r—1  Q2r—2
and
Qr Ar—1
Q. Q.
Z/,- — 41 T

a2r—1 G2r—2

Cl*, 1<r<n/2

a1
as

Ay

)

&)

ai
@2 Br—l
Ay
a
2| B,_;.
Qr

83

(24)
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Finally, we obtain

ar ar—1 ... a1 Bl 0
-1 Ap41 ar, ... Qg r—1
(Y, 0)= (2. 0)B;'= B,.1 0
e . 1
A2r—1  Q2r—2 ... Qp
[(¢79 Ar—1 e al
_ Ar41 Qr . as 0
azr—1  G2r-2 ... QO
proving (25). Evidently, @, = Y,.J,. and
0o 0 J.
azqG ﬁgzq 0 1 0
" IL. 0 0
Substituting this in (24) we obtain (22). O

A number of consequences follow. For any Hermitian matrix A we write
7(A) and v(A) for the numbers of positive and negative eigenvalues of A counting
multiplicity.

Corollary 6. Let ag,a1,...,a,—1 be complex numbers.
(1) Fach of the four quantities

v(l, - T, =, - T.17), 1<r<mn,

I, — T, T Q- I, - T, T} Qr
v — — 5 iy — —k 3 1STSn/21
Q: Ir —TrTr Q: Ir _TrTr

is a nondecreasing function of 7.
(2) For 0 <r <m,

—% —

Wl - T,T7) = v(l, - T2T) = (L, - T, T, ) = v(l, — T, T,)
and
w(lr =TI = 7l - L) = n(l, - L.T) = n(I, - T, T,).
(3) If v(I, — T, T;}) = &, then all of the matrices in (17) have at most k negative

eigenvalues.

The condition v(I, — T,,T;¥) = & is necessary that ag,as,...,a,_1 are the
first n Taylor coeflicients of a function in S,. The point of statement (3) in the
preceding corollary is that no stronger necessary condition can be obtained from
the other matrices in (17).
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Proof. Define ¢y =1,c¢1,...,c, by (18) and associated matrices M, as in (19).
(1) By the first equality in (20),

v(ly — T, 1Y) = v(M,),
(I, — T, T}) =n(M,) — 1.

By (22),
Ir - TTT* QT
v " — —x | = V(MQT)?
Q: I’r - Tr Tr
I. - T.T} Q-
™ — —x
Q: Ir - TT Tr
If s < r, then M, is a submatrix of M, obtained by deleting a set of rows and
corresponding columns, and therefore v(M,) < v(M,), yielding (1).

(2) The first and third equalities hold by (20). Since J,T* = T’.J, and hence

) = 7T(M2:,-) — 1.

I ~ T, T, =1, — J,T*T,J, = Jo(L, — T*T,)Jy,
the second equality also holds.

(3) By part (2), v(I, — fnfn*) = v(I, — T,T}) = k. By the proof of (1), if
1 <r <n/2, then

Ir - TTT: Qr
v — —x%
Q: IT - Tr Tr
and this proves (3). O

) =v(Mzy) < v(My) = v(In, — ToT)) = &,

Corollary 7. Let ag,a1,as,... be complex numbers. If one of the three nondecreas-
ing sequences

—_ — o0 Ir - TrT: Qr *
{v(I, - T, T7)}7°, {V(IT - TrTT*)} . v _ o«
1 Qr I.—T.T, 1

has constant value k from some point on, then all do. If one of the three nonde-
creasing sequences

™ I, - T,T* O o0
{r(I, = T,T))}°, {F(Ir - TrTr*)} 7 ™ _ —x
] Q@ L-T.T)/,

has constant value k from some point on, then all do.

Proof. Define ¢y = 1,c1,...,¢, by (18) and associated matrices M, as in (19).
The corollary follows on expressing all of the quantities in terms of the sequences
{v(M,)}2, and {m(M,)}22,. For example, for the negative eigenvalues, if one of
the quantities has constant value x from some point on, then v(M,) = & for all
sufficiently large r, and all have constant value k from some point on. [
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We next recall a result from [11] on the convergence of power series. We
include a proof for the convenience of the reader and to show the role of realization
theory: the coeflicients of the power series are represented as Taylor coefficients of
a transfer function, which is holomorphic in a neighborhood of the origin.

