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Editorial Introduction

This volume is based on the proceedings of the Toeplitz Lectures 1999 and of the
Workshop in Operator Theory held in March 1999 at Tel-Aviv University and
at the Weizmann Institute of Science. The workshop was held on the occasion
of the 60th birthday of Harry Dym, and the Toeplitz lecturers were Harry Dym
and Jim Rovnyak. The papers in the volume reflect Harry's influence on the field
of operator theory and its applications through his insights, his writings, and his
personality. The volume begins with an autobiographical sketch, followed by the
list of publications of Harry Dym and the paper of Israel Gohberg: On Joint Work
with Harry Dym.

The following paper by Jim Rovnyak: Methods of Krdn Space Operator The
ory, is based on his Toeplitz lectures. It gives a survey of old and recents methods
of KreIn space operator theory along with examples from function theory, espe
cially substitution operators on indefinite Dirichlet spaces and their relation to
coefficient problems for univalent functions, an idea pioneered by 1. de Branges
and underlying his proof of the Bieberbach conjecture (see [9]).

The remaining papers (arranged in the alphabetical order) can be divided
into the following categories.

Schur analysis and interpolation

In Notes on Interpolation in the Generalized Schur Class. I, D. Alpay, T. Con
stantinescu, A. Dijksma, and J. Rovnyak use realization theory for operator colli
gations in Pontryagin spaces to study interpolation and factorization problems in
generalized Schur classes.

In his paper A Generic Schur Function Is an Inner One, V. Katsnelson uses
the Schur parameters to put a probability measure on the set of all Schur functions,
and studies the genericity of inner functions by the methods of multiplicative
ergodic theory.

A. Kheifets, Abstract Interpolation Scheme for Non Analytic Problems, devel
ops a generalization of the abstract interpolation problem of Katsnelson-Kheifetz
Yuditskii (see [14, 15]) to handle non analytic interpolation problems such as
the Nehari interpolation problem. One of the key ideas is a systematic replace
ment of unitary colligations, or equivalently conservative input/state/output sys
tems, by generally non-orthogonal (non-causal) scattering systems as introduced
by Adamyan-Arov [1].

Several complex variables and Riemann surfaces

In Concrete Interpolation of Meromorphic Matrix Functions on Riemann Surfaces,
J.A. Ball, K.F. Clancey, and V. Vinnikov investigate the problems of interpolat
ing matrix pole-zero data with multiple-valued meromorphic matrix functions on
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compact Riemann surfaces. This is related on the one hand to homogeneous in
terpolation problems for rational matrix functions as studied in [5], and on the
other hand to the study of vector bundles on compact Riemann surfaces initiated
by Andre Weil in [18] and actively pursued in the last two decades in algebraic
geometry (see, e.g., [17]).

The paper by M.F. Bessmertnyr, On Realizations of Rational Matrix Func
tions of Several Complex Variables, is an English translation, prepared by Daniel
Alpay and Victor Katsnelson, of a part of a Ph. D. thesis that was written in
Russian in 1982 and has never been published. It deals with realization theory for
rational matrix functions of several complex variables, especially for functions sat
isfying positivity conditions; its publication now is especially suitable because of
a recent surge of activity in the area - the works of Agler-McCarthy [4], Alpay
Kaptanoglu [2], Ball-Sadosky-Vinnikov [6], Ball-Trent [7], Kalyuzhniy [12, 13] 
inspired by the work of Agler [3].

Matrix theory

The paper by D. Hershkowitz, On the Spectral Radius of Multi-Matrix Functions,
deals with the behaviour of the spectral radius of a matrix with positive entries
under multivariable matrix functions, and some other related questions. Mostly a
survey, it contains also original results.

A Class of Robustness Problems in Matrix Analysis, by A. Ran and L. Rod
man, is a survey of a class of perturbation problems that has been extensively
studied by the authors and their collaborators over a period of several years. The
stage is set by posing an abstract "metaproblem" followed by a careful review of
results concerning the pervasive question of the stability of invariant subspaces.

System theory

The main part of the paper Stable Dissipative Linear Stationary Dynamical Scat
tering Systems by D.Z. Arov is an English translation, prepared by D.Z. Arovand
J. Rovnyak, of a highly influential article originally published in Russian in 1979;
it deals with (linear time-invariant) dissipative input/state/output systems, and
their role in electrical networks (Darlington synthesis), operator theory, and func
tion theory. There are two new appendices, the first one by D.Z. Arov providing a
commentary and an update of the results, and the second one by D.Z. Arov and
J. Rovnyak showing some directions for generalizations and further development.

In Chains of Space-Time Open Systems and DNA, M.S. Livsic discusses a
striking resemblance between chains of overdetermined multidimensional (space
time) systems, that appear in the spectral analysis of tuples of nonselfadjoint and
nonunitary operators [16], and chains of nucleotides in molecular biology. He shows
that some important properties of the DNA can be given a natural explanation
using the methods of system theory.
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Differential equations and mathematical physics

The paper Dual Discrete Canonical Systems by L. Sakhnovich discusses the notion
of dual canonical systems in the discrete case. The notion was introduced in the
continuous case in a recent paper of Dym and Sakhnovich [10], generalizing (in
that case) the notion of dual string equations which was introduced by Kac and
KreIn for scalar strings [11].

In Finite Section Method for Linear Ordinary Differential Equations on the
Full Line, I. Gohberg, M.A. Kaashoek, and F. van Schagen study solutions oflinear
ordinary differential equations on the full line as limits of solutions of corresponding
equations on smaller intervals (with appropriate boundary or initial conditions).
Both the time-invariant and the time-varying cases are considered.

C. Calude and B. Pavlov, The Poincare-Hardy Inequality on the Comple
ment of a Cantor Set, derive the Poincare-Hardy inequality (an important tool in
classical analysis, as well as in quantum mechanics, mathematical hydrodynamics,
and quantum scattering) in ~3 on the complement of a Cantor set. The approach
to the problem is via a certain relevant dynamical system, inspired by Carleson [8].

Non-Selfadjoint Sturm-Liouville Operators with Multiple Spectra by V. Tka
chenko is related to the spectral theory of non-selfadjoint Sturm-Liouville opera
tors. While it was generally believed that an operator with a complex potential can
have spectral points of an arbitrary multiplicity, not a single explicit example of,
say, operator on a finite interval with multiple Dirichlet or Neumann spectra was
previously known. Among other results, this paper constructs a Sturm-Liouville
operator with an arbitrary given (symmetric) Dirichlet spectrum An subject only
to a restriction dealing with a suitable asymptotic behavior of An.
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Looking Back

Harry Dym

I have been asked by the editors to write a few biographical remarks. I have spent
most of my professional life in the Department of Mathematics (nee Department of
Pure Mathematics) ofThe Weizmann Institute. Thirty odd years seem to have sped
by, although the days, weeks, and months often went by very slowly. Moreover, the
events that led to my being at the Institute seemed to fall into place by chance,
not by design, at least not by my design. I never particularly wanted to be a
mathematician, nor did I plan on an academic career. But that is getting ahead
of the story.

Initial conditions

To begin before the beginning: My parents were both born in Poland: my father,
Isaac Dym, in Lisko, my mother, nee Anne Hochman, in Kalusz. Their immediate
families moved to Vienna during the First World War, probably to escape from the
front lines and/or the invading Russian army. I know very little about the extended
families of my parents. A book that my cousin Miriam came across recently lists
more than thirty Dyms from the Lisko region who perished in the Second World
War.

My parents were two quite different kinds of people. My mother was a do-er,
an activist and a supreme organizer. In today's world, she probably would have
been the CEO of some large company. My father was more of a scholar. He was
an avid reader and, in his spare time, was almost always found with a book in his
hands. In his youth, Jewish orthodox families did not encourage their children to
study secular subjects. Nevertheless, my father completed a doctoral dissertation
in Economics at the University of Vienna, presumably as an external student.
I assume that my parents met in the office that my father managed, since my
mother worked as a secretary in that office. One story has it that she organized a
strike of all the other secretaries to improve their conditions. I do not know if the
strike was successful or not. Perhaps the only way to bring this strike to an end
or to avoid future strikes was to marry her. The fact that she was also a rather
attractive young woman must have made this an agreeable solution. (To be honest,
I don't know if the story is true, but knowing my mother, it is certainly plausible.)
I arrived on the scene a few years later, on January 26, 1938.

I wish to thank Renee and Jay Weiss for endowing the chair that supports my research.
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In the spring of 1939, when the local situation became "uncomfortable", my
parents and I flew to Hungary for a two-week "vacation". They had been waiting
for entry permits to England, but decided that the situation in Vienna was too
dangerous and asked the British Consulate to forward the permits to the Consulate
in Budapest. The two-week stay in Hungary was extended illegally to many weeks
and then, asking the local British Consulate to forward the permits, my parents
proceeded to Trieste, where the borders had opened. Sometime later the permits
arrived in Trieste. However, the consular official did not want to issue them because
they were supposed to be issued in Vienna. A loud vocal argument ensued and the
Chief Consul, hearing the commotion, came out to see what all the fuss was about.
Fortunately, he directed his subordinate to authorize the permits, otherwise this
tale might never have been written.

My parents entered England as domestic servants: housemaid and butler.

England

My father's career as a butler was short lived. His employer dismissed him when
he discovered that he had a university education. He spent the war years working
as a baker in Leeds, where we lived. In 1944 the family was enriched by the birth
of my brother, Lionel Clive (who later changed his name to Clive Lionel). My
father, who was a Zionist, wanted to immigrate to Israel in 1948. However, he was
discouraged by relatives who were living there and also by a second cousin from
the US, Anna Rogoff, who visited us in England after visiting Israel. Aunt Anna,
as we called her, encouraged my parents to move to New York.

New York

In 1949 the family immigrated to New York. I attended Manhattan Day School (a
Jewish Parochial School) for two years and then went on to The Bronx High School
of Science from 1951 to 1955 during the day and to Herzliah Hebrew Teachers
Institute for two evenings per week and Sunday mornings. In High School I did
rather well in the standard Math and Physics courses, but was never invited to
take any of the honors courses in math (not that I had any ambitions in this
direction) because of mediocre grades in French. At that period I developed a
fascination for electronic devices. I can't remember how or why it began (it had
nothing to do with school), but I do rememember often spending many hours
scouring Cortland Street, a downtown New York electronic parts center at that
time, for inexpensive resistors, capacitors, inductors and vacuum tubes. These were
assembled with mixed degrees of success, following plans in popular electronics
magazines. Thus, electrical engineering was a rather natural choice of vocation. In
any event, at that time, youngsters with an aptitude for math and physics were
steered into engineering, which was viewed as being economically secure. In my
circle of aquaintances, no one had ever heard of mathematics per se as a career.
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Accordingly, I went on to study electrical engineering at the Cooper Union School
of Engineering from 1955 to 1959.

Cooper Umon

Cooper Union was my mother's discovery. In 1955, it was one of two private
schools in the US that did not charge tuition. Consequently it tended to have
fairly able students. In my year, the Engineering School admitted 97 Freshmen
(Freshpersons?). The entering class, which was distributed more or less equally in
chemical, civil, mechanical and electrical engineering, included six young women.
We had to specify our choice on the application forms. Unfortunately, large chunks
of the curriculum in those days left much to be desired.

The first two years of study were devoted mostly to math, physics and chem
istry with frontal lectures, recitation sections and exams. This part was fairly
normal. The physics was probably very good. The math was mostly calculus plus
a semester of differential equations. It was, at least as far as I remember, largely a
cookbook approach, learning techniques to solve problems. Basically the strategy
was to look for model problems and imitate. I suppose that the instructors tried
to make the material plausible, but we probably had little patience for long-(or
even short)-winded explanations. I cannot speak for the others, but I certainly had
no understanding of (or interest in) limits. I am pretty sure that I did not really
understand derivatives or integrals either, though I could compute them. Integrals
always existed. After all you could look them up in a table. We did not study
linear algebra, complex variables, probability or numerical methods, let alone the
more exotic subjects such as topology, geometry or modern algebra.

The last two years were devoted mostly to engineering subjects. We worked
our way through fat books on magnetism, electric circuits, electric machines, elec
tronics and transmission lines, among others. There were hardly any lectures.
Classes were typically three-hour affairs. We would come in and, sitting in groups
around tables, work on problems, calculating away with our thirty dollar Keuffel
& Esser slide rules. (In those days a subway ride was a dime and a typical text
book ran less than ten dollars.) The worst was the weekly (third year) Electric
Machines Lab Report, which through years of "consulting" with the work of pre
vious generations had become immensely long. Much was written; little was really
understood. In retrospect, it probably was an exercise in obfuscation, at least for
most of us. Not having a clear idea of what we were doing (or why) we tended to
bury it in long rambling discourses adapted from sources presumed to be reliable
that hopefully covered the issues. It probably insured that no one would read the
reports, at least not too carefully.

The program we followed was a little old fashioned. It included surveying (two
weeks in a sleep away camp - great fun), drafting (less fun), descriptive geometry
(even less fun) and was presumably designed to enable you to solve a wide range
of problems with the aid of handbooks. In my time there was no flexibility in the
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program. Everything was completely regimented except that in the fourth year,
we were allowed to select the humanities course of our choice from an offering of
four.

Getting through Cooper Union was an exercise in survival. It was something
akin to Basic Training in the army, except that you could go home at night. There
was even the same sense of camaraderie that comes from being with the same
group in a hazardous environment for an extended period of time.

To be fair, the system was not without merit. It was a difficult program and
those of us who made it through to the end, were very pleased with ourselves for
having completed it. But, as our youngest son Michael once remarked while doing
physiotherapy after a foot operation: "Just because it hurts, does not mean that
its good for you." What was lacking was an attempt by the Faculty of Engineering
to transmit the benefits of their accumulated experience and personal vision. I am
sure that I would have gotten more out of my stay at Cooper Union had I put more
into it. However, I was not a particularly diligent student, being more interested
in other things that included the athletic program and a certain young lady.

Towards the latter half of my sojourn at Cooper I became more serious and
even applied to a couple of Graduate Schools. Someone must have written a good
letter of recommendation on my behalf, because, in spite of an abundant collection
of "Gentlemen's C's" in my first two years, I was awarded an assistantship for
graduate study in electrical engineering at Caltech. In May 1959, a week before
graduation, I married the young lady (nee Irene Lillian Rosner). Some dozen days
later, we set out to drive across country to Pasadena, California, where I had a
summer job at the Jet Propulsion Laboratory. My ambition in life at that time
was to design "pulse circuits." However, the summer job at JPL, attempting to
do just that, cooled my enthusiasm. It was too much like "black magic." I never
could get anything that I designed to work for two days in a row.

Caltech

At Caltech, I took my first "real" Math course, Math 108, which was an intro
ductory course on Analysis based mostly on the book Mathematical Analysis, by
T. Apostol. The course was beautifully taught that year by James Knowles. Al
though I did not know it at the time, this was probably the first step in a career
transition. Another significant course for me that year was Statistical Communica
tions Theory. It was largely based on the well known book by Davenport and Root.
The material was, as I recall, fascinating but rather murky, at least for someone
with my limited math background.

Caltech also opened up new horizons for Irene, who was a biology major. She
obtained a position as an assistant in the laboratory of Matthew Meselson. This
was just a few years after Watson and Crick elucidated the double helix structure
of DNA. Matthew Meselson and Frank Stahl had just proven that the two strands
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of the DNA molecule separate when it replicates. The experiments in the lab that
were related to this work were very exciting.

The offer of a fellowship for her to pursue doctoral studies at Harvard, and
the news that our first child was expected, arrived at about the same time. Irene
opted to take time out to raise our progeny. Later, when we moved to the Boston
area and Matt moved to Harvard, she carried out a number of special projects
for him on a part-time basis, but gave up the idea of graduate study. Some years
after our third son was born, she switched directions to pursue a career in art and
claims to have no regrets.

In June 1960, I graduated with an MSc in Electrical Engineering and joined
the Technical Staff of the MITRE Corporation in Bedford, Massachusetts. One of
the attractions of MITRE was a program that allowed staff members to take one
course per semester during working hours at local universities, including MIT.

MITRE

At MITRE I had the good fortune to work intensively with Ed Arthurs, then
an Assistant Professor in the Electrical Engineering Department at MIT. Ed had
been hired as a consultant to help prepare a theoretical analysis of digital data
equipment that was being tested by my department. This was roughly a two-year
project and was a wonderful experience for me. I was the liason between him and
the department. It was like having my own personal tutor and gradually I started
to fill in some of the many gaps in my education and began to move forward.
Eventually these efforts led to a long paper that was awarded a prize as the best
paper of the year 1962 in the IRE Transactions on Communications Systems. One
of the Faculty members in the EE Department at MIT even took 60 reprints off
my hands to distribute to his class. It hurt to part with them at the time, but
today I realize that he did me a great favor. Otherwise I would have yet another
pile of clutter in my office.

In the Fall of 1960 I started taking math courses at MIT as a special student;
one per semester. The first year I took Real Variables. The second year I took
Complex Variables the first semester and a course on Information Theory with
Claude Shannon in the second semester. I remember that I did not think that
I had done particularly well on the final exam in Complex Variables. I did not
do all the problems and wasted far too much time trying to get a proof of the
Cauchy-Schwarz inequality to come out. To my surprise I got an A. It seems that
I had solved a complicated conformal mapping problem that no one else had.

Going to school while working full-time was not easy. It involved driving into
Cambridge from Bedford, racing to class and then driving back to Bedford. The
main problem, aside from finding a place to park, was the lack of interaction with
other students that is so useful in the learning process and helps one focus on the
essence. Somewhere in this time period the idea of returning to school on a full
time basis began to germinate. The Math department was more attractive than
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the EE department, because the latter had an extensive set of qualifying exams in
subjects that held little interest for me. In the early Spring of 1962, armed with my
A in Complex Variables, I went to speak to G.B. Thomas, the Admissions Officer
for the Math Department, to inquire about the possibility of admission sometime
in the distant future. He was vaguely encouraging, but indicated that the sooner I
applied the better my chances. With encouragement from my "significant other"
I went for it. I suspect that my parents and in-laws thought I was crazy. I didn't
ask.

MIT

In the Fall of 1962 I took a leave of absence from MITRE and returned to full-time
graduate study in the Department of Mathematics at MIT. They were willing to
let me try my luck, but were not willing to support me. Fortunately (thanks to
the recommendation of E. Arthurs), I was awarded a Research Assistantship in
the Information Theory Group of the Research Laboratory for Electronics. As I
remember, the assistantship carried a stipend of $360 per month from which MIT
took back on the order of $110 per month for tuition and $120 per month for
housing. That didn't leave much to support the family, which included a young
Jonathan (born November 1960) and a young David enroute (to be born December
1962). I was able to supplement this with summer work at MITRE. Nevertheless,
I was eager to get through and go back to work full-time as quickly as possible.
In view of the MSc from Caltech (which covered the minor requirements) and the
courses that I had taken as a special student, I was able to complete the course
requirements in the first year by taking a year-long course in Probability with Dan
Ray, and semester-long courses in Algebra, the Theory of Distributions, Topolog
ical Groups with K. Iwasawa and Fourier Analysis with Norbert Wiener. I really
was not ready to absorb most of this stuff and none of it, except for the Proba
bility, had any long-term effects. There is, as one learns with experience, a vast
difference between being able to follow the formal logic of a proof and developing
a feel for the material. Luckily, most of the grades were based on problem sets
rather than exams, so I was able to get by reasonably well. My objective at that
time was to learn more mathematics to apply to problems in Statistical Commu
nications Theory. The main gap to be filled was Stochastic Processes. The Algebra
was supposed to help in coding theory, but I lost interest in that early on. I might
have cottoned to it better if the lecturer had not tried to cram a year's worth of
material into one semester.

In the Spring of 1963, Henry McKean agreed to take me on as a PhD student.
The first step was to pass oral exams. My committee was K. Iwasawa, I.E. Segal
and Henry himself. The former two assigned reading material based on one semes
ter courses that they had given. Henry wanted more: The Cams monograph by
M. Kac on Statistical Independence, Paul Levy's book "Processus Stochastiques
et Mouvement Brownien", Dynkin's papers on Markov processes (as reproduced
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in Loeve) and large chunks of both the first volume of Courant-Hilbert and of
Hoffman's book on Hardy spaces. At that time, Henry was putting the finishing
touches on his book with Ito on Markov processes. This is a marvelous book, chock
full of information and ideas, but not always easy to read. It has been somewhat
unkindly said that Henry wrote it in Japanese and Ito translated it into English. I
can testify that this is not true. The Oral Exams were taken in pieces, since Henry
was at Rockefeller University during the academic year 1963-1964. The final hur
dle was overcome in December 1963 when Henry came through Cambridge on his
way to New Hampshire for the Christmas holidays. Henry suggested a number of
possible directions for a thesis. I settled on the study of the trajectory in phase
space of an ordinary differential equation with constant coefficients that was driven
by white noise. This topic was not deemed appropriate for continued support by
the heads of the Information Theory Group at that time and the Research Assist
antship from RLE was not renewed for a third year. However, by this time I was
far enough along to get Math Department support as a Teaching Assistant.

As I remember, work on the PhD thesis went reasonably well for a while
and then got bogged down. Nevertheless, sometime towards the middle of 1964
1965, Henry suggested that I report on what had been achieved to that point
to the Probability Seminar. I was not particularly eager to do this. However, to
paraphrase The Godfather, it was an an offer that was difficult to refuse. At the
end of the talk one of the other graduate students began to ask a number of
questions about one of the conjectures that I had raised. It seemed to me that he
was exhibiting excessive interest in what I considered to be my turf. This really
annoyed me (though I don't think I showed it). I went home and, late that evening,
resolved the conjecture. That essentially completed the thesis.

The thesis seemed to be well thought of and was published in the Transactions
of the American Math. Society. It generated a number of attractive job offers,
including an option to stay on at MIT for two more years as an Instructor, which
I accepted. Thus, began the drift from Industry to Academia.

At MIT, in the academic year 1965-1966, I began to read the Acta paper
on trigonometric approximation by Levinson-McKean and tried my hand at some
of the early de Branges papers on Hilbert spaces of entire functions. I also wrote
an expanded set of lecture notes on a course that Henry was giving on Fourier
Analysis. This was to evolve over a number of years and a number of different
courses that each of us gave into the book Fourier Series and Integrals. Shortly
after the beginning of the first year of that appointment, just after we had moved
into a house that we really liked in Brookline, Henry invited me to join him at
Rockefeller University for the academic year 1966-1967.

Rockefeller University

I spent the year at "RockTech", as it was affectionately called in some circles,
working with Henry on applications of de Branges spaces of entire functions to
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prediction theory. We had actually begun to work on this the year before at MIT,
but now there was real progress. That was the good news. The bad news was that
none of the fine job offers/inquiries that I had turned down the year before were
repeated. I also messed up a job interview at Bell Labs. I think, in the arrogance
of youth, I was much too forthright about what I would and would not like to
work on.

It seemed like a good time to travel. I applied for a visiting position at the
Hebrew University in Jerusalem. As fate would have it, there happened to be a
visiting postdoc at Rockefeller from Israel, by the name of Moshe Kugler. When
I mentioned to him that I had applied to the Hebrew University, he encouraged
me to apply to the Weizmann Institute. I had never heard of the Institute at that
time. He supplied a name (Joseph Gillis) and an address and very shortly after
some interchanges of correspondence (shortly in those days meant a few weeks; no
E-mail back then) I was offered a postdoctoral fellowship in the Department of
Applied Mathematics. The offer was sent by telegram and I was given a week to
answer. Since the object was to travel and the prospects at Jerusalem were still
uncertain, I accepted.

The Weizmann Institute

The Weizmann Institute was really an odd choice for me at the time. I had never
heard of the Institute or of anyone who worked there. I spent most of that year
working on applications of Hilbert spaces of entire functions to the spectral theory
of second order differential operators. No one else at the Institute was really inter
ested in such things. Many years later Doron Zeilberger happened to see the paper
that emerged from this work and was prompted to apply for graduate study at the
Institute because of it (though he ended up working on something else). Although
there was no mathematical interaction for me, the atmosphere was pleasant and
there was a great outdoor swimming pool. Moreover, in those days, Rehovot had
a certain rustic charm. (There was only one traffic light.) After a while (it took
a few months) Irene and I began to look favorably on the possibility of returning
some time in the future, if the opportunity were to arise.

New York again

In late August 1968 we returned to New York, where I had accepted a position as
an Assistant Professor of Mathematics at the City College of the City University
of New York. I also had an offer from NYU, which was more attractive mathe
matically, but at a much lower salary. Since it is expensive to live in New York
with two small children I opted for CCNY. It was a good choice. The department
was friendly and the heads were very generous in assigning me a low teaching load
and also allowing me to teach special topics courses. The collaboration with Henry
McKean on prediction theory resumed.
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In the meantime there were new developments in Rehovot. The Institute had
decided to open a second department of Mathematics. It was to be headed by
Samuel Karlin. Shlomo Sternberg and Yitz Herstein had also agreed to participate
in this "noble venture", as Sam called it, at least on a part-time basis. All these
"Chiefs" needed some "Indians" and Sam invited me to be one (of the Indians). The
target date was the Fall Semester 1970. Having by this time reentered the Riverdale
community and feeling very much a part of it, it was not an easy decision, but
finally we said yes. After all, if it was a complete disaster, we could always return.
Moreover, to paraphrase one of our young men, "we had to pick up Michael", who
was to be born in Rehovot on August 1972.

Sam was very excited about what he was going to accomplish at the Institute.
I remember receiving a phone call from him one stormy Sunday evening (Purim,
1970). He had just returned from Israel and was staying with friends in the Village.
He asked me to come down to discuss plans for the new department. This meant
taking a bus to 236th Street and Broadway, a train to West 4th street and then
a walk of a few blocks; at least an hour and a half in each direction. I made the
trip. When I got there Sam said he was too tired to discuss plans. He suggested
that I ride with him to the airport on the following day. I passed that one up.

Back to Rehovot

I was the first member of the newly formed Department of Pure Mathematics to
arrive in Rehovot. Sam came a few weeks later, Yitz came in the second semester
and Shlomo came in the summer. Sam and I never collaborated together on math
ematical problems. However, he did get me interested in tennis, which became
a major obsession for me for more than twenty years. I spent most of the first
few years at the Institute finishing off projects that had been started with Henry
McKean. The Fourier Series book was sent to the publisher in the Fall of 1971,
and the book on Prediction was shaped when Henry visited Israel for 5 months in
the Spring of 1973. In those days, manuscripts were typed on electric typewriters
which had special inserts for math symbols, and drafts of manuscripts and/or lists
of comments were sent back and forth through the mail. A slow business compared
to today. A close to final draft was submitted to Edwin Beschler, then of Academic
Press, for review in late September 1973, a few days before the Yom-Kippur war
broke out. Although there were still several months of revisions ahead, plus gal
leyproofs and page proofs, the end was in sight. It was time to look for something
new. By this time, my interests had shifted from probability to analysis. Because
of intensive work on the books, I only published one short paper in the period
between 1970 and 1976. Fortunately, I was awarded tenure a year after arrival.
Otherwise, I might be driving a semi-trailer today, which was one of my childhood
ambitions.
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New vistas

Harry Dym

Martin Kruskal spent the academic year 1973-1974 on sabbatical at the Weiz
mann Institute. In the course of the year he gave a number of interesting lectures
on isospectral problems for the Schr6dinger equation and the connections with the
KdV equation. After so many years of living with the string equation, it seemed
natural to explore analogous questions in this setting also. A few hours of cal
culations (and miscalculations) led to the conclusion that if the density of the
string rex) is parametrized by t and allowed to evolve according to the partial
differential equation rt - r3rxxx = 0, then the eigenvalues of the string equation

1 II-r- y = >.y, with appropriate side conditions, would stay fixed in time. In 1974,
Martin reported on these calculations in a series of lectures at the Batelle Institute
and called the PDE the Harry Dym equation. The name stuck, even though I never
wrote any papers on the subject. (Actually a draft of a paper which explored a
number of questions related to the theory of such equations was prepared in col
laboration with Martin. But Martin took it back with him to Princeton, where it
is presumably still collecting dust in his office.)

The other new projects that I got involved in were an outgrowth of the
interest in reproducing kernel Hilbert spaces and inverse spectral problems that
had been kindled by the work on prediction.

One of the first of these was carried out with Naftali Kravitsky (Z" L), my
first PhD student. We studied the effects of small perturbations on the principal
spectral function 6.(>.) of the vibrating string equation upon the mass distribution
m(x) of the string. The main result was a prescription for computing at least
the initial segment of the perturbed string. The Gelfand-Levitan procedure for
reconstructing the potential of the Schr6dinger equation emerged as a pleasing
byproduct of the main theorem. A basic tool was the abstract method of triangular
factorization of Gohberg and Krein that was developed in their monograph on
Volterra Operators. This was my first encounter with the name Israel Gohberg.

The relevance of factorization to inverse problems is a theme which was re
turned to in a paper with Andrei Iacob. Indeed, this paper was written largely
to emphasize the connections between factorization and three basic techniques for
solving inverse problems: the method of Gelfand-Levitan, the method of Krein and
the method of Marchenko. For pedagogical reasons the paper focused mostly on
discrete problems on the line and on the circle. A second rather long paper with
Andrei focused on inverse problems for canonical systems of differential equations
of the form

dy
J dt = V(t)y(t, >.) + >.y(t, >.) (t ~ 0)

with spectral densities of the form In + K(>.), where K(>') is of Wiener class. A
byproduct of the analysis was a linear fractional representation for the set of all
solutions of a continuous version of the CaratModory interpolation problem. The
basic strategy was to identify solutions of the interpolation problem with solutions
of the inverse spectral problem. (The maximum entropy solution of the covariance
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extension problem had a particularly pleasing interpretation.) This identification
depended in part on a theorem of M.G. Krein which was not quite correct in
the asserted generality. Nevertheless the representation formula was valid and was
later justified by other methods.

Another project that was initiated in that period started from the observation
that a continuous version of the strong Szeg6 formula (due to Marc Kac) could
be recast in the language of operators acting on Paley-Wiener spaces. From there
it was a short jump to try to generalize to the setting of de Branges spaces of
entire functions. This involved a healthy dose of reproducing kernel space theory
and estimates of traces and determinants for assorted classes of operators. The
bible for the estimates was the wonderful monograph by Gohberg and Krein on
nonselfadjoint operators. This marked my second encounter with the name Israel
Gohberg. Little did I suspect at the time that there was more to come, much more.

The Odessa connection

I never met M.G. Krein, but he was to be a major influence on my mathematical
life. It began when Loren Pitt discovered the Doklady note of M.G. Krein, "On a
fundamental approximation problem in the theory of extrapolation and filtration of
stationary random processes," which had appeared in translation. This discovery
caused a major reorientation of the work with Henry on prediction and much
effort was required to fill in the missing details in that note and a number of
other Doklady notes, none of which contained proofs. We didn't know who Krein
was at the time and Henry even called up Peter Lax to find out if Krein was
reliable. The answer was, of course, yes. The next influence was through the two
marvelous Gohberg-Krein monographs referred to earlier. And then, 10 and behold,
fate smiled, and Israel Gohberg showed up in person at the Weizmann Institute.
The story was that in 1974, Israel Gohberg immigrated to Israel and accepted a
full-time position at Tel Aviv University and also, in the Spring of 1975, a half
time position at The Weizmann Institute. Israel and I started to work together
on assorted problems of extension in the Fall of 1976. It was a bit sporadic at
first. He had a lot of invitations, I had some military obligations, but the die was
cast. The more intensive phase of this collaboration probably began in the Fall of
1977. Israel used to come to the Institute twice a week and we would sit together
several hours each time working together. This was a marvelous way to enter more
deeply into the mathematical world of M.G. Krein, guided by one of his foremost
disciples. Israel was (and still is) a wonderful teacher, both as a lecturer before a
large audience and as a collaborator with an audience of one.

Our work together focused on assorted classes of extension problems, mostly
in the context of matrix valued functions in a Wiener algebra.

The first problem we considered was to establish conditions to guarantee the
existence of an invertible n x n matrix valued function f(C) in the Wiener algebra
on the circle such that the Fourier coefficients fj of fee) are specified for IJI :::; n
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and the Fourier coefficients gj of g(() = f(()-l of the inverse are equal to zero
for Ijl > n. It was also required that f(() admit a factorization. Necessary and
sufficient conditions for the existence of solutions to this problem were obtained. A
number of analogues were developed in other settings in a subsequent sequence of
papers that were devoted to the Wiener algebra on the line, banded matrices and
Fredholm integral operators, respectively. The first three of these papers contain
maximal entropy principles: The band extension maximizes the entropy. The fourth
paper contained the first abstract formulation of what came to be called Band
Extension Problems. Interestingly enough, the third paper in this series, which
was a relatively easy by product of the first two, is the one that seems to have
attracted the most attention. We later went on to consider a number of other
problems of extension, including triangular extensions, contractive, isometric and
unitary extensions, with and without factorization indices, for assorted classes of
operators. The results were pleasing, but the collaboration slowed down when the
Institute went through a financial crisis and disbanded all part-time positions, and
came to a halt a couple of years later.

The intensive collaboration with Israel lasted for close to ten years. We got
together a few years later on another problem that began with a question that
Israel raised at a conference in Winnipeg and was supplemented by a number of
meetings that were scheduled around Israel's visits to his dentist in Rehovot. The
friendship continues.

In 1990, Michael Shmoish, a student of Ju.M. Berezanskii, and hence a math
ematical grandson of M.G. KreIn, immigrated to Israel. He ended up at the Insti
tute, and wrote a nice thesis on inverse problems for block Jacobi matrices and
related issues.

In 1991, there was a rumor afoot at the MTNS meeting in Okeba, Japan, that
both Vadim M. Adamyan and Damir Z. Arov were to attend. That was two out
of the three authors of the famous AAK cycle of papers on matrix (and operator)
versions of the Nehari problem that was one of the cornerstones of HOC control.
This was shortly after Peristroika and possibly the first time that they had ever
been allowed to leave Odessa to travel to the West. The rumor turned out to be
correct. A. Nudelman, Lev Sakhnovich and E. Tsekanovskii were also part of the
group, but they were less well known to that community. Dima Arov, using Israel
Gohberg as a translator, expressed an interest in visiting Rehovot. Between his
knowledge of English and my knowledge of Russian, it wasn't exactly clear to
me how we would communicate, but I figured we could overcome that difficulty
somehow. There were plenty of Russian students at the Institute who spoke English
and could help out if need be. A visit was arranged and that marked the beginning
of an intensive collaboration that is still running hot to this day. At later periods
both Lev and Vadim also visited Rehovot, as did Israel Kac, yet another member
of the KreIn circle.
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The Delft connection was another act of fate. In some sense the wheels began to
turn when I wrote to Paul Fuhrmann for a reprint. He invited me to BeerSheva
to give a seminar. At BeerSheva I met Abie Feintuch and we got to talking. Some
months later, in a follow up conversation by phone, Abie told me that he had met
someone called Patrick Dewilde at the second MTNS conference in Lubbock Texas
and that Patrick was interested in Prediction Theory. This led to an attempt to
invite Patrick (who I thought to be at Louvaine) to visit Israel for ten days under
the auspices of the Belgian-Israel Cultural Exchange program. The correspondence
was initiated in Autumn 1977.

However, it turned out that Patrick had already moved to Delft. Undaunted
by the facts, we submitted an application to the Belgian authorities anyway. There
was no response. At this point fate and Tom Kailath took a hand. Both Patrick
and I were guests of Tom in the summer of 1978 at Stanford. This is where the
romance with J-inner functions began. It wasn't love at first sight, but there was
an attraction.

I spent a good part of that summer working through the manuscript of a paper
by Dewilde, Vieira and Kailath that dealt with recursive extraction of elementary
J-inner sections with a single pole at infinity. Nevertheless, I suspect that this
effort might well have ended with the summer had not the Belgian authorities
agreed (several months later) to support Patrick's visit to Israel. The visit took
place in the Spring of 1979 and during that time a couple of open questions were
resolved. This in turn led to an invitation to Delft and marked the beginning of a
long and fruitful collaboration that lasted many years.

Patrick got me interested in interpolation theory. Our first paper together was
a generalization of the Dewilde, Vieira and Kailath paper referred to earlier. The
objective was to approximate a given function (first scalar and later matrix valued)
S of Schur class or Z of Caratheodory class by a rational function of the same class
that agreed with the given function at a prescribed set of points (and in the matrix
case in a prescribed set of directions at each of these points) and to estimate the
error. The methods were recursive. The approximant was constructed by a variant
of the Schur-Nevanlinna algorithm. The recursive procedure produced a rational
J-inner matrix valued function, the entries of which were used to display solutions
via a linear fractional transformation of the Redheffer form. A characterization of
the maximum entropy solution was given. The first two papers focused on matching
points in the interior of the open unit disc. The third dealt with matching at one
or more boundary points. In the latter case, the J-inner matrix valued functions
alluded to above were "Brune Sections", i.e., Blaschke-Potapov factors of the third
kind. Oddly enough, the Pick matrix did not figure in any of these problems.

The problems considered in these papers were all special cases of the LIS
(lossless inverse scattering) problem of network theory, one formulation of which
is: Given S in the Schur class, find a J-inner W such that S = TW[SLJ is a linear
fractional transformation of a passive "load" SL. In these papers, the LIS problem
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was solved by setting up a (tangential) interpolation problem with a finite number
of constraints that were obtained from the given S. We worked on a number of
other problems together, the last of which focused on interpolation in the setting
of upper triangular operators, part of this was in collaboration was with Daniel
Alpay. But more about him later. Our active collaboration died down when Patrick
became head of DIMES at Delft and had very little time to call his own.

The French connection

The second dominant influence in my mathematical life, not counting people that
I worked with, is undoubtedly Louis de Branges. His work on reproducing kernel
Hilbert spaces of entire functions played a significant role in the study of prediction
with Henry McKean. Applications of his abstract characterization of reproducing
kernel Hilbert spaces of J-inner matrix valued functions to assorted problems of
interpolation and extension has been one of the major themes in a good part of my
own work. (Reproducing kernel KreIn spaces were useful in assorted studies of the
zero distribution of various classes of matrix valued functions, some of which were
carried out with Nicholas Young. The all important Ra operator even entered in
another project that was carried out with Malcolm Smith and Tryphon Georgiou.)

The initial exploration of de Branges' work on reproducing kernel Hilbert
spaces of J-inner matrix valued functions began, appropriately enough, with an
other Frenchman, Daniel Alpay. Daniel first came to the Institute from Paris to
study for his MSc degree. Daniel had also studied electrical engineering as an un
dergraduate and and seemed to like the same kind of mathematics that I did. He
stayed on to do a PhD with me and at a later stage was a postdoc at the Institute.

Our first project together focused on an abstract version of an inverse scatter
ing problem that Patrick and I had worked on earlier. But this was more operator
theoretic and was heavily based on de Branges' work. In the writing of this pa
per I think we both learned the power and the beauty of de Branges' abstract
characterization of the reproducing kernel Hilbert spaces alluded to earlier. It was
to be a major theme in our future work, both together and individually. There
were also interesting applications to the theory of models of operators that were
close to unitary and and operators that were close to self adjoint, which in turn
intersected with work of Moshe Livsic and M.G. KreIn. We later went on to put
the Schur algorithm into an abstract reproducing kernel Hilbert space setting and
to further generalize some of these ideas to the setting of Pontryagin spaces.

There were a number of other projects that we worked on over the years
including general classes of realization formulas, generalizations of the lohvidov
laws and interpolation theory for upper triangular operators. The latter was in
collaboration with Patrick Dewilde. It was in fact based on work that Patrick and
Daniel had initiated. I came on board a little later.
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The first paper with Daniel was one of the first in our department to be
typed in 'lEX,! using the computer as a word processor. In those days there was
one printer in the Institute. It was housed in the Computer Center, about a five
minute walk away.

The Kharkov connection

The Kharkov connection began with a letter from Victor Katsnelson that ex
pressed an interest in visiting the Weizmann Institute. I knew the name from a
private translation of one of his papers by Tsuyoshi Ando. The visit led in due
course to a full-time appointment some years later and then to a progression of
visitors from Kharkov, including V. A. Marchenko, Sasha Kheifets, Peter Yuditskii
and Vladimir Dubovoj. I was particularly impressed by the work of Katsnelson,
Kheifets and Yuditskii on what they called "The Abstract Interpolation Prob
lem". To my mind, it is one of the most elegant and far reaching approaches to
interpolation problems that is currently available. In work with Boris Freydin (my
most recent PhD student, who was also from Kharkov) we managed to adapt these
methods to bitangential problems in the setting of upper triangular operators. I
also worked intensively on interpolation problems for degenerate Pick matrices
and on boundary interpolation with another former resident of Kharkov, Vladimir
Bolotnikov, during the two years he spent as a postdoctoral fellow at the Institute.
Vladimir was actually a mathematical grandson, having completed his degree with
Daniel Alpay at Ben Gurion University of the Negev.

The UCSD connection

I first met Bill Helton in 1976 at a meeting in Oberwolfach that Israel Gohberg
helped to organize. Both of us were working on generalizations of the Szego formula
at the time and thought that it would be fruitful to get together. It took almost
twenty years to work this out. A major incentive to finally do something about it
arose when our oldest son Jonathan moved with his family to Los Angeles for an
extended stay. Since 1996, I have spent several weeks of each year at UCSD working
with Bill, in directions that are far different from what we originally envisioned.
So far reproducing kernels have not yet intervened. But its been good fun and, for
me at least, a nice way to enter a new area of mathematics in which I had not
been active before.

1It was typed by Mrs. Ruby Musrie, our department secretary, who deserves a special note of
thanks for having converted thousands of pages of scrawl into elegant manuscripts. In fact, in
thirty odd years I got a lot of help from all our secretaries, as well as our support staff, and I am
grateful to them all. But Ruby bore the brunt.
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Odd recollections and thoughts with no connection

• The student who sat on my left in my home room in my first year of High
School was also born in Vienna and his parents turned out to be friends of
my parents. They had lost contact some dozen years before.

• The student who sat behind me in the same class before he moved to New
Jersey was David Trutt, who went on to do a PhD with de Branges in Pur
due. (We figured this out years later by backtracking when he visited the
Institute. )

• One of the real hazards of Cooper Union was the Electric Machines Lab. I
still remember the day when there was a big flash, followed by a bang as the
circuit breakers went; seeing my lab partner, Steve Hofstein, standing with
a quizzical look on his face and singed eyebrows after he had inadvertently
brought the tips of two cables together that should have been kept apart.

• In the days of the German Democratic Republic, contact with Israel was
strictly forbidden for citizens of that "Democracy." Nevertheless, Bernd Kir
stein and I used to exchange reprints through mutual friends in Holland, some
through Patrick and some through Rien Kaashoek. Even these shipments
were intercepted and carefully inspected. Several years later, Bernd told me
that one shipment was approved because Dym was regarded as a good Dutch
name. Little did they know that the name is an acronym in Hebrew coming
from the letters Daled, Yud, Mem.

• In a paper that I am working on, I just spent the best part of three days
trying to straighten out an erroneous minus sign. It seems like an odd way
for a supposedly grown person to spend one's time. On the other hand, planes
have been known to crash because of a mistake in sign, or something equally
foolish, in a critical computer program.

• A cartoon in the New Yorker in 1957 during the height of the competition be
tween different branches of the US Armed Forces to put an American satellite
into orbit shows an American Army General looking at the Russian Sputnik.
The caption: "Thank God, for a moment I thought it was the Navy's."

• Irene's dictum: "Let's throw everything away. Then there will be room for
what's left."

• It has been my observation that those who think they know all the answers,
don't know all the questions. A Chinese proverb puts it nicely: "Trust only
those who doubt."

• As one gets older one realizes that there are questions that one will never be
able to answer. I, for one, have never understood why I have so many single
socks.
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Objects seen through a rear view mirror are distorted. Our memories are selective
and play tricks on us. Consequently, everything written above should be taken with
a grain (perhaps several grains) of salt. I have focused mainly on collaborations
and how they came into being and not so much on projects that I carried out on
my own steam. My intentions were not to cast judgement, but rather to indicate
how I muddled into mathematics as a career and some of my experiences enroute,
including the mishaps. There were downs as well as ups, but on the whole it wasn't
a bad run. What I can say with certainty is that lowe a great deal to the colleagues
that I collaborated with and to my former students, teachers all. Thank you. 2

Harry Dym
Department of Theoretical Mathematics
The Weizmann Institute of Science
Rehovot 76100
Israel

21 owe even more to that young lady that 1 met while running a waterfront in the Catskills long
long ago, but this is not the place to go into all that.
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On Joint Work with Harry Dym

Israel Gohberg

1. How it started

I immigrated with my family to Israel at the end of July 1974. In the beginning
we studied Hebrew very intensively. I also started to look for work in Israeli in
stitutions of higher education; very soon I received an offer from the Tel-Aviv
University which I decided to accept. In March 1975 I was invited by the Dean of
the Faculty of Mathematics, Professor S. Karlin, to take a part time position at
the Weizmann Institute of Science. I accepted this position and started working
there two days a week. The Pure Mathematics Department in the Weizmann In
stitute of Science was very small; apart from S. Karlin the Dean, Harry Dym and
Yakar Kannai were the only senior researchers. There was also a group of doctoral
students. I started to lecture different courses in advanced operator theory and
applications.

I met Harry and from our conversations I understood that he was very well
informed in operator theory in general and in the work of the school of M.G. Krein
especially. Already then he was the author of two books with H.P. McKean and
was active in research.

I accepted a Ph.D. student. This was Sofia Levin and I started to work with
her. During one of my visits to the Institute Harry expressed interest in joint work
with me. I was also interested in this offer and we started to look for an appropriate
problem.

I soon found such a problem during my visit to Amsterdam. The problem was
proposed by a colleague from the Free University, Professor G.Y. Nieuwland. He
in his turn obtained the problem from a colleague who was working in theoretical
chemistry.

2. Band extension problems

The first problem consisted of the following: a function k(t) (-T < t < T) has to
be extended to the full line to f(t) in such a way that the function 1- j(>.), where
j is the Fourier transform of f (t), is positive (or more generally different from
zero on the line) and the function 1/(1- j(>.)) has the form 1 - g(>.), where g is
the Fourier transform of a function g(t) that vanishes outside the interval (-T, T).
Both functions f and g belong to L 1 ( -00,00).
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In a short time we had a solution to this problem and we started to write it
down. We did not succeed in finishing this work before the summer. One of the
reasons was that Harry decided to take a four month sabbatical. The last half was
spent in Stanford with Tom Kailath.

By a coincidence, in Stanford Harry discovered that the thesis of Tom
Kailath's doctoral student, A.e.G.Vieira, was relevant to our problem. In fact
he was dealing with a matrix discrete analogue of the above mentioned problem
for the positive definite case. More than that, in applications this problem is impor
tant and the solution is called the maximum entropy solution, or the autoregressive
extension of statistical estimation theory. The discrete case of the scalar solution
was solved and analyzed before by J.P. Burg in 1975. He came to it within the
framework of spectral analysis in geophysics problems. After Harry returned to
Israel we wrote our first joint paper [1] where we solved the generalized problem
of extension of matrix valued functions, including the positive definite case with
the maximum entropy solution. Explicit formulas for the solution based on Szego
orthogonal polynomials was also presented.

The following year, 1980, we published the paper [2] which contained the
complete solution of the continuous analogue in the matrix valued case. This is
a large paper (more than 70 pages) and it contains probably the first solution
of the maximum entropy extension problem in this setting, together with a new
definition of entropy under some natural technical conditions.

As a byproduct of the two papers described we obtained new results in the
theory of completion of finite matrices. The results were published in 1981 in [3].
The problem of extension in this case is the following: Let a symmetric band of
width 2m+1 in an n x n matrix with complex entries be given and let the rest of
the entries of this matrix be unspecified. The problem is to complete the matrix in
such a way that the inverse of the completed matrix is a symmetric band matrix
of S 2m + 1. Of special interest is the case where the completion is additionally
required to be positive definite. In this case under natural conditions the solution
exists it is unique and can be characterized to have the maximum determinant
between the determinants of all other positive definite completions. An explicit
algorithm for this solution is also presented. This result contains Burg's maximal
entropy inequality in theory of covariance extensions. This is a result that follows
from the case that the band is Toeplitz and in this case the solution is also Toeplitz.
The described results are also generalized for block matrices. This paper became
much more popular than the first two. A number of interesting results for the more
general non-band case were obtained by other colleagues. Till today the non-band
case in general has not been solved to the end.

Our next paper [4] can be considered as the solution of a continuous analog
of the previous problem. It is about extensions of kernels of Fredholm integral
operators given in a band. The positive case generalized Burg's maximal entropy
inequality. This result can be considered for the time dependent noncovariance
case. In this paper is developed the beginning of the general theory of extensions
and completions in an abstract algebra with multiplication subject to some special
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features that generalize the features in the concrete examples. This abstract ap
proach served to clarify the band extension and completion problem and to unify
the results of the latter paper with the previous ones. The abstract approach be
came popular. It was used as a basis for a far-reaching development. This led to
the band method presented in a number of papers of I. Gohberg, M.A. Kaashoek
and H. Woerdemann, and of J. Ball, I. Gohberg and M.A. Kaashoek, in which new
extensions and interpolation problems were solved. The results of the beginning
of this section intersect with some results of D.Z. Arov and M.G. Krein.

3. Working together

In the first years of cooperation both of us made serious efforts to progress in
the extension and completion problems mentioned above. The problems were new
in an area which we had not considered before and we worked with interest and
enthusiasm. We presented these results at different conferences and our results
were nicely received by our colleagues.

I came to the Weizmann Institute twice a week and most of this time was
used for joint work with Harry. A small part of the time I spent with my graduate
students. Soon they were three, Sofia Levin, Israel Koltracht and Nir Cohen. The
joint work with Harry was very pleasant. The work was continuing also during
the lunch break and during the tea break in the afternoon. Sometimes we worked
in unexpected places. I remember a few hours work in the foyer of the Van Gogh
museum in Amsterdam (while Harry's wife Irene was enjoying the exhibition).
Harry is a very fine coauthor; he is talented, has good taste and a wide knowledge
in theoretical mathematics as well as in applications. He is hardworking and has
a wonderful command of English and he very easily puts mathematics on paper.

I learned many things from Harry in mathematics and also in everyday life.
I was used to the Soviet mentality and rules of behavior. Harry helped me to
understand the new situation and to become used to it. In view of our friendly
relations I could ask his advice on any question without hesitation. For instance,
he was the first to notice and explain to me the difference between the practice
regarding very good Ph.D. students in USSR and in the West after graduation. In
the USSR the best Ph.D. students were kept for permanent work in the university
(chair) where they studied. In the West on the other hand they would have to
leave and spend at least a short time in other universities. There is a big difference
between the USSR and the West in the evaluation of various areas of mathematics
and mathematicians. Harry explained these things which looked like contradictions
to me. On my part I told Harry a lot about M.G. Krein, his work and his school,
about the difficulties of Jewish life in the USSR. All of this interested him. He
especially enjoyed hearing jokes from the USSR.
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4. Triangular extensions

Let I(z) (izi = 1) be a function with specified Fourier coefficients !J (j =

0,1,2, ... ) and 1/01 + Ihl + 1121 + < 00 and let 'l/J-l,'l/J-2,'" also given com-
plex numbers with !'l/J-l! + 1'l/J-21 + < 00. The problem consists of specify-
ing the Fourier coefficients of I(z) with negative indices in such a way that
I(z) =J 0 (Izl = 1) and the Fourier coefficients of 1/I(z) with negative indices
to be equal to 'l/J-l,'l/J-2, .... Of special interest is this problem with the additional
condition that I/(z)1 = 1 (izi = 1).

Our next two papers [5, 6] were dedicated to different generalizations of
this problem. We solved it in the block discrete case as well as for the matrix
continuous analog. In the latter case with the additional condition this result was
stated by M.G. Krein and F.E. Melik-Adamyan without proof in their study of
scattering theory. This is probably the first published proof of this theorem. We
also solved the finite matrix block analog of the triangular extension problem.
As far as we know this was a new result for matrices. The triangular completion
problem for scalar matrices is stated in the following way: Let the entries of the
upper triangular part (including the diagonal) of an n x n matrix be specified.
Complete the matrix in such a way that it is invertible and the inverse has apriori
given entries in the lower triangular part (without the diagonal). We also solved the
problem of completing a matrix to be unitary if the entries of the upper triangular
part is given. In the triangular extension problems some technical conditions were
required. In particular the canonical factorization or the partial indices equal to
zero were required for the solution.

5. Unitary interpolants and factorization indices

Three papers [7, 8, 9] deal with the problem of extending a matrix function
I(z) (Izl = 1) with specified Fourier coefficients 10, h,···; 1/01 + Ihl + ... < 00

to a unitary matrix function without assumptions of canonical factorization as in
the previous section. The solution if it exists certainly admits a factorization in
general with nonzero partial indices. In paper [7] are described all unitary inter
polants. One of the central results is the expression of the number of nonnegative
factorization indices of the interpolants and their individual size via the given data
10, h, 12,···· The set of the negative indices when not empty can be chosen arbi
trarily and hence in this case there exist an infinite number of unitary interpolants.
Paper [8] contains the matrix continuous analogs of the previous results. In paper
[9] is considered a more general problem when the condition 1/01 + Ihl + ... < 00

is eliminated and the factorization is replaced by generalized factorization. The
results of these papers intersect with results of F.E. Melik-Adamyan and M.G.
Krein and is related to a paper of J. Ball.

In 1983 Harry and I organized a workshop on applications of linear operator
theory to systems and networks in the Weizmann Institute; as we now call it, an
IWaTA workshop. It was the second in this series and it was a satellite workshop
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just before the MTNS conference in Beersheva. The workshop attracted mathe
maticians and engineers. A volume of the proceedings was published in the OT
series - OT12 [13J.

6. Contractive interpolants and a maximum entropy principle

This section is based on two papers [10, 11J. In paper [10] are studied all n x n
matrix contractive interpolants on the unit circle when the Fourier coefficients with
positive indices are given. It turns out that for this problem a maximum entropy
solution can be found with an appropriate entropy formula and inequality. The
solution is obtained by a reduction to a generalized band problem. Paper [11]
contains further generalizations of these results.

7. Nevanlinna-Pick problem and maximum entropy

Our last paper was written after a long break. Starting with 1984 I did not work
regularly in the Weizmann Institute. The Institute was going through a financial
crisis and all part time positions were disbanded. For a while, by inertia, I contin
ued to visit the Institute and by the way continued to work with Harry. During
these visits we wrote papers [10, 11]. Then the breaks became longer, but we again
started to work systematically for a period in 1995. My dentist's office was located
in Rehovot and for some part of 1995 I had to visit him at least once a week. Some
times I would visit Harry in his office before the dental appointment, sometimes
after. This time we worked on the Nevanlinna-Pick problem for matrix valued
functions in the disc and we wrote paper [12J. In this paper we studied maximum
entropy solutions and an extremal problem for the Pick matrix. A generalization
for the half plane was also obtained.

8. This is not the end

Harry Dym is a very good friend and an excellent coauthor. We worked together for
almost twenty years. Some of the periods were more intensive, some less. In parallel
with this research, each of us was involved in many other research activities, so
the joint work was never a burden. Our joint work influenced and enriched our
individual research, as well as research with other colleagues, and led to cross
fertilization and influence.

Now, after going over all our papers as a reader, I look back with satisfaction
and gratitude. This was a fruitful and enjoyful period which I hope will continue.
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Methods of KreIn Space Operator Theory

James Rovnyak

Abstract. This paper is a survey of old and recent methods of Krein space
operator theory centering around Julia operators, extension problems for con
traction operators, Hermitian kernels, and uniqueness questions. Examples
related to coefficient problems for univalent functions are briefly discussed.

1. Introduction

The author was originally led to KreIn space operator theory by a problem of
L. de Branges concerning the coefficients of univalent functions. The particular
question was resolved in the negative, but the operator methods used to show
this are related to other areas which remain currently active, such as the study of
generalized Schur and Nevanlinna functions. The methods are of a general nature
and based on familiar Hilbert space concepts, including contraction operators, their
dilations, and reproducing kernel spaces. Today the KreIn space counterparts of
many of these ideas are complete to a high degree. As always, there are difficulties
and new issues in the indefinite theory. For example, it turns out that uniqueness
questions play a more important role in the indefinite theory than in the definite
case. In this paper we survey some old and recent results in these areas, with
an aim to show that tools which have found wide applicability in Hilbert space
problems are also available in KreIn space operator theory.

In outline, the contents are as follows:

§2. Examples from function theory
Generalizations of the Dirichlet space yield interesting examples, including con
traction operators on indefinite inner product spaces defined by substitution by
normalized univalent functions. Multiplication by the independent variable on sim
ilar spaces gives examples of indefinite two-isometries as studied by Agler, Richter,
and others.

This article is an expanded version of the author's Toeplitz Lectures, which were given at Tel
Aviv University in March 1999. Special thanks are given to Israel Gohberg for organizing the
series of Toeplitz Lectures in commemoration of the impact of Otto Toeplitz, and also to D. Alpay
and V. Vinnikov for their efficient work organizing the Toeplitz Lectures 1999 and Workshop in
Operator Theory in honor of Harry Dym. The author is indebted to D. Alpay, V. Bolotnikov, T.
Constantinescu, A. Dijksma, M.A. Dritschel, and H.S.V. de Snoo for many conversations on the
material of this survey. The author is supported by NSF Grant DMS-9801016.
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§3. Definitions and basic notions
Basic ideas are discussed here in order to make the paper self-contained.

§4. Three useful tools of Krefn space operator theory
Our goal is to adapt Hilbert space methods to Krein space operators, but some
elementary constructions break down when positivity is abandoned. Here we show
that there are simple replacements in the indefinite theory. For example, the re
placement for the Hilbert space construction of a nonnegative square root of a
nonnegative operator is a factorization of any selfadjoint operator C on a Krein
space Sj in the form C = AA* where A E .£(21, Sj) for some Krein space 21 and
ker A = {O}. Factorizations of this type are one of the main themes of this survey.
Though elementary, they are extremely useful.

§5. Julia operators and extension problems
In §5.1 and §5.2, we discuss Julia operators and the most basic kinds of row,
column, and matrix completions. In §5.3, we contrast several forms of commutant
lifting in the indefinite setting.

§6. Uniqueness questions
A selfadjoint operator C E .£(Sj) is said to have the unique factorization property
if the representation C = AA* , A E .£(21, Sj), described above can only be changed
by replacing the Krein space 21 by an isomorphic copy. We give necessary and
sufficient conditions for uniqueness and identify situations in which uniqueness is
automatic.

§7. Kolmogorov decompositions of Hermitian kernels
L. Schwarz introduced a number of elegant ideas into Krein space operator the
ory in a 1964 paper, but they have become mainstream only more recently. Here
we present the ideas in the form of the theory of Hermitian kernels. Particular
cases include finite and infinite block operator matrices and reproducing kernels.
A Hermitian kernel is a collection of Krein space operators K ij = Kji E .£(Sjj, Sji),
i,j E J. A Kolmogorov decomposition is a representation in the form

i,j E J,

where'\!j E .£(Sjj,j.{), j E J, for some Krein space j.{ such that j.{ = VjEJ'\!jSjj.
The general theory is concerned with criteria for existence and uniqueness. Our
account is expository and follows recent work of Constantinescu and Gheondea.

§8. Examples of Hermitian kernels
The theory of Kolmogorov decompositions is illustrated with reproducing kernel
spaces and holomorphic kernels. Another special case yields criteria for existence
and uniqueness of completions of pre-Krein spaces, which behave differently from
pre-Hilbert spaces.

§9. The contractive substitution property
We return to the coefficient problems discussed in §2 and show, by numerical
evidence, that the contractive substitution property, while not sufficient to char
acterize coefficients, nevertheless does an excellent job constraining low order co
efficients. Some open questions are stated.
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Related topics appear in the six lectures of Dritschel and Rovnyak [37]. De
finitive accounts of the general theory of operators on indefinite inner product
spaces, along with authoritative literature notes, are given in the books by Azizov
and Iokhvidov [12], Bognar [14], and Iokhvidov, KreIn, and Langer [47]. Azizov,
Ginzburg, and Langer [11] discuss M. G. KreIn's vision and contributions in this
area. These and other sources should be consulted to see the great diversity of
KreIn space operator theory and something of the many topics that are omitted
here.

2. Examples from function theory

We give some examples which arise from coefficient problems for univalent func
tions. For the author personally, these examples were a compelling reason to under
take learning the indefinite theory. A deeper understanding of them is a long-range
goal and challenge for the subject.

A holomorphic function f (z) is univalent if it takes distinct values at distinct
points. Coefficient problems playa central role in the theory of univalent functions
which are defined on the unit disk D = {z : Izl < I}. A highlight of the theory is
de Branges' proof [16] of the Bieberbach conjecture: Let fez) be univalent on D
and normalized so that f(O) = 0 and 1'(0) > o. If fez) = alz + a2z2 + ... , then
lanl s nal for all n 2: 2. The inequality, however, is satisfied by many functions
which are not univalent. Ideally we would like to find stronger conditions which
are more characteristic of univalent functions. We restrict attention to the subclass
of functions which are bounded by one in D. The following problem is classical.

Coefficient Interpolation Problem: For any positive integer r, characterize all
complex numbers B I , ... , B r (BI > 0) such that there exists a univalent and
normalized function B(z) satisfying IB(z)1 s 1 on D and such that B(z) =
BIZ + ... + Brzr + O(zr+l).

Necessary conditions follow from a generalized form of the area theorem.
Assume that such a function B(z) exists for given numbers B I , ... , B r (BI > 0).
For any real number v, consider an arbitrary generalized power series

(2.1)

with complex coefficients (constants terms, which arise when v is a negative in
teger, are identified to zero). Define h(B(z)) = bl z v +1 + b2Zv +2 + ... by formal
substitution. Then

r r

L (v + n)lbn l2 S L (v + n)lan I
2.

n=l n=l

Equivalently,

(h(B(z)), h(B(z)))'J)': S (h(z), h(z))'J)': ' (2.2)
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where 1)~ is the linear space of series (2.1) in the inner product

r

(h(z), h(z)):l):: = L (II + n)lan I2 .
n=l

The inequality (2.2) is proved by de Branges [17] when v :::: -r - 1, and the re
striction on II is removed by Li and Rovnyak [51]; for a proof, see [65, Section
7.5]. Nikolskii and Vasyunin [59, 60] give another view of these inequalities and
explain their connection with subordination (see Section P45, p. 1202, in the Eng
lish translation of [60]); see also Ghosechowdhury [43, 44] and Rovnyak [67]. The
conditions (2.2) depend only on B 1 , ... , B r and are thus necessary conditions on
these numbers for the existence of an interpolating function B(z). It is natural to
ask if the necessary conditions are sufficient:

Problem (de Branges [17,19]). Let B 1 ,oo.,Br be complex numbers with B1 > 0
such that (2.2) holds for all real numbers v and all generalized power series (2.1).
Does it follow that B(z) = BIZ + ... + Brzr + O(zr+l) where B(z) is univalent
and IB(z)1 :::::: 1 on D?

The simple answer is negative (see §9).
The main point here, however, is that we obtain a large class of examples of

contraction operators. Namely, by (2.2) the operator

T: h(z) --4 h(B(z)) (2.4)

is a contraction on the space 1)~ for any positive integer r, any real number II, and
any function B(z) which is univalent, normalized, and bounded by one in D. The
space 1)~ is indefinite when II < -1. In the same way, (2.4) acts as a contraction in
the infinite-dimensional space 1)" of series (2.1) such that 2:::=1 (II +n)lan l2 < 00
in the inner product

00

(h(z), h(z)):l)v = L (II + n)lan I2 ,
n=l

and this inner product is indefinite when v < -1. Another interesting example in
1)" is multiplication by z:

8: fez) --4 zf(z).

In the classical case (v = 0), this is the Dirichlet shift. In general, 8 is a two
isometry in the sense that 8*282 - 28*8 + 1 = 0, or in terms of inner products,

(Z2 fez), Z2 f(z)):l)v - 2(zf(z), zf(z)):l)v + (f(z), f(z)):l)v = 0

for all fez) in 1)". Two-isometries and more general operators on Hilbert spaces
are studied by Agler and Stankus [1]. A two-isometry is called analytic if the
intersection of the ranges of its powers is zero. Richter [63] constructed a model
theory for cyclic analytic two-isometries on a Hilbert space, the Dirichlet shift
being the motivating example [62,64]. The beginnings of an indefinite theory have
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been made by Chris Hellings [46]. See also McCullough and Rodman [54, 55], who
earlier proposed to extend Agler's ideas into the indefinite domain.

Such examples suggest the need for an approach that emphasizes the analo
gies with the Hilbert space case, and our purpose here is to outline such a view
point.

3. Definitions and basic notions

Inner products are assumed to be linear and symmetric. The antispace of an inner
product space (Sj, (".)) is (Sj, - (-,.)).

As we use the term, a Krein space is an inner product space which is ex
pressible as an orthogonal direct sum Sj = Sj+ EB Sj_ of a Hilbert space Sj+ and
the antispace Sj_ of a Hilbert space (for simplicity, Hilbert spaces are assumed
to be separable). Any such representation is a fundamental decomposition. The
induced Hilbert space topology is the strong topology of Sj. The dimensions of Sj±
are the indices of Sj. A KreIn space is also called a Pontryagin space if it has fi
nite negative index. These definitions do not depend on the choice of fundamental
decomposition. When nothing is said, underlying spaces are assumed to be KreIn
spaces (which might be Pontryagin spaces or finite-dimensional).

Spaces ,C(Sj) and ,C(Sj,.Jt) of continuous operators and adjoint operators are
defined for KreIn spaces in the same way as for Hilbert spaces. Thus if A E ,C(Sj, .Jt),
then A* E 'c(.Jt,Sj) and (Af,g) = (f,A*g) for all f in Sj and g in.Jt. An operator
A E ,C(Sj) is

selfadjoint if A * = A,
a projection if A is selfadjoint and A2 = A, and
nonnegative if (Af, 1) ~ 0 for every f E Sj.

If A E ,C(Sj) is selfadjoint, let ind+ A (ind_ A) be the supremum of all r such that
there exists an r-dimensonal subspace of Sj which is a Hilbert space (antispace
of a Hilbert space) in the inner product (f,g)A = (Af,g), f,g E Sj. An operator
B E ,C(Sj,.Jt) is

isometric if B*B = 15),
partially isometric if BB* B = B,
unitary if both Band B* are isometric,
a contraction if B*B ::; 15), and
a bicontraction if both Band B* are contractions.

An isomorphism of inner product spaces is a one-to-one and onto linear map
ping which preserves inner products. As in the Hilbert space case, the class of
isomorphisms between two KreIn spaces Sj and .Jt coincides with the set of unitary
operators between the spaces.

Orthogonality is defined for KreYn spaces as for Hilbert spaces. The relation
Sj = M EB M..L is not always true for all closed subspaces M of a KreIn space Sj,
however. It is true for an important subclass of subspaces. A linear subspace M of
a KreIn space Sj is a Krein subspace, or a regular subspace, if M is closed and a
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KreIn space in the inner product of Sj. If Wt is a linear subspace of Sj, the following
assertions are equivalent:

(1) Wt is a KreIn subspace;
(2) Sj = Wt EB WtJ..;
(3) Wt = ranP, where P E £(Sj) is a projection operator.

In this case, restriction of the strong topology of Sj to Wt coincides with the strong
topology of Wt as a KreIn space. For details and other basic notions, see [12, 14,
36,47].

4. Three useful tools of Krein space operator theory

KreIn space operator theory is much like the Hilbert space special case despite
failure of some of the most basic notions in the indefinite situation. The explanation
is that there are effective substitutes for the missing Hilbert space results.

Tool #1: a factorization theorem for selfadjoint operators.

One of the cornerstones of Hilbert space operator theory is that every non
negative operator has a nonnegative square root. The KreIn space counterpart
is a factorization theorem for any selfadjoint operator. The result is old, but its
systematic use is more recent [26, 37, 36].

Theorem 4.1. Every selfadjoint operator C E £(Sj), Sj a K re:tn space, can be written
C = AA* where A E £(I.2t, Sj) for some Kre:tn space I.2t and ker A = {O}.

The first step in the proof, reduction to the Hilbert space case, is worth
separate notice:

Every selfadjoint operator on a K rern space is congruent to a self
adjoint operator on a Hilbert space.

That is, if Sj is a KreIn space and C E £(Sj) is a selfadjoint operator, there is
a Hilbert space ~, a selfadjoint operator B E £(~), and an invertible operator
X E £(Sj,~) such that

C=X*BX.

In fact, let X be any invertible operator from Sj onto any Hilbert space ~, and
take B = X*-lCX- 1.

Proof of Theorem 4.1. It is sufficient to prove the theorem when Sj is a Hilbert
space. In this case, we can decompose Sj into spectral subspaces for C for the sets
(0,00), {O}, (-00,0), say Sj = Sj+ EBSjo ffiSj-. Define I.2t = Sj+ EBSj- in the inner
product

(j,g)')l = ±(j,g)S), f,g E Sj±.

We easily check that the operator A defined by Af = \CI 1/ 2 f, f E ~, has the
required properties. 0
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Tool #2: extension theorems for densely defined operators.

A different factorization occurs in Hilbert space operator theory. In a typical
situation, we are given Hilbert space operators A E £(Sj,~) and B E £(Sj,~) with
B* B :::; A *A. If A has dense range, then the partially defined operator

Co: Af --+ Bf, f E Sj,
has a contractive (hence continuous) extension C E £(~,~) such that B = CA.
When the underlying spaces are KreIn spaces, Co may not be well defined (that
is, AlI = Ah and BII -I- Biz for some II, h E Sj), and even if it is it may not
have a continuous extension. See [6, p. 429] for examples.

What is needed is a means to define continuous contraction operators by
specifying their action on dense sets. An index condition resolves the difficulties.
A linear relation from Sj to j{ is a linear subspace R of Sj x j{. The domain of R
is the set of all first elements f of the pairs (I, g) in R.

Theorem 4.2. Let Sj and j{ be Pontryagin spaces such that ind_ Sj = ind_ j{. Let
R be a linear relation such that

(1) R has dense domain,
(2) (g, g) p, :::; (I, f) S) for all (I, g) E R.

Then the closure of R is the graph of a contraction C E £(Sj, j{).

See [5, 6] for two different proofs ofTheorem 4.2. The known KreIn space
generalizations of Theorem 4.2 require strong hypotheses which are difficult to
verify in applications (Shmul'yan [70], Dritschel and Rovnyak [37, Theorem 1.4.4J
and [36, Supplement]). An exception here is the following nice result which is given
in Constantinescu and Gheondea [25, Lemma 2.3J.

Theorem 4.3. Let Sj and j{ be Krdn spaces. Let R be a linear relation such that

(1) R has dense domain and dense range,
(2) (g,g)p, = (I,f)S) for all (I,g) E R,
(3) the domain of R contains one of the subspaces Sj± in some fundamental

decomposition Sj = Sj+ ffi Sj_.

Then the closure ofR is the graph of a unitary operator U E £(Sj,j{).

A finite-dimensional example in [6, p. 429J shows that Theorem 4.2 is not valid
if ind_ Sj -I- ind_ j{. The same example shows that the conclusion of Theorem 4.3
can fail if all conditions are met except the range of R is not dense.

Typical applications of Theorems 4.2 and 4.3 arise from inequalities B* B :::;
A* A, where A E £(Sj,~) and B E £(Sj,~) are KreIn space operators. Under
suitable conditions, the linear relation

R = {(Af,B!): f E Sj}.

satisfies the hypotheses of the theorems. Then we obtain a factorization B = CA
with C E £(~,~) a contraction operator or unitary operator, as in the Hilbert
space case.
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Tool #3: continuous isometries and partial isometries.

Recall that a partial isometry is defined as a Krein space operator A E £'(5), ft)
such that AA* A = A. Such operators have properties much the same as in the
Hilbert space case.

Theorem 4.4. If A E £,(5), ft), 5) and ft Krdn spaces, the following assertions are
equivalent:

(1) A is a partial isometry;
(2) A *A is a projection operator and ker A *A = ker A;
(3) AA* is a projection operator and ker AA* = ker A *;
(4) there exist Krdn subspaces Wl of 5) and 1)1 of ft such that A maps Wl in

a one-to-one way onto 1)1 with (Af, Ag) Jt = (J, g) Sj for all f, 9 E Wl, and
Af = 0 for all f E Wll-.

In this case, A *A and AA* are the projections onto Wl and 1)1. If, in fact, A is an
isometry, then in addition

(5) A maps closed subspaces of 5) onto closed subspaces of ft;
(6) A maps Krdn subspaces of 5) onto Krdn subspaces of ft.

In particular, the range of an isometry A E £'(5), ft) is a Krdn subspace of ft.

The conditions on kernels in parts (2) and (3) of Theorem 4.4 do not appear in
the Hilbert space case because they hold automatically when 5) and j{ are Hilbert
spaces. For proofs of the assertions in Theorem 4.4, see the Supplement and errata
cited in [36, pp. 156-57].