Theorem 8. Let ag,a1,a2,... be complex numbers such that the matrices I; —
T;T} have k negative eigenvalues for all sufficiently large j. Then the power series
8(z) =272, a;jz’ converges in some disk |z| < § where § > 0.

Proof. Let § = C be the complex numbers viewed as a Hilbert space in the
Euclidean metric. Define cg, 1, c2, . .. by (18). Then by (20), the matrices (19) have
% negative eigenvalues for all sufficiently large r, that is, the sequence cg, ¢y, ca, . ..
belongs to PB,. As in Iokhvidov and Krein [14, pp. 312-314], construct a Naimark
dilation for ¢g, ¢1, ca,. . .; that is, we construct a Pontryagin space K that contains
T isometrically as a regular subspace, and a unitary operator U € £(R) such that

c; = PsU7 |3, j=0,1,2,...,

where Pz is the projection on K with range §. Since § is a regular subspace of g,
we can write £ = § ® § where ) is a regular subspace of K. Let

A B
v-(& 3)
relative to this decomposition. We show that

ao=D and a,=CA™'B, m>1. (26)

The cases m = 0,1 are immediate. We prove the formula for a,, assuming it is
known for ag, ..., am—1. By (18),

Cm+1 = CoGm + C18m-1 + -+ + Cmao,
so it is the same thing to show that

Cmi1 = c0CA™ 1B+ ¢;CA™ 2B+ -+ ¢,_1CB + ¢y, D. (27)

A B\ (A, B .
(C D) _(Cj Dj)’ 720
Then

Ami1 Bmi1\ _ (Am Bm\ (A B\ _ [(AnA+BnC AnB+ B,D
Cmit Dm+1)  \Cm Dwm)\Cc D)~ \CnA+DnC CnB+D,D)"

Since D; = PgUJ|g = ¢; for all j > 0, cmy1 = CnB + cmD. This allows us to
bring (27) to the form

CnB =cyCA™" 'B+c¢;CA™ ?B+ -+ ¢,,_1CB. (28)

Dropping the factor B on the right in each term, we easily verify (28) by induction:
the formula is evident for m = 1, and the inductive step follows from the identity
Crt1 = Cy A+ ¢y, C. This completes the proof of (26). The identity (26) implies

Put



Interpolation in the Generalized Schur Class 87

that |a;| < Kp’ for some positive constants K and p, and therefore the power
series ) .~ a;z’ converges in a neighborhood of the origin. a

We can now relate Problem I to an indefinite form of the trigonometric mo-
ment problem.

Let B (Po,x) be the set of all sequences {c;}32, with ¢y = ¢ such that the
matrix M, has k negative (v negative and m positive) eigenvalues for all sufficiently
large r.

Problem II (Trigonometric moment problem). Let cg,c¢i1,...,¢h—1 be n complex
numbers with ¢y = co. Determine for which nonnegative integers k there is a se-
quence {cp}g‘;o in Px that extends the given numbers. Determine for which non-
negative integers v and 7 there is a sequence {cp}oy in P« that extends the
given numbers.

This problem is an indefinite form of the trigonometric moment problem
and it was considered by Iokhvidov and Krein [14, §19]. In the classical case, this
concerns the Fourier coefficients, or moments,

cj = /e—iﬂ du(t), J=0,4£1,4£2,...,

of a nonnegative measure y on [0, 27). In this case, the matrix (c;—;)7 ;o is non-
negative for every n > 0, since

Z Ck—j)\kj\j :/ Z )\kj\je_i(k_j)t du(t)

5.k=0 [0,27) §,k=0
n 2
:/ Aee” % du(t) >0
[0,27) 4,k=0
for arbitrary numbers Ag, ..., A,. When p is a probability measure, cg = 1. The
classical trigonometric moment problem is to extend given numbers ¢y, c1,. .., Cn—1

with ¢p = ¢g to such a moment sequence. In the indefinite extension, we still speak
of the “trigonometric moment problem,” but the underlying function theory is not
the same.