Theorem 4.4 plays a greater role in the indefinite theory than in the spe
cial case of Hilbert spaces. It can only be appreciated in the light of patho
logical examples of "isometries" on Krein spaces: if 5) is an infinite-dimensional
Hilbert space and ft is an infinite dimensional Pontryagin space with ind_ ft = 1,
there exists an everywhere defined linear transformation V on 5) into ft such that
Wf, Vg)Jt = (J,g)Sj for all f and 9 in 5), yet V is not continuous with respect to
the strong topologies of 5) and ft (for example, see [36, Supplement]). Obviously
all manner of bad behavior is to be expected in such a situation, and the point of
Theorem 4.4 is that order is restored with the hypothesis of continuity. While our
definition of an "isometry" presumes continuity, this practice is not universal, and
in other sources the meaning of the term should be verified.

5. Julia operators and extension problems

5.1 Defect and Julia operators

Much of the theory of contraction operators on Hilbert spaces in Sz.-Nagy
and Foias [72] carries over to the indefinite setting. Dilation properties and model
theory are discussed in Davis [28], Davis and Foias [29] and McEnnis [56, 57, 58].
We focus on more recent developments in the Krein space theory that include no
tions of defect and Julia operators, matrix extension theorems, and the commutant



Methods of KreIn Space Operator Theory 39

lifting theorem. In the definite case, the history of results in this area is long and
complex and closely connected with interpolation theory; for example, see Foias
and Frazho [40]; a recent sequel to this standard source is given in Foias, Frazho,
Kaashoek, and Gohberg [41]. The indefinite theory for these areas originates with
Constantinescu and Gheondea [22, 24] and Dritschel [32].

Defect and Julia operators play an even greater role in KreIn space operator
theory than in the Hilbert space case. The first constructions are due to Arsene,
Constantinescu, and Gheondea [10]. Let T E £(Sj,Jt), where Sj and Jt are KreIn
spaces. By a defect operator for T we mean any operator DE £(iJ,Sj), where iJ
is a KreIn space, such that kerD = {O} and the operator

(5.1)

is an isometry, that is, T*T + DD* = 1. A Julia operator for T is any unitary
operator

(T D) -
U= D* -L* E£(S)E9~,JtE9~), (5.2)

where ~ and iJ are KreIn spaces, such that the operators D E £(~,Sj) and D E
£(iJ,Sj) have zero kernels. Julia operators are also called elementary rotations in
the literature.

The preceding definitions of defect and Julia operators apply to any opera
tor T E £(Sj, Jt), and they do not presume that T is a contraction operator. So
even when Sj and Jt are Hilbert spaces, the definitions are more general than the
standard definitions which are given in the Hilbert space case.

Theorem 5.1. Let T E £(Sj, Jt), where Sj and Jt are Krein spaces.
(1) A defect operator D E £(iJ, Sj) for T exists, and for any such operator

ind± iJ = ind± (1 - T*T).

(2) A Julia operator U E £(Sj E9 ~,Jt E9 iJ) for T exists, and for any such operator

ind± ~ = ind± (1 - TT*) and ind± iJ = ind± (1 - T*T).

Proof We obtain (1) by applying Theorem 4.1 to C = 1 - T*T. To prove (2),
apply Theorem 4.1 a second time to C = 1 - VV*, where V is given by (5.1). For
details, see Dritschel and Rovnyak [36, Theorem 2.3]. 0

We give an elementary illustration how Theorem 5.1, combined with the good
behavior of isometric and unitary operators, can be used to obtain information
about general operators. The result itself is old and has a simple direct proof [10].

Theorem 5.2. 1fT E £(Sj,Jt) for any Krein spaces Sj and Jt, then

ind± Sj + ind± (1- TT*) = ind± Jt + ind± (1 - T*T).

In particular, if ind_ Sj = ind_ Jt < 00, then T*T ::::: 1 implies TT* ::::: 1.
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Proof. Choose a Julia operator (5.2) for T. By the unitarity of U and Theo
rem 5.1(2), ind± S) + ind± (1 - TT*) = ind± S) + ind± 1) = ind± J't + ind± il =
ind± J't + ind± (1 - T*T). 0

Another basic problem is to describe all contractive row, column, and matrix
extensions

(T F) E £(S) E& J, J't),

( T
C

) E £(S), Jt E& Q)),

(~ ~) E £(S) E& J, J't E& Q)),

of a given contraction operator T E £(S), J't), where S) and Jt are KreIn spaces. The
problem has several variants, such as dropping the hypothesis that T is a contrac
tion. We can alternatively consider operators T such that ind_ (1-T*T) < 00 and
ask for contractive extensions or extensions which also satisfy index conditions.

5.2 Basic extension theorems

Let T E £(S), Jt), where S) and J't are KreIn spaces. Choose a Julia operator

(XT ~IT) E £(S) E& 1)T, Jt E& ilT ) (5.4)

for T. This is, of course, a particular extension of T. When S), Jt, J, Q) are Hilbert
spaces and T is a contraction, it is a well-known result that all contractive row,
column, and matrix extensions are given by

and

(T DTX) E £(S) E& J, J't),

(Y*~T) E £(S), J't E& Q)),

(5.5)

(5.6)

(
T DTX)

Y*DT -Y*LTX+DyZD'X E£(s)E&J,JtE&Q)), (5.7)

where X, Y, Z are contraction operators on appropriate spaces as required to make
the formulas meaningful and Dx and Dy are defect operators for X and Y.

The next result describes the situation when T is a contraction.

Theorem 5.3. Assume that T E £(S), J't) is a contraction, S), Jt, J are Kre1:n spaces,
and Q) is a Hilbert space. Then all contractive row, column, and matrix extensions
ofT are given by (5.5), (5.6), and (5.7) again where X, Y, Z are contraction oper
ators on appropriate spaces as required to make the formulas meaningful and Dx
and Dy are defect operators for X and Y.

The asymmetry in Theorem 5.3 is due to the fact that the adjoint of a
contraction operator on KreIn spaces is not necessarily a contraction. Thus, for
example, the row extension theorem cannot be deduced by applying the column



Methods of KreIn Space Operator Theory 41

extension to T*; the row and column extensions need separate proofs. When lB is
a KreIn space, the conclusions can fail [36, p. 172]. Nevertheless, a more general
result holds and provides another illustration of the role played by index conditions
in KreIn space operator theory.

When T is not necessarily a contraction, or lB is not a Hilbert space, similar
conclusions hold but with other hypotheses in the form of index conditions.

Theorem 5.4 (Row extensions). Assume that fl, jt, J are Krdn spaces. Let T E

£(fl, jt) (not necessarily a contraction), and let DT E £(1:'T, fl) be a defect operator
for T*. Let R = (T F) E £(fl EB J, jt) be a row extension of T satisfying at least
one of the conditions

ind_ (1 - RR*) + ind_ J = ind_ (1 - TT*) < 00,
ind_ (1 - R* R) = ind_ (1 - T*T) < 00.

(5.8)

(5.9)

Then R has the form (5.5), where X E £(J, 1:'T) is a contraction. Conversely,
every such operator (5.5) satisfies both of the equalities in (5.8) and (5.9) (with
possibly infinite values).

Theorem 5.5 (Column extensions). Let fl, jt, lB be Krdn spaces. Assume that T E
£(fl,jt) and that DT E £(i)T,fl) is a defect operator for T. Let

o = (~) E £(fl, jt EB lB)

be a column extension of T satisfying at least one of the conditions

ind_ (1 - 0*0) + ind_ lB = ind_ (1 - T*T) < 00,
ind_ (1 - 00*) = ind_ (1 - TT*) < 00.

(5.10)

(5.11)

Then 0 has the form (5.6), where Y E £(lB,i)T) is a contraction. Conversely,
every such operator (5.6) satisfies both of the equalities in (5.10) and (5.11) (with
possibly infinite values).

A similar result holds for matrix extensions of the form (5.7). Dritschel [33]
has given a beautiful method of proof of such theorems. The results are first proved
in the special case when the given operators are isometries; in this simple case we
are able to use what are essentially Hilbert space methods, and these methods
work for KreIn spaces because by Theorem 4.4 the properties of continuous partial
isometries on KreIn spaces are much the same as in the Hilbert space case. The
second step is to reduce the general results to the case of isometries by means of
extensions using defect and Julia operators. It is only necessary to prove Theorems
5.4 and 5.5 and the counterpart for (5.7), as these imply Theorem 5.3; for example,
the row and column statements in Theorem 5.3 follow when the equalities in (5.9)
and (5.10) hold with the value zero. Full details are given in [36, Lecture 3].
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5.3 Commutant lifting
Commutant lifting provides operator extensions with additional properties. Al
ready in the definite case, the commutant lifting theorem has a number of formu
lations, but the different versions have essentially the same content. In the case
of KreIn space operators, there are several natural extensions of the commutant
lifting theorem. While obviously related, however, they are not easily compared.
A survey of this area by itself would be a sizable undertaking, and we limit this
discussion to several results and some citations to other sources.

One result simply says that the theorem of Sz.-Nagy and Foias [72] remains
true if Hilbert spaces are replaced by KreIn spaces. If J't is a KreIn space with KreIn
subspace fl, let PSJ be the projection operator on J't with range fl. A minimal
isometric dilation of an operator A E £(SJ) , fl a KreIn space, is an isometric
operator U E £(J't), where J't is a KreIn space containing fl as a KreIn subspace, such
that An = PSJUnl SJ for all n = 1,2, ... , and V':=oUnfl = J't. A minimal isometric
dilation exists for any KreIn space operator A E £(fl); if A is a contraction, it is
essentially unique as in the Hilbert space case [37].

Commutant Lifting Theorem I (Dritschel [32]). Let fll and SJ2 be Kre1:n spaces,
and let T E £(SJl, fl2) be a contraction operator such that T Al = A2T for some
contraction operators Al E £(fll) and A2 E £(fl2). Let U1 E £(J'td and U2 E
£(J't2) be minimal isometric dilations of Al and A2. Then there is a contraction
T E £(J't1,J't2) such that U2T = TU1 and PSJ2T = TPSJ1 .

The proof is an application of Theorems 5.4 and 5.5. It is simplified in
Dritschel and Rovnyak [37]. For different proofs, see Dijksma, Dritschel, Mar
cantognini, and de Snoo [30], and Marcantognini [52]. A module formulation has
been given by Dritschel [35]. Earlier results in the same direction were obtained
by Constantinescu and Gheondea; see [22, 24].

Another version of the commutant lifting theorem also starts with the Sz.
Nagy and Foias theorem and weakens the hypothesis that the intertwining operator
T is a contraction. In its original form, the underlying spaces are again Hilbert
spaces.

Commutant Lifting Theorem II (Ball and Helton [13]). Let SJl and fl2 be Hilbert
spaces, Al E £(fll) and A2 E £(fl2) contractions with minimal isometric dilations
U1 E £(J'td and U2 E £(J't2). Assume that T E £(fll,fl2) is a contraction operator
such that

ind_ (1 - T*T) ::; K,

for some nonnegative integer K,. Then there is a U1 -invariant subspace it1 of J't1 of
codimension at most K, and a contraction operator T: it1 -+ J't2 such that U2T =
TU1 1it

l
and PSJ2 T = T PSJ1l itl .

Independently, Gheondea [42] and Arocena, Azizov, Dijksma, and Marcan
tognini [7, 8] have extended the Ball and Helton theorem to allow fll and fl2 to
be KreIn spaces. In the generalization, the subspace it1 is not necessarily a KreIn
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subspace, but with a natural interpretation of contraction operator the statement
is otherwise identical. The formulation in [8] is more general in another direction,
namely, a broader notion of isometric dilation is adopted.

Canonical models also provide a setting for commutant lifting [72]. In Alpay
[3] and de Branges [20], generalizations of the commutant lifting theorem in canon
ical model spaces are constructed. Concerning canonical models in KreIn spaces,
see also Yang [74].

6. Uniqueness questions

6.1 General results
While factorizations as in Theorem 4.1 always exist, they are not in general unique
even up to appropriate notions of isomorphism. Indices of the underlying KreIn
space, at least, are unique [37, Theorem 1.2.1]:

Theorem 6.1. Let C E £(5)) be a selfadjoint operator on a Krdn space 5). In any
way, factor C in the form C = AA* where A E £(l.2(,5)) for some Krdn space Q{

and ker A = {O} as in Theorem 4.1. Then

ind± l.2( = ind± C.

In particular, the indices ind± l.2( do not depend on the choice of factorization.

We turn to conditions which imply that a factorization C = AA*, A E

£(l.2(, 5)), ker A = {O} is unique up to replacement of l.2( by an isomorphic copy. Ex
amples show that this is not always the case (see [34, p. 217] and [38, p. 891]). Such
a notion of uniqueness is of interest in its own right and also because some appli
cations use special properties of the particular factorization which is constructed
in the proof of Theorem 4.1; see Dritschel and Rovnyak [38, Lecture 6].

Definition 6.2. A selfadjoint operator C E £(5)) is said to have the unique factor
ization property if for any two factorizations

C = AjA;, Aj E £(Q{j, 5)), ker Aj = {O}, j = 1,2, (6.1)

there is an isomorphism U E £(l.2(I,l.2(z) such that Al = AzU.

This property holds in many naturally occurring situations. In fact, it is
possible to completely characterize when the property holds.

Theorem 6.3. Let 5) be a Krdn space, and let C E £(5)) be a selfadjoint operator.
The following conditions are equivalent:

(1) C has the unique factorization property;
(2) for some Hilbert space selfadjoint operator B congruent to C, (J(B) omits

an interval of the form (-E, 0) or (0, E) with E> 0;
(3) for some factorization C = AA* as in Theorem 4.1, ran A* contains one of

the subspaces l.2(+ or l.2(_ in some fundamental decomposition l.2( = l.2(+ q)l.2(_.

In this case, (2) holds for any selfadjoint operator congruent to C, and (3) holds
for any factorization of C as in Theorem 4.1.
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For a proof see [26, Theorem 2.8]. Condition (2) in Theorem 6.3 was given
by Constantinescu and Gheondea [23, 25], Curgus and Langer [27], and Hara
[45]. Condition (3) is given in a different form in Dritschel [34] and Dritschel and
Rovnyak [38].

Theorem 6.4. Let Sj be a K reZn space, and let C E £(Sj) be a selfadjoint operator.
Each of the following conditions is sufficient for C to have the unique factorization
property:

(1) C;::: 0;
(2) one of the indices ind± C is finite;
(3) C2 :::; C.

Sketch of proof. (1), (2) Assume that ind_ C < 00. We check condition (2) in
Theorem 6.3. Suppose that B is a selfadjoint operator on a Hilbert space Jt which
is congruent to C. Then dB) n (-00,0) is a finite set, and so (2) holds. We obtain
(1) as a special case of (2).

(3) We deduce this from Theorems 6.5 and 6.6 below. Assume that C2 :::; C.
Suppose that we have two factorizations C = Aj Aj, Aj E £(2tj , Sj), ker Aj =
{O}, j = 1,2. For j = 1,2, let IB j be the range of Aj in the inner product that
makes Aj an isomorphism from 2tj onto IB j . Then IB j is a KreIn space which is
contained continuously in Sj, and C = EjEj, where Ej : IB j ~ Sj is the inclusion
mapping. The inequality C 2 :::; C implies that the inclusion operators E j are
contractions. Applying Theorems 6.5 and 6.6 with P = C, we see that C has the
unique factorization property. 0

Alternatively, to prove Theorem 6.4(2) we can verify condition (3) in Theo
rem 6.3 with the aid of

Pontryagin's Theorem: Let ~ be a dense linear subspace of a Pontryagin space lB.
Then ~ contains the negative subspace IB _ in some fundamental decomposition
IB = IB+ EB IB_.

Suppose again that ind_ C < 00, and let C = AA* be any factorization as in
Theorem 4.1. By Theorem 6.1, ind_ 2t = ind_ C < 00. Since ker A = {O}, ranA*
is dense in 2t, and so (3) follows from Pontryagin's theorem.

6.2 Examples of uniqueness results
(i) Continuous inclusion of Krem spaces and complementation in the sense of
de Branges. The simplest case here comes from a KreIn subspace IB of a KreIn
space Sj. The inclusion mapping E : IB ~ Sj is a continuous isometry in this case.
The operator P = EE* is the projection on Sj with range lB. These notions have
far-reaching generalizations in the work of de Branges [18]. We follow the operator
range view in [38] in which P can be any selfadjoint operator on a KreIn space.

A KreIn space IB is said to be contained continuously in a KreIn space Sj if IB
is a linear subspace of Sj and the inclusion mapping E : IB ~ Sj is continuous. In
this situation P = EE* is a selfadjoint operator on Sj. It is not hard to see that
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the range of P is contained in 15 as a dense subspace, and
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(Pf,Pg)(15 = (Pf,g)SJ' f,g E Sj. (6.2)

We call P the generalized projection operator for the inclusion of 15 in Sj.
It is easy to see that every selfadjoint operator P E £(Sj) arises as a general

ized projection operator. In fact, if P E £(Sj) is a given selfadjoint operator, write
P = AA*, A E £(21, Sj), ker A = {O}, as in Theorem 4.1. Let 15 be the range of A
in the inner product which makes A an isomorphism. It is not hard to see that 15
is a Krein space which is contained continuously in Sj, and P = EE* where E is
the inclusion mapping.

Uniqueness questions arise. In the preceding situation, the indices ind± 15 are
determined by P. However, 15 itself is not necessarily determined by P: it may
occur that P is the generalized projection operator for distinct Krein spaces 151
and 152 which are contained continuously in Sj; that is, P = E1Ei = E 2Ez,where
E1 : 151 ----+ Sj and E2 : 152 ----+ Sj are the inclusion mappings.

Theorem 6.5. Let Sj be a Kre?:n space, and let P E £(Sj) be a selfadjoint operator.
The following conditions are equivalent:

(1) P is the generalized projection operator for a unique Kre?:n space which is
contained continuously in Sj;

(2) P has the unique factorization property.

Uniqueness is automatic in some cases. Suppose that 15 is contained contin
uously in 5). We say that the inclusion is contractive if

(g,g)SJ :S (g,g)(15' 9 E 15,

that is, the inclusion mapping is contractive; by (6.2), this occurs if and only if
the associated generalized projection operator P satisfies p 2 :S P. The notion
of an isometric inclusion is defined similarly but with equality in the preceding
inequalities.

Theorem 6.6. Conditions (1) and (2) in Theorem 6.5 are satisfied if P is the gener
alized projection operator for some Kre?:n space 15 which is contained continuously
and contractively in Sj. In particular, such a space 15 is unique.

Let 5)1,5)2 be Krein spaces which are contained continuously and contrac
tively in a Krein space Sj. We say that 5)1 and 5)2 are complementary in the sense
of de Branges or simply complementary if the mapping (hI, h2 ) ----+ hI + h2 is a
contractive partial isometry from 5)1 x 5)2 onto 5). In this case, for every h E 5),

(h, h) SJ = min ((hI, ht}SJl + (h2 , h 2 ) SJ2) ,
h=h 1 +h2

and ind_ 5) = ind_ 5)1 + ind_ Sj2. Examples appear in the theory of reproducing
kernel spaces (see §8). The general theory is given in [5, 18, 38].

(ii) Defect and Julia operators. Defect and Julia operators can be changed by
replacing the underlying Krein spaces by isomorphic spaces. It is of interest to
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j = 1,2,

know if any two defect or Julia operators for a given operator T E £(SJ,.f.t) are
related in this way.

Definition 6.7. Let T E £(SJ, .f.t), where fJ and.f.t are Krdn spaces.

(1) We say that T has an essentially unique defect operator if any two defect
operators Dj E £(ilj,fJ), j = 1,2, are related by Dl = fhV, where V is
an isomorphism from ill onto il2.

(2) We say that T has an essentially unique Julia operator if any two Julia
operators

(~;
are related by

(~i ~lJ = C; to) (~2 ~l2) C; ~)
where V is an isomorphism from ill onto il2 and V is an isomorphism
from ~l onto ~2

A complete analysis of these conditions is given in Dritschel [34]. The follow
ing result probably covers the most important special cases

Theorem 6.8. Let T E £(SJ, .f.t), where SJ and .f.t are Krezn spaces. Each of the
following conditions is sufficient for T to have essentially unique defect and Julia
operators:

(1) T is a contraction;
(2) T* is a contraction;
(3) one of the four indices ind± (1 - T*T), ind± (1 - TT*) is finite.

Conditions (1) and (2) in Theorem 6.8 are included for emphasis, but they
are special cases of (3). In the case of Julia operators, Theorem 6.8 is given in
Dritschel and Rovnyak [37, p. 298]. The result for defect operators can be deduced
from this and the fact that a Julia operator (5.2) can be constructed with any
prescribed defect operator D for T.

7. Kolmogorov decompositions of Hermitian kernels

The theory of Hermitian kernels provides a unified environment for common con
structions that appear in a number of areas including the study of reproducing ker
nels, inner products, and selfadjoint operator matrices. The indefinite theory origi
nates with Schwartz [69]. We follow the approach of Constantinescu and Gheondea
[26]. The form of the uniqueness result in Theorem 7.3 is implicit in [26] and was
communicated privately by the authors.

A (Hermitian) kernel is an indexed collection

K = {Kijh,jEJ, K ij E £(SJj,SJi), (7.1)
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of operators satisfying K ij = KJi for all i, j E J. Here J is an index set, and the
underlying spaces fJj, j E J, are KreIn spaces. We say that K has a Kolmogorov
decomposition if there exist a KreIn space j{ and operators Vj E ,C(fJj, j{), j E J,
such that

Kij = Vi*Vj, i,j E J, (7.2)
and j{ = V jEJVjfJj' The term "Kolmogorov decomposition" is derived from a
theorem of Kolmogorov [48] as it appears, for example, in Martin and Putinar [53,
p. 34]. Two Kolmogorov decompositions with operators V1j E ,C(fJj, j{l) and V2j E
,C(fJj,j{2), j E J, are called equivalent if there is an isomorphism WE 'c(j{1,j{2)
such that V2j = WV1j for all j E J. If any two Kolmogorov decompositions are
equivalent, we say that K has an essentially unique Kolmogorov decomposition.

Sums and differences of kernels are defined in the obvious way when the
underlying spaces are the same, and the set of such kernels has the structure of a
linear space. Given a Hermitian kernel (7.1), let J be the linear space of all finitely
nonzero indexed sets f = {hhEJ of vectors iJ E fJj, j E J. Define a K-inner
product on J by

(f,g)K = L (KijiJ,gi)S)i'
i,jEJ

f,g E J.

We call K nonnegative and write K ~ 0 if the K-inner product (7.3) is nonnega
tive. The inequality K 1 ::::; K2 for two Hermitian kernels means that K 2 - K 1 ~ 0

A nonnegative majorant for a Hermitian kernel K is a Hermitian kernel L
having the same underlying spaces such that L ~ 0 and - L ::::; K ::::; L. In this
situation, we associate a Hilbert space fJL with L by a standard construction. A
dense set in fJL is the quotient space J/fJ'tL , where J is as above and fJ't L the
subspace of elements which are orthogonal to all of J in the L-inner product. If
f E J, let [f] be the corresponding coset in J/fJ'tL . The inner product in fJL is
given on the dense set by

f,g E J.

Arguments in [26, p. 929] show that there is a unique operator G E ,C(fJL) such
that

(G[f], [g])S)L = (f,g)K' f,g E J.
The operator G is selfadjoint and satisfies IIGII ::::; 1. It is called the Gram operator
of the kernel K for the majorant L.

To avoid repetitive statements, throughout §7 the underlying spaces for Her
mitian kernels are assumed to be as in (7.1), and J has the same meaning as above.
We likewise use the same notation J/fJ'tL for the dense set in the Hilbert space fJL
as in the definition of a Gram operator.

Theorem 7.1. If K is a Hermitian kernel, the following assertions are equivalent:

(1) K has a Kolmogorov decomposition;
(2) K has a nonnegative majorant;
(3) K = K+ - K_ for some Hermitian kernels K+ ~ 0 and K_ ~ O.
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In this case, the decomposition in (3) can be chosen such that the only Hermitian
kernel M such that 0:::; M :::; K± is M = o.
Proof. (1) {=> (2) Assume that a Kolmogorov decomposition (7.2) exists. In any
way construct a Hilbert space 9J1 and an invertible operator X E ~(5i, 9J1) such
that

I(k, k) it I s; (Xk, Xk)9Jt, k E 5i.
Define L = {Lij h,jEJ by Lij = Vi*X*XVj E ~(nj, ni), i, j E J. It is easy to see
that L is a nonnegative majorant for K.

Conversely, let K have a nonnegative majorant L, and let G E ~(nL) be the
associated Gram operator. Using Theorem 4.1, factor G = AA* with A E ~(5i, nL)
and ker A = {O}. For each j E J, there is a natural continuous embedding operator
E j from nj into nL, namely, Eju = [fu], where fu is the element of J whose j-th
component is u and all other components are zero. Then Vj = A* E j , j E J, defines
a Kolmogorov decomposition.

(2) {=> (3) If K = K+ - K_ as in (3), L = K++K_ is a nonnegative majorant
for K.

Conversely, suppose that K has a nonnegative majorant L, and let G be the
corresponding Gram operator. In terms of the embedding operators E j , j E J,
defined above, we have

i,j E J.

Let P±,Po be the spectral projections for (0,00), (-00,0), {O} for G. Then the
formula

K±ij = E;(±P±)GEj , i,j E J.

defines kernels K± such that K± ~ 0 and K = K+ - K_.
The kernels K ± constructed in this way have the property in the last state

ment of the theorem. For assume that 0:::; M:::; K±. Since IIGII :::; 1, K± :::; L, and
thus 0 :::; M s; L. The Gram operator H E .c(nL) of M relative to L satisfies

Since P+G and P_G are supported on orthogonal subspaces of nL, H = O. Hence
(1, g) M = (H[J], [g]) .I'lL = 0 for all f, 9 E J, and so M = O. 0

Let K be a Hermitian kernel with nonnegative majorant L. A Kolmogorov
decomposition (7.2) for K is said to be L-continuous if the mapping [f] into
EjEJ Vjfj on J/lJtL extends to a continuous operator from on nL into ft.

Lemma 7.2. Let K be a Hermitian kernel.

(1) If K has a Kolmogorov decomposition (7.2), the decomposition is L-conti
nuous with respect to the nonnegative majorant L constructed in the proof
of Theorem 7.1, (1) implies (2).

(2) If K has a nonnegative majorant L, the Kolmogorov decomposition of K
constructed in the proof of Theorem 7.1, (2) implies (1), is L-continuous.
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Proof. (1) In the notation of Theorem 7.1, (1) implies (2),

([f], [g])5)L = (X LjEJ l1jfj, X LiEJ Vj9i)!lJl ' f, 9 E J.

Thus the mapping [1] into X LjEJ l1jiJ is a Hilbert space isometry from f)L into
9J1; the mapping [1] into LjEJ l1jfj on J/fJtL into .it is the composite of this
isometry and X-I and hence is continuous.

(2) We wish to show that, in the proof of Theorem 7.1, (2) implies (1), the
mapping [1] into LjEJ l1jiJ on J/fJtL extends to a continuous operator from f)L
into .it. In fact, we show that the mapping is A*. Since .it is the closed span of the
ranges of the operators 11j, it is sufficient to show that for any f, 9 E J,

([f], A LiEJ Vjgi)5)L = (LjEJ l1jiJ, LiEJ Vj9i).il'

Since Vj = A* Ei for each i E J and LiEJ Eigi = [g], it is the same thing to show
that

([1],AA*[g])5)L = (LjEJ l1jiJ'LiEJ Vj9i).il.

This holds because AA* = G, and so both sides are equal to (1, g) K' o
Thus L-continuous Kolmogorov decompositions always exist. Uniqueness de

pends on the Gram operator.

Theorem 7.3. Let K be a Hermitian kernel with nonnegative majorant L and Gram
operator G. Any two L-continuous Kolmogorov decompositions are equivalent if
and only if G has the unique factorization property.

Proof. Assume that G has the unique factorization property. Let

K ij = VI:Vlj , Vlj E £(f)j,.itt}, i,j E J, (7.6)

K ij = V2:V2j , V2j E £(f)j, .it2 ), i,j E J, (7.7)

be two L-continuous Kolmogorov decompositions. By hypothesis, the mapping [f]
into LjEJ VljiJ on J/fJtL extends to a continuous operator from f)L into .itl .
Denote its adjoint Al E £(.itl,f)d. Since .itl = VjEJVljf)j, kerAl = {O}. For all
f,g E J,

Thus

(G[f], [g]) 5)L = (1, g) K = (LjEJ Vlj fj, LiEJ Vli9i).ill = ([1], AlAi [g]) 5)L '

and so G = AlAi. Construct a factorization G = A2A; in a similar way from
(7.7). Since G has the unique factorization property, there is a unitary operator
WE £(.it1 ,.it2) such that Al = A2W. For all j E J,

V2j = A;Ej = WAiEj = WVlj ,

and thus the two Kolmogorov decompositions are equivalent.
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Assume that any two L-continuous Kolmogorov decompositions of K are
equivalent. Let

G = AlAi = A2 A;

with Al E £(.ltl,)jL), A2 E £(.lt2,)jL), ker Al = {O}, and ker A 2 = {O}. By
Lemma 7.2, we can construct L-continuous Kolmogorov decompositions (7.6) and
(7.7) by setting Vlj = AiEj and V2j = A2Ej for all j E J. By hypothesis, there is
a unitary operator W E £(.ltl, .lt2) such that V2j = WVlj for all j E J. Using the
properties .ltl = VjEJVlj)jj and .lt2 = VjEJV2j )jj of the Kolmogorov decomposi
tions, we obtain W Ai = A2 and hence Al = A2W, and thus G has the unique
factorization property. 0

A stronger uniqueness result holds with a stronger hypothesis.

Theorem 7.4. A Hermitian kernel K has an essentially unique Kolmogorov de
composition if and only if the Gram operators for all nonnegative majorants have
the unique factorization property.

Proof. If some Gram operator does not have the unique factorization property,
Theorem 7.3 implies that there exist nonequival~nt Kolmogorov decompositions,
which proves necessity.

Conversely, assume that every Gram operator has the essential uniqueness
property. Let (7.6) and (7.7) be any two Kolmogorov decompositions of K. By
Lemma 7.2, the decompositions are continuous relative to some nonnegative ma
jorants L l and L 2 for K. Then L = L l + L 2 is a nonnegative majorant for K.
Since L l ::; L, the "identity mapping" on J/'JlL to J/'JlLl is a densely defined
contraction from )jL into )jL1 . Since these are Hilbert spaces, the mapping [j]
into LjEJ Vljii on J/'JlL into .ltl is a composition of continuous operators, and
so (7.6) is L-continuous. Similarly, (7.7) is L-continuous. By Theorem 7.3 and our
hypothesis on Gram operators, the two Kolmogorov decompositions are equiva
lent. 0

The following sufficient condition for essential uniqueness is given in [26,
Theorem 4.3].

Theorem 7.5. Let K be a Hermitian kernel, and assume that there exists a Kol
mogorov decomposition (7.2) such that the linear span of the subspaces Vj,5Jj, j E J,
contains contains one of the subspaces .It± in some fundamental decomposition
.It = .It+ E37.1t-. Then K has an essentially unique Kolmogorov decomposition.

Proof. Suppose that the given Kolmogorov decomposition is relabeled as (7.6),
and let (7.7) be any second Kolmogorov decomposition. Define a linear relation R
from .ltl into .lt2 by
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By the definition of a Kolmogorov decomposition, R has dense domain and dense
range. For all f E J,

\LjEJ ~jli, LiEJ V1di ) ill = (I, I)K = \LjEJ V2j li, LiEJ V2iJi) il2 .
By hypothesis, the domain of R contains one of the subspaces .rt1± in some fun
damental decomposition .rtl = .rtl+ EB .rtl-. Hence by Theorem 4.3 the closure of R
is the graph of a unitary operator WE £(.ftl,.ft2)' By construction, V2j = WV1j
for all j E J, and so the two Kolmogorov decompositions are equivalent. D

Corollary 7.6. If a Hermitian kernel K has a Kolmogorov decomposition (7.2) such
that .rt is either a Pontryagin space or the antispace of a Pontryagin space, then
K has an essentially unique Kolmogorov decomposition.

Proof. Since.rt is a Pontryagin space for the given Kolmogorov decomposition, the
hypotheses of Theorem 7.5 are satisfied by Pontryagin's theorem (see §6). D

8. Examples of Hermitian kernels

8.1 Reproducing kernel KreIn spaces

The definite theory is classical and has many applications. In addition to the
standard source of Aronszajn [9], see also, for example, Dym [39] and Saitoh [68].
The indefinite theory is due to Schwartz [69] and Sorjonen [71] and also also owes
much to a series of papers in the 1970's by KreIn and Langer including [49, 50]
and the thesis of Alpay [2]. The theory of §7 allows a quick derivation of the main
results.

Consider a Hermitian kernel K(s, t), s, tEO, with values in £(J) for some
fixed KreIn space J and nonempty set 0. We call K(s, t) a reproducing kernel for
a KreIn space fJK of J-valued functions on 0 if

(1) for each s EO and f E J, K(s, ·)f belongs to fJK, and
(2) (h(·), K(s, .)1)nK = (h(s), I)~ for every h(·) in fJK.

These conditions are equivalent to the existence of a Kolmogorov decomposition
with a KreIn space fJK and operators Vs : J ---7 fJK such that

Vsf = K(s, ')f, (8.1)

for all s E 0. In other words, Vs = E(s)*, where E(s): h(·) ---7 h(s) is evaluation
at any point s E 0 (the evaluation mappings are continuous by the closed graph
theorem).

Conversely, one can start with a KreIn space of functions:

Theorem 8.1. Let fJ be a Krdn space of functions on a set 0 with values in a Krdn
space J. Then fJ has a reproducing kernel if and only if all evaluation mappings
E (s), s EO, belong to £(fJ, J). The reproducing kernel is uniquely determined by
the space and given by K(s,t) = E(t)E(s)*, s,t E 0.
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Notions of nonnegative kernels and nonnegative majorants have the same
meaning as in the general case. The definite case is well known: a nonnegative
kernel £(s, t) is the reproducing kernel for a unique Hilbert space S)L (this also
follows from the results of §7).

Existence and uniqueness are separate issues in the indefinite case. A repro
ducing kernel for a KreIn space, when it exists, is uniquely determined by the
space. However, unlike the Hilbert space case, two distinct KreIn spaces can have
the same reproducing kernel. The uniqueness of a KreIn space with given repro
ducing kernel can be restored in a restricted sense if suitable conditions are met.

Theorem 8.2. If K(s, t), s, tEO, is a Hermitian kernel with values in .e(~) for
some Kre?:n space ~, the following assertions are equivalent:

(1) K(s, t) is the reproducing kernel for some Kre?:n space S)K of functions
on 0;

(2) K(s, t) has a nonnegative majorant £(s, t) on 0 x 0;
(3) K(s, t) = K+(s, t) - K_(s, t) for some nonnegative kernels K±(s, t) on
Ox O.

When these conditions hold, then moreover:

(4) For a given nonnegative majorant £(s, t) for K(s, t), there is a Kre?:n space
S)K with reproducing kernel K(s, t) which is contained continuously in the
Hilbert space S)L with reproducing kernel £(s, t).

(5) In the same situation, there is a continuous selfadjoint operator G on S)L

such that G: £(s, ·)f --. K(s, ·)f, s E 0, f E~. The space S)K in (4) is
unique if and only if G has the unique factorization property.

When the equivalent conditions in Theorem 8.2 hold, then for any space S)K

as in (1), the decomposition in (3) can be chosen so that ±K±(s,t) are reproducing
kernels for the spaces S)~ in a fundamental decomposition S)K = S)k EB S)j(. In
fact, we need only choose ±K±(s,t) to be the reproducing kernels for the spaces
in a fundamental decomposition.

Proof. The equivalence of (1)-(3) follows from Theorem 7.1.
(4) We use £(s,t) to construct a reproducing kernel KreIn space S)K for

K(s, t) as in the proof of Theorem 7.1. The reproducing kernel Hilbert space S)L

is naturally identified with the abstract space denoted in the same way in §7, and
the associated Gram operator G has the action described in (5). By Lemma 7.2(2)
there is a continuous operator A* on S)L into S)K such that

A*: £(s, ·)f --. K(s, ·)f, s E 0, f E~.

The adjoint of this operator is the inclusion mapping A from S)K into S)L. Thus
G = AA* and S)K is contained continuously in S)L.

(5) Assume that G has the unique factorization property, and let S)~ and
S)'k be two KreIn spaces with reproducing kernel K(s, t) which are contained con
tinuously in S)L. The two Kolmogorov decompositions induced as in (8.1) are
equivalent by Theorem 7.3. It follows that the identity mapping on the linear span



Methods of KreIn Space Operator Theory 53

5)0 of all functions K (s, .) f, s E 0, and f E J, extends to a unitary operator from
5)1< onto 5)'k. The continuity of evaluation mappings for any reproducing kernel
KreIn space implies that whenever W: h I (-) --+ h I (-), then h(l(s) = h2 (s) for all
s E O. Thus 5)1< and 5)'k are identical.

In the other direction, the existence of distinct KreIn spaces 5)1< and 5)'k with
reproducing kernel K(s, t) contained continuously in 5)L implies the existence of
two nonequivalent L-continuous Kolmogorov decompositions. By Theorem 7.3,
the Gram operator G does not have the essential uniqueness property in this
situation. 0

Suppose that 0 is an open set in the complex plane. A Hermitian kernel
K(w, z) on 0 x 0 with values in £(J) for some KreIn space J is holomorphic if it
is a holomorphic function of z and iiJ.

Theorem 8.3. Let 0 be an open set in the complex plane, and let K (w, z), w, z E 0,
be a holomorphic Hermitian kernel with values in £(J) for some Krdn space J.
The following assertions are equivalent:

(1) K(w, z) is the reproducing kernel for some Krezn space 5)K of holomorphic
functions on 0;

(2) K(w,z) has a nonnegative holomorphic majorant L(w,z) on 0 x 0;
(3) K(w, z) = K+(w, z) -K_(w, z) for some nonnegative holomorphic kernels

K±(w, z) on 0 x O.

When these conditions hold, then moreover:

(4) For a given nonnegative holomorphic majorant L(w, z) for K(w,z), there
is a Krdn space 5)K of holomorphic functions with reproducing kernel
K(w, z) which is contained continuously in the Hilbert space 5)L with re
producing kernel L(w, z).

(5) In the same situation, there is a continuous selfadjoint operator G on 5)L

such that G: L(w, ·)f --+ K(w, ')f, wE 0, f E J. The space 5)K in (4) is
unique if and only if G has the unique factorization property.

Proof. It is well known that the reproducing kernel Hilbert space associated with a
nonnegative holomorphic Hermitian kernel consists of holomorphic functions, and
conversely. Given this, we proceed as in the proof of Theorem 8.2 to obtain the
result. 0

The conditions for existence of a reproducing kernel KreIn space are auto
matically satisfied in many cases of interest. Suppose that 0 is an open set in the
complex plane.

Theorem 8.4 (Alpay [4]). Let K(w, z) be a holomorphic Hermitian kernel on 0 x 0
with values in £(J) for some Krezn space J. Assume that 0 is a disk or half
plane, and that K (w, z) is bounded relative to some and hence any norm which
determines the strong topology of J. Then there exist nonnegative holomorphic
Hermitian kernels K±(w, z) such that K(w, z) = K+(w, z) - K_(w, z), w, z E O.
In particular, K(w, z) satisfies the equivalent conditions (1)-(3) of Theorem 8.2.
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Proof. Without loss of generality, take n = D. It is also sufficient to prove the re
sult when ~ is a Hilbert space, since otherwise we need only consider X* K(w, z)X,
where X is an invertible continuous operator on ~ onto a Hilbert space. Let Hi
be the Hardy space of holomorphic ~-valued functions on D.

For any polynomial p(z) with coefficients in ~ and 0 < r < 1, the formula

defines a holomorphic function on the disk Izi < r. This function is independent
of r. It is enough to show this for a monomial p(z) = fz m , f E ~. If K(w, z) =
2:~ An (z )wn , then in this case

which is independent of r.

Let p(z) be any polynomial with coefficients in~. We show that the function
hp belongs to Hi and IIhpllH2 :s M Ilp11H2, where M > 0 is a constant. Given any

3' 3'

P E (0,1) and p < r < 1,

The constant M in the estimate is any bound for IIK(w, z)II.c(;J) on D x D. The
assertion follows on letting r i 1 and using the arbitrariness of p. It follows that
there is a bounded operator P on Hi such that P: p -+ hp on polynomials. The
operator P is selfadjoint by the symmetry of the kernel K(w, z). Applying P to
monomials of the form fwnzn and summing over n 20, we find that

P: (1- WZ)-l f -+ K(w, z)f,

and so for any f, g E ~ and 0:, j3 E D,

WED, f E~,
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In any way write P = P+ - P_, where P± are nonnegative selfadjoint operators
on H'&. Then kernels K±(w, z) of the required type are defined by requiring

(K±(a,/3)f,g)J = (P±{(l - az)-l f}, (1- /3z)-lg)H 2 •

3"

for all f,g E ~ and a,{3 E D. D

Theorem 8.4 can be used for unbounded as well as bounded kernels.

Corollary 8.5. Let S(z) be a holomorphic function on 0 = D, with possibly an
isolated set of points Z omitted. Assume that there is a bounded scalar-valued
function u(z) on D which is nonvanishing on 0 and such that u(z)S(z) is bounded
relative to some and hence any norm which determines the strong topology of~.

Then the kernels

1J - S(z)S(w)* and S(z)S(w)* (8.3)
1- zw 1- zw

satisfy the equivalent conditions (1)-(3) of Theorem 8.2 on 0 x O. In particular,
they are reproducing kernels for Krdn spaces f:J(S) and 9)1(S) of functions on o.

Proof. Each of the kernels has the form K(w, z) = L(w, z)j(l - wz), where
u(z)L(w, z)u(w) is a bounded holomorphic Hermitian kernel on D x D (any re
movable singularities of u(z)S(z) are presumed to be removed). By Theorem 8.4,
u(z)L(w,z)u(w) = M+(w,z) - M_(w,z), where M±(w,z) are nonnegative holo
morphic kernels on D x D. Thus

K(w, z) = L(w, z)
1-wz

=~ u~:)M+(W,z) (u7:)) - - ~ ~:)M_(W,z) (u7:))-

The two sums on the right define nonnegative holomorphic kernels K±(w, z) such
that K(w,z) = K+(w,z) - K_(w,z) on 0 x O. This verifies condition (3) in
Theorem 8.2, and the each of the kernels (8.3) is the reproducing kernel for some
Krein space of functions on O. D

8.2 Reproducing kernel Pontryagin spaces

Again consider a Hermitian kernel K(s, t), s, tEO, with values in ,C(~) for
some fixed Krein space ~ and nonempty set o. Stronger results than those above
hold when K(s, t) has Ii, negative squares, that is, the maximum number of negative
eigenvalues of all matrices

((K(Sj,Si)!J,Ji)J )~j=l' 8b··· ,8n EO, iI,···,in E~, n 2: 1,

is a nonnegative integer Ii,. In this case, we write sq_ K = Ii,. An associated repro
ducing kernel space f:JK automatically exists. It is unique and a Pontryagin space
of negative index Ii,. Conversely, the reproducing kernel of any given reproducing
kernel Pontryagin space is a Hermitian kernel which has Ii, negative squares [71J.
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The classical Aronszajn theory of sums and differences of kernels has a natural
generalization in the present setting.

Theorem 8.6. Let K(s, t), K1(s, t), K 2 (s, t) be Hermitian kernels on 0 x 0 with
values in £(J) for some Krdn space J. If K(s, t) = K1(s, t) + K 2(s, t), then

sq_ K :::; sq_ K 1 + sq_ K 2 .

Suppose these numbers are finite, and let SJ1, SJ2, SJ be the associated reproducing
kernel Pontryagin spaces. Then the following conditions are equivalent:

(1) sq_ K = sq_ K 1 + sq_ K 2 ;

(2) SJl and SJ2 are contained continuously and contractively as complementary
spaces in SJ;

(3) the intersection lJt = SJl n SJ2 is a Hilbert space in the inner product

h, k E lJt.

o

Theorem 8.7. Let SJ,SJl be Pontryagin spaces of functions defined on a set 0
with values in a Krdn space J and such that SJl is contained continuously and
contractively in SJ. If the spaces have reproducing kernels K (s, t), K 1(s, t), then

K 2 (s, t) = K(s, t) - K1(s, t)

defines a Hermitian kernel such that sq_ K 2 = sq_ K - sq_ K 1. The associated
reproducing kernel Pontryagin space SJ2 is also contained continuously and con
tractively in SJ, and SJl and SJ2 are complementary spaces in SJ.

Theorem 8.8. Let K(w, z) be a holomorphic kernel on 0 x 0 with values in £(J)
for some Krdn space J and region 0 in the complex plane. Let 0 0 be a subregion
of0, and assume that the restriction of K(w, z) to 0 0 x 0 0 has Ii negative squares.
Then K(w, z) has Ii negative squares on 0 x O.

Proofs. See [5, Theorems 1.1.4, 1.5.5, 1.5.6].

8.3 On pre-KreIn spaces

Another special case of the general theory of Kolmogorov decompositions
gives results on completions of inner product spaces. We again follow [26].

If an inner product space SJo is nonnegative, a standard quotient-completion
construction produces an essentially unique Hilbert space. More generally, let SJo
be any linear and symmetric inner product space. Define a quotient space SJo/sn,
where sn is the set of elements of SJo which are orthogonal to the full space. If [f]
is the coset determined by any f E SJo, we obtain an inner product on SJo/sn by
writing

([f], [g])5jo/'Jt = (j,g)5jo' f,g E SJo·
The quotient space is nondegenerate: the only element which is orthogonal to the
full space is the zero element. In the nonnegative case, this means that the inner
product is strictly positive, and therefore SJo has an essentially unique completion
to a Hilbert space. In general, we are interested to know, under what conditions
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does a nondegenerate inner product space have a "completion" to a KreIn space,
and when is such a completion unique?

We first give formal definitions. Let .1)0 be a nondegenerate inner product
space with inner product (-,.)no' A completion of .1)0 is a KreIn space .I) which
contains .1)0 isometrically as a dense subspace (that is, SJo is a dense linear subspace
of.l) and (f, g)n = (f, g) no for all f, 9 E SJo). By a nonnegative majorant for (-, .)no
we mean a nonnegative inner product (-,.) + on SJo such that

f E SJo.
Since we assume that SJo is nondegenerate, such a majorant is strictly positive
[26, p.929]; thus SJo has a completion to a Hilbert space SJ+ relative to (', .) +, and
there is a Gram operator G E £(S'h) such that

f,g E SJo.

The Gram operatorGis selfadjoint and satisfies IIGII :::; 1. Two completions.l)1 and
SJ2 of SJo are equivalent if the identity mapping on SJo extends to an isomorphism
from SJl onto SJ2. We call SJo a pre-KreIn space if it has a completion and any two
completions are equivalent.

These notions correspond to their counterparts in §7 for an associated Her
mitian kernel. Namely, given a nondegenerate inner product space .1)0 as above,
we define a Hermitian kernel by setting

f,g E SJo·

The index set for the kernel is SJo itself, and the underlying spaces are all chosen
to be C, the complex numbers in the Euclidean metric. It is immediate from the
definitions that SJo has a completion if and only if the Hermitian kernel has a
Kolmogorov decomposition. The definitions of nonnegative majorant and Gram
operator for the inner product correspond to the same notions for the Hermitian
kernel.

Theorem 8.9. IfSJo is a nondegenerate inner product space, the following are equiv
alent:

(1) SJo has a completion to a Krdn space;
(2) the inner product of SJo has a nonnegative majorant (-, -)+;
(3) the inner product of SJo is a difference of nonnegative inner products.

If these conditions hold and (-, .)+ is a nonnegative majorant as in (2), there is a
completion.l) ofSJo which is contained continuously in the Hilbert space completion
SJ+ of SJoin the (necessarily strictly positive) inner product (-, .)+. Any two such
completions are equivalent if and only if the associated Gram operator for the
nonnegative majorant has the unique factorization property.

Theorem 8.9 is a special case of Theorems 7.1 and 7.3. It can also be proved
directly by repeating arguments in this special case. In a similar way, Theorem 7.4
yields:
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Theorem 8.10. A nondegenerate inner product space no is a pre-Krein space if
and only if (i) it satisfies the conditions (1)-(3) of Theorem 8.9, and (ii) the Gram
operator for every nonnegative majorant has the unique factorization property.

9. The contractive substitution property

We return to the problem of de Branges on the coefficients of univalent functions
(see §2): do the conditions (2.2) characterize initial segments B l , . .. ,Br of the
coefficients of a normalized univalent function which is bounded by one in the unit
disk? The answer, as already indicated, is negative, but there is more to the story.
It is not hard to see that the conditions are sufficient for r = 1,2 [51, Theorem
3.4], and they are also sufficient in the limit as r -> 00 [15]:

Theorem 9.1 (de Branges). Let B(z) = BlZ+B2Z2+B3Z3+ ... be a formal power
series such that B l > 0 and (2.2) holds for all r = 1,2, ... , every v = -1, -2, ... ,
and every generalized power series (2.1). Then B(z) represents a univalent func
tion which is bounded by one in the unit disk.

See [66] for an account of the original proof by de Branges; a different proof is
due to Nikolskii and Vasyunin in their work on coefficient problems and functional
analytic aspects of the proof of the Bieberbach conjecture [59, 60] (see Theorem
D180, p. 1219, and the remark D270, p. 1225, in the English translation of [60]).

The conditions (2.2) are reduced to a procedure which is analogous to the
Schur algorithm in Christner, Li, and Rovnyak [21]. The classical Schur algorithm
does not make sense in the present context, but the operator transcription in
Foias and Frazho [40] can be adapted to the indefinite situation using properties
of Julia operators as discussed in §5. The outcome is that if B l , .. . , B r , B l > 0,
are given numbers satisfying (2.2) for all real numbers v, then the set of numbers
Br+l such that BI, ... ,Br , Br+l' satisfy the same conditions with r replaced by
r + 1 is the intersection of a family of closed disks ~r(v), -00 < V < 00. The
centers and radii of the disks ~r(V) are functions of B ll ... ,Br which are given by
recursive formulas. The formulas were implemented in a Mathematica program by
an undergraduate student, A. Pitsillides [61]. A typical run is shown in the Figures
1-5 below. In each case, the white oval region inside the system of circles shows
the possible values of Br+l for the given numbers B l , ... ,Br . The same formulas
produced a counterexample when r = 3 in another undergraduate project by D.
Dreibelbis [31]: the numbers

1 1 4 i
B l = 6' B 2 = 4' B3 = 15 + 18 (9.1)

satisfy (2.2) with r = 3 for all real v, but there is no univalent function which has
the form

1 1 2 (4 i) 3 4
B(z) = 6 z + 4 z + 15 + 18 z + O(z )

and is bounded by one in the unit disk.
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FIGURE 1. Possible values of B3 if B 1 = 0.2 and B 2 = -0.2 + 0.15 i
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FIGURE 2. Possible values of B4 if B 3 = 0.1 - 0.2 i
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FIGURE 3. Possible values of B 5 if B 4 = -0.02 + 0.2 i
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FIGURE 4. Possible values of B6 if B 5 = -0.05 - 0.15 i
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FIGURE 5. Possible values of B7 if B6 = 0.06 + 0.05 i

Nevertheless, there is numerical evidence in favor of something like (2.2). The
most basic example of a normalized univalent function which is bounded by one in
the unit disk is a bounded Koebe mapping, by which we mean a solution B(z) =
Bb,a,u(Z) of the functional equation fa,u(z) = ib,u(B(z)), where 0 < a :S b < 00,
lui = 1, and

ft,u(z) = tz/(1- uz)2, 0 < t < 00,
is a Koebe function [65, §8.1]; that is,

Bb,a,u(z) = fb~~(Ja,u(Z)). (9.2)

Compositions of bounded Koebe mappings provide many data sets for numerical
experiments. It appears that counterexamples such as (9.1) are only possible when
numbers are chosen very close to the boundaries of the regions predicted by (2.2).
In private discussions, M.A. Dritschel and the author have considered possible
variations of (2.2), including:

Problem. Let Bl, B2, B3, B 4 be given numbers with B l > O. If (2.2) holds for
r = 4, all real numbers v, and all generalized power series (2.1), are B l , B 2, B 3
the coefficients of a normalized univalent function which is bounded by one in the
unit disk?

The numbers (9.1) are not a counterexample because there is no way to
choose B 4 to meet the conditions. More generally, if (2.2) holds for some numbers
B l , ... , B r (Bl > 0), are some of these numbers the coefficients of a normalized
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univalent function which is bounded by one in the unit disk? A related problem
asks if, in some sense, the bounded Koebe mappings (9.2) playa role analogous
to single Blaschke factors.

Problem. Let B 1 , ... , B r be numbers with B 1 > o. If there exists a univalent
and normalized function B(z) satisfying IB(z)1 :::; 1 on D and such that B(z) =
B 1z + ... + Brzr +O(zr+l), can B(z) be chosen to be a composition of r bounded
K oebe mappings?

The answer is affirmative for r = 2, and numerical evidence for r = 3 seems
strong.

The coefficients of univalent functions, and in particular bounded univalent
functions, are extensively studied in the literature on classical function theory. The
first four coefficients are investigated by [73]; connections with the problems stated
above may be present but are not transparent to the author.
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Abstract. Realization theory is used to study Nevanlinna-Pick and Caratheo
dory-Fejer interpolation problems for generalized Schur classes. In the first
part of the paper, conditions are given for the existence of a solution of a
factorization problem that includes Nevanlinna-Pick interpolation and factor
ization problems of Leech type for operator-valued functions. In the second
part, an analysis is made of the numbers of positive and negative eigenvalues
of classical matrices which arise in coefficient problems. The complete solution
of an indefinite Caratheodory-Fejer problem is obtained.

Introduction

The classical approach to functions S(z) in the generalized Schur class SI< is by
means of the Schwarz-Pick kernels on the unit disk D. In the scalar case, which
for the moment we assume, recall that these are defined by

K ( )
_ 1- S(z)S(w) K-( ) _ 1 - S(z)S(w)

s w, z - 1 -, s w, z - 1 - ,-zw -zw

(

Ks(w, z) S(z) - ~(W))

Ds(w, z) = S(z) _ Sew) z - w ,
K§(w, z)

z-w

where S(z) S(z). If S(z) is analytic on an open subset n of D and one of
the three kernels has K, negative squares, then all three kernels have K, negative
squares [3, Theorem 2.5.2]. In this case S(z) has an extension to a meromorphic
function on D, and SI< is defined as the set of all such functions. The general
theory and interpolation properties of generalized Schur functions are developed

A. Dijksma is grateful to Mr. Harry T. Dozor for supporting his research through a Dozor
Fellowship at the Ben-Gurion University of the Negev, Beer-Sheva, Israel. J. Rovnyak is supported
by NSF Grant DMS-9801016.
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in well-known papers including Adamjan, Arov, and Krein [1], Ball and Helton [7],
KreIn and Langer [17, 18], Nudel/man [19], and Takagi [21]' to name a few. The
Schwarz-Pick kernels also arise in the realization theory of co-isometric, isometric,
and unitary colligations [3], where they are reproducing kernels for state spaces.
In this paper we study problems of the Nevanlinna-Pick and Caratheodory-Fejer
types in which realization theory and kernels such as (1) and their generalizations
play an important role.

In Part I we consider a form of the Nevanlinna-Pick interpolation problem
which can also be viewed as a factorization problem: given functions A(z) and
B(z) on a subset n of the unit disk, we seek a function S(z) in 8", such that

B(z) = A(z)S(z) (2)

w,z E n.

on n. Nothing is assumed about the set n, and so the factorization problem in
cludes Nevanlinna-Pick interpolation. When n is an open set and A(z) and B(z)
are holomorphic, (2) is a factorization problem of Leech type [3,5]. Set

K(w, z) = A(z)A(W) - B(z)B[W) ,
1- zw

If a solution S(z) of (2) exists, then K(w,z) = A(z)Ks(w,z)A(w). Therefore a
necessary condition for the existence of a solution is that the kernel K(w, z) has Ii

negative squares. In Part I we show that when this necessary condition is satisfied
and additional properties hold, it is possible to construct a solution of (2) in the
form of a characteristic function

S(z) = H + wG(1 - wT)-l F

of a partially isometric operator colligation V = {T, F, G, H}. We note that such
expressions appear in many places in interpolation theory and applications in
systems theory (for example, see Ball, Gohberg, and Rodman [6]). In systems
language, we may think of the function A(z) as an input, and then the problem (2)
is to find a system whose transfer function produces the output B(z) = A(z)S(z).
The results of Part I are presented for operator-valued functions.

In Part II we discuss coefficient problems and their connection with the ker
nels (1). In this case also realization theory plays a role in establishing analytic
ity (see Theorem 8). Necessary conditions for the existence of solutions derived
from the three kernels (1) are shown to be equivalent (Theorem 7). Using re
sults of lokhvidov [13], we provide a complete solution to an indefinite form of
the Caratheodory-Fejer problem analogous to results of Woracek [22, 23] for the
Nevanlinna-Pick problem. The solution is obtained by means of an equivalence of
two matrix extension problems, one involving lower triangular Toeplitz inatrices
and the other Hermitian Toeplitz matrices. Scalar-valued functions are assumed
in Part II.

An Appendix is devoted to a result that identifies the number of negative
squares of a holomorphic kernel K(w, z), Iwl < R, Izi < R, in terms of the coeffi
cients in the Taylor expansion K(w,z) = L::,n=oCmnzmwn.
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I. Interpolation and factorization

The most natural setting for the factorization problem (2) uses operator-valued
functions. Let J and Qj be Pontryagin spaces having the same negative index (in
most of our applications these are Hilbert spaces). For any integer y;, 2: 0, the
generalized Schur class SI«J, Qj) is the set of functions 8(z) with values in 'c(J, Qj)
which are holomorphic on some subregion n of the open unit disk D such that the
kernel

Ks(w, z) = 1 - S(z)S_(w)*
l-zw

(3)

(4)

A(wo)g = 0 and

has y;, negative squares. If 8(z) belongs to SI«J, Qj), 5)(8) is the Pontryagin space
with reproducing kernel (3). Terminology and notation follow [3] (the definition of
SI«J, Qj) in [3] requires the functions to be holomorphic at the origin, and we do
not require this now). In particular, sq_H is the number of negative squares of a
Hermitian kernel H. In the scalar case, that is, when J = Qj = C is the space of
complex numbers in the Euclidean metric, we write SI< instead of SI«J, Qj).

Our first result contains the main construction, and it is in some sense the
most general possible for the method. In Theorem 2 we recast the conditions in a
more geometrical form in a particular case.

Theorem 1. Let J, Qj, it be Hilbert spaces, and let n be a subset of the unit disk
containing the point woo Let A(z) and B(z) be functions on n with values in
,C(Qj, it) and'c(J, it). A ssume that the kernel

K(w, z) = A(z)A(w)* - B(z)B(w)*
l-zw

has y;, negative squares on n x n, and let 5)K be the associated reproducing kernel
Pontryagin space. Let 9J1 be the subspace of 5)K EfJ Qj consisting of all elements
k(z) EfJ 9 such that

z-wo
---r=====;===;::;;: k(z) + [A(z) - A(wo)]g == 0 on n.
JI-lwol 2

Let S)1 be the subspace of 5)K EfJ J consisting of all elements h(z) EfJ f such that

1 - zwo
---r=====;=~ h(z) + B(z)f == 0 on n.
JI-lwoJ2

Assume that 9J1 and S)1 are Hilbert spaces in the inner products of the larger spaces.
Then there is a function 8 (z) E S1<' (J, Qj) for some y;,' ::; y;, such that

B(z) = A(z)S(z)

for z = Wo and for all but at most y;, points z of n \ {wo}. In this case, y;,' = y;, if
and only if the elements h of 5)(8) such that A(z)h(z) == 0 on n form a Hilbert
subspace of 5)(S).
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The function 8(z) which is constructed in the proof is holomorphic at Wo0
The subspaces 9Jt and S)1 defined in the statement of the theorem are automati
cally closed by the continuity of function values in a reproducing kernel space [3,
Theorem 1.1.2].

Proof. It is sufficient to prove the result when 0 E 0 and Wo = O. For suppose
that the result is known in this case, and consider the general situation. Let ({J be
the linear fractional mapping of D onto itself given by ({J(z) = (wo - z)j(l- zwo).
Thus ({J(wo) = 0 and ({J-l = ({J. Put 0' = ((J(O), wb = 0, and

A'(z) = A(({J-l(z)),

B'(z) = B(({J-l(Z)),

z EO',

z EO'.

w,z EO',

Define K'(w,z) on 0' x 0' by (10) using A'(z) and B'(z) in place of A(z) and
B(z). A short calculation shows that

'() 1 - Iwo 1

2
( -1 ( ) -1 ( ))K w, z = (1 )(1 ) K ({J w, ({J z,- zWo - wWo

and so sq_K' = "'; write f:JK' for the associated reproducing kernel Pontryagin
space. The preceding reproducing kernel identity may be used to show that the
mapping

V': f(z) ----> Jl -1~oI2 f(({J-l(Z))
1- zWo

acts as an isometry from f:J K onto f:J K'. Writing 9Jt and S)1 for the subspaces defined
in the theorem for the original functions A(z) and B(z) and point Wo E 0, and
9Jt' and S)1' for the corresponding subspaces relative to A' (z) and B' (z) and point
wb E 0', we find that

Since we assume the result when 0 E 0 and Wo = 0, we can find a function
8'(z) E SK'(~' lB) for some ",' :::; '" such that 8'(z) is holomorphic at wb = 0 and
B'(z) = A'(z)8'(z) for z = wb and for all but at most", points z of 0' \ {wb}.
Then 8(z) = 8'(({J(z)) has the required properties.

Thus without loss of generality, we may assume that 0 E 0 and Wo = O.
Define a linear relation R in (f:JK EB lB) X (f:JK EB~) as the span of all pairs

((

K(a,,)ul ) (K(a,.)=-K(O'·)Ul+ K (O,.)U2)) (5)

A(a)' : A(O)' u,+ A(O)'u,' B(a)'~ B(O)' u,+ B(O)'u,

with a E 0 \ {O} and Ul, U2 E .ft. A direct calculation shows that R is isometric.
In fact, consider a second pair with a replaced by (3 and Ul, U2 replaced by VI, V2·
Expand and simplify the inner products of the first members in f:JKEBlB and second
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members in f)K EB J. After simplification, in both cases we obtain

(K( (3) ) (
A«(3)A(ex)* - A«(3)A(O)* - A(O)A(ex)* + A(O)A(O)* )

ex, Ul,Vl J{ + (3 Ul,Vl
ex J{

(
A(O)A(ex)* - A(O)A(O)* ) (A((3)A(O)* - A(O)A(O)* )+ - Ul,VZ + (3 UZ,Vl

ex J{ J{

+ (A(O)A(O)*uz, vz) J{' (6)

and this verifies the assertion. The orthogonal complement of the domain of R is
9Jl, and the orthogonal complement of the range of R is sn. Since these are Hilbert
spaces, it follows from [3, Theorem 1.4.2] (or [4, Theorem 2.2]) that there is a
continuous partial isometry

such that V* has initial space domR and final space ran Rand

(

K()

) (

K(ex,.) - K(O,·) K(O))ex,' Ul _ Ul + " Uz

V', A(a)': A(O)' u, + A(O)'u, ~ B(a)'~ B(O)' u, + B(O)'u,

for all ex E n \ {O} and Ul, Uz E st. Calculating as in [3, p. 51]' we find that

(Th)(z) = h(z) - A(z)Gh, zEn \ {O},
z

(Ff)(z) = B(z) - A(z)H f, zEn \ {O},
z

A(O)Gh = h(O),

A(O)Hf = B(O)f,

for all h E f)K and f E J.
Since V is a partial isometry whose kernel is a Hilbert space, V is a contrac

tion. The embedding mappings EJ and E r8 from f)K into f)K EB J and f)K EB ®
are contractions (in fact isometries), and their adjoints act as projections. The
adjoints are also contractions because we assume that J and ® are Hilbert spaces.
Therefore

T = E;'VEJ
is a contraction on the Pontryagin space f)K. By [15, Lemma 11.1 (p. 75))' the
part of the spectrum of T that lies in IAI > 1 consists of normal eigenvalues. By
[15, Theorem 11.2 (p. 84)], the span of root manifolds for eigenvalues in IAI > 1
is contained in a nonpositive subspace, and hence the number of such eigenvalues
is at most sq_f)K = Ii. It follows that 1 - zT is invertible for all but at most Ii

points in D. Since these exceptional points obviously do not include 0, 1 - zT is
invertible for all zEn \ {AI, ... ,Aq } for some nonzero numbers AI, ... ,Aq in D;
here q ::; Ii and possibly q = 0 when there are no exceptional points.
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Claim 1: IfwEn \ {AI, ... ,Aq }, hE 5')K, and (1 - WT)-lh = g, then

g(z) = zh(z) - wA(z)Gg, zEn \ {w}, (7)
z-w

and h(w) = A(w)Gg.
Since this is trivially true if w = 0, assume that w #- O. Then

h(z) = g(z) - w g(z) - A(z)Gg, zEn \ {O}. (8)
z

Since w #- 0, we can take z = win (8) to get h(w) = A(w)Gg. Again by (8),

(z - w)g(z) = zh(z) - wA(z)Gg

for zEn \ {O}. Trivially the last identity holds for z = 0 as well, and we obtain
(7).

Claim 2: Define S(w) = H + wG(l - WT)-l F for all wED \ {Al"'" Aq }. Then

B(w) = A(w)S(w)

for all wEn \ {Al, ... , Aq }.

The case w = 0 is clear. Assume wEn \ {Al,"" Aq } and w #- O. Fix f E ~.

We use Claim 1 with 9 = (1- WT)-lh, h = Ff. Thus

wA(w)G(l - WT)-l Ff = wA(w)Gg = wh(w) = w (Ff)(w) = B(w)f - A(w)Hf.

Claim 2 follows.

Claim 3: S E 8", for some K/ ::; K.

It is clear from the definition of S (z) that it is a holomorphic function on
D \ {Al,"" Aq }. For all w, zED \ {Al,"" Aq }, by the identity [3, (1.2.9)],

1 - S(z)S(w)* = (G(l - ZT)-l 1) ((1- W~*)-lG*)
_ (zG(l - ZT)-l 1) VV* (w(1- W~*)-lG*)

= (G(l - zT)-l 1) ((1- W~*)-lG*)
_ (zG(l- ZT)-l 1) (W(l- W~*)-lG*)

+ (zG(l- ZT)-l 1) (1 _ VV*) (W(l- Wr)-lG*)

= (1 - zw)G(l - zT)-l(l - WT*)-lG*

+ (zG(1- ZT)-l 1) (1- VV*) (W(l - Wr)-lG*) .

Since 1-VV* ;::: 0 in the partial ordering of selfadjoint operators, 1-VV* = M M*
for some operator M E 'c(::D, 5')KEB<B), where::D is a Hilbert space (see, for example,
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[12, Theorem 2.1]; we can choose M so that it has zero kernel, but this property
is not needed. Therefore

Ks(w, z) = G(l - ZT)-I(l- WT*)-IG* + <I>(z)<I>(w)*, w, zED \ {AI, .. " >'q},
1-zw

(9)
where

<I>(z) = (zG(l - zT)-1 1) M, zED \ {AI, .. " >'q},
is a holomorphic function with values in £(1), Q)). The first summand on the right
of (9) has "," negative squares for some "," ::; '" by [3, Lemma 1.1.1'], and the second
summand is nonnegative because 1) is a Hilbert space. Thus by [3, Theorem 1.5.5]
the kernel (9) has ",I negative squares, where ",I ::; "," ::; "'. Hence S E SIlO" which
proves Claim 3.

The function S(z) has the required properties by Claims 2 and 3. The last
statement, which gives the condition for ",I = "', follows from [3, Theorem 1.5.7].

o
The next result identifies a case in which the conditions in Theorem 1 can be

verified. Namely, we assume that the values of A(z) are "square" in the sense that
~ = Q) and so the values of A(z) are in £(Q)). We also assume that one of these
values is invertible, and we take this to be 1\5.

Theorem 2. Let;Y and Q) be Hilbert spaces, and let A(z) and B(z) be functions
which are defined on a subset n of D with values in £(Q)) and £(J, Q)). Assume
that the kernel

K(w, z) = A(z)A(w)* - ~(z)B(w)* (10)
1-zw

has'" negative squares on n x n, and let Y:JK be the associated reproducing kernel
Pontryagin space. Assume that there is a point Wo E n such that

(1) A(wo) = 1\5, and
(2) the set of elements of Y:JK which vanish on n \ {wo} is a Hilbert subspace

of Y:JK.

Then there is a function S(z) E SK'(;Y' Q)) for some ",I ::; '" such that

B(z) = A(z)S(z)

for z = Wo and for all but at most", points z of n \ {wo}. In this case, ",I = '" if
and only if the elements h of Y:J(S) such that A(z)h(z) = 0 on n form a Hilbert
subspace of Y:J(S).

The function S(z) constructed in the proof is holomorphic at woo

Proof. The last statement follows from [3, Theorem 1.5.7]. It is convenient to
assume that 0 E nand Wo = O. If the result is known in this case, then as in
the proof of Theorem 1, define A'(z) and B'(z) on n ' = <p(n) , where <p(z) =
(wo - z)/(l - zwo). As in the same proof, introduce the kernel K'(w, z) and
isomorphism V' from Y:JK onto Y:JK'. Under V', the functions in Y:JK which vanish
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on 0 \ {wo} correspond to the functions in nK' which vanish on 0' \ {w~}, where
w~ = O. Then as before, the special case implies the general result.

In what follows, we assume that 0 E 0 and Wo = O. We apply Theorem 1
in this situation and also with ~ = lB. It is easy to see that the subspace 9R in
Theorem 1 coincides with the the set of elements ofnK which vanish on 0\ {O} and
is thus a Hilbert space by hypothesis. We show that the subspace S)1 in Theorem 1
is a Hilbert space. By the first part of the proof of Theorem 1, S)1 is the orthogonal
complement of the range of the relation R in nK EB~, and therefore it is the
same thing to show that the range of R contains a strictly negative subspace of
dimension K. By [3, Lemma 1.1.1'], it is sufficient to show that some Gram matrix
of elements of the range of R has K negative eigenvalues. In fact, consider two of
the second members of the pairs (5) that define R, say

(

K(a, .~ : K (D,: u, + K(D, .)u,)
B(o:) - B(O) B(O)*----'---'----'---'- U1 + U2

0:

and (K«(J, .~; K(D, ~ v, + K(D, .)"') .

B((3) ; B(O) Vi + B(O)*V2

By (6), since now A(O) = lIB, the inner product of these elements in nK EB ~ is
equal to

/ A(0:)* - lIB A((3)* - lIB )
= (K(o:,(3)Ui,Vi)1B + \ 0: Ui +U2, (3 Vi +V2 lB'

Here we can choose 0:, (3 and Ui, U2 arbitrarily, and then choose Vi, V2 so that

A(o:)* - lIB A((3)* - lIB
a Ui + U2 = (3 Vi + V2 = o.

Since we assume that sq_K = K, it follows that some Gram matrix of elements
of the range of R has K negative eigenvalues, as was to be shown. This completes
the proof that S)1 is a Hilbert space.

The hypotheses of Theorem 1 are thus met, and Theorem 1 yields a function
S(z) E S",,(~,IB), K' :::; K, such that B(z) = A(z)S(z) for z = 0 and for all but at
most K points z of 0 \ {O}. 0

We give another condition for interpolation. Suppose that S(z) belongs to S'"
and is holomorphic at the origin. Then zS(z) also belongs to S"', and thus both
kernels

1- S(z)S(W)
1-zw

and
1 - zwS(z)S(W)

1- zw
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have Ii negative squares (see [3, Example 1 on p. 132]). In the other direction, a
condition on two kernels is sufficient for interpolation from an arbitrary set n with
at most a finite number of exceptional points.

Theorem 3. Let A(z) and B(z) be functions defined on a subset n of the unit disk
D with values in £(Q;, Jt) and £(J, Jt), where J, Q;, Jt are Hilbert spaces. Assume
that both

K1(w, z) = A(z)A(w)* - ~(z)B(w)*
1-zw

and
K

2
(w, z) = A(z)A(w)* - zw_B(z)B(w)*

1-zw
have Ii negative squares on n x n. Then there is a function 8 (z) in S,,' (J, Q;),
Ii' :::; Ii, such that

B(z) = A(z)8(z)

for all but at most Ii points z of n. In this case, Ii' = Ii if and only if the elements
h of 5)(8) such that A(z)h(z) == 0 on n form a Hilbert subspace of 5)(8).

The proof uses a different colligation from that of Theorem 1. It is adapted
from the work of V.E. Katsnelson, A. Kheifets, and P.M. Yuditskil; see Kheifets
[16] for an account and references to earlier works. The idea is used by Ball and
Trent [8], who extend it to a several variable setting and apply it in a form for
reproducing kernel functions that is close to our situation.