We can show now that Problem I and Problem II are equivalent.

Theorem 9 (Equivalence of Problems I and II). Assume that the numbers ag, ...,
ap—1 and cg = 1,¢1,...,6n—1,Cn are connected as in (18). Then Problem I is
solvable with the data ag,...,an—1 if and only if Problem II is solvable with the
data co,...,Cn—1,Cn-

Proof. Suppose that Problem I with the data ag,...,a,—1 has a solution in Si.
Let

S(z) = Z a; 2’
3=0
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be the Taylor expansion of this solution. By the necessary conditions for Problem I
discussed above, I; — T;T7 has k negative eigenvalues for all sufficiently large j.
Define ¢p41,Cnt2,. .. so that

Cj = CpG5-1+C1aj—2 +---Cj-100

for all j = 1,2,.... Then (20) implies that M; has k negative eigenvalues for all
j =0,1,2,.... Therefore cg,ci,cy,... is a solution to Problem II with the data
Cgy++-3Cn—1,Cn-

Conversely, assume that Problem II is solvable with the data cg, ..., cn—1,¢Cn,
that is, the numbers can be extended to a sequence cg, c1, ¢z, ... in P,. Then the
matrices (19) have k negative eigenvalues for all sufficiently large r. Reversing the
process above, we obtain a sequence ag, a1, as, ... that extends ag,...,a,—1 such
that the matrices I; — T;T7 have k negative eigenvalues for all sufficiently large
j- By Theorem 8, the series S(z) = Y7, a;2’ converges in some disk |2| < §
where § > 0, and by a theorem of Krein and Langer in [18, Theorem 6.3], the
function S(z) so defined belongs to S,. Thus Problem I is solvable with the data
ag,--.,0n—1. The argument for the classes P, » and S, . is similar. O

We use a series of propositions from [13]. The matrices My, M1, M, ... that
appear in the list below are Hermitian matrices of the form (19) defined for ap-
propriate numbers ¢y = ¢, c1,Co, ..., and n is any positive integer. Recall that
for any Hermitian matrix A we write w(A) and v(A) for the numbers of posi-
tive and negative eigenvalues of A counting multiplicity. The signature of A is
og(A) = m(A) — v(A). Write |A| for the determinant of A and p(A) = w(A) + v(A)
for the rank of A.

1°) The difference p(M,,) — p(M,—_1) is either 0, 1, or 2.

2°) If p(M,,) — p(Mp—1) = 0, then 7(M,) = 7(M,—1) and v(M,,) = v(M,_1).

3°) If p(My,) — p(M,,—1) = 1, then either 7(M,,) = 7(M,—1) +1 and v(M,,) =
v(My_1), or 1(My) = m#(Mp_1) and v(M,,) = v(Mp_1)+1 .

4°) If p(M,,) — p(M,—1) = 2, then 7(M,) = w(M,—1) +1 and v(M,,) =

I/(Mn_l) + 1.
5°) If |[My—1| # 0, then there are infinitely many ¢, such that p(M,) =
p(Mn—1).

6°) If [Mn_1| = 0 and |M,(p,_,)—1] # O, then there is a unique ¢, such that
p(My) = p(Mp—1).

7°) The assumptions in 6°) imply that there is a unique extension (c;)$2, of
(¢j)3=o such that p(M;) = p(Myn_1), j > n.

8°) There exists a ¢, with p(M,,) = p(M,_1) if and only if |[M,(ps,_,y)—1| # 0.

9°) If |[M,_1] # 0 and |[My—1] = --+ = |M,| = 0 for some 0 < r < p(M,_1)
(IM_1] = 1 by definition), then p(M,) = p(M,_1) + 2.

10°) If |M,_1| # 0O, then for each k = 1,2,..., there are infinitely many cp,
.+y Catk—1 such that v(My1x—1) = v(Mp—1) + k and |Mp4x-1] #0.
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11°) If |My,—1] # 0, then for each £ = 1,2,..., there are infinitely many c,, ...,
Cnte—1 such that 7(Mp4e—1) = 71(Mp—1) + £ and | M1 # 0.

12°) o(My_1) = 3777 sign (|M;_1]|M;]), where, by definition, |M_;| = 1 and
sign0 = 0.

13°) If p(Mj) is a constant p for all sufficiently large j, then |M,_q| # 0.

Proofs. All of the citations below are from [13].

1°) Corollary on p. 34.

2°) Theorem 6.2, p. 36.

3°) Theorem 6.3, p. 36.

4°) Theorem 6.1, p. 35.

5°) Theorem 13.1, p. 97, and Remark 1, p. 98.

6°) Theorem 13.2, p. 100, and Remark 1, p. 102.

7°) Corollary on p. 101 and Remark 1, p. 102.

8°) The “if” part follows from 5°) and 6°), the “only if” part from Theorem
15.3, p. 119.

9°) Proposition 3°, p. 121.

10°) and 11°) It is enough to prove these statements for £ = 1 in 10°) and
£ =1 1in 11°). To do this, we use the proof of Theorem 13.1, p. 97, and Remark
1, p. 98, to construct infinitely many extensions with |M,| > 0 and infinitely
many extensions with |M,| < 0 (treat the subcases |M,_2| # 0 and |M,,_2| = 0
separately using the argument on p. 99). Then 10°) and 11°) follow from 3°).

12°) Theorem 16.1, p. 129.

13°) Theorem 15.4, p. 119. O

Our solution of Problem II is presented in Theorem 10. The first parts of
the statements (a), (c), and (f) can be found in Iokhvidov’s book as Excercise 8
on pp. 133-134; in the interest of completeness we prove these statements as well.
It is clear that a given sequence (cj)?;ol does not have any extension (c;)32, in
P, if v < v(Mp_1), and there is no extension in P, . if either v < v(M,,_1) or
T < m(Mn_1), because by 1°)-4°), v(M;) and n(M;) are nondecreasing functions
of j. If an extension (c;)$2, belongs to the class B, then it is possible that p(M))
and hence also m(M;) tends to oo as j — oco. Such an extension does not belong
to any of the classes B, . According to 13°) a necessary condition for (¢;)$2, to
belong to P, is that |Myyr—1] # 0.

Theorem 10. Let ¢y = ¢y, 1, - -, Cn—1 be given numbers, and define My, ..., M, _,
as in (19).
Assume |Mp_1]| # 0.

(a) There exist infinitely many extensions in B, (m,_,), even infinitely many
extensions in the smaller set B, (s, _),x(Mn_1)-

(b) There exist infinitely many extensions in Py(m,_,)+v,x(Mp_1)+x Jor all
v>0and T > 0.

Assume |Mp—1]| =0 and |M,(pr,_,)—1]| # 0.
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(c) There is a unique extension in By (ar,_,); it belongs to Py, ) w(Mn_1)-
(d) There are no extensions in B, for
v(My_1) <v <v(Mp_1)+ dimker M,,_q;
there are no extensions in P, r if '
v(Mp_1) < v <v(M,_i)+ dimker Mp_1
or if
7(Mp—1) <7 < m(Mp,_1) + dimker M, _;.
(e) There are infinitely many extensions in P, » for all pairs (v, 7) with
v>v(My—1) +dimkerM,,_1 and 7> nw(M,_1)+ dimker M,,_;.
Assume |Mp_1| =0 and |Mynr,_,y-1] = 0.
(f) There are no extensions in P, (ar,_,)-
(g) There are no extensions in P, if v < v(My_1) + dimker M,,_1; there are
no extensions in Py if
v < v(M,_1) + dimker M,,_;
or if
7w < w(Myp—1) + dimker M,,_;.
(h) There are infinitely many extensions in P, . for every pair (v, ) with
v>v(M,_1)+dimkerM, 1 and 7> w(M,_1)+ dimker M,_;.
Proof. For any extension of the given sequence by numbers ¢, ¢ 41, - . . , We assume
that My, My41,... are defined as in (19).