Theorem 3 is a non-holomorphic analog of [5, Theorem 11]: there the co
efficient spaces are indefinite, but we have the stronger hypothesis that n is a
neighborhood of the origin and A(z) and B(z) are holomorphic. Now the func
tions A(z) and B(z) are not assumed to be holomorphic, but in compensation J
and Q; are required to be Hilbert spaces (for simplicity we have taken Jt to be a
Hilbert space also, but this plays no role in the argument). The proof of Theorem 3
runs along the same lines.

Proof. Write 5)(K1) and 5) (K2 ) for the Pontryagin spaces with reproducing kernels
K1(w,z) and K 2 (w,z). Define a relation

It is easy to see that R is isometric. We show that the domain 9Jt of R contains a
maximal uniformly negative subspace of 5)(Kd E& J. To this end, consider a Gram
matrix of the form
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where WI, ... ,Wn are any points in nand k1 , ... ,kn are arbitrary vectors in .K
Thus

M = (( [K1(Wj, Wi) + B(Wi)B(Wj)*] kj , ki)fi.)n = ((K2 (Wj,Wi)kj ,ki )fi.f .
t,J=1 t,J=1

Since we assume that K 2 (w, z) has K, negative squares, M has at most K, negative
eigenvalues no matter how WI, ... ,Wn and k1 , ... ,kn are chosen, and some such
Gram matrix has exactly K, negative eigenvalues. By [3, Lemma 1.1.1'], 9Jt contains
a K,-dimensional subspace which is the antispace of a Hilbert space in the inner
product of Sj(KI) EB J. Since

sq_(Sj(KI) EB J) = K"

this verifies the assertion. It follows that the closure of 9Jt in Sj(K1) EB J is a regular
subspace whose orthogonal complement 9Jtl- is a Hilbert space.

By [3, Theorem 1.4.2], the closure of the range of R is likewise a regular
subspace l)1 of Sj(K1) EB IB, and we can construct a partial isometry

with initial space 9Jt and final space l)1 such that

V*= (~: ~:): (W~~~~~~k) ~ (;(~;~~k)
for all k E j{ and all wEn. Thus for wEn,

T* {wK1 (w, ·)k} + G* {A(w)* k} = K 1 (w, ·)k,

and
F* {wK1(w, ·)k} + H* {A(w)*k} = B(w)*k.

Hence

(11)

(12)

(1 - wT*) {K1 (w, ·)A(w)* k} = G* {A(w)*k}. (13)

Since ker V is a Hilbert space, V is a contraction. As in the proof of Theorem
1, because we assume that J and IB are Hilbert spaces, T is a contraction, and
the part of the spectrum of T that lies in IAI > 1 consists of at most K, normal
eigenvalues.

Let n' = n \ {AI, ... ,Aq }, where AI, ... ,Aq are the points A of the unit disk
at which 1 - AT is not invertible (q :::; K,). For all wEn' and all k E j{,

K 1(w, ·)k = (1- WT*)-IG*{A(w)*k}

by (13). Define

S(z) = H + zG(l- ZT)-1 F,

Then
B(w) = A(w)S(w), wEn',

by (11) and (12). The proof that S E 8", for some K,' :::; K, is the same as in the
proof of Theorem 1. The last statement follows from [3, Theorem 1.5.7]. 0
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In the next theorem, we allow ~,lB,.It to be indefinite, but the functions A(z)
and B(z) are required to be holomorphic. This yields a new result of Leech type
factorization theorems as a companion to those of [5].

Theorem 4. Let~, lB, .It be Krdn spaces with sq_~ = sq_lB < 00. Let 0 be a
subregion of the unit disk containing the origin. Let A(z) and B(z) be holomorphic
functions on 0 with values in £(lB,.It) and £(J,.It). Assume that the kernel

K(w, z) = A(z)A(w)* - B_(z)B(w)*
1 _ zw (14)

has", negative squares on 0 x 0, and let S)K be the associated reproducing kernel
Pontryagin space. Let 9J1 be the subspace of S)K EB lB consisting of all elements
k(z) EB g such that

A(O)g = 0 and zk(z) + [A(z) - A(O)]g = 0 on O.

Let 1)1 be the subspace of S)K EB ~ consisting of all elements h(z) EB f such that

h(z) + B(z)f = 0 on O.

Assume that 9J1 and 1)1 are Hilbert spaces in the inner products of the larger spaces.
Then there is a function S (z) E SK' (~, lB) for some ",' :; '" which is holomorphic
at the origin and such that

B(z) = A(z)S(z)

for all but at most", points z ofO. In this case, ",' = '" if and only if the elements
h of S)(S) such that A(z)h(z) = 0 on 0 form a Hilbert subspace of S)(S).

Proof. We repeat the constructions in the proof of Theorem 1. The partial isometry
V is again a contraction in the present situation. In general, the operator T is not
a contraction, but it is a bounded operator and so (1 - WT)-I is defined for Iwl
sufficiently small. The argument goes through if we restrict attention to a suitable
neighborhood of the origin. At the end, the identity B(z) = A(z)S(z) extends to
all but at most", points of 0 by analytic continuation. 0

II. Coefficient and moment problems

Let ZI, ... ,Zn be points in the unit disk, and let WI, ... ,Wn be any complex num
bers. If we specialize Part I to the scalar case and set 0 = {ZI, ... , zn}, A(zj) = 1,
and B(zj) = Wj for all j = 1, ... , n, then the interpolation problem in Part I
reduces to the Nevanlinna-Pick problem. The indefinite form of interpolation was
introduced by Takagi [21], and it has been studied by Adamjan, Arov, and Krein
[1], Krein and Langer [18], and others. A rather complete picture of the solution of
the indefinite Nevanlinna-Pick problem emerged from this work. A remaining issue
concerning the degenerate case was recently settled. Namely, one can ask, for which
nonnegative integers", can the Nevanlinna-Pick problem be solved in SK for given
data ZI, ... ,Zn and WI, ... , wn? A more precise question can be posed. Define SV,7r
as the class of all meromorphic functions S(z) on the unit disk for which the kernel
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Ks(w, z) has v negative squares and 1r positive squares (thus SV,1r is a subclass
of Sv). For which nonnegative integers v and 1r can the Nevanlinna-Pick problem
be solved in SV,1r for given data Zl, ... ,Zn and Wl, ... ,wn? These questions were
answered by Woracek [22, 23] (with the disk replaced by the upper half-plane),
yielding a complete solution of the Nevanlinna-Pick problem in the scalar case.

We consider analogous questions for the indefinite Caratheodory-Fejer prob
lem and obtain a complete solution in the scalar case. The solution depends on
results of lokhvidov [13] on a related trigonometric moment problem. In the posi
tive definite case this connection is well known. We refer to [13] for references to
the original papers (some jointly with M.G. KreIn) pertaining to this problem. A
key step involves another application of the characteristic function of a partially
isometric operator colligation, which was the principal tool in Part I.

Problem I (Caratheodory-Fejer problem). Let ao, al,"" an-l be n complex num
bers. For which nonnegative integers Ii is there a function S(z) in S" which is
holomorphic at the origin and such that S(z) = ao +alZ +... +an_lZn- l +O(zn)
in a neighborhood of the origin? For which v and 1r do there exist solutions in
SV,1r ?

Necessary conditions on coefficients are obtained from the series expansions
of standard kernel functions. Suppose that S(z) is a holomorphic (scalar-valued)
function defined in a neighborhood of the origin. Let S(z) = ao +alZ +a2z2 +...
be its Taylor series expansion, and write

C"
0 0

D- C"
0 0

DTr = al ao 0
Tr = al 0,0 0

ar-l ar-2 ar-3 ar-l ar-2 ar-3
(15)

r a2 a3

~ )Qr = a2 a3 a4 ar+l (16)

a2r-l 'ar ar+l ar+2

r = 1,2, .... Set S(z) = S(z). Straightforward calculations yield the expansions

K ( ) - 1 - S(z)S(W) - ~ c p-q
s w, z - 1 - L.J pqz w ,-zw p,q=O

- ---- 00

K-( )_l-S(Z)S(w)_ ~ C p-q
s w, z - 1 _ zw - L.J pqz w ,

p,q=O

(

Ks(w, z) S(z) - S(W))

Ds(w, z) = S(z) _ Sew) z - w L Dpqzpw
q

,
Ks(w, z) p,q=O

z-w
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Thus the coefficients ao, al,' .. of S(z) give rise to three families of matrices:

1 ~ r ~ n/2,

(17)
n = 0,1, .... For fixed n, the matrices (17) depend only on ao, . .. , an-I.

If S(z) belongs to 8"" then the three kernels each have fi, negative squares [3,
Theorem 2.5.2]. It follows that the number of negative eigenvalues of each of the
matrices in (17) is a nondecreasing function of the order of the matrix, and this
number is ultimately equal to fi, in each case (see the result in the Appendix at
the end of the paper).

If S(z) belongs to 8",11" similar remarks apply not only to the number of
negative squares but also to the number of positive squares. For simplicity, suppose
that S(O) =1= 0, and note the identities

Ks(w,z) = -S(z)KI/S(w,z)S(w),

Ks(w, z) = -S(z)KI/S(w, z)S(w),

(
S(Z) 0) (S(W)

Ds(w, z) = - 0 S(z) DI/S(w, z) 0

The numbers of positive squares of

Ks(w, z),Ks(w, z), Ds(w, z)

thus coincide with the numbers of negative squares of

KI/S(w, z), KI/S(w, z), DI/S(w, z),

respectively. Hence if one of the three kernels has Jr positive squares, then all
do. In this case, applying the previous assertions concerning negative squares, we
see that the number of positive eigenvalues of each of the matrices in (17) is a
nondecreasing function of the order of the matrix, and this number is ultimately
equal to Jr in each case.

This raises questions concerning the general behavior of the numbers of neg
ative and positive eigenvalues for the matrices (17) whenever (15) and (16) are
defined for any complex numbers ao, al,"" whether these numbers are the Tay
lor coefficients of a holomorphic function or not. We show that the behavior is
indeed always similar to the special cases noted above: the numbers of negative
(positive) eigenvalues for the three types are nondecreasing functions of the order,
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and if one eventually has some constant value, then all have the same constant
value eventually. These questions are purely algebraic. There is a separate conver
gence question, namely, under what conditions are the given numbers aD, aI, ...
the Taylor coefficients of a holomorphic function S(z) in 5", or 5v ,7I"? Finally, if
we only define (15), (16), and (17) as far as we can go with a finite sequence
aD, ... , an-I, what are the possible extensions to an infinite sequence aD, al, ... ?

To answer such questions, we relate given complex numbers aD, ... , an-l to
a trigonometric moment problem. Define Co = 1, Cl, ... ,Cn by

!
Co = 1,
Cl = coao,
C2 = COal + ClaD,

Cn = COan-l + Clan-2 + ... + Cn-laO,

(18)

This correspondence is one-to-one and has the property that if aD, ... ,an-l corre
sponds to Co = 1, Cl, ... ,Cn then for each 1 :::; k :::; n, aD, ... ,ak-l corresponds to
Co = I,Cl,'" ,Ck also via (18) with n replaced by k. We consider the associated
matrix

co Cl C2 cn

Cl CO Cl Cn-l

Mn = C2 Cl Co Cn-2 (19)

Cn Cn-l Cn-2 CO

In the sequel I n stands for the selfadjoint and unitary n x n matrix

I n = (~~ ~~)
1 0 0 0

Also define

o
Co

Cr-l

C_(Ir
r- 0

Theorem 5. Let aD, at, ... ,an-l be complex numbers and define Co = 1, CI, ... , Cn
by (18). The following equalities hold:

M = B (1 0) B* = B* (Ir - T:Tr 0) B 1<_ r :::; n, (20)r r 0 Ir _ TrT: r r 0 1 r,

Mr = B;er - tr*fr ~) BTl 1:::; r :::; n, (21)
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and

1:::; r :::; n/2. (22)

In (21) as in (15), a bar on a matrix indicates that all entries of the matrix
are replaced by their complex conjugates.

Proof. The first equality in (20) can be shown by induction. The second equality
follows from the first. To see this, use the identities

and

to obtain

(23)

Cr +2

S:)
M r '

M_(Mr-l
2r - Sr

nJ r +1 Br*J r +1

= B* (Ir - T;Tr 0) B
r 0 1 r,

which is the second equality in (20). We get (21) on replacing the entries of the
matrices by their complex conjugates.

We prove (22). Assume 1 :::; r :::; n/2. Then

(

Cr Cr-l

Sr = Cr+l Cr

C2r C2r-l

In (23) we use the first equality in (20) to obtain

(M,_' S' )
M 2r = Sr

Br GI r ~~rT;) B:

C' 0) (M,_' G:~~:T;)) (~ ;;) .= 0 Br B;lSr

Due to the lower triangular form of Br , we get

(1 0 0

:)(~
Cr-l e,)

C
Cr-l '}B;ISr = * 1 0

* Zr

* * *
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With this definition of Zr and (20), we obtain

c z; )

C~-~e C, ) (~ 0 Ie _TeT: 0)

(0 ~; J(: ;J

(

Ir 0)
o B;

B* Cr - T;Tr 0) B (0 z; J
~c0)

r 0 1 r
(Ie 0)

o Br ( r)
o B;

Zr I r - TrT;

B;-l (z; )
o ... 0
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Here the matrix

(
lOrc; =

is invertible. Note also that

0) (B;
Br 0

o
1

*
so that with Yr defined in this way, we have

1 ::; r ::; n/2. (24)

We now identify Yr as

("" ar-l a,)
Y
r
= ar+l a r a2 (25)

a2r-l a2r-2 a r

From the definition of B r we find that

1 0

:)B-1 = (-~ 1
r

-ar-l -ar -2

It follows that

(cr Cr-l Cl)

B;lSr = (", ar-l a,)
ar+l a r a2

B r - 1

a2r-l a2r-2 a r

and

c"
ar-l

a')Zr = ar+l a r a2
B r - 1 .

a2r-l a2r-2 a r
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Finally, we obtain

(C'
ar-l a,) 0) (B~" :)(Yr 0) = (Zr 0) B;l = ar+l ar a2

B r- l

a2r-1 a2r-2 ar

((~
ar-l a,) 0}ar+l ar a2

a2r-1 a2r-2 ar

Substituting this in (24) we obtain (22).

Jr)o .
o

o

A number of consequences follow. For any Hermitian matrix A we write
1r(A) and v(A) for the numbers of positive and negative eigenvalues of A counting
multiplicity.

Corollary 6. Let ao, aI, ... ,an-l be complex numbers.
(1) Each of the four quantities

1:::; r:::; n,

1 :::; r :::; n/2,

is a nondecreasing function of r.
(2) For 0 :::; r :::; n,

and
- -* -*-1r(Ir - TrT;) = 1r(Ir - T;Tr) = 1r(Ir - TrTr ) = 1r(Ir - Tr Tr).

(3) If v(In - TnT;;') = "', then all of the matrices in (17) have at most", negative
eigenvalues.

The condition v(In - TnT;;') = '" is necessary that ao, al,"" an-l are the
first n Taylor coefficients of a function in S". The point of statement (3) in the
preceding corollary is that no stronger necessary condition can be obtained from
the other matrices in (17).
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Proof. Define Co = 1, Cl, ... , en by (18) and associated matrices M r as in (19).
(1) By the first equality in (20),

v(Ir - TrT;) = v(Mr ),

7r(Ir - TrT;) = 7r(Mr ) - 1.

By (22),

85

o

V
(

Ir - TrT; Qr)
- -* = v(M2r ),

Q;' Ir - TrTr

7r (
Ir - TrT; Qr)- -* = 7r(M2r )-1.

Q;' Ir - TrTr

If s < r, then M s is a submatrix of M r obtained by deleting a set of rows and
corresponding columns, and therefore v(Ms) ~ v(Mr), yielding (1).

(2) The first and third equalities hold by (20). Since JrT; = TrJr and hence

the second equality also holds.
- -*(3) By part (2), v(In - TnTn ) = v(In - TnT:;) = /'i,. By the proof of (1), if

1 ~ r ~ n/2, then

v (Ir - TrT;

Q;'

and this proves (3).

Corollary 7. Let aD, al, a2,'" be complex numbers. If one of the three nondecreas
ing sequences

{v(Ie - TeT;ll;", {v(Ie - TeTe'{ , {{e -Q:eT; Ie _~edr
has constant value /'i, from some point on, then all do. If one of the three nonde
creasing sequences

We -TeT;ll;", {.(Ie- TeTe'{, {{e -;e
T
; Ie -~,TJr

has constant value /'i, from some point on, then all do.

Proof. Define Co = 1, Cl, ... ,Cn by (18) and associated matrices M r as in (19).
The corollary follows on expressing all of the quantities in terms of the sequences
{v( M r )}~l and {7r(M r )}~l' For example, for the negative eigenvalues, if one of
the quantities has constant value /'i, from some point on, then v(Mr) = /'i, for all
sufficiently large r, and all have constant value /'i, from some point on. 0



(26)

86 D. Alpay, T. Constantinescu, A. Dijksma, and J. Rovnyak

We next recall a result from [11] on the convergence of power series. We
include a proof for the convenience of the reader and to show the role of realization
theory: the coefficients of the power series are represented as Taylor coefficients of
a transfer function, which is holomorphic in a neighborhood of the origin.

Theorem 8. Let ao, aI, a2, . .. be complex numbers such that the matrices I j 
TjT/ have /'i, negative eigenvalues for all sufficiently large j. Then the power series
S(z) = 2:~o ajzj converges in some disk Izi < (j where (j > O.

Proof. Let ~ = C be the complex numbers viewed as a Hilbert space in the
Euclidean metric. Define co, Cl, C2, . .. by (18). Then by (20), the matrices (19) have
/'i, negative eigenvalues for all sufficiently large r, that is, the sequence co, Cl, C2, ...
belongs to \PI<' As in Iokhvidov and KreIn [14, pp. 312-314]' construct a Naimark
dilation for co, Cl, C2, ... ; that is, we construct a Pontryagin space.ti that contains
~ isometrically as a regular subspace, and a unitary operator U E £(.ti) such that

Cj=P3'Uj l3', j=0,1,2, ... ,

where P3' is the projection on .ti with range ~. Since ~ is a regular subspace of .ti,
we can write .ti = Sj EEl ~ where Sj is a regular subspace of .ti. Let

U = (~ ~)
relative to this decomposition. We show that

ao = D and am = CAm- l B, m ~ 1.

The cases m = 0, 1 are immediate. We prove the formula for am assuming it is
known for ao, ... ,am-l. By (18),

Cm+l = coam + Clam-l + ... + cmao,

so it is the same thing to show that

Cm+l = COCAm- l B + clCAm- 2 B + ... + cm-lCB + cmD. (27)

Put

(
A B)j = (Aj
C D Cj

j ~ O.

Then

(
Am+! Bm+!) = (Am Bm) (A B) _ (AmA + BmC AmB + BmD)
Cm +! Dm+! Cm Dm C D - CmA + DmC CmB + DmD .

Since Dj = P3'Uj l3' = Cj for all j ~ 0, Cm +! = CmB + CmD. This allows us to
bring (27) to the form

CmB = COCAm- l B + clCAm- 2B + ... + cm-lCB. (28)

Dropping the factor B on the right in each term, we easily verify (28) by induction:
the formula is evident for m = 1, and the inductive step follows from the identity
Cm +! = CmA + cmC. This completes the proof of (26). The identity (26) implies
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that laj I :::; K pl for some positive constants K and p, and therefore the power
series 2::;:0 ajzj converges in a neighborhood of the origin. 0

We can now relate Problem I to an indefinite form of the trigonometric mo
ment problem.

Let !,pK (!,pv,7I") be the set of all sequences {Cj}~o with Co = Co such that the
matrix Mr has K, negative (v negative and 7r positive) eigenvalues for all sufficiently
large r.

Problem II (Trigonometric moment problem). Let co, C1, . .. , Cn-1 be n complex
numbers with Co = Co. Determine for which nonnegative integers K, there is a se
quence {cp}~o in!,pK that extends the given numbers. Determine for which non
negative integers v and 7r there is a sequence {cp}~o in !,pv,7I" that extends the
given numbers.

This problem is an indefinite form of the trigonometric moment problem
and it was considered by lokhvidov and KreIn [14, §19]. In the classical case, this
concerns the Fourier coefficients, or moments,

Cj = Je-ijt df.L(t), j = 0, ±1, ±2, ... ,

of a nonnegative measure f.L on [0, 27r). In this case, the matrix (Ci- j )i,j=o is non
negative for every n 2: 0, since

t Ck-jAk)..j =1 t Ak)..je-i(k-j)t df.L(t)
j,k=O [0,211") j,k=O

= 1 It Ake-ikt/2 df.L(t) 2: °
[0,271") j,k=O

for arbitrary numbers AD, ... , An· When f.L is a probability measure, Co = 1. The
classical trigonometric moment problem is to extend given numbers Co, C1, ... ,Cn-1
with Co = CO to such a moment sequence. In the indefinite extension, we still speak
of the "trigonometric moment problem," but the underlying function theory is not
the same.

We can show now that Problem I and Problem II are equivalent.

Theorem 9 (Equivalence of Problems I and II). Assume that the numbers ao, ... ,
an-1 and Co = 1, C1, ... ,Cn-1 ,Cn are connected as in (18). Then Problem I is
solvable with the data ao, ... ,an-1 if and only if Problem II is solvable with the
data Co, ... ,Cn-1, Cn·

Proof. Suppose that Problem I with the data ao, ... , an-1 has a solution in SK.
Let

00

S(z) = Lajz
j

j=O
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be the Taylor expansion of this solution. By the necessary conditions for Problem I
discussed above, I j - TjTj* has /'i, negative eigenvalues for all sufficiently large j.
Define Cn+l, Cn+2,'" so that

Cj = COaj-l + Claj-2 + ... Cj-laO

for all j = 1,2, .... Then (20) implies that M j has /'i, negative eigenvalues for all
j = 0,1,2, .... Therefore co, Cl, C2, ... is a solution to Problem II with the data
Co,···, Cn-l, cn'

Conversely, assume that Problem II is solvable with the data co,.··, Cn-l, cn,
that is, the numbers can be extended to a sequence Co, Cl, C2,'" in ~K' Then the
matrices (19) have /'i, negative eigenvalues for all sufficiently large r. Reversing the
process above, we obtain a sequence ao, al, a2, ... that extends ao,··., an-l such
that the matrices I j - TjTj* have /'i, negative eigenvalues for all sufficiently large
j. By Theorem 8, the series S(z) = 'L';:oajz j converges in some disk Izl < <5

where <5 > 0, and by a theorem of KreIn and Langer in [18, Theorem 6.3], the
function S(z) so defined belongs to 8 K • Thus Problem I is solvable with the data
ao, ... ,an-l' The argument for the classes ~1/,71' and 81/,71' is similar. 0

We use a series of propositions from [13]. The matrices M o,Ml, M 2 , ... that
appear in the list below are Hermitian matrices of the form (19) defined for ap
propriate numbers Co = Co, Cl, C2, ... , and n is any positive integer. Recall that
for any Hermitian matrix A we write 7r(A) and v(A) for the numbers of posi
tive and negative eigenvalues of A counting multiplicity. The signature of A is
a(A) = 7r(A) - v(A). Write IAI for the determinant of A and p(A) = 7r(A) + v(A)
for the rank of A.

1°) The difference p(Mn) - p(Mn-d is either 0, 1, or 2.

2°) If p(Mn) - p(Mn- l ) = 0, then 7r(Mn) = 7r(Mn-d and v(Mn) = v(Mn-d.
3°) If p(Mn) - p(Mn-d = 1, then either 7r(Mn) = 7r(Mn-d + 1 and v(Mn) =

v(Mn- l ), or 7r(Mn) = 7r(Mn-d and v(Mn) = v(Mn- l ) + 1 .
4°) If p(Mn) - p(Mn-d = 2, then 7r(Mn) = 7r(Mn-d + 1 and v(Mn)

v(Mn-d + 1.
5°) If IMn-ll -I- 0, then there are infinitely many Cn such that p(Mn )

p(Mn-d·
6°) If IMn-ll = °and IMp(Mn_1)-ll -I- 0, then there is a unique Cn such that

p(Mn) = p(Mn-d·
7°) The assumptions in 6°) imply that there is a unique extension (Cj)~o of

(Cj)j~~ such that p(Mj ) = p(Mn- l ), j ~ n.

8°) There exists a Cn with p(Mn) = p(Mn- l ) if and only if /Mp(Mn_,)-ll -I- 0.
9°) If IMr-ll -I- °and /Mn-ll = ... = /Mrl = °for some °:::; r < p(Mn- l )
(IM_ll = 1 by definition), then p(Mn) = p(Mn-l) + 2.

10°) If IMn-ll -I- 0, then for each k = 1,2, ... , there are infinitely many en,
... , Cn+k-l such that V(Mn+k-d = v(Mn- l ) + k and IMn+k-ll -I- 0.
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110) If IMn-11 i- 0, then for each f = 1,2, ... , there are infinitely many Cn, ... ,
Cn+i'-l such that n(Mn+i'-I) = n(Mn- l ) + f and IMn+JH! i- O.

12°) a(Mn - l ) = L:;,:~sign(IMj-IIIMj1), where, by definition, 1M_I I = 1 and
sign 0 = O.

13°) If p(Mj ) is a constant p for all sufficiently large j, then IMp-II i- o.
Proofs. All of the citations below are from [13].

10) Corollary on p. 34.
2°) Theorem 6.2, p. 36.
3°) Theorem 6.3, p. 36.
4°) Theorem 6.1, p. 35.
5°) Theorem 13.1, p. 97, and Remark 1, p. 98.
6°) Theorem 13.2, p. 100, and Remark 1, p. 102.
7°) Corollary on p. 101 and Remark 1, p. 102.
8°) The "if" part follows from 5°) and 6°), the "only if" part from Theorem

15.3, p. 119.
9°) Proposition 3°, p. 12l.
10°) and 11°) It is enough to prove these statements for k = 1 in 10°) and

f = 1 in 11°). To do this, we use the proof of Theorem 13.1, p. 97, and Remark
1, p. 98, to construct infinitely many extensions with IMnl > 0 and infinitely
many extensions with IMnl < 0 (treat the subcases IMn- 2 1 i- 0 and IMn- 21= 0
separately using the argument on p. 99). Then 10°) and 11°) follow from 3°).

12°) Theorem 16.1, p. 129.
13°) Theorem 15.4, p. 119. D

Our solution of Problem II is presented in Theorem 10. The first parts of
the statements (a), (c), and (f) can be found in Iokhvidov's book as Excercise 8
on pp. 133-134; in the interest of completeness we prove these statements as well.
It is clear that a given sequence (Cj)j~~ does not have any extension (Cj)~o in
\1}" if v < v(Mn-d, and there is no extension in \1}",1r if either v < v(Mn-d or
n < n(Mn- I ), because by 1°)_4°), v(Mj ) and n(Mj ) are nondecreasing functions
of j. If an extension (Cj)~o belongs to the class \1}" then it is possible that p(Mj )
and hence also n(M j ) tends to 00 as j -+ 00. Such an extension does not belong
to any of the classes \1}",1r' According to 13°) a necessary condition for (Cj )~o to
belong to \1}",1r is that IM,,+1r-11 i- o.
Theorem 10. Let CO = CO, CI,"" Cn-l be given numbers, and define Mo, ... ,Mn- 1
as in (19).
Assume IMn-11 i- o.
(a) There exist infinitely many extensions in \1},,(Mn -,), even infinitely many

extensions in the smaller set \1},,(Mn _ 1 ),1r(Mn _,)'

(b) There exist infinitely many extensions in \1}"(Mn _,)+,,,1r(Mn _,)+1r for all
v ~ 0 and n ~ O.

Assume IMn- l != 0 and IMp(Mn_,)-11 i- O.
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(c) There is a unique extension in '.P1/(Mn-ll; it belongs to '.P1/(Mn-ll,rr(Mn-ll'
(d) There are no extensions in '.PI.' for

v(Mn-d < v < v(Mn-d + dimkerMn- 1;

there are no extensions in '.PI/,rr if

v(Mn-d < v < v(Mn- 1) + dimkerMn- 1

or if
1f(Mn-d < 1f < 1f(Mn-d + dimkerMn- 1.

(e) There are infinitely many extensions in '.PI/,rr for all pairs (v,1f) with

v ~ v(Mn-d + dimkerMn- 1 and 1f ~ 1f(Mn- 1) + dimkerMn- 1.

Assume IMn-11 = 0 and IMp(Mn_1l-11 = o.
(f) There are no extensions in '.P1/(Mn-ll'
(g) There are no extensions in '.PI.' if v < v(Mn- 1) + dimkerMn- 1; there are

no extensions in '.P1/,7r if

v < v(Mn-d + dimkerMn- 1

or if
1f < 1f(Mn-d + dimkerMn- 1.

(h) There are infinitely many extensions in '.P1/,7r for every pair (v, 1f) with

v ~ v(Mn-d + dimkerMn- 1 and 1f ~ 1f(Mn- 1) + dimkerMn- 1.

Proof. For any extension of the given sequence by numbers Cn , Cn +!, ... , we assume
that Mn, Mn+l, ... are defined as in (19).

(a) According to 5°) there are infinitely many Cn such that p(Mn) =

p(Mn-d = n. For such Mn we have IMnl = 0 and IMp(Mn)-ll -I- O. Hence by
7°) there is an extension (Cj)~o of (Cj)j~~ such that p(Mj ) = p(Mn- 1) for all
j ~ n - 1. Statement 2°) implies that

v(Mj ) = v(Mn- 1) and 1f(Mj ) = 1f(Mn-I), j ~ n - 1,

and hence (Cj )~o belongs to '.P1/(Mn-ll,7r(Mn-ll·
(b) By 10°) there are infinitely many numbers Cn such that v(Mn )

v(Mn-d + 1 and IMnl -I- O. Therefore p(Mn) = p(Mn-d + 1 and by 3°), 1f(Mn) =
1f(Mn-d. After.v steps, we obtain numbers Cn, ... ,Cn+I/-1 such that

IMn+I/-11 -I- 0, v(Mn+I/-1) = v, and 1f(Mn+l/-d = 1f(Mn-I)'

Using the same argument with 110) instead of 10°), we obtain numbers Cn+I/' ... ,
Cn+I/+7r-l (each of which can be chosen in infinitely many ways) such that

IMn+I/+7r-ll-l- 0, v(Mn+v+7r-l) = v, and 1f(Mn+I/+7r-d = 1f.
Now (b) follows from (a).

(c) According to 7°) there exists a unique extension (Cj)~o of (Cj)j~~ such
that

j ~ n.
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It follows from 2°) that also 7r(Mj ) = 7r(Mn-d and v(Mj ) = v(Mn-d for j 2: n.
Therefore there exists a unique extension of (Cj )j~~ in the class l.Pv(Mn-d and
this extension belongs to l.Pv(Mn_,),rr(Mn-d (for the uniqueness part, note that by
3°) the equality v(Mn) = v(Mn- 1 ) can only hold in the present situation when
p(Mn) = p(Mn- 1)).

(d) and (e). By hypothesis

IMn-11 = 0 and IMp(Mn_d-ll =/:- O. (29)

The unique extension described in part (c) of the theorem cannot meet any of
the conditions in parts (d) and (e); since for this extension p(Mn-d = p(Mn) =
p(Mn+!) = "', in parts (d) and (e) we need only consider extensions such that

p(Mn- 1 ) = ... = p(Mn+k-d < p(Mn+k)

for some k 2: O. In this situation (29) holds with n replaced by n +k, and therefore
we may restrict attention to extensions satisfying

(30)

By 6°), (30) holds for all but one choice of Cn; in what follows, we assume that Cn

is chosen so that (30) is satisfied. The question then is if the sequence (Cj )']=0 can
be further extended to an infinite sequence (Cj)~o as required in (d) and (e).
Case (i): p(Mn ) = n + 1.

Since p(Mn- 1 ) < n by (29), by 1°) we must have p(Mn-d = n - 1. Thus
dimkerM n - 1 = 1, and hence part (d) holds vacuously. Part (e) also holds in this
case. For by statement 4°), v(Mn) = v(Mn- 1 ) + 1 and 7r(Mn) = 7r(Mn-d + 1 and
since M n is invertible, part (e) follows from (a).
Case (ii): p(Mn ) < n + 1.

Then with r = p(Mn - 1 ), in view of (29) and (30),

IMr-11 = IMp(Mn_l)-ll =/:- 0, IMrl = ... = IMn-11 = IMnl = O.
Consider any extension of (Cj)']=o by a number Cn+!. By (30), r < p(Mn+!).
Applying 9°) with n replaced by n + 1, we obtain

p(Mn+!) = p(Mn) + 2,
and by 4°),

v(Mn+!) = v(Mn ) + 1 and

If p(Mn+d < n + 2, we can repeat this argument. We continue in this way for
k = 1,2, ... and extend (Cj)']=o with any numbers Cn+l, ... ,Cn+k, k = 1,2, ... ; by
9°) and 4°), we have r < p(Mn+d,

p(Mn+k) = p(Mn) + 2k,

V(Mn+k) = v(Mn) + k,

7r(Mn +k) = 7r(Mn) + k,

and
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provided p(Mn+k) = p(Mn) + 2k < n + k + 1. If equality holds, that is,

k = ko := n - p(Mn) + 1,
then Mn+ko is invertible and the process stops. Hence if such an extension of
(Cj)j=o can be continued to a sequence in a class \.lJ",1r' then necessarily

v 2: Vo := v(Mn+ko) = v(Mn) + ko = v(Mn) + n - p(Mn) + 1,
7r 2: 7ro := 1l'(Mn+ko) = 7r(Mn) + ko = 7r(Mn) + n - p(Mn) + 1,

and according to (a) and (b) each of the classes \.lJ" and \.lJ",1r contains infinitely
many extensions. Thus the first part of (d) and (e) will follow once we show that

Vo = v(Mn-d + dimkerMn- 1 and 7ro = 7r(Mn-d + dimkerMn- 1 .

Since IMn-11 = 0,12°) implies that

er(Mn ) - er(Mn - 1 ) = signlMn-11lMnl = 0

and since p(Mn) > p(Mn-d, we therefore have p(Mn) = p(Mn-d + 2, and by
4°), v(Mn) = v(Mn-d + 1 and 7r(Mn) = 7r(Mn-d + 1. This implies that Vo =
v(Mn- 1) + dimkerMn- 1 and also that 7ro has the desired value.

From the first part of (d) it follows that there are no extensions in \.lJ",1r if

v(Mn- 1 ) < v < v(Mn-d + dimkerMn- 1 ,

whatever the value of 7r. By considering the sequence (-Cj )j~J and its extensions
(-Cj )~o and applying the results just proved (together with v( - M j ) = 7r(M j ))

we find that there are no extensions in \.lJ",1r if

1l'(Mn-d < 7r < 7r(Mn-d + dimkerMn- 1

whatever the value of v.
(f) is part of (g).
(g) and (h). By 8°), (30) holds for any choice of Cn. This allows us to proceed

by an argument which is similar to the proof of (d) and (e) above; in case (ii)
there, the exact value of r is unimportant in order to obtain the conclusion. 0

We can now deal with Problem I. According to Theorem 9, we must apply the
previous result to the case where CO = 1, n is replaced by n+l, IMnl = lIn -TnT;;: I,
dim kerMn = dim ker (In - TnT;;:), and

p(In - TnT~) = p(Mn) - 1, 7r(In - TnT~) = 7r(Mn) - 1, veIn - TnT~) = v(Mn).

Note that \.lJ",1r corresponds to the class S",1r' with 7r' = 7r - 1. We obtain the
following solution for the Caratheodory-Fejer problem.

Theorem 11. Let ao, ... ,an-l be given numbers, and define Tl, ... ,Tn as in (15).
Assume lIn - TnT;;: I -=1= O.

(a/) There exist infinitely many solutions of Problem I in S,,(In-TnT:;) , even in
the smaller set S,,(In -TnT:;),1r(In- T nT:;)'

(b/) There exist infinitely many solutions in S",1r for all pairs (v, 7r) with v 2:
v(In - TnT;;:) and 7r 2: 7r(In - TnT;;:).
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Assume lIn - TnT~1 = 0 and IIp - TpT;1 =1= 0, where p = p(In - TnT~).

(c /)There is a unique solution in SVUn-Tn T;';); it belongs to

93

(d/)There are no solutions in Sv for v(In - TnT~) < v < v(In - TnT~) +
dim ker In - TnT~; there are no solutions in Sv;rr if

v(In - TnT~) < v < v(In - TnT~) + dim ker (In - TnT~)

or if

1r(In - TnT~) < 1r < 1r(In - TnT~) + dimker (In - TnT~).

(e/)There are infinitely many solutions in SV,11" for all pairs (v,1r) with

v;:::: v(In -TnT~)+dimker(In -TnT~) and 1r ;:::: 1r(In-TnT~)+dimker (In -TnT~).