(a) According to 5°) there are infinitely many ¢, such that p(M,) =
p(Mp_1) = n. For such M,, we have |M,| = 0 and |M,s,)-1| # 0. Hence by
7°) there is an extension (c;)32, of (cj);l:_o1 such that p(M;) = p(Mp—1) for all
j > n — 1. Statement 2°) implies that

v(M;) =v(Myp—1) and =w(M;)=mn(Mnp_1), j=zn-—1,

and hence (c;)2, belongs to P (as,_y),n(M,_1)-

(b) By 10°) there are infinitely many numbers ¢, such that v(M,) =
v(My,—1)+1 and |[M,]| # 0. Therefore p(M,,) = p(M,_1)+1 and by 3°), n(M,,) =
w(My,_1). After v steps, we obtain numbers ¢y, ..., Cpy,—1 such that

|Mptu—1| # 0, v(Mpty-1) =v, and 7(Mpyy-1) = 1(Mp-_1).

Using the same argument with 11°) instead of 10°), we obtain numbers cp4,, - ..,
Cn+v+n—1 (each of which can be chosen in infinitely many ways) such that

|Mptvtn-1| # 0, V(Mnivir—1) =v, and 7(Mptyir—1)="7.
Now (b) follows from (a).
(¢) According to 7°) there exists a unique extension (c;)32, of (cj)?:"o1 such
that
p(M;) = p(Mp—1),  j=n.
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It follows from 2°) that also 7(M;) = m(Mp—1) and v(M;) = v(My_;) for j > n.
Therefore there exists a unique extension of (cj);-’;ol in the class B, (,_,) and
this extension belongs to B, (as, _,),x(M,._1) (for the uniqueness part, note that by
3°) the equality v¥(M,) = v(M,_1) can only hold in the present situation when
p(My) = p(Mn_1)).
(d) and (e). By hypothesis

|Mn_1| =0 and |MP(Mn71)_1| 75 0. (29)
The unique extension described in part (c) of the theorem cannot meet any of
the conditions in parts (d) and (e); since for this extension p(M,,—1) = p(M,) =
p(Mp41) = -+, in parts (d) and (e) we need only consider extensions such that

p(Mp_1) =+ = p(Mnir-1) < p(Mpnir)

for some k > 0. In this situation (29) holds with n replaced by n+ k, and therefore
we may restrict attention to extensions satisfying

p(Mn—l) < p(Mn) (30)
By 6°), (30) holds for all but one choice of ¢,,; in what follows, we assume that c,
is chosen so that (30) is satisfied. The question then is if the sequence (¢;)}_, can
be further extended to an infinite sequence (c;)%2, as required in (d) and (e).
Case (i): p(M,) =n+1.

Since p(Mn—1) < n by (29), by 1°) we must have p(M, 1) = n — 1. Thus
dimker M,,_; = 1, and hence part (d) holds vacuously. Part (e) also holds in this
case. For by statement 4°), v(M,,) = v(My,—1)+ 1 and 7(M,,) = (M, _1) +1 and
since M, is invertible, part (e) follows from (a).

Case (ii): p(M,) <n+1.
Then with r = p(M,_1), in view of (29) and (30),

[Mr—ll = ]Mp(Mn—l)_ll # 0, er| == an—ll = ’Mnl =0.

Consider any extension of (c;)7_, by a number c,41. By (30), 7 < p(Mpy1).
Applying 9°) with n replaced by n + 1, we obtain

p(Mn+1) = p(My) + 2,
and by 4°),
v(Mpt1) =v(M,) + 1 and T(Mpy1) = 7(My) + 1.