Assume lIn - TnT~1 = 0 and IIp - TpT;1 = o.
(f/) There are no solutions in SvUn -TnT;';)'

(g/) There are no solutions in Sv if v < v(In - TnT~) + dimker (In - TnT~);

there are no solutions in SV,11" if

or if

1r < 1r(In - TnT~) + dimker (In - TnT~).

(hi) There are infinitely many solutions in SV,11" for every pair (v,1r) with

v;:::: v(In-TnT~)+dimker(In-TnT~) and1r;:::: 1r(In-TnT~)+dimker(In-TnT~).

We mention a consequence of the solution of Problem I for the case v
v(In - TnT~).

Corollary 12. Let ao, al,' .. ,an-l be numbers such that In - TnT~ has v negative
eigenvalues.

(1) If In - TnT~ is invertible, Problem I has infinitely many solutions in Sv·

(2) IfIn-TnT~ is singular and p(In-1 -Tn-IT~_I) = p(In-TnT~), Problem I
has a unique solution in Sv.

(3) If In -TnT~ is singular and p(In-1 -Tn-IT~_I) < p(In-TnT~), Problem I
has no solution in Sv.

The results in [9] and [11] give a solution to the existence and uniqueness
problems for the matrix versions of both the trigonometric moment problem and
CaratModory-Fejer coefficients problem in the indefinite case, but the question of
obtaining a matrix analogue of (d/)-(h /) in Theorem 11 is open.
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Appendix: A remark on holomorphic kernels

The result below is used in Part I and is well known in particular cases. The
general result is presumably also known, but we do not know a reference. For the
convenience of the reader, we sketch a proof.

Let K(w, z) = E:,n=o CmnzmiIP be a holomorphic Hermitian kernel defined
for Iwl < Rand Izi < R, with values in ,£(~) for some KreIn space ~. For any
nonnegative integer r, we may alternatively view the matrix (Cmn);"',n=O as a
selfadjoint operator on ~r+l = ~ EEl··· EEl~, where there are r + 1 summands on
the right side, or as a kernel on a finite set. The number of negative eigenvalues of
(Cmn);"',n=O as an operator and the number of negative squares of (Cmn);"',n=O as
a kernel coincide.

Theorem 13. Let /'i, be a nonnegative integer. Then sq_K = /'i, if and only if

V(Cmn);"',n=O s:; /'i,

for all nonnegative integers r and equality holds for all sufficiently large r.

We can formulate this result in another way. Let No be the set of nonnegative
integers. Define a kernel C on No x No by

C(m,n) = Cmn' m,n E No.

Then sq_K = sq_C. The theory of Kolmogorov decompositions [10] gives a nat
ural approach to this result, but we base our argument on similar notions for
reproducing kernel Pontryagin spaces.

Proof. Since a holomorphic Hermitian kernel has the same number of negative
squares on subregions [3, Theorem 1.1.4], by a change of scale we may assume
that R > 1. We may also assume without loss of generality that ~ is a Hilbert
space. Let H~ be the Hardy class of ~-valued functions on the unit disk D.

Assume that sq_K = /'i,. By a method of Alpay [2], we define a bounded
selfadjoint operator P on H~ such that

P: (1 - ZW)-l f --+ K(w, z)f, wED, f E~,

and
P: znf--+An(z)f, fE~, n=0,1,2, ....

where K(w,z) = E:'=oAn(z)wn, that is, An(z) = E:=oCmnzm for all n =
0,1,2, .... For another account of the construction of P, see [20, Theorem 8.4]. By
the spectral theorem, we can write

P = P+ + Po + P_,

where P± and Po are selfadjoint operators corresponding to the spectral subspaces
5)+, 5)-, and 5)0 = ker P for the sets (0,00), (-00,0), and {O}. Since sq_K = /'i"

dim5)_ = /'i,. Let ~ be HVker P. Write

[h] = h+kerP
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for the coset determined by an element h of H~. Define a nondegenerate inner
product on ~ by

([h], [kJ) ito = (Ph, k) H~' h,k E H~.

Using [15, Theorem 2.5, p. 20], complete ~ to a Pontryagin space .It having nega
tive index K,. The cosets determined by the polynomials are dense in H~/ ker P by
[15, statement (i) on p. 20], and therefore {[znf]: f E~, n = 0,1,2, ... } is a total
set in .It. By construction,

h,hE~, m,n=0,1,2, ....

Hence by [3, Lemma 1.1.1], the matrix (Cmn)~,n=O has at most K, negative eigen
values for all r = 0, 1,2, ... and one such matrix has exactly"" negative eigenvalues.
Since the number of negative eigenvalues of (Cmn)~,n=O is a nondecreasing func
tion of r, this number is K, for all sufficiently large r.

Conversely, assume that the matrix (Cmn)~,n=O has at most K, negative eigen
values for all r = 0,1,2, ... and exactly K, negative eigenvalues for all sufficiently
large r. By what we showed above, if we can only show that sq_K :::; K" it will
follow that sq_K = K,. Let No be the set of nonnegative integers, and define a
kernel C on No x No by

C(m, n) = Cmn , m,n E No.

Our hypotheses imply that sq_C = K,. By [3, Theorem 1.1.3], there is a unique
Pontryagin space S)C of functions h = {hn}~o on No with reproducing kernel C.
This means that for eachmE No and f E ~, the sequence C(m, ·)f = {Cmnf}~=o

belongs to S)C, and for any element h = {hn}~=o of S)C,

({hn}~=o,{Cmnf}~=o).f)c = (hm, f)J'

By [3, Theorem 1.1.2], we can represent the kernel C in the form

m,n E No,

where for each kENo, At, is the evaluation mapping on S)C to ~: At, ({hn}~=o) =
hk • By the Cauchy representation, the operators Cmn are uniformly bounded, and
therefore for wand z in a suitable neighborhood of the origin,

00

K(w, z) = L A~Amzmwn = A(w)* A(z),
m,n=O

where A(z) = 2::=0 Amzm. The values of A(z) lie in the Pontryagin space S)C,

which has negative index K,. The restriction of K(w, z) to a suitable neighborhood
of the origin thus has at most K, negative squares, and since the number of negative
squares is independent of the domain (see [3, Theorem 1.1.4]), sq_K :::; K,. As noted
above, this implies that sq_K = K,. 0
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Stable Dissipative Linear Stationary
Dynamical Scattering Systems

D.Z. Arov
(translated and with an appendix by D.Z. Arov and J. Rovnyak)

D.Z. Arov and J. Rovnyak dedicate this tmnslation and the remarks that follow to Harry Dym,
with affection and appreciation for his many contributions. D.Z. Arov wishes also to say that it

has been a great pleasure to work with Harry for the past ten years.

Introduction

In the theory of passive linear electrical networks, the Darlington method is well
known as a realization of a finite ideal passive I-port with losses via a finite ideal
passive lossless 2-port closed by one resistance [9J. The_reflection coefficient e of
such a I-port is an element of the scattering matrix e of a corresponding loss
less 2-port; the lossless behavior is indicated in the property that 8 has unitary
values on the boundary of the physical domain (in the right or upper half-plane,
or inside the unit disk). The consideration of scattering matrices allowed Belevich
to generalize Darlington's result on fi~te ideal n-ports with losses [16J. Darling
ton himself did not consider e and e but other frequency characteristics: the
impedance Z of I-ports and the transmission matrix Ii of 2-ports (Z and Ii have
simple representations by means of e and 8). In this way, the Darlington result
was generalized to finite ideal n-ports with losses by V.P. Potapov [14] and his
student E.Ya. Melamud [12].

It should be mentioned that Darlington proposed his method of network syn
thesis [18J as universal, which can be applied in the investigation via a frequency
characteristic of systems with losses of an arbitrary physical nature. After Dar
lington, but independently from him, the representation of the scattering matrix
e of a system with losses as a block of a scattering matrix 8 of a lossless system
was used in the physics of nuclear reactions [l1J.

The main part of this paper consists of a translation of the article "YcTOM'IBhIe .n;MCC~maTMBHble

JIMHeMHhIe cTaUMoHapHhIe .n;MHaMM'IeCKMe CHCTeMhI paCCeJlHMJI," Journal of Operator Theory 2,
no. 1 (1979), 95-126, which was prepared by the author and J. Rovnyak. Commentary and an
update of the results are provided by D.Z. Arov in Appendix 1. Appendix 2 by D.Z. Arov and
J. Rovnyak shows some directions for generalizations and further development; this work was
supported by NSF grant DMS-9801016.
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Nevertheless, simple analytical considerations demonstrate that if, for exam
ple, 8 has unitary values only on some interval of the boundary of the physical
domain, the Darlington method is not applicable. In the paper [1] the author
selected a natural class BlI of scattering matrices 8 which have a Darlington rep
resentation: 8 E BlI if and only if 8 is a holomorphic and contractive function
in the physical domain that has in a certain sense (via boundary values almost
everywhere across the boundary) a continuation into the exterior of the domain,
and which has a representation here as a ratio of holomorphic bounded functions.
Independently from the author, a generalization of the Darlington method for the
class BlI was obtained by Dewilde [19] inspired by the corresponding Belevich
result for rational matrix-valued functions (see also Douglas and Helton [20]). The
values of the function 8 can be linear operators acting from one Hilbert space
to another. Starting with [1], the author considered two forms of the Darlington
representation: first by consideration of the scattering matrix of a lossless system
(independently from Belevich), and second via the transmission matrix. In this
paper the representations in the first form are considered. They are obtained and
described for operator-valued functions 8(z) (izi < 1) of a wider class than BlI.
In the matrix case these classes coincide.

The description of the Darlington representation of 8 is given in the form

8 = (I 0) (<PI° b2 ho
8) (bI 0)
<P2 ° I '

where <pi(z) and <P2(Z) are outer functions which are the solutions of the factor
ization problem

(1(1 = 1),

ho(() is a function which is defined by the relation

(1(1 = 1),

and bi(z) and b2 (z) are inner functions such that b2 (()ho(()b l (() are the boundary
values of a bounded holomorphic function defined for [z[ < 1. From among the
"denominators" {b~ bd of the function ho, minimal ones are selected in a natural
way; the minimal 8 correspond to them. The description of Darlington represen
tations in the second form, which is given in the paper [2], can be obtained by
passing from the first form to the second.

It is known [13], [8], that an arbitrary function 8(z) which is holomorphic
and contractive for Izl < 1 with unitary boundary values 8(() (1(1 = 1, a.e.) can
be realized as the transfer function (scattering matrix)

8(z) = S+ zG(I - zT)-l F

of some minimal (controllable and observable) stable conservative linear stationary
dynamical scattering system Q with discrete time
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with Hilbert spaces m- (input), m+ (output) and 55 (state space). The conser
vativ~e~ c~nditio~ for the scattering system a is equivalent to~the r~quirement

that F, T, G, and S, are the blocks of an operator which maps 91- EB Sj unitarily
onto 55 EB m+; the stability condition means that

s-lim Tn = 0, s-lim (T*t = 0, (1' E Coo),
n----Jo(X) n--i-(X)

and the conditions of controllability and observability are
00

55 = V (T*)nc*m+
o 0

(Vfln is the smallest subspace which contains all fl n } The Darlington representa
tion of 8 in the first form, in the form of a block of 8, is associated in the present
paper with a realization of 8 as the scattering matrix of a stable dissipative linear
stationary dynamical scattering system 0, which is obtained via a by losses of
parts of some scattering channels: in 0 the input space 91- and output space 91+
~e subspaces of spacesm- and m+, respectively, the state space Sj coincides with
Sj, and the coefficients are

F = PI91+ , T = t, G = P<n+C, S = P<n+SI91-.

It is proved here (Theorem 3) that the dissipative system 0 obtained in this way
is minimal if and only if 8 is minimal.

Functions 8 of the class Bll are realized as the scattering matrices of systems
o with basic operators T of the class Co, which was introduced and investigated
by B. Sz.-Nagy and C. Foias [13, 25-27]. It will be proved here (Theorems 5, 6):
1) if T E Co, then 8 E Bll; 2) if 8 E Bll, then for a minimal system 0 with
scattering matrix 8 we have T E Co, and moreover the minimal function mT(z)
of the contraction T does not depend on the choice of minimal system 0, and
it is in fact the minimal scalar denominator be(z) of the function 8(1/z) (be(z)
is contained in the set of the scalar inner functions b(z) such that b(z)8(I/z) is
a holomorphic and contractive function for Izi < 1, and be(z) is a divisor of all
such b(z)); 3) for minimal 8 we have be(z) = be(z). Proposition 1 (and 2) were
announced in [3] (see also [4]).

With the Darlington repesentation of 8 we obtain in particular the synthesis
of a stable, controllable, optimal system a, i.e. such that for each other passive
system 0 with the same scattering matrix 8, for arbitrary 'P-'; (E 91-), n ?: 0, we
have

II trkF'P-'; II ~ II tTkF'P-,;II·
k=O k=O

The existence of a controllable optimal system is proved in the paper for an
arbitrary scattering matrix 8.

For scattering systems with continuous time, one can obtain corresponding
results via passage to scattering systems with discrete time by Cayley transform
(see [7]).
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For resistance and transmission systems with discrete and continuous time,
one can obtain dissipative realizations of transfer functions (impedance matrices
and transmission matrices) by passing to corresponding scattering systems.

The author's results on impedance matrices which are analogous to Theorems
7,8, and 5 and obtained by the same methods will be presented in another place.

Note that the consideration of a stable dissipative scattering system differs
from a scattering scheme which satisfies Lax-Phillips postulates [24] with orthog
onal subspaces :D- and :D+, "incoming and outgoing waves" (see [3], [23]), only
by ignoring Lax scattering channels. This is the reason why the Darlington repre
sentation of 8 in the first form arises in the work of C. Foias [21] and Bondy [17].

A dissipative scattering system has a conservative dilation and can be ob
tained from it by excluding the inner Lax scattering channels from consideration
(see [7]). Thus by Darlington's method one can obtain two types of realizations
involving losses of part of the exterior scattering channels: a conservative (see [4])
and a dissipative. Both types in essence are considered in the physics of nuclear re
actions [11] (pp. 147-148), where the dissipative realization leads to the Teichmann
and Wigner method.

Finally we shall indicate an application of the description of minimal e to
the synthesis of electrical networks. For rational real matrix-functions 8 of size n,
contractive for Izl < 1, the minimal e are rational matrix functions of size n + r,
where r = rank [1 - 8*(l/z)8(z)], and one can choose such e to be real (see
[2], §6).

Via these 8 one can obtain the realizations of 8 as scattering matrices of
ideal n-ports that have a minimal number of resistances, equal to r, and at the
same time a minimal number me + mL of capacitors and inductors, equal to the
degree of the rational matrix function 8(z), me + mL = deg 8 = deg e. (The
problem to obtain such a realization of 8 was formulated by Tellegen [28].) It is
enough to realize e as the scattering matrix of a lossless ideal (n + r)-port with
me + mL = deg e, for example in the manner indicated in Helton [22], and then
r corresponding exterior branches should be loaded with I-ohm resistances. The
Darlingto~representationin the second form with entire real transmission matrix
functions A of size 2n already gives the synthesis of a non-finite ideal n-port which
is obtained via loading of an ideal regular n-line on the output branches of 1
ohm resistances through transformers [5]. For n = 1, in this way we obtain the
realization of an ideal regular string with friction on one end, and with a given
coefficient Z(A) of dynamical pliability ofthe velocity on the other end (see [5], §4).
Using considerations in [5], it is not difficult to show that the minimal realization
should have the minimal length of string £ = -Z(O) L: Re (II Aj) and the minimal
mass M(£) = -Z-l(O) L:Re (1/J.1j), where)...j and J.1j are zeros and poles of Z()"')
counting multiplicities; precisely such strings were investigated in [5].
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1. Scattering matrices of passive systems with the basic operators
of the classes Co·, C· o, and Coo

1. A linear stationary dynamical system (LSDS) CY in the separable Hilbert spaces
5)1-, 5)1+ (exterior) and SJ (inner) with discrete time n (= 0, 1, 2, ... ) is defined as
a system

(1)(n ~ 0){
h(n + 1) = Th(n) + F<p-(n),

<p+(n) = Gh(n) + S<p-(n),
with constant coefficients T, F, G and S,

T E [SJ,SJ], FE [5)1-,SJ], G E [SJ,5)1+], S E [5)1-,5)1+J

(by [5)11, 5)12J is meant the set of bounded linear operators acting from 5)11 into
5)12). The vectors '17- (n), '17+ (n) and h(n) from 5)1-,5)1+ and SJ can be interpreted
as data from the input, output, and inside the system, respectively, at time n.
The evolution of the inner state under zero data on the input is described by
the operator T: h(n) = Tnh(O) for <p-(n) == o. The operator T is called the
basic operator of the system CY. The data h(O) and {<p-(n)}o from the system (1)
uniquely determine {h(n)}i"+l and {<p+(n)}o. For h(O) = 0, we have:

n-1

<p+(n) = S<p-(n) + L GTk F<p-(n - k - 1),
k=O

(n ~ 1).

Via formal power series
00

p±(z) = L<p±(n)zn,
n=O

00

8(z) = S + L GTn- 1Fzn

n=l
one can write this system of equalities in the form

P+(z) = 8(z)p-(z).

One can consider 8(z) as the power series representation in a sufficiently small
neighborhood of zero of the function

8 a (z) = S + zG(I - ZT)-lF, (2)

which is holomorphic for z = O. This function is called the transfer function of the
system CY.

Below the data '17- (n) and '17+ (n) are interpreted as incoming and reflected
waves, which bring and remove energy, and the squares of the norms of vectors in
5)1± and SJ are interpreted as energy.

We will call CY a passive scattering system if for arbitrary data h(O) and
{<p- (n)}O' the condition

1I<p-(n)11
2
-II<p+(n)11

2
~ Ilh(n+ 1)11 2 -llh(n)112,

is satisfied, which means that an inner source of energy is absent. Since

(
h(n + 1)) = (T F) ( h(n) )
<p+(n) G S <p-(n) ,
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this condition means that the operator

is contractive (V*V :S I), i.e. that the two equivalent inequalities

(I~Sj II~-) - (~ ~) * (~ ~) ~ 0,

C~Sj II~+) - (~ ~) (~ ~r ~ 0
hold.

If in each of the preceding two inequalities, equality "=" holds, i.e. V is
a unitary operator, then we call a a conservative scattering system, and in the
opposite case a dissipative scattering system. The transfer function of a passive
scattering system a will be called the scattering matrix. Because the basic operator
T in such a system is a contraction, 8 Q (z) is determined by formula (2) in the
unit disk (for Izi < 1).

2. The conservative scattering LSDS's in essence are the subject of the investigation
of contractions in Hilbert space, which is developed by M.S. Livsic, and B. Sz.
Nagy and C. Foias, their followers, and others (see [13, 8, 7]).

For a system a, we denote
00

Sj~ = V(T*)nC*I)1+
o

(Vn j)n is the minimal subspace which contains all j)n).
We will call a LSDS simple if

Sj = Sj~ V Sj~.

For a conservative scattering system, this condition means that T has no unitary
part (T is a completely nonunitary contraction). We will denote by B the class of
functions 8(z) which are holomorphic for Izl < 1 and have values from [1)1-,1)1+]
for some 1)1- and 1)1+ and which have 118(z)11 :S 1 (izi < 1).

One of the significant results in the theory of contractions on Hilbert space
(see [13], [8]) can be formulated in the following form.

Proposition 1. The scattering matrix of an arbitrary conservative L8D8 belongs to
the class B. An arbitrary function 8(z) in the class B is the scattering matrix of a
simple conservative LSDS, which is determined by 8(z) up to unitary similarity.

Two LSDS's a and al are called (unitarily) similar if there exists a (unitary)
bounded and invertible operator X ( E [Sj, Sjl]) such that

F1 = XF, TI X = XT, C = C I X, (81 = 8).
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There are functional models of a simple conservative scattering system a, which
are constructed using the boundary values 8 a (() of the function 8 a (z) (E B),

(1(1 = 1, a.e.)

(see [13], [8]). There are especially simple models for systems a for which T satisfies
the condition

s-lim Tn = 0 (s-lim (T*)n = 0).
n----+OCl n-+oo

The class of such contractions T is denoted by Co·, (C. 0), and the intersection
Co· n C· o is denoted by Coo. It is known [13] that the scattering matrices of
conservative systems with basic operators from the class Co· (C' o, Coo) coincide
with the subclass of functions 8(z) in B which have isometric (*-isometric, unitary)
boundary values 8(() almost everywhere on the circle 1(1 = 1. Such functions 8(z)
are called inner (*-inner, bi-inner). We will write the model in the case that 8 a (z)
is an inner function.

Let L2 (»1) be the Hilbert space of weakly measurable functions f(() (1(1 = 1)
whose values belong to the Hilbert space »1 for which

IIfl12
= -2
1 r IIf(()11 2 Id(1 < 00,
1r J1(1=1

and let H~(»1) be the subspace offunctions f(() in L2 (»1) which have Fourier series
representations involving only nonnegative powers of (. We will identify H~(»1)

with the Hardy space of functions f (z) which are holomorphic in the unit disk and
have values in »1 and for which IIfl1 2 = sUPr<l 2~ ~(1=11If(r()112 Id(1 < 00;

f(() = s-limf(r() (1(1 = 1, a.e.).
rll

Proposition 2. [8]. Let 8(z) be an inner function which has values in [»1-, »1+].
Consider the system it with exterior spaces »1- and »1+ for which the inner space
fJ and coefficients T, F, 0, S are determined by the formulas

fJ = H~(»1+) e 8(()H~(91-),

Th = C1[h(() - h(O)],

Fip- = C 1 [8(() - 8(0)]ip-,

Oh = h(O) (h = h(() E fJ),

Then it is a simple conservative system with scattering matrix 8(z).

If a is a system with coefficients T, F, G, S, then the system with coefficients
T*, G*, F*, S* is denoted by a* and is called the adjoint of a. In the above model
the coefficients of the adjoint system it* are defined by

F*h = 2
1 r (8*(()h(() Id(1 (= Ph), T*h = (h(() - 8(()Ph (h E fJ),
1r J1(1=1

G*ip+ = [1 - 8(()8*(0)]ip+, S*ip+ = 8* (O)ip+ (ip+ E »1+).
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If 8(z) is the scattering matrix of the system a, then 8~(z) (= 8*(z)) is the
scattering matrix of the system a*. Consequently, a* is the model of a simple
conservative system, the scattering matrix of which 8~(z) is a *-inner function.

3. Theorem 1. Let a be a simple passive scattering system with bi-inner function
8 a (z). Then a is a conservative system.

Proof. Let a be a passive scattering system, and let the corresponding contraction
with block-coefficients T, F, G, S of the system a be V (E [Sj EEl 1)1-,Sj EEl 1)1+]).
Consider

o
1)1- = (I - VV*)(SJ EEl 1)1+) (= ~v*),

V v * = (I - VV*)1/2,

o
1)1+ = (I - V*V)(Sj EEl 1)1-) (= ~v),

Vv = (I - V*V)1/2,

let Oi be the system with exterior spaces sn- and sn+,inner space Sj and coefficients
T, P, G, 8 which are blocks of the operator V. One can easily check that Oi is a
conservative system and a is a part of it, that is,

T=T, G = P'Jl+G, (3)

The scattering matrix 8 a (z) is represented in the form of a block of the matrix
8 a(z): 8 a (z) = P'Jl+ 8 a(z) 11)1- . Let 8 a (z) be a bi-inner function. Since in this
case 8 a (() has unitary values for lei = 1 (a.e:), and 118a (()11 :::; 1, we have

8~(e) = 8~(e)ll)1+ (a.e.)

These equalities are equivalent to the following:

S = 811)1-, GTnF =GTnpll)1- (n 2: 0);

S* = 8*11)1+, F*(T*tG* = p*(T*)nG*II)1+ (n 2: 0).

Since

F) ,

we obtain
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It is to be proved that a is a conservative system, i.e. that V~. = 0 and V~ = O.
Because of the hypothesis of the theorem that a is a simple system, and for V~.
(~ 0) and V~ (~ 0) we already have

v~ lor EB S)~ = 0, V~.II)1+ EB S)~ = 0,

it remains to prove that

PSjV~IS)~ = 0, PSjV~.IS)~ = o.
We will prove the first equality, and the second follows analogously. Since

(
-T*F-G*S) (-TG*-FS*)V 2

V 11)1- = = 0 V 2
v .ll)1+ = = 0

I - F* F - S*S' I - GG* - SS* '

D~.(T*tG* = (I - TT* - FF*)(T*)nG* = 0 (n ~ 0),

we have

T*F = -G*S, TG* = -FS*,

GG* = I - SS*, (TT*)(T*)nG* = (I - FF*)(T*)nG*.

Therefore

PSjD~G* = (I - T*T - G*G)G* = G* - T*(TG*) - G*(GG*)

= G* - T*( -FS*) - G*(I - SS*) = (T* F)S* + (G* S)S*

= (-G* S)S* + (G* S)S* = 0,

PSjV~(T*)nG* = (I - T*T - G*G)(T*)nG* = (T*)nG* - T*(TT*)(T*)n-1G*

-G*(GT*)(T*)n-1G* = (T*)nG* - T*(I - FF*)(T*)n-1G*

-G*( -SF*)(T*)n-1G* = (T* F)F*(T*)n-1G* + (G* S)F*(T*)n-1G* = O.

Consequently, PSjV~IS)~ = O. Thus, V~ = 0, V~. = 0, i.e. V is a unitary operator.
The theorem is proved.

A simple passive scattering LSDS a will be called lossless if a is a conservative
system with basic operator T in the class Coo; otherwise a is called a system with
losses. As we see, for a simple passive scattering LSDS a to be lossless, it is
necessary and sufficient that the scattering matrix 8",(z) is a bi-inner function.

4. We will now investigate the properties of the scattering matrices of dissipative
systems with basic operators from the classes Co·, C· o, and Coo.

Proposition 3. In order that 8(z) is the scattering matrix of a passive system with
basic operator of class Co· (C· o, Coo) it is necessary and sufficient that it has a
representation in the form of a block

8(z) = P'Jl+8(z)ll)1

of an inner (*-inner, bi-inner) function 8(z).
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Proof Let 0: be a passive scattering system with basic operator T of the class Co.
(C. 0, Coo). Let us represent 0: as a part of a conservative system (i as constructed
in the proof of the preceding theorem. Since the basic operator T (= T) of the
system (i belongs to the class Co· (C· o, Coo), 8 a (z) is an inner (*-inner, bi-inner)
function. The matrix 8(z) is a block of the matrix 8 a(z). Necessity is proved.

Let now 8(z) have a representation in the form of a block of some inner (*
inner, bi-inner) function 8(z). Let us consider a simple conservative system (i with
scattering matrix 8(z). Its basic operator T belongs to the class Co· (C· o, Coo).
Let 8(z) have values from [1)1-,1)1+]. We consider the system 0: with exterior
spaces 1)1- and 1)1+, which is a part of system (i in above mentioned sense. Its
basic operator T (= T) belongs to the class Co· (C· o, Coo), and 8 Q (z) = 8(z).
The proposition is proved.

Let 8(z) be a block of an inner function 8(z). We can suppose that

8(z) = (811 (Z) 8 12 (Z))
8 21 (Z) 8 22 (Z) , 8 12 (Z) = 8(z).

Then the function 8 22 (Z) is a solution of the factorization problem:

8;2(()822 (() = 1- 8*(()8(() (1(1 = 1, a.e.), 8 22 (Z) E B. (4)

Conversely, if 8 22 (z) is solution of this problem, then 8(z) = (~~(l)) is an
inner function with given block 8(z). In the same way 8(z) is a block of a *-inner
function if and only if the factorization problem

has a solution. Thus we have:

(1(1 = 1, a.e.), 8 11 (z) E B, (5)

Proposition 4. A function 8(z) is the scattering matrix of a passive system with
basic operator of the class Co· (C· o), if and only if the factorization (4) ((5)) has
a solution.

There are known [15] necessary and sufficient conditions for the solvability
of the factorization problem

h*(()h(() = f(() (1(1 = 1, a.e.), h(z) E B

for a nonnegative function f(() (::::: I), which have values in [1)1,1)1]. A sufficient
condition is due to Devinatz: In Ilf- 1(() II E £1. If this problem is solvable, the set
of all solutions is described by the formula

h(z) = b(z)cp(z),

wherecp(z) is an outer function with values in [1)1,1)1",1 (cp(z) E B, cp(()H~ (1)1) =
H~(I)1",)), and b(z) is an arbitrary inner function with values in [1)1",,1)1*], where
1)1* is a Hilbert space with dim 1)1* ~ dim 1)1"" 1)1", C 1)1. Under the normalization
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ip(O)llJ1cp > 0 the function ip(z) is uniquely determined by f((). The dimension of
the space IJ1cp is determined by the equality

dim IJ1cp = rank f(() (1(1 = 1, a.e.),
so if the factorization problem is solvable, rank f (() (= dim f (()IJ1) is constant
(a.e., 1(1 = 1).

Thus the solutions of the problems (4) and (5) can be written in the form

(6)
o

where b2(z) and ip2(Z) are inner and outer functions with values in [lJ1cp"IJ1+] and
[1J1-,IJ1CP2], and h(z) and ipl(Z) are *-inner and *-outer (ip'l(z) = ipHz) is outer)

o

functions with values in [1J1-, IJ1cp,] and [lJ1cp" 1J1+]'

o
dimlJ1- 2 rank [1 - 8(()8*(()],

o

dim 1J1+ 2 rank [1 - 8* (()8(()1 (7)

(1(1 = 1). The functions b1(z) and b2(z) here are bi-inner if and only if

(8)

If this condition is satisfied, then in (7) we have, instead of the signs "2", the signs
"_".

o 0

dimlJ1- = rank [1 - 8(()8*(()], dimlJ1+ = rank [1 - 8*(()8(()] (9)

(1(1 = 1, a.e.). If here the right sides are finite, then the conditions (9) and (8) are
equivalent.

5. We formulate the necessary and sufficient conditions that 8(z) has a represen
tation as the block 8 12 (z) of a bi-inner function 8(z) = [8i k(z)Ji which satisfies
the condition (8), and we will describe all such 8(z).

Theorem 2. Let ipl(Z) and ip2(Z) be *-outer and outer functions which are solutions
of the factorization problems (5) and (4):

ipl(()ip;'(() = 1 - 8(()8*((); ip;(()ip2(() = 1 - 8*(()8(() (a.e.) (10)

(

ipl(Z) E B, ip;'(O)llJ1cp, > 0; ip2(Z) E B, ip2(0)llJ1cp2 > 0,)

ipi(()H~(IJ1+)= H~(lJ1cp,); ip2(()H~(IJ1-) = H~(IJ1CP2)

Then the equality

h~(()ip2(() = -ip;'(()8(() (11)

determines a contractive function ho(() which has values in [lJ1cp" IJ1CP2] (weakly
measurable, Ilho(()11 s:; 1 a.e.). Let b1(z) and b2(z) be bi-inner functions with values

o 0

in [1J1-, IJ1cp,] and [IJ1CP2' 1J1+] such that

(12)
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(13)

are the boundary values of a function 6>21(Z) of the class B. Let 6>12(Z) = 6>(z),
and define 6>l1(Z) and 6>22(Z) by the formulas (6). Then 8(z) = [6>ik(z)Ji is a
bi-inner function with the given block 6>12(Z) = 6>(z) which satisfies the condition
(8). All 8(z) with the stated properties are obtained in this way.

Proof Let 8(z) = [6>ik(z)Ji be a bi-inner function with given block 8 12 (Z) =
8(z) satisfying the condition (8). Then 6>l1(Z) and 8 22 (Z) are solutions of the
factorization problems (5) and (4) satisfying the condition (8). Therefore they are
represented in the form (6), where b1(z) and b2(z) are bi-inner functions and cp1(Z)
and cp2 (z) are *-outer and outer functions which are solutions of the problems (10).
It follows from the unitarity of the boundary values 8(() = [6>ik(()Ji that

6>;1 (()6>12 (() + 6>;1 (()6>22 (() = 0; 6>;1 (()b2(()cp2 (() = -b; (()cp; (()6>(().

We conclude that the contractive function

ho(() = b;(()6>21(()bi(()

satisfies the relation (11); 6>21(() is expressed in terms of ho(() by formula (12).
We now show that if 'Ill (z) and cp2(Z) are solutions of the problems (10), then

the relation (11) uniquely determines a function ho(() with values in [lJ't"'" lJ't"'2]'
By means of the equation

Kcp2(()g(() = -cpi(()6>(()g(() (g(() E L2(lJ't-))

we define a contraction operator K on the dense lineal cp2(()L2 (lJ't-) in L2(lJ't"'2)
which maps this lineal into L2 (lJ't",,), This follows from the inequality

Ilcpi(()8(()g(()II;<pl ~ IIcp2(()g(()II;<P2 '

which is easily verified.
We extend K by continuity to all of the space L2 (lJ't"'2)' In this way we obtain

a contraction K (E [L2(lJ't"'2)' L2 (lJ't",,)]), possessing the property: K(h = ihK,
where ih and ih are the operators of multiplication by ( on L2(lJ't"" ) and L2(lJ't"'2)'
Therefore K is an operator of "multiplication" by some contractive function K(()
with values in [lJ't"'2' lJ't""] (see [13], Ch. V, proof of Lemma 3.1). It remains to put
ho(() = K*(() and to remark that K(() is uniquely determined by K.

For a function ho(() determined by the relation (11) these equations hold:

ho(()cpi(() = -cp2(()6>*((),

cpi(()CP1(() + h~(()ho(() =1, cp2(()cp;(() + ho(()h~(() = I.

Since cpi(z) and cp2(Z) are outer functions, for their proofs it is sufficient to show
that

cp;(() [cp2(()8*(() + ho(()cpi(()] = 0,

cp;(() [cp2(()CP;(() + ho(()h~(() - I] = 0,

'Ill (() [cpi (()cp1 (() + h~(()ho(() - 1) = 0.

These equations follow from the relations (10)-(11).
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Equations (10), (11) and (13) show that the function 80 (), defined by the
formula

has unitary values (a.e. 1(1 = 1).
Now assume that for the function ho() there exist bi-inner functions b1(z)

and b2(z) such that the function 8 21 () determined by formula (12) gives the
boundary values of a function 8 21 (Z) of the class B. We put 8 12 (Z) = 8(z), define
8 11 (z) and 8 22 (z) by the formulas (6), and prove that the resulting function
8(z) = [8i k(Z)]i is bi-inner. Since 8 i k(Z) E B, 8(z) is a bounded holomorphic
function in the unit disk. Therefore 8(z) E B if only 118(z)11 :::; 1 a.e. But

(14)

and therefore 8() admits unitary values (1(1 = 1, a.e.). Consequently, 8(z) is a
bi-inner function. It satisfies condition (8). The theorem is proved.

2. Synthesis of minimal dissipative scattering systems with basic
operators of the class Coo

1. Suppose 8(z) is represented in the form of a block 8 12(Z) of some bi-inner
function 8(z) = [8ik (z)Ji. Assume that 8(z) and 8(z) take values, respectively,

____ __ 0 __ 0

in [91-,91+] and [91-,91+], 91- = 91- EEl 91-, 91+ = 91+ EEl 91+. We consider a simple
conservative system Ci with scattering matrix 8(z) and its part 0: with scattering
matrix 8(z). The basic operator T (= T) of the system 0: belongs to the class
Coo. The system Ci is unitarily similar to its model Ii, which is constructed from
8(z) as in Proposition 2. The part a of the system Ii with the same inner space
as Ii, and with the .exterior spaces 91- and 91+, is a model for the system 0:. The
inner space SJ (= s:;) and coefficients T, F, G, S of the system a are defined by
the formulas

SJ = H~(lft+) 8 8()H~(lft-),

Th = C 1 [h() - h(O)], Gh = h1(0),
• 0

(h = h() = h1() EEl h2() E 5), h1() E H~(91+), h2 () E H~(91+),

F<p- = C 1[8() - 8(0)]<p-, S<p- = 8(0)<p- (<p- E 91-).
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For the coefficients of the adjoint system 0* , we have:

F*h = P<n-Ph, T*h = (h(() - 8(()Ph (h E SJ),

Ph = 2
1 r (8(()h(() Id(l,
1r J1C,1=1

G*<p+ = [1 - 8(()8*(0)]<p+, S*<p+ = 8* (O)<p+ (<p+ E 1)1+).

~ 0 0

The system a (0) is conservative if and only if 8(0) maps 1)1- unitarily onto 1)1+,
and this occurs if and only if 8 u (z) == 0, 8 22 (Z) == 0, 821(Z) == 821(0),821 (0) is
a unitary operator, and 8 12 (Z) = 8(z) is a bi-inner function. This case is not of
interest here and is excluded from consideration in what follows. Thus 0 is a model
for a dissipative system with basic operator of class Coo, constructed as part of a
conservative system with this basic operator.

We call a representation of 8(z) in the form of a block 8 12 (Z) of a bi-inner
function 8(z) = [8i k(Z)]r a fl-representation.

2. It will be an interesting problem to ask, for which 8(z) constructed with the aid
of a fl-representation, the dissipative system a (0) is minimal, i.e. simultaneously
controllable (S) = S);') and observable (S) = S)~).

We call a fl-representation minimal if 8(z) does not have nontrivial bi-inner

left and right divisors in the class B of the forms (~ u~z)) and (v~) ~),
respectively, i.e. if 8(z) has no representation in the form

8(z) = (1 11)10+ 0) ~( ) (V(Z) 0)
u(z) z 0 111)1- , (15)

o

where 8(z) E B, u(z) and v(z) are bi-inner functions, and at least one of these is
nonconstant.

Theorem 3. Suppose that 8(z) has a fl-representation determined by the function
8(z), and a is a dissipative system constructed (by formula (3)) as part of the
lossless system ii with scattering matrix 8(z). The system a with scattering matrix
8(z) is minimal if and only if the associated fl-representation is minimal.

Proof. We observe that S) SS);' is the largest of all subspaces fl* such that F*fl* =
{O}, T*fl* c fl*, and S)SS)~ is the largest of all subspaces fl such that Cfl = {O},
Tfl c fl. Therefore a is a minimal system if and only if there are no nonzero
subspeces fl* and fl with these properties.

We show that S) = S)~ if and only if 8(z) has no nontrivial left bi-inner

divisor of the form (~ u~z)) . Suppose that such a divisor exists. We consider the

subspace 1:> in H~(lft+) consisting of all h(() = hI (() EEl h2 (() for which hI (() = 0
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o 0 •. .••

and h2 (() E Hi(91+) e u(()Hi(91+). It is obvious that 1) i= {O}, 1) C S), C1) =

{O}, t:D c :D. Therefore 5J i= S)~, and consequently S) i= S)~.

Now suppose it is known that S) i= S)~, i.e. 5J i= S)~. We consider:D = SJ eS)~.
From the formulas defining t and G, it is clear that :D is the subspace of all h(()
(= h1 (() EB h2 ((J) in SJ for which h1 (() = O. Consequently, we can assert that
• 0 .

1) c Hi (91+) (identifying 0 EB h2 (() with h2 (()). The subspace 1) is invariant with
. o.

respect to the operator T. Therefore Hi (91+) e 1) is a subspace which is invariant
with respect to the operator multiplication by (. Therefore there exists an inner

o 0

function u(z) with values in [91,91+J (91 c 91+) such that

Hi(sJt+) e:D = u(()Hi(91), :D = Hi (sJt+) e 'u(()Hi(91).

We show that u(z) is a bi-inner function.
In fact, since

• 0 _ __ •

(1) =)Hi(91+) e u(()Hi(91) c Hi (91+) e 8(()Hi(91-)(= S)),

we obtain the other inclusions:

8(()Hi (rn-) c Hi(91+) EB u(()Hi(91),

8(()L2 (rn-) c L 2 (91+) EB u(()L2 (91).

On the other hand, 8(() has unitary values, and therefore
__ .-,....,.. 0

8(()L2 (91-) = L 2 (91+) = L 2 (91+) EB L 2 (91+) ::> L 2 (91+) EB u(()L2 (91).

(16)

o

We obtain that u(()L2 (91) = L 2(91+), and this is possible for an inner function
u(z) only when it is a bi-inner function. We now consider

~ (1191+ 0) -8(() = 0 u*(() 8(().

o

The function 8(() admits unitary values (1(1 = 1 a.e.), and thus in view of the
inclusions (16), we have for it:

o

8()Hi(rn-) c Hi(91+ EB (1).
o

Therefore 8(z) is a bi-inner function. We obtain a representation of 8(z) in the
form (15) with v(z) = 1 and u(z) a nonconstant bi-inner function. Consequently,

o

the 1)-representation determined by 8(z) is not minimal.
We note now that: 1) S)~ = S)~., 2) a* is constructed from ii* with the

scattering matrix EJ* (z) in the same way as a is constructed from ii, 3) (v~z) ~)

is a right bi-inner divisor of 8(z) if and only if (v*~z) ~) is a left bi-inner divisor
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of the function 8* (z). Therefore from what has already been shown it follows that
f) =f. f)~ if and only if 8(z) has a nontrivial right bi-inner divisor of the form

( v~z) ~). The theorem follows.

3. The 1>-representation of 8(z) described in Theorem 2 satisfies condition (8).
Serving as "parameters" is the ordered pair {b2 (z), b1 (z)} of bi-inner functions for
which b2 ( ()ho(()b1 (() are the boundary values of a function of class B. We call this
pair a denominator of the function ho((). In a natural way we introduce a notion
of divisibility for the denominator functions of ho((): {b2(z),b1 (z)} is divided by
o 0 0 0

{b 2(z), b1(z)} if b2(z) = u(z)b2(z) and b1 (z) = b1 (z)v(z), where u(z) and v(z) are
bi-inner functions. The denominator {b2(z), b1(z)} is called minimal if it has no
nontrivial divisors.

Proposition 5. A 1>-representation of a function 8(z) satisfying condition (8) is
minimal if and only if the corresponding denominator {b2(Z), b1 (z)} of the function
ho(() is minimal.

Proof Suppose that the 1>-representation of 8(z) with bi-inner function 8(z),
satisfying the condition (8), corresponds to the denominator {b2 (z), b1 (z)} of ho(().
Assume that this representation is not minimal, i.e. a relation (15) holds, where

o

u(z), 8(z) and v(z) are bi-inner functions, and u(z) or v(z) is nonconstant. Then
o

the function 8(z) determines a 1>-representation which satisfies condition (8).
o 0

Suppose that it corresponds to the denominator {b2 (z), b1(z)} of the function
ho((). From the uniqueness of the representation of the function 8(() in the form

o 0 0 0

(14), it follows that b2(z) = u(z) b2(z) and b1 (z) = b1 (z )v(z), i.e. {b2(z), b1 (z)} is
a nontrivial divisor of the denominator {b2 (z), b1(z)}. Conversely, if we have such
a divisor, we obtain a relation (15) in which one of the bi-inner functions u(z) and
v(z) is not a constant.

Proposition 6. For an arbitrary denominator {b2(z), b1 (z)} of the function ho(()
o 0

there exists a divisor {b2(z), b1 (z)} which is a minimal denominator of this func-
tion.

Proof Let .£1 denote the set of functions h(() in H~(I)1"'l) for which
o

b2 (()ho(()h(() E H~(I)1+).

Since .£1 is a subspace of H~ (1)1"'1) which is invariant under the operator multi-
o 0

plication by (, then .£1 = b1(()H~(I)1I), where b1 (z) is an inner function with
o 0

values in [1)11,1)1"'1]. From the inclusion b1(()H~ (1)1-) C b1(()H~ (1)11) it follows
o 0

that b1 (z) is a bi-inner function and b1 (z) = h(z)v(z), where v(z) is a bi-inner
o

function with values in [1)1-,1)11]. Now let £'2 denote the subspace of functions
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o
h(() in H~('Jl<P2) for which bi(()ho(()h(() E H~('Jll). This is a subspace of
H~ ('Jl<P2) which is invariant under the operator multiplication by (. Therefore

o 0

£2 = b2(()H~ ('Jlt), where b2(z) is an inner function with values in ['Jlt, 'Jl<P2].
o 0 0

Using the inclusion b2(()H~('Jl+) C b2(()H~('Jlt), we obtain that b2 (z) is a bi-
o

inner function and b2(z) = U(Z)b2(Z), where u(z) is a bi-inner function with values
o 0 0 0 0

in ['Jlt, 'Jl+]. Since bi(()ho(()b2(()H~('Jlt) C H~('Jll)' {bi(z), b2(z)} is adenom-
_ 0 0

inator of the function ho((), and therefore {b 2 (z), h (z)} is a denominator of the
function ho((). The latter is a divisor of the denominator {b2 (z), b1 (z)}. It remains

o 0

to show that {b2(Z), b1 (z)} is a minimal denominator. Assume that {d2(z), d1 (z)}
is a divisor of it. Then

and therefore

o
It follows from the last inclusion that b2(Z) is a right divisor of d2(z), i.e. d2(Z) =

~(Z)b2(Z), where ~ is a bi-inner function. Since, on the other hand, d2(Z) is a right

divisor of b2 (z), we obtain that ~(z) = ~ is a constant. In the same way, from the
inclusions

o 0 0 0 0

it follows that d1 (z) = b1 (z)v, where v is a constant. We conclude that {b2(z), b1 (z)}
is a minimal denominator of the function ho(() which is a divisor of the denomi
nator {b2(Z),b1(z)}. The theorem follows.

3. Scattering matrices in the classes B II and B II

1. We now consider the following class of scattering matrices, for which there exist
;i)-representations satisfying condition (8).

We say that 8(z) is in the class Bn if: 1) 8(z) E B, 2) there exist c(z) and
d(z) in the class B such that c(()8*(() and 8*(()d(() are the boundary values of
a function in the class B, and moreover kerc(() = {O} and kerd*(() = {O}, 1(1 = 1
a.e. (By ker c we mean the kernel of the operator c.) If

c*(z) = b1(z)<p(z),

are representations of the functions c* (z) and d(z) in the form of products of inner
and outer functions, then bi(()8*(() and 8*(()b2(() are the boundary values of
functions in the class B. The conditions kerc(() = {O} and kerd*(() = {O} (a.e.)
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mean that b1(z) and b2 (z) are bi-inner functions. For 8(z) (E Bll) there exist
bi-inner functions bII(z) and bn(z) such that:

1) bII ()8*() and 8*(()bn(() are the boundary values of functions of the
class B,

2) bII(() and bn (() are common divisors from the right and left, respectively,
of functions c(z) and d(z) with the above properties, i.e. c(()bn1

(() and
bn(()-ld(() are the boundary values of functions of the class B.

We set

Then

bII ()8*(() = 8 II ((), 8* (()bn (() = 8n(().

8(() = 8il()[bil()]-1, 8() = [b;;(()]-18;;((),

and 8il((), 80((), bil((), bO(() are the boundary values of functions 8il(I/z),
80(1/2), bil(I/z), b;;(I/z) which are holomorphic and contractive for Izi > 1.
We conclude that a function 8(z) (E B) belongs to the class Bll if and only if
its boundary values are represented in the form of "right" and "left" quotients
of the boundary values of functions which are holomorphic and contractive for
Izi > 1; bil(I/z) and b;;(I/z) are the least right and left denominators for 8(z) and
common divisors of all other right and left denominators for 8(z). The functions
bII(z) and bn(z) are determined by 8(z) to within (left and right) constant unitary
factors. If 8(z) E Bll, then 8*(z) E Bll: bn (1/z) and bII(I/z) are the least
denominators for 8*(z).

In what follows we shall need the following proposition of V. L Matsaev
(verbal communication, Summer Mathematical School, Novgorod, 1976) which
generalizes a sufficient condition of Rosenblum and Rovnyak for the solvability of
a factorization problem1 .

Lemma. Assume that, for the nonnegative contractive function f(() (1(1 = 1), there
exists a contractive function c(() such that ker c(() = {O} (a. e.) and c(() f () are
the boundary values of some function of the class B. Then the factorization problem
for f((),

is solvable.

f(() = ep*(()ep(() (a.e., 1(1 = 1), ep(z) E B,

Proof. If f(() (~ 1) has values in [1)1,1)1], it is known [15] that for the solvability
of the factorization problem it is necessary and sufficient that

n (n j1/2()H~W!)= {O},
n2:0

ISee the account by A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator
Pencils, Trans!. Math. Monographs, vo!. 71, Amer. Math. Soc., 1988; the result is Theorem 34.3
on p. 199, and short comments are located on p. 227.
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where the bar "-" indicates closure in the metric of £2(91). Denote the left side
of this equation by '£. We have

,£ c jl/2(()H~(91).

Therefore, if c(()jl/2((),£ = {O} and kerc(() = {O} (a.e.), then ,£ = {O}. In fact
since c(()f(() are the boundary values of a function of class B,

c(()fl/2((),£ = c(()fl/2(() n (njl/2(()H~(91)C
n20

c n (n c(()f(()H~(91)c n c H~(91d = {O}.
n20 n20

Thus if the condition of the lemma is satisfied, then ,£ = {O} and consequently the
factorization problem is solvable for f(().

3. We now show that any scattering matrix of the class Bll has a Darlington
synthesis.

Theorem 4. Suppose 8(z) is in the class Bll. Then 8(z) admits a TJ-representation
satisfying condition (8).

Proof. Assume 8(z) is in the class Bll and bil(l/z) and bn(1/z) are its least right
and left denominators. Then the functions

bn(() [I - 8(()8*(()], bll (() [I - 8* (()8(())

are the boundary values of functions of class B. By the lemma applied to the
functions I - 8(()8* (() and I - 8* (()8((), the factorization problem is solvable,
i.e. there exist solutions 't/l(Z) and 't/2(Z) for the problem (10). We consider the
contractive function ho(() determined by the relation (11), and we show that there
exist bi-inner functions b1(z) and b2(z) such that the function 8 21 (() determined
by formula (12) gives the boundary values of a function of class B. Below we
identify a function of class B with its boundary values. We put

This function is of class B, since

'Ij;(()'t/2(() = bll (()[1 - 8* (()8(()) E B

and 't/2(() is an outer function. If bll (() takes values in [91-,91-], then

Therefore 'Ij;(z) = 't/(z )b(z),

where 't/(z) and b(z) are *-outer and bi-inner functions, respectively. Since

'Ij;(()ho(() = -bll (()8*(()'t/l(() E B,

we obtain that b(()ho(() E B, i.e. {b(z), I} is a denominator for the function ho(().
Thus we may put
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By Theorem 2, the diagonal blocks of our bi-inner function 8(z) = [8i k(Zm satisfy
condition (8), provided that we set

The theorem is proved.

4. We now consider the case where, for a function 8(z) of class B, there exists
a scalar denominator - a scalar inner function b1 (z) such that bi(()8* (() E B.
This occurs if and only if 8(() are the boundary values of a function which is
meromorphic outside the circle and represented in the form of a ratio of two
bounded holomorphic functions 82"1(z)81(z), where 8 1(z) is operator valued and
8 2 (z) is scalar valued.

The class of such 8(z) is denoted B II. Among the scalar denominators b1 (z)
of a function 8(z) of class Bll there exists a greatest common divisor of each. We
denote it by be(z). The pseudo-continuation (by boundary values) to the exterior
of the unit circle is represented in the form

(Izl > 1),

where 8 1(ljz) E B. The function be(z) accounts for the singularities of 8(z): a
point z is a pole of 8(z) for Izi > 1 if and only if 1jz is a zero of be(z).

We remark that a bi-inner function 8(z) belongs to the class Bll if and only
if it possesses a scalar multiple in the sense of [13], i.e. when there exists a scalar
function b1(z) such that b1(z)8- 1(z) E B. The function be(z) is the best minorant
for 8(z).

It is known [13] that 8(z) is a bi-inner function with a scalar multiple if and
only if the basic operator T of a simple conservative system a with scattering ma
trix 8(z) belongs to the class Co (c Coo), introduced and studied by B. Sz.-Nagy
and C. Foias [13, 123-126]. We recall that for a completely nonunitary contraction
T the inclusion T E Co means that there exists a function m(z) (¢ 0) of class B
such that m(T) = O. Among such m(z) there exists a greatest common divisor.
Such a function is denoted mT(z) and called the minimal function of the contrac
tion T. For T on a finite-dimensional space, mT(z) = p(z)jz n p(ljz), where p(z) is
the minimal polynomial of the operator T and n is the degree of p(z). The spec
trum a(T) of the contraction T is completely determined by mT(z): a(T) = ST,
where ST is the set consisting of the zeros of mT(z) in the disk Izl < 1, together
with the relative complement in the circle 1(1 = 1 of the union of all of the arcs
on which mT(z) is analytic. Every zero Zo of the function mT(z) (Izol < 1) is an
eigenvalue for T and the order of the eigenvalue Zo is equal to the multiplicity of
Zo as a zero of mT(z). In order that the root vectors of T corresponding to points
in the spectrum in the disk Izl < 1 generate all of the space S), it is necessary and
sufficient that mT(z) is a Blaschke product. As shown in [10], T E Co if and only
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if T E Coo and (zI - T)-l is a meromorphic function with poles satisfying the
Blaschke condition and such that

sup r In+(1-r) Ilr(I -T)-lllld(1 < 00.
r<l J1C1=1

Theorem 5. A scattering matrix of an arbitrary passive scattering LSDS with basic
operator T of class Co belongs to the class Bll, and moreover the minimal function
mr(z) of the operator T is a scalar denominator of the function 8(ljz), i.e.
mr(z)8(ljz) E B. If 8(z) is an arbitrary function of the class Bll, then the
basic operator T of any minimal passive scattering LSDS a with scattering matrix
8(z) belongs to the class Co; in this connection, the minimal function mr(z) does
not depend on the choice of minimal LSDS a and is equal to the least scalar
denominator of the function 8(I/z).

Proof. Suppose that 8(z) is a function of class Bll taking values in [91-,91+], and
that b(z) is a scalar denominator for 8(1jz). Then for any f in 91- and g in 91+,
we have

(n ~ 1),

since b(()8* (() are the boundary values of a function of class B. Ifwe use Parseval's
identity in L 2(91+), then for b(z) = 2::~ bkzk and 8(z) = 2::~ 8 kzk we obtain

'2:Jbkg,8k+nf) = 0, (n ~ 1).
o

Suppose that a is a passive scattering LSDS with coefficients T, F, G, Sand
transfer function 8(z). Then 8k+n = GTk+n-lF (n ~ 1, k ~ 0) and therefore we
have

~ (g,bkGTk+nFf) = 0, (n ~ 0).
o

By Abel's theorem, we obtain
00

~fl (g,G(~bkrkTk)TnFf)= 0, (n ~ 0),
o

But by definition,

Thus
(g,Gb(T)TnFf) = ° (n ~ 0, f E 91-, g E 91+).

For a minimal system a it hence follows that beT) = 0, since

fJ = V T nF91- = V(T*)nG*91+,
o 0

In this case, we have also shown that T E Co and b(z) is divided by mr(z).
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Conversely, suppose that T E Co. We assume that b(z) = mT(z). If 8(z)
is the scattering matrix of a system a with basic operator T, then reversing the
previous reasoning, we obtain that b(()8* (() are the boundary values of some
function of class B, that is, 8(z) E Bil and b(z) is a scalar denominator for the
function 8(ljz).

It follows from what has been shown that if 8(z) E Bil and T is a basic
operator of a minimal passive scattering LSDS with transfer function 8(z), then
T E Co and mT(z) is the least scalar denominator of the function 8(ljz). The
theorem is proved.

Theorem 6. Assume that 8(z) is a function of class Bil and the function 8(z)
is defined by a minimal f)-representation of 8(z). Then 8(z) E Bil and be(z) =
be(z).

Proof. We consider a conservative minimal scattering system a with scattering
matrix 8(z) and part a of the system a having scattering matrix 8(z). By Theo
rem 3 the system a is minimal. Since 8(z) E BlI, by Theorem 5 the basic operator
T of th~ system a belongs to the class Co and be (z)_= mT(z ). But the basic op
erator T for the system a coincides with T, hence T E Co, and by Theorem 5,
taking into account that the system a is minimal, we obtain that 8(z) E Bil and
be(z) = mf(z) = mT(z) = be(z). The theorem is proved.

Proposition 7. If8(z) is the scattering matrix (2) of a system a with basic operator
T of class Co, then

8(~)=S+G(ZI-T)-lF, (lzl<l),

i.e. the pseudo-continuation of 8(z) (E BlI) to the exterior of the unit circle can
be written as in formula (2).

In fact, the system a can be considered as a part of a conservative system a
with basic operator T = T. In this connection, 8(z) can be written in the form
of a block of the scattering matrix 8(z) of the system a. Since T E Co, 8(z) is a
bi-inner function with scalar multiple. The pseudo-continuation of

8(z)

into the exterior of the unit circle can be written by the symmetry principle as

(lzl> 1).

It is immediate to show that [8*(ljz)r 1 can be expressed in terms of the coeffi
cients T, F, G, Sof the system a in the same way as 8(z), i.e.

8(z) = S + zG(I - ZT)-l F, (izi > 1).

It remains now to take advantage of the relation (3), and by that 8(1j z) is a block
of 8(ljz) (Izl < 1).
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4. Optimal passive scattering systems

1. It is easy to see that an LSDS Q is passive if and only if for its coefficients the
following system of equations

I -T*T-G*G = M*M, -T*F-G*S = M*N, I -F*F-S*S = N*N, (17)

with unknown operators Nand M, is solvable. The system can be written in the
form

(here M E [5J, lJt], N E [lJt-, lJt], and lJt is a Hilbert space). In fact, if these equations
hold, then 1- V*V 2: 0, Le. Q is a passive system. Conversely, if I - V*V 2: 0, we
obtain a solution of the system of equations (17) if we put

lJt = (I - V*V)(5J EEl lJt-),

Let Q be a passive scattering system, M and N solutions of the equations
(17), and

'ljJ(z) = N + zM(I - zT)-l F, KAz) = (I - ZT)-lF. (18)

Using equations (17), we obtain after simple calculations

It is obvious from this identity, in particular, that I - e~(z)ea(z) 2: 0 for Izl < 1.
Thus we have

Proposition 8. [7) The scattering matrix of any passive LSDS belongs to the class B.

For the boundary values of a function ea(z) (E B) and'ljJ(z) (E B) we obtain
for any h in lJt and 1(1 = 1 (a.e.)

11[1 - e~()ea())l/2hI12 = 1I'ljJ()hI1
2+~W (1 - r 2) IIKa(r()hI1

2
.

Therefore the following two equations are equivalent:

I - e~()ea() = 'ljJ*()'ljJ(), (20)

But 11'ljJ()hll ::; 11[1 - e~()ea()jl/2hll and therefore the equations (20) hold if
and only if
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Taking into account that 'lj;(()h E H~(I)1) and 8",(()h E H~(I)1+), we obtain
00

11'lj;(()hll~2(')1) = IINhl12 +L IIMTkFhl12 ,
o

11[1 - 8~(()8",((W/2hll:2(')1_) = IIhl1
2 -118",(()hll~2(')1+) =

00

= IIhl1
2
- IIShl1

2
- L IICTkFhl12 .
o

Now we use equation (17) and the identity
00

1- s-lim (T*)nTn = "" (T*)k(I - T*T)Tk.
n-+oo ~

k=O

As a result we arrive at the relation

11
[1 - 8~(()8",((W/2hI12 = 117P(()hll~2(')1) + lim II TnFhI1

2
.£2(')1-) n-+oo

Consequently, condition (20) is equivalent to

s-lim TnF = O.
n-+oo

For a controllable system ex this limit relation means that T E Co· .

2. We remark that h(n) = L:~;:~ TkFcp-(n - k -1) for h(O) = O. Therefore it is

natural to call a passive system awith scattering matrix 8(z) optimal if for any
other passive system ex with the same scattering matrix 8(z) we have

for arbitrary hk in 1)1- and n ~ O. It follows from this definition that an optimal
controllable passive system is determined by its scattering matrix to within unitary
similarity. It is also easy to see that such a system is automatically observable and
hence minimal.

Theorem 7. An arbitrary function 8(z) of class B is the scattering matrix of some
optimal and minimal passive system.

Proof. Given 8(z) (E B) there exists an outer function cp(z) (E B) such that
1) <p*(()<p(() S 1- 8*(()8(() (a.e.),
2) if'lj;(z) E Band 'lj;*(()'lj;(() S 1- 8*(()8((), then 'lj;*(()'lj;(() S <p*(()cp(()
(see [13], Ch. V, Proposition 4.2).

The function <p(z) is defined by 8(z) to within a constant left unitary factor. It is
not excluded that cp(z) == O. If the factorization problem (4) is solvable for 8(z),
then cp(z) is equal to the previously introduced function <P2(Z). We consider the

function 8(z) = (:[;j), which is holomorphic and bounded and has values in
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o __ __ __

[91-,91+ EEl 91]. Since 8*()8(() ::; I, by the maximum principle 8(z) E B. Let a
be a simple conservative system with scattering matrix 8(z) and aa part of the

o __ 0 0 __

system a with outer spaces 91-, 91+ and coefficients F = F, T = T, G = P'Jl+ G,
o _

S = P'Jl+S. It is obvious that 8o(z) = 8(z) and
'"o 0 0 0

<p(z) = N + zM(I - zT)-lF,
o _

N = PoS,'Jl

o _

M=PoG.'Jl
o 0

The operators Nand M are solutions of equations (17) for the coefficients of the
system a, hence according to (19) we have

I - 8*(TJ)8(~) = <P*(TJ)<P(~) + (1 - f]~)K~(TJ)K o(~).

'" '"
Using the definition of <p(z) and this equation, we show thatais an optimal system.
In fact, suppose that a is any other passive system with scattering matrix 8(z).
For the functions 'lj;(z) and K",(z) corresponding to it by the formulas (18) we have
the identity (19), in which 8",(z) = 8(z). Therefore 'lj;*(()'lj;(() ::; I - 8* (()8(()
and

We verify that the right side of this equation is a nonnegative definite kernel of
two variables ~ and "I (I~I < 1, 1"11 < 1). Denote by '7r- the orthogonal projection
from £2 (91) onto H:' (91) = £2 (91) 8 H~ (91). Let hi E 91-, IZi I < 1, (1 ::; i ::; n).
We consider:

n

h(() = 2: (( - Zi)-lhi (E H:'(91-)),
i=l

n n

n

7r-'lj;h = 2: (( - Zi)-l'lj;(Zi)hi ,
i=l

11K-'lj;hll~2('Jl) = 2: 2: (1 - ZjZi)-l ('lj;*(Zj )'lj;(zdhi ,hj ).
i=l j=l

We can write an analogous equation for <p(z). But from the definition of the func
tion <p(z), it follows that 'lj;(z) = b(z)<p(z), where b(z) E B. Therefore

11K- 'lj;hll~2('Jl) = IIK-b<phll~2('Jl) ::; 11K-<phll~2('Jl) .
Here by b we denote the operator "multiplication" by b(() on £2(91), so that
IIK-bll ::; 1. Thus in turn we obtain

n n n n

2:2: (1 - ZjZi)-l ('lj;*(Zj)'lj;(zi)hi ,hj) ::; 2:2: (1 - ZjZi)-l(<p*(Zj)<P(Zi)hi ,hj),
i=l j=l i=l j=l

n n n n

2:2: (K~(zj)Ka(Zi)hi' hj) 2: 2: 2: (K~(zj)K o(zi)hi , hj),
i=l j=l i=l j=l a a

IIt (I - z.T)-l Fh·11
2

2: IIt (I - z/r)-lFh·11

2
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We note now that
00

(I - ZT)-l F = L znTnF,
a

D.Z. Arov

(0 < l' < 1). Therefore from the inequalities previously obtained, it follows that
for all hi (E 91-) and Zi (IZil < 1),

i.e. that & is an optimal system. If it is not controllable, then we can pass from it
to a new system ao with inner space flo = fl~ (= fl:U and coefficients

'"
o 0 0 0

Fa = F, To = TISJo, Go = Glflo, So = S.
o 0

Since 8",o(z) = 8(z) and T~Fo = TkF (k;::: 0), the system ao is also optimal. It
is controllable and hence minimal. The theorem is proved.

Remark 1. In the proof, in place of (~~:j) we may choose an arbitrary function
8(z) = [8idz)Ji of class B, which satisfies 8 12 (Z) = 8(z) and 8 22 (Z) = cp(z), and
with the part & of a simple conservative system ii with 8 a (z) = 8(z) determined
by the formulas (3). In this connection 8(z) may be chosen such that the optimal
system & is controllable.

Remark 2. For an outer function cp(z) and 'lj;(z) (E B), from the conditions
'lj;*(z)'lj;(z) :::; cp*(z)cp(z) and 'lj;*(0)'lj;(0) = cp*(O)cp(O) it follows that 'lj;(z) = bcp(z),
where b is an isometric operator which does not depend on z. Therefore, if we use
the identity (19), we conclude that an optimal system & is characterized by the

o 0 0

condition F* F :::; F* F, where F and F are coefficients respectively of an optimal
and arbitrary passive system with one and the same scattering matrix 8(z). In
place of z = 0 we may choose any point ~ (I~I < 1). The characterizing condition
of an optimal system in this situation can be written in the form

o 0 0 0

F*(I - ~T*)-l(I - ~T*)-lF :::; F*(I - ~T*)-l(I - ~T)-lF.

o

3. Let T be the basic operator of an optimal controllable system &with scattering
o

matrix 8(z). From Proposition 4 and the definition of &, it follows that T E Co.
if and only if the factorization problem (4) is solvable for 8(z).

o

Theorem 8. For the inclusion T E Coo it is necessary and sufficient that for 8(z)
the factorization problems (4), (5) are solvable, and that for the corresponding
contractive function ho(), defined by formula (11), there exists a bi-inner function
b(z) such that ho()b() E B. If these conditions are satisfied, the synthesis of &
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may be achieved as indicated in §2 with the aid of a minimal '1J-representation of
8(z) in the form

- (ipl8=
ho

8) (b
ip2 0

0)I . (21)

o _

Proof Suppose T E coo. Then 8(z) has a '1J-representation 8(z) = [8ik (Z)Ji
(812 = 8) with 8 22 = ip = ip2 (see the proofs of Proposition 3 and Theorem 2).
Also, as in the proof of Theorem 2, we obtain formula (21) for 8, where {I, b(z)}
is a denominator for ho((). By the same token the necessity of the conditions for

o

the inclusion T E Coo are obtained. Now suppose that the conditions are satisfied.
We consider a minimal denominator {I, b(z)} for ho(() and corresponding '1J
representation (21). With its help we construct a system a as indicated in §2.
Since 8 22 (Z) = ip2(Z) = ip(Z), a is an optimal system. According to Theorem 3, it

• 0

is minimal. For it, 8 a(z) = 8(z), T E Coo and therefore T E Coo. The theorem is
proved.

The bi-inner function b(z) in formula (21) is determined by 8(z) up to a
constant right unitary factor by the conditions: 1) ho(()b(() E B, 2) if b1(z) is a
bi-inner function and ho(()b 1 (() E B, then b1(z) is divided on the left by b(z), i.e.
b*(()b1 (() E B.

_ 0

Corollary. If8(z) E Bll, then T E Coo.

In fact, the conditions formulated in Theorem 8 are satisfied for 8(z) of class
Bll. The existence of a right denominator {I, b(z)} is proved in the same way as
the existence of a left denominator is shown in Theorem 4.

o

According to Theorem 5, the inclusion T E Co and 8(z) E Bll are equivalent.
o _

The problem remain open: is the inclusion T E Coo and 8(z) E Bll equivalent?
o

For T of class Coo the characteristic function eo (z) coincides with the so
T

called pure part of the function 8(z), determined by formula (21) (see the appro
priate definitions in [13]). Therefore in a well-known way we know the location

o _

of the spectrum of the operator T from 8(z) (see [13], Ch. VI, Theorem 4.1). It
is possible as well to use other known results from the theory of characteristic

o _

functions for the investigation of T from 8(z). We remark that in the case where
appropriate determinants are defined,

det 8(() = det b(() det ip(() / det ip(()

where ip(s) = ip2(Z).

(1(1 = 1),
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Appendix 1: Some further developments

D.Z. AROV

In this appendix the reader can find references to some works that are related to
the paper2 [4] and that have appeared subsequently. In the papers [8], [9], and [10]
one can find: a different and purely geometrical proof of Theorem 7; a dual theorem
on the existence of a minimal *-optimallinear discrete time stationary dissipative
scattering system with a given operator function 0(z) of the Schur class S(= B)
as the scattering matrix of this system; generalizations of these theorems to the
time-variant case; a model of the minimal optimal dissipative scattering discrete
time-variant system that has been constructed by a synthesis of the methods of
L. de Branges and R. Kalman; the investigation of the extremal factorization
problem

i.p*i.p ::::; 1- 0*0 ,

where 0 is a given contractive block lower triangular operator acting from
£2({Ud::'oo) into £2( {Yd::'oo) and i.p is an unknown block lower triangular con
tractive operator; and the connection of the latter problem with the minimal
optimal dissipative scattering realization problem for a given 0. The theorems
on D-representations and Darlington method were generalized to the time-variant
case in [18]. Results have been obtained in [12] on simple conservative, minimal
optimal, and minimal *-optimallinear stationary scattering realizations of a given
holomorphic contractive operator function in the right half plane 0 as the scat
tering matrix of the corresponding continuous-time systems.

The minimal optimal and minimal *-optimal dissipative scattering realiza
tions of a given function 0 E S were used to obtain criteria (in terms of the
properties of 0) that all of the minimal dissipative scattering realizations of 0 are
unitarily equivalent [13] and that they are all similar [7], [11]. Analogous results
are obtained for operator functions 0(z) of the Caratheodory class, that is, which
are holomorphic in the unit disk with Re 0(z) 2: 0 [11]. Theorems on the existence
and uniqueness of minimal optimal and minimal *-optimal dissipative scattering
realizations are obtained in [20] for operator functions 0(z) in the generalized
Schur class S~ that are meromorphic in the unit disk, for which the corresponding
kernel

1- 0(z)0*(w)
1-zw

has x negative squares (0 E Sx), and that are holomorphic at the point z = o.
In these generalizations the dissipative scattering systems are considered with
Pontryagin state spaces IIx that have indefinite scalar product with x negative
squares. For conservative scattering realizations of a function 0 E S~ and related
problems, see the book [1] and the references in [1]. Conservative scattering real
izations of a function 0(z) E Sx that may have a pole at the point z = 0 (0 ~ S~)

2The citations in Appendix 1 and Appendix 2 are to the Supplementary References that follow.
An English translation of [4] is the main body of the present work.
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and related problems on the unitary extension of an isometrical relation in the
Pontryagin space IIx were considered in [16] and [17]. The D-representations, the
Darlington method for the functions e of the class Sx and related problems, are
considered below in Appendix 2. Two surveys of investigations connected with the
results of the translated paper are given in [5] and [6].

Appendix 2: on Darlington representations of
generalized Schur functions

D.Z. AROV AND J. ROVNYAK

The results of [4] have generalizations in which the state spaces are Pontryagin
spaces. Such a situation arises, for example, in the analysis of circuits which have
active as well as passive elements. Here we give two results which illustrate the
possibilities. We plan to discuss this topic in a more systematic way in a future
work.

For simplicity, we take the input and output spaces to be finite dimensional
and given by 1)1- = C q and 1)1+ = CP in the standard Euclidean metrics. Operators
on 1)1- to 1)1+ are identified with p x q matrices in the usual way.

By SJ:xq we mean the generalized Schur class ofpx q matrix-valued functions
which are meromorphic on the unit disk D = {z: Izi < I} such that the kernel [Ip 

S(z)S(w)*]j(1 - zw) has x negative squares. The basic properties of generalized
Schur functions are given in a series of papers by KreIn and Langer. Mainly, we
shall need the KreIn-Langer factorization. This says that SJ:xq coincides with the
class of functions of the form

where BR(Z) is a Blaschke-Potapov product of degree x whose values are p x p
matrices, SR(Z) belongs to Srq

, and BR(z) and SR(Z) are left co-prime in the
sense that they have no common nonconstant inner left-divisor of size p x p. This
well-known result first appeared in [14], and there are other accounts and different
proofs; for example, see §4.2 of [1]. A function S(z) in Sr q is called a (classical)
Schur function.

By the KreIn-Langer factorization, the boundary behavior of generalized
Schur functions is immediately deducible from that of classical Schur functions.
In particular, the boundary function S(), ( E aD, of a function S(z) E SJ:xq
has contractive values. In some situations, it is convenient to identify S(z) with
its boundary function S() and write, for example, S() E SJ: xq . The symbol ( is
always used for a point on aD: 1(1 = 1.

A scalar-valued meromorphic function is said to be of bounded type on a
region if it is the quotient of bounded holomorphic functions with a denominator
which does not vanish identically. Measure theoretic notions on the unit circle are
assumed to be relative to normalized Lebesgue measure. Let IIpxq be the class of



130 D.Z. Arov

p x q matrix-valued functions F(z) which are meromorphic separately on D and
De = {z: Izl > I} U {oo} such that

(i) the entries of F(z) are of bounded type on D and De, and
(ii) the two radial limits of F(z) on the unit circle aD, taken from inside and
outside the circle, coincide:

F(() d;J limF(r() = limF(r()
ril r!l

a.e. on aD.