If p(Mp41) < n+ 2, we can repeat this argument. We continue in this way for
k=1,2,... and extend (cj);-':o with any numbers ¢y41,...,Chtk, K =1,2,...; by
9°) and 4°), we have r < p(Mp+x),

p(Mnik) = p(My) + 2k,
V(M) = v(Mn) + &,
71'(]Mn—l-k) =m(My) +k,

and
[Mr—1| #0, |My|=--=|Mp_1| =|Mp| =" =[Mnx| =0,



92 D. Alpay, T. Constantinescu, A. Dijksma, and J. Rovnyak

provided p(My+k) = p(My,,) + 2k < n + k + 1. If equality holds, that is,
k=ko:=n—pM,)+1,
then My, is invertible and the process stops. Hence if such an extension of
(Cj)?:() can be continued to a sequence in a class ‘B, », then necessarily
v > vy = v(Mptr,) = v(Mp) + ko = v(My) +n — p(M,) + 1,
m > 7 = m(Mpyke) = 7(Mp) + ko = 7(My,) +n — p(M,) + 1,
and according to (a) and (b) each of the classes 9P, and B, . contains infinitely
many extensions. Thus the first part of (d) and (e) will follow once we show that
vo =v(Mp_1) +dimker M,,_1 and my = n(M,_1)+ dimker M,,_;.
Since |M,,_1| = 0, 12°) implies that
co(My) — o(Mp—1) =sign|M,_1||M,| =0
and since p(M,) > p(M,_1), we therefore have p(M,) = p(M,_1) + 2, and by
4°), v(M,) = v(Mp—1) + 1 and 7(M,,) = m(My_1) + 1. This implies that vy =
v(Mp_1) + dimker M,,_; and also that mo has the desired value.
From the first part of (d) it follows that there are no extensions in B, . if
v(My_1) <v <v(My_1)+ dimker M,,_1,
whatever the value of 7. By considering the sequence (—c¢; );Lz_ol and its extensions
(—¢;)$2o and applying the results just proved (together with v(—M;) = 7(M;))
we find that there are no extensions in B, , if
T(Mp—1) <7 < 7(M,_1)+ dimker M,,_;
whatever the value of v.
(f) is part of (g).
{g) and (h). By 8°), (30) holds for any choice of ¢,. This allows us to proceed

by an argument which is similar to the proof of (d) and (e) above; in case (ii)
there, the exact value of r is unimportant in order to obtain the conclusion. [

We can now deal with Problem I. According to Theorem 9, we must apply the
previous result to the case where ¢y = 1, n is replaced by n+1, |M,| = |I, ~T,T],
dim ker M,, = dim ker (I, — T}, T¥), and
p(In = T, T,;) = p(My,) — 1, n(I, —T,T;) =n(My) -1, v(I, — T,T}) = v(M,).

Note that 9B, , corresponds to the class S, . with 7’ = 7 — 1. We obtain the
following solution for the Carathéodory-Fejér problem.

Theorem 11. Let ag,...,an—1 be given numbers, and define Ty, ..., T, as in (15).
Assume |I, — T,,T;| # 0.
(a") There exist infinitely many solutions of Problem I in Sy, —T,Tx), €VEN in
the smaller set S,,(In_TnT;)’ﬂ(In“TnT;).

(b") There exist infinitely many solutions in S, » for all pairs (v, ) with v >
v(I, — T, T and © > w(I, — T,T}).
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Assume |I, — T, T;| =0 and |1, — T,T;| # 0, where p = p(I, — T,.T},).

(¢') There is a unique solution in S, (1, —1,T=); it belongs to
Su(InT0Tr), n(In-TaT2)-

d’)There are no solutions in S, for v(I, — T,,T%) < v < v(Il, — T,T*) +
n n
dimker I,, — T,,T}}; there are no solutions in S, . if

v(l, — T,T}) <v <v(l, — T,,T;;) + dimker (I, — T,,T};)
or if
7(l, — T, T0) < < w(l, — Ty, T)) + dimker (I, — T, Ty).
(¢') There are infinitely many solutions in S,  for all pairs (v, ) with
v > v(l,-T,T,;)+dimker (I, - T, 1) and © > n(L,—T,T,)+dimker (I,—T,T).
Assume |I, = T, T;| = 0 and |1, — T,T;| = 0.
(f') There are no solutions in S, (1, —1,T3)-
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