We write S(z) E S,JIpx q if S(z) E SJ:x q and S(z) is the restriction to D of
some function F(z) in lI pxq . The class S",lI pxq is a generalization of the class
BlI in [4]: SolI pxq reduces to BlI when operators are identified with matrices as
above. The Darlington representation of functions in BlI in [4] is generalized in
the following result.

Theorem A. (1) If S(z) E S",IIpx q, there is an m :::; p + q and a function

S(z) E s::,xm whose boundary values are unitary a.e. on aD, such that S(z)
has a decomposition

S(z) = (Sll(Z) SlZ(Z))
SZl(Z) S22(Z) (1)

with SlZ(Z) = S(z). Moreover, S(z) can be chosen such that Sll(Z), SZl(Z), and
Szz(z) are classical Schur functions.

(2) Conversely, let S(z) E s::,xm for some integer m, and assume that S(z)
has unitary boundary values a.e. on aD. Decompose S(z) as in (1) with SlZ(Z) of
size p x q. Then S(z) = SlZ(Z) belongs to S""lI pxq for some x' :::; x.

An analogous problem was considered in [3] when the given function S(z) of
the class lI pxq with IIS(()II :::; 1 a.e. on aD is not necessarily in the Schur class,
but without the condition that S(z) is a generalized Schur function. The present
result obtains a stronger conclusion from a stronger hypothesis. The method of
proof generalizes arguments in [4] for the case x = o.

Proof. (1) Let S(z) E S",IIpx q be given. We first observe that there exists a scalar
inner function c(z) such that c(()S*(() E Sr p

, that is, c(()S*(() is the boundary
function of a Schur function G(z). In fact, since S(z) E lI pxq , there is a function
F(z) which is meromorphic and of bounded type on D and De whose restriction
to Dis S(z) and such that

limF(r() = limF(r() = S(() a.e. on aD.
ril r!l

Choose a scalar inner function c(z) such that

G(z) d;J c(z)F*(l/z), ZED,

defines a function in soqx P • Then G(() = c(()S*(() a.e. on aD, and so c(z) has the
required property. By the Kre'tn-Langer factorization, we may also choose a scalar
inner function d(z) such that d(z)S(z) E stXq

• Set b(z) = c(z)d(z).
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The functions

~s-(() = I p - S(()S*(() and ~s(() = I q - S*(()S(()

satisfy 0 :::; As- (() :::; Ip and 0 :::; ~s(() :::; Iq a.e. on oD. If b(z) is the scalar
inner function defined above, then b(()~s- (() and b(()~s (() are Schur functions.
Proceeding as in the proof of Theorem 4 of [4] we apply the factorization theorem
of [19] to find an outer function CP2(Z) of size PI x q and a *-outer function CPl(Z)
of size P x ql (PI :::; q and ql :::; p) such that

~s-(() = I p - S(()S*(() = CPl(()cpi((),

As(() = Iq - S*(()S(() = CP2(()CP2((),

a.e. on aD. Notice that the values of CP2(Z) and CPl(Z) are contractions. We shall
construct the required function (1) with SI2(Z) = S(z) and

(2)

where b1 (z) and b2 (z) are inner functions which will be chosen below. The entry
S21 (z) will be determined by a relation

a.e. on aD, (3)

where ho(() is a measurable contractive-valued function on oD such that

a.e. on oD. (4)

The existence of ho(() follows as in the proof of Theorem 2 of [4]. Briefly, we first
define a contraction operator K : L 2(CP1 ) --+ L 2(Cq1 ) by its action on a dense set:

K: CP2(()g(() --+ -cPi(()S(()g((),

Since K intertwines multiplication by ( on L 2 (CP1) and multiplication by ( on
L2(Cql), K is multiplication by a measurable contractive-valued function ho((),
and the existence of ho(() follows.

We show that 'lj;(() = b(()cp2(() belongs to Sd XP1
• In fact,

'lj;(()CP2(() = b(()CP2 (()CP2 (() = b(()~s(()

is a Schur function, and since CP2(Z) is an outer function, 'lj;(() belongs to soqXP1.
Let 'lj;(z) = 'lj;o(z)b2(z), where b2(z) is inner and 'lj;o(z) is *-outer. Since

'lj;o(()b2(()ho(() = 'lj;(()ho(() = b(() [CP2 (()ho(()] = -b(()S*(()CPl(()

is a Schur function and 'lj;o(z) is *-outer, b2(()ho(() is a Schur function.
Now define Sll(Z), S22(Z), and S21(Z) by (2) and (3) with the preceding

choice of b2 (z) and b1 (z) == Iq1 . We show that the function S(z) given by (1)
has the required properties. By construction, Sll (z), S22 (z), and S21 (z) are Schur
functions. The proof that S(z) has unitary boundary values a.e. on oD is the same
as in the case x = O. It follows that the values of S(z) are square matrices, and we
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take m = P+PI = ql + q. If S(z) = bp(Z)-ISp(Z) is a KreIn-Langer factorization,
the representation

(5)

shows that S(z) E S":,xm for some XiS; degbp = x. Since

S(z) = (Ip 0) S(z) (1) ,
x S; x'. It follows that x' = x (in fact, (5) is a KreIn-Langer factorization).

(2) Assume that S(z) E s;:xm and S(z) has unitary boundary values a.e. on
aD. Then det S(z) =1= O. Decompose S(z) as in (1) with S12(z) of size P x q, and
let S(z) = SI2(Z). Using the KreIn-Langer factorization it is easy to see that

{
S(z)

F(z) = S*(1/Z)-1
onD,

onDe,

defines a function which is meromorphic and of bounded type separately on D and
De. Since the boundary values of S(z) are unitary a.e., F(z) has the same radial
limits from inside and outside the circle:

F(C) = S(C)

a.e. on aD, and so F(z) E II mxm . Thus

FI2(Z) = (Ip 0) F(z) (1)
belongs to IIpx q, and the restriction of F12 (z) to Dis S(z) = S12(Z). Since S(z) E

s;:xm, S(z) E s~~q for some x' S; x. It follows that S(z) E Sx,IIpx q with
x' S; x, as was to be shown. 0

In the passive case of Darlington synthesis (x = 0), there is a notion of
minimal losses which requires that the function S(z) E s;:xm in Theorem A(1)
be constructed with a choice of m as small as possible. We remark that the choice
m = P+PI in the proof of the theorem has this property for all x ::::: O.

A different form of the Darlington representation may be given. Let P and q
be nonnegative integers. Set n = P + q, and let

J= (~ -~J.
An n x n matrix U is called J-unitary ifU* JU = J and J-contractive ifU* JU S; J.
As is well known, these relations are equivalent to UJU* = J and UJU* S; J,
respectively. Define the generalized Potapov class p;:xn(J) as the set of mero
morphic n x n matrix-valued functions 8(z) on D such that the kernel [J -
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8(z)J8*(w)]/(l - zw) has x negative squares. Every 8(z) in p;:xn(J) has a
decomposition

8(z) = (811 (Z) 812 (Z)) (6)
8 21 (Z) 8 22 (Z) ,

where 8 22 (Z) is of size q x q and invertible except at isolated points (see Theorem
4.3.3(1) in [1]). Hence we may define the Potapov-Ginzburg transform

S(z) = PG(8(z))

of 8(z) by

S(z) = (Sl1(Z) S12(Z))
S21(Z) S22(Z)

= (811 (Z) - 8 12 (Z)822(Z)-1821 (Z)
-822 (Z)-1821 (Z)

Then

8(z) = PG(S(z)),

that is,

8(z) = (8 11 (Z) 8 12 (Z))
8 21 (Z) 8 22 (Z)

= (Sl1(Z) - S12(Z)S22(Z)-lS21(Z)
-S22(Z)-lS21(Z)

A straightforward calculation verifies the identity

J - 8(z)J~*(w) = <I>(z) In - S(z)~*(w) <I>*(w),
1- zw 1- zw

where

(7)

<I>(Z) = (Ip -812(Z)).
o -822 (Z)

In particular, S(z) E s;:xn. It follows that the entries of 8(z) are of bounded
type on D, and that radial boundary limits 8(() exist and are J-contractive a.e.
on aD.

Definition. Let u;:xn(J) be the set of all functions 8(z) in p;:xn(J) such that the
boundary values 8(() are J -unitary a. e. on aD.

If 8(z) E u;:xn(J), then 8(z) E Ilnxn. Indeed, the entries of the function

{
8(z)

F(z) = J8*(I/z)-lJ
onD,

on De,
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are of bounded type on D and De, and

limF(r() = J8*()-1 J = 8() = limF(r()
r!l rT1

a.e. on aD.
Let 8(z) E u;:xn(J), and decompose 8(z) as in (6). If £ is a constant p x q

contractive matrix, then det [821(Z)£ + 8 22 (Z)] ;j. 0; in fact, since the boundary
values of 8(z) are J-unitary, 8 21 ()£+822() is invertible a.e. on aD by Theorem
1.1 in [15]. Therefore

S(z) = Te[£] d~ [811 (z)£ + 8 12 (Z)][821 (Z)£ + 8 22 (Z)t 1 (8)

defines a function in IIpxq. An expression of the type (8) is another form of the
Darlington representation. For example, see [2].

Theorem B. (1) Assume that 8(z) E u;:xn(J) is decomposed as in (6) and that £
is a constant p x q contractive matrix. Then S(z) = Ta [£] belongs to Sx,IIpx q for
some x' ~ x.

(2) Conversely, suppose S(z) E SxIIpxq and Iq - S* (()S( () is invertible
a.e. on aD. Then S(z) has a representation S(z) = Te[£] as in (1), and moreover
this representation can be chosen such that £ = O.

Proof. (1) By the discussion preceding the statement of the theorem, S(z) E IIpx q,
and what remains is to show that S(z) E s~~q for some x' ~ x. Straightforward
algebra verifies the identity

I q - S*(z)S(w)
1- zw

= [£*821 (Z) + 822(Z)r1 (£* I) J - 8*(z)J8(w)
q 1- zw

. (~) [8 21 (W)£ + 8 22 (W)]-1

+ [£*821 (z) + 8 22(Z)r 1 I~ - £*£ [821 (W)£ + 8 22 (W)]-1. (9)
- zw

Since we assume that 8(z) E u;:xn(J), the kernel [J - 8(z)J8*(w)]/(l - zw)
has x negative squares. Hence so does the kernel [J - 8*(z)J8(w)1/(1 - zw) by
Theorem 2.5.2 of [1]. Therefore the first term on the right side of (9) has at most K,

negative squares. The second term on the right side of (9) is a nonnegative kernel
because £ is a contraction. Hence the kernel on the left side of (9) has at most x
negative squares. By another application of Theorem 2.5.2 of [1], S(z) E s~~q for
some x' ~ x, which proves (1).

(2) Assume that S(z) E SxIIpx q and that Iq- S*()S() is invertible a.e. on
aD. Choose a function S(z) for S(z) as the proof of Theorem A(l). In the same
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notation, S22(Z) = b2(z)Cf'2(Z) where Cf'2(Z) has size PI x q with PI :S q. Since SeC)
is unitary a.e. on aD,

I q - S*(()S(() = I q - S;2(()SI2(() = S~2(()S22(() = Cf'2(()Cf'2(()

a.e. on aD. By our nondegeneracy hypothesis, it follows that PI = q and
det S22(Z) ¢. O. Define 8(z) = PG(S(z)). Using the identity (7) and the fact
that S(z) E s;:xn and has unitary boundary values a.e. on aD, we see that
8(z) E u;:xn(J). By construction,

S(z) = 8 I2 (Z)822 (Z)-1 = Te[O],

as was to be shown. D
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Concrete Interpolation of Meromorphic Matrix
Functions on Riemann Surfaces

Joseph A. Ball, Kevin F. Clancey, and Victor Vinnikov

To our friend Harry Dym on the occasion of his 60th birthday

Abstract. This work investigates concrete problems of interpolating matrix
pole-zero data with multiple-valued meromorphic matrix functions on closed
Riemann surfaces. In the case of genus 9 > 1, a condition sufficient for the
existence of a solution having constant factor of automorphy is presented.
Necessary and sufficient conditions are presented in the case where 9 = 1. A
necessary and sufficient condition for single-valued matrix function interpola
tion in arbitrary genus is also established.

This paper deals with the problem of interpolating matrix pole-zero data by regular
meromorphic matrix functions on a closed Riemann surface M of genus greater
than zero. In classical formulations of such interpolation problems, the data is
given as a matrix divisor. A matrix divisor e is a section of the sheaf of germs of
regular r x r-meromorphic matrix functions on M modulo one-side equivalence by
invertible analytic matrix functions. This notion of divisor was introduced by [15].
In general, there will exist a multiple-valued r x r-meromorphic matrix function
G interpolating the divisor in the sense that the matrix function germ determined
by G belongs to the value of e at points ofM. This last r~ult is a consequence of
the triviality of vector bundles on the universal co~r p ; M ---.. M ofM. In fact, if
9 is the group of covering transformations for p : M ---.. M, then the vector bundle
on M determined by e corresponds to a holomorphic matrix factor of automorphy
~ : 9 X M ---.. GL(r, q. By definition this matrix factor of automorphy satisfies

~(ST, u) = ~(S, Tu)~(T, u), S, T E g, u E M.

There is an r x r-meromorphic matrix function G = G(u) on M satisfying

G(Tu) = ~(T,u)G(u), (T,u) E 9 x M

such that the germs of G agree with the values of the divisor p*e at points ofM.
This abstract solution of the interpolation problem is a nice existence theorem;
however, to understand the multiple-valued nature of the solution to the interpo
lation problem, one must determine the factor of automorphy ~ that is associated
with the divisor data e. One result in this direction appears in a classic paper of
Weil [15]. WeiI gives finite dimensional necessary and sufficient conditions for the
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existence of a solution to the above interpolation problem that has constant factor
of automorphy, i.e., associated to a representation of g. The existence of such a
solution is equivalent to the condition that the vector bundle associated with e is
flat.

The goal of this paper is to study the abstract interpolation problem described
above in a more concrete context. In many applications, it is important to present
the interpolation data in a form that explicitly displays the matrix pole-zero data
at the interpolation nodes. A linear algebra description of the pole-zero data of
a meromorphic matrix function has recently been given using the concept of a
null-pole triple as described in [4]. This triple will be described in greater detail
below. For now, we are content with an indication of the nature of null-pole triples.
Suppose that F = F(z) is a regular r x r-meromorphic matrix function defined in
a neighborhood of z = 0 in C. The (right) null-pole triple of F at z = 0 has the
form

Y = ((B(, Ad, (A", 0,,), S).

In this triple, the pair of matrices (A", 0"), where A" is n.rr x n" and 0" is n" x r,
captures the pole behavior of F, in the sense that for some matrix B the difference

F(z) - B(zI - A" )-10"

is analytic at z = 0 and the pair of matrices (B(, A(), where A( is n( x n( an..? B(
is r x n(, captures the zero behavior of F in the sense that for some matrix 0 the
difference

F- 1(z) - BdzI - Ad-Ie

is analytic at z = o. The n" xn( matrix S satisfies A"S-SA( = O"B( and is called
the coupling matrix [9]. In a somewhat imprecise sense, the matrix S accounts for
any pole-zero cancellation in det F at z = o. There are natural concepts of mini
mality and similarity for null-pole triples such that the similarity orbits of minimal
null-pole triples are in a one-to-one correspondence with matrix divisors at z = o.
As a consequence of this last fact, the problem of interpolating matrix divisors
is equivalent to the more concrete problem of interpolating null-pole triples. The
concrete formulation of this interpolation problem comes with a price. Namely, the
prescription of a matrix null-pole triple at a point on the Riemann surface must be
done in specific local coordinates. (Below, we will offer a coordinate free method of
describing null-pole triples.) If one exploits uniformization, then the dependence
of the interpolation data on local coordinates is somewhat diminished (or at least
hidden). Let ZI, ... , ZK be points on M. We will specify interpolation data on M
of the form

V: {(Y 1 ,zd, ... ,(YK,ZK)},
where Y j is an admissible null-pole triple prescribed in local coordinates (Sj, Vj) at
the point Zj, with Sj (Zj) = 0, j = 1, ... ,K. One obvious question is the following:
Given the data V, find necessary and sufficient conditions in terms of the data
V for the existence of a global meromorphic matrix function G such that near
Zj, G(p) = Fj(sj(P)), where Y j is a null-pole triple of the matrix function Fj at
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zero, j = 1, ... ,K. We will give an answer to this question. See, e.g., Theorem
9. A related question is to find necessary and sufficient conditions involving the
data D for the existence of a multiple-valued meromorphic matrix function G
that solves the interpolation problem such that G has a constant matrix factor of
automorphy. We will give a complete solution to this problem in the case of genus
one (see, Theorem 1) and a sufficient condition for a solution to this problem
in higher genus (see, Corollary 7). The genus one result will take advantage of
Atiyah's [1] description of vector bundles over an elliptic curve. In the case where
M is realized in the form M = C jZ + TZ, where 1mT > 0, the results of Atiyah
[1] imply that a flat bundle E over M admits a representation

In this representation lL1 , ... , lLs are degree zero line bundles and Fh denotes a rank
h flat bundle which corresponds to the representation ~h : Z + TZ ----. GL(h, q
given on the generators of Z + TZ by

1 1 0 0
0 1 1 0

~h(l) = h ~h(T) = 0
0 0 1 1
0 0 0 1

Perhaps a more natural question from the point of view of the structure of vector
bundles is which interpolation data sets give rise to flat unitary vector bundles, or
more generally, to "stable" or "semistable" bundles (see [14] for definitions and a
full account of these concepts); we will also discuss some results on this problem
in Section 3.

We close the introduction by describing a sample of our results in the simplest
case on a torus where all poles and zeros are first order and occur at separate points.
Suppose that M is the complex torus M = CjZ + TZ, where 1mT > O. Consider
the interpolation data

where, 12.1 , ... , 12.N are r-dimensional column vectors, Cl, ... , eN are r-dimensional
row vectors and ZI, .. , , Z N; WI, . .. , W N are 2N distinct points on M. We look for
multiple valued r x r-meromorphic matrix functions G on M such that the poles
of entries are at most simple poles at the points WI, . .. , W N, the only zeros of
det G are simple zeros at ZI, ... , ZN with 12.j spanning the (right-)kernel of G(Zj)

(j = 1, ... ,N) and at Wi, G-1 is analytic with Ci spanning the left-kernel of
G-l(Wi), i = 1, ... ,N. The data set D can be lifted to the data set p*D on C
Any single-valued r x r -meromorphic matrix function G = G(u) interpolating p*D
is to be considered a multiple-valued solution to the interpolation problem with
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data set D. We introduce the classical theta function with characteristics g,n
{
III 1 I}

(}*(u) = ~ exp 21l"i["2(n + "2)T(n + "2) + (n + "2)(u + "2)] ,
nE/U

associated with the lattice Z + TZ.

Theorem 1. In order that there exist a multiple-valued r x r-meromorphic ma
trix function G = G (u) solving the interpolation problem with data D that has
automorphic behavior

G(u + 1) = G(u), G(u + T) = CG(u + T),

where C is an invertible r x r-matrix, it is necessary and sufficient that for some
,\ (j. Z + TZ the matrix

is invertible.

The proof of this theorem provides additional information. There is a natural
vector bundle ED associated with the interpolation data D.

Corollary 2. The zeros of the determinant of the matrix function rS, ,\ (j. Z + TZ,
correspond to the non-trivial line bundles providing the decomposition ED = lL I ®
Phl EEl ... EEllLs ® Phs' The bundle ED is equivalent to a direct sum of non-trivial
line bundles if and only if the determinant of rS, ,\ (j. Z+TZ, has precisely r zeros
(counting multiplicity) in a fundamental domain for Z + TZ. The bundle ED is
equivalent to a direct sum of the bundles Ph if and only if the determinant of rS,
,\ (j. Z + TZ, doesn't vanish.

The genus zero version of Theorem 1 (where the torus is replaced by the
Riemann sphere and the only flat bundle is the trivial bundle) goes back to [9]; see
[4] for a complete treatment. Indeed, in the case where the zeros Zl, ... , ZN and
poles WI, ... ,WN are in the complex plane the invertibility of the N x N-matrix

r = [w:i~~j] is necessary and sufficient for the existence of a rational matrix
function solving the corresponding interpolation problem on the Riemann sphere.
In the sequel, for arbitrary genus g > 0, using a matrix analogous to rs, necessary
and sufficient conditions will be given for the interpolation problem with data D
to have a single valued solution. A result in this direction was given earlier in [2].

It develops that every flat vector bundle on a closed Riemann surface is
equivalent to an interpolation vector bundle associated with data of the simple
form V [3]. Thus the result in Theorem 1 gives conditions for realizing any flat
vector bundle on a Riemann surface of genus 9 = 1 through global meromorphic
functions on iC having a simple pole-zero structure.
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1. Local divisors and local null-pole triples

Let M be a Riemann surface. The sheaf of germs of holomorphic (respectively,
meromorphic) functions on M will be denoted by 0 (respectively, M). The nota
tion Op (respectively, M p ) will be used for the stalk at p E M of 0 (respectively,
M). Further, we will denote 0@((7 (respectively, M@((:r) by or (respectively,
Mr) and orxr (respectively, M rxr ) will denote the r x r-matrix analogues. When
convenient, elements in Cr(respectively, or) will be considered as row vectors
(respectively, row vector functions). The regular elements in orxr (respectively,
Mrxr) will be denoted by QL(r, 0) (respectively, QL(r, M)). We let QL(r, O) act
on QL(r, M) on the left. An element 8 p in (QL(r, M)jQL(r, O))p is called a (rank
r) local matrix divisor at p. A matrix divisor is a section 8 of QL(r, M)/QL(r, 0).
See, [13] for a slightly different definition of matrix divisor. The set of values p E M
(necessarily finite) where 8 p =1= I will be called the support of 8. The value 8 p

of a matrix divisor is a set of germs at p of the form [HF]p, where F is a fixed
regular r x r-meromorphic matrix function defined in a neighborhood of p and H
varies over invertible r x r::.,analytic matrix functions defined in a neighborhood
of p. Two divisors 8 and 8 are said to be linearly equivalent i~ case there is a
globally defined regular r x r-meromorphic matrix K such that 8 = 8K. If F is
a regular r x r-meromorphic matrix function defined in a neighborhood of p, then
we define the null-pole subspace associated with F at p as

O;[F]p = {[f]p : f = gF, g is (a row vector) cr-valued and analytic at p}. (1)

This defines stalks of a locally free sheaf which is dual to the standard bundle
determined by 8. Obviously, if [F]p and [P]p belong to the divisor 8 p, then
O;[F]p = O;[P]p. Conversely, this last equality implies [F]p and [F]p belong to the
same divisor at p. As a consequence, if 8 p is a matrix divisor at p, it determines
a null-pole subspace S(8p ) given by (1) in M~.

It develops that local matrix divisors admit a more concrete description in
terms of matrix pole-zero data. In fact, there is a natural correspondence between
local matrix divisors and similarity orbits of local null-pole triples. We briefly
present the concept of local null-pole triple. Suppose F is an r x r-meromorphic
matrix function defined in a neighborhood of z = 0 in the complex plane. The
pole-zero structure of F at z = 0 can be encoded in a minimal right null-pole
triple

Y = ((B(,Ad, (A7r ,C7r ),S), (2)

where (B(, Ad is a minimal right zero pair of F, (A7r , C7r ) is a minimal left pole
pair of F and the n7r x n(-null-pole coupling matrix S satisfies

A 7r S - SA( = C7r B(. (3)

To say that (B(, Ad is a minimal right zero pair of F means that A( is an n( x n(

nilpotent matrix, B( is an r x n(-matrix with

(4)
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and there is an n( x n-matrix C such that

F-I(z) - Bc:(zI - Ad-Ie

is analytic at zero. Note that if (B(, Ad is a left zero pair for F, then for any
invertible matrix U

( B(U, U-1A(U) (5)
is also a left zero pair for F. Moreover, any left zero pair for F will have the form
(5) for some invertible matrix U. In a dual manner, to say that (A7I" C7I') is a right
pole pair of F means that A7I' is an n7l' x n7l'-nilpotent matrix, C7I' is an n7l' x r-matrix
with

",n~ im(Aj C ) = cn~
L..Jj=o 71' 71'

and there is an r x n7l'-matrix B such that

F(z) - B(zI - A7I' )-IC7I'

is analytic at zero. If (A7I" C7I') is a right-pole pair of F, then for any invertible V

(V-I A7I'V, V-1C7I') (7)

is a right pole pair of F. Any right pole pair for F will have the form (7) for some
invertible matrix V.

The fact that S acts as a coupling operator means the following: Given an
r-dimensional row vector function h = h(z) analytic at zero, then one can write

(hF)(z) = x(zI - A7I' )-IC7I' + k(z) (8)

where x is an n7l'-dimensional row vector and k = k(z) is analytic at zero. More
over, every n7l'-dimensional row vector x occurs in such a decomposition for an
appropriate choice of h. The coupling operator S satisfies

xS = resz=o [k(z)B«(zI - Ad-I] (9)

where res denotes the residue. By combining (1), (8) and (9) we see that the
null-pole subspace associated with Fat z = 0 has the explicit description

Oo[F]o = {x(zI - A7I')-IC7I' + k(z) :
x Ecn~, k E 0 0 , xS = resz=o [k(z)Bc:(zI - Ad-I]}, (10)

where ((B(, Ad, (A7I" C7I'), S) is a null-pole triple for F at z = O. (For a self
contained complete proof of this statement, see Theorem 12.3.1 of [4].)

It is possible to construct a canonical null-pole triple for a given r x r-matrix
function F meromorphic at z = O. The details of this construction can be found
in [4]. Following the usual convention, in case no matrix entry of F (respectively,
of F- 1 ) has a pole at z = 0, a null-pole triple for F will be written simply as a
zero pair (respectively, a pole pair).

A triple Y = ((B(, Ad, (A7I" C7I'), S) consisting of a pair of matrices (A7I" C7I')
(of sizes n7l' x n7l' and n7l' x r) satisfying (6), a pair (B(, Ad (of sizes r x n( and
n( x nd satisfying (4) and with S satisfying (3) will be called a rank r admissible
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triple. Given a rank r admissible triple Y there is an r x r-matrix function F
meromorphic at Z = 0 such that Y is the null-pole triple of Fat Z = o.

If U and V are invertible matrices of appropriate size, then the triple

(11)

.is also a null-pole triple for F . One says the null-pole triples Y and Yare similar.
If Y is an admissible triple, then the collection S(Y) of triples of the form (11),
where U and V vary over invertible matrices of the appropriate size, will be called
the similarity orbit of Y. An important result from [6] establishes a one-to-one
correspondence between the similarity orbits of admissible rank r triples and rank
r local matrix divisors at z = 0 in C. This correspondence is a consequence of
the following result: Let F1 and F2 be regular r x r-meromorphic matrix functions
defined in a neighborhood of z = O. The matrix functions F1 and F2 are associated
with similar null-pole triples if and only if for some invertible analytic r x r-matrix
function H, F2 = HF1 in a neighborhood of z = O. Thus if S(Y) is the similarity
orbit of a rank r admissible triple, there is a unique rank r local matrix divisor
8 0 at z = 0 associated with S(Y). This divisor 8 0 consists of the set of germs at
z = 0 of regular r x r-meromorphic matrix functions F such that every element
in S(Y) is a null-pole triple of F.

At a point p on a Riemann surface, it is possible to specify a local matrix
divisor 8 p using the similarity orbit S(Y) of an admissible triple together with local
coordinates (s, V), where s maps the neighborhood V of pinto C with s(P) = O.
This matrix divisor consists of the collection of germs of regular r x r-meromorphic
matrix functions L that have the form L(q) = F(s(q)) in a neighborhood of p,
where F admits S(Y) as a set of null-pole triples at s = o. A less concrete but
coordinate free approach to the null-pole triple can be given as follows. The value
of the matrix divisor 8 p at a point p E M defines the null-pole subspace S(8p) of
the spaceM; of r-dimensional meromorphic row vector germs. Introduce the pole
space Pp = [S(8p)+0;lIO; and the null spaceNp = 0;/[0; nS(8p)]. The spaces
Pp and N p are finite dimensional. The triple (Np, Pp,T), where T : N p ---. Pp
is a linear transformation can be used as an alternative to the null-pole triple
introduced above. See, e.g., [16],[5].

2. Interpolation problems

The concrete prescription of null-pole triple data in interpolation problems will
be given in fixed local coordinates at the interpolation nodes. Let Zl, ... , Z K be
fixed points on the Riemann surface M and (Sj, Vj) be local coordinates at Zj with
Sj(Zj) = 0, j = 1, ... ,K. Let
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be rank r admissible triples. We do allow the possibility that Y j consists only of
a zero or pole pair. The collection

(12)

will be referred to as an admissible rank r interpolation data set.
First Basic Interpolation Problem: Given the admissible rank r interpolation

data set (12), determine whether there exists a regular meromorphic function G
on M such that in a neighborhood of Zj

G(p) = Fj(sj(p)),

where Fj is a regular r x r-meromorphic matrix function at S = 0 having Y j as a
null-pole triple for j = 1, ... ,K and such that at other points of M, the matrix
function G is a non-singular analytic matrix function.

A solution of the First Basic Interpolation Problem will be presented below.
In order to discuss multiple valued solutions of our interpolation problems,

it is natural to work in the environment of the universal cover. To this end let
p : M --. M be "the" universal cover of M. For convenience whenever local
coordinates (s, V) are chosen at a point P EMit will be assumed that p-l(V) is
a disjoint collection of neighborhoods of points in p-l ({p}) and, therefore, sop
provides local coordinates at points in p-1 ({p}). The data

p*V: {(SlOp,p-l({zd),YI), ... ,(SKOp,p-l({ZK}),YK )} (13)

will be called admissible rank r interpolation data on M.
Second Basic Interpolation Problem: Given the admissible rank r interpola

tion data set (13) on M determine whether there exists a regular r x~meromorphic
matrix function G with constant matrix factor of automorphy on M such that in
a neighborhood of a point in p-l ({Pj })

G(p) = Fj(sj(p(p)))

where Fj is a regular r x r-meromorphic matrix function at S = 0 having Y j as a

null-pole triple for j = 1, ... ,K and such that at other points of M, the matrix
function G is a non-singular analytic matrix function.

A solution G to the Second Basic Interpolation Problem will be called a flat
solution.

Note that these interpolation problems only depend on the similarity orbits
S(Y j ) of the admissible triples Y j , j = 1, ... ,K and the data V given in (12) can
be taken in the form

SD : {(Sl' Zl,S(Y1)), ... , (SK,ZK,S(YK ))). (14)

Indeed, it is important to recognize that the data SD given in (14) determines a
unique matrix divisor 8 SD on M and, conversely, once coordinates are fixed at
points in its support a matrix divisor 8 on M determines a unique set of data
SDe of the form (14).

It is necessary to assemble interpolation data as follows: Let Zl,.··, ZNo be
a list of the points Zj, where a zero pair appears in some Y j and WI, ... ,WN= a
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list of the points Zj where a pole pair appears in some Y j' One will have Zi = Wj

for a pair (i, j) whenever there is a coupling matrix at Zi = Wj' In the sequel,
we will frequently assume the data set has been split into three cases correspond
ing to "zero only", "pole only" or "pole-zero coupling." The points Zl,· .. , zNo

°will denote the interpolation points Zl, ... , ZNowhere the data consists only of a
zero pair and zNo+l>"" ZNO the interpolation points Zl, ... , ZNo where there is

° °a nontrivial coupling matrix; Wl,"" WNO will denote the interpolation points
wl, ... ,wNoowhere the data consists only of a pole pair and wNo+l, ... ,VNoo00

will be a list of the interpolation points where there is a nontrivial coupling
matrix. Obviously, N c = No - N8 = Noo - N~ and it can be assumed that
zNg+j = WN~+j, j = 1,'" , N c . Local coordinates at Zj will be denoted by tj,

j = 1, ... , No and at Wi, by Si, i = 1, ... , Noo • In addition, whenever Wi = Zj we
will take the local parameters to coincide: Si = tj' In the sequel, we will sometimes
drop the subscripts and write S = s(p) for the fixed coordinates at a node. To
avoid confusion about which index is used for the associated coupling matrix, we
write 8 ij for the coupling matrix associated with points Wi = Zj.

3. Vector bundles and interpolation data

A rank r matrix divisor or a collection of admissible rank r interpolation data
corresponds in a natural way to a rank r complex vector bundle over the Riemann
surface M. We briefly describe this correspondence. First, suppose that e is a rank
r matrix divisor and {Va}aEA is an open cover of M with the property that there
is a regular r x r-meromorphic matrix function La on Va such that [La]p belongs
to the value of eat p EM. The invertible holomorphic l-cocycle {<pa,eha,J3)EAxA
given by

<Pa,e(p) = La (p)Li3 l (p), p E Va n V,e (15)

defines a rank r vector bundle Ee over M. Indeed, by this construction e corre
sponds to a well-defined class ee of holomorphically equi::.-alent vector bundles over
M. Further, ee = ee if and only if the divisors e and e are linearly equivalent.
On the other hand, given admissible rank r interpolation data SD as in (14) one
can find local solutions La to the interpolation problem with this data on domains
Va, where {Va}aEA covers M. The cocycle (15) defines a rank r vector bundle
ESD on M. The corresponding equivalence class of bundles will be denoted eSD.

Using the above notations one has

ee = eSDe and eSD = eeSD'

It is easy to see that the First Basic Interpolation Problem with data D has a
solution if and only if the bundle ESD is holomorphically equivalent to the trivial
bundle. The Second Basic Interpolation Problem has a solution if and only if the
bundle ESD is holomorphically equivalent to a flat bundle.

The degree of a vector bundle V is by definition the degree of the associ
ated determinant line bundle det V (i.e., the line bundle with transition functions
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{det <I>ad where {<I>a,6} are the transition functions for V). The degree of a line
bundle in turn is the number of zeros minus the number of poles of any holomor
phic section. One can show that the degree of a bundle of the form ESD is the
integer

K

d = dSD = 2)n7Tj - n(j)'
j=l

where A 7Tj is of size n 7Tj x n1fj and A(j is of size n(j x n(j' j = 1, ... ,K. This follows
from the connection between the null-pole triple Y and the local Smith-McMillan
form for an associated interpolant La (see Theorem 3.1.2 of [4]). A flat bundle
necessarily has degree zero.

In the sequel it will be important to consider line bundles of degree 9 - 1
which have no holomorphic sections; such bundles are characterized explicitly by
the fact that their image under the Abel-Jacobi map (appropriately translated)
does not lie on the divisor of the classical Riemann theta function. Ifwe fix a base
point Po in M, these line bundles correspond to divisors A of the form

A = PI + ... + Pg - Po

where f..l = PI + ... + Pg is a non-special divisor in the g-fold symmetric product
M(g). The notation ILA will be used for the line bundle corresponding to the di
visor A. When A is as above, the condition hO(ILA ) = 0 means that there is no
nonconstant meromorphic function with poles only in f..l and vanishing at Po. Any
degree 9 - 1 line bundle IL satisfying hO(IL) = 0 will be called a non-special line
bundle. The significance of such line bundles can be seen in the following result:

Proposition 3. Let E be a complex vector bundle of degree zero on the closed
Riemann surface M of genus g. A sufficient condition that for E to be fiat is the
existence of a non-special line bundle IL of degree 9 - 1 such that hO(1L0E) = O.
In the case where 9 = 1, this condition is also necessary.

Proof. Assume E = E l EB ... EB EJ is a decomposition of E into indecomposable
bundles E i of rank ri, i = 1, ... , J. Then hO(1L (>9 E i ) = 0, i = 1, ... , J. By the
Riemann-Roch Theorem

Since deg E l + ... + deg E J = 0, we conclude deg E l = ... = deg EJ = O.
The classical result of WeB (see, e.g., [10])implies that the bundle E is flat. In the
case where 9 = 1, the result of Atiyah described earlier gives the representation of
E in the form

E = ILl 0 Fh1 EB ... EB ILs 0 Fhs

where the line bundles ILl, ... ,lLs have degree zero. It is easy to see that there are
line bundles IL of degree zero such that hO(1L 01Li ) = 0, i = 1, ... , s. With such a
choice of IL, hO(1L0E) = O. This completes the proof.
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Remark 1. It is not hard to construct examples where 9 > 1 and where the converse
of the result in this last proposition doesn't hold. Let lL~, lL1) be line bundles on a
compact Riemann surface of genus 9 2': 4 that satisfy

o< deglL~ = -deglL1): hl(lL~lL;;-l) -I- o.
For example, lL~ could be the line bundle corresponding to the divisor ~ = P
consisting of a single point P and lL1) the line bundle corresponding to the divisor
rJ = -PI - P2 + Zl, for distinct points PI, P2, Zl distinct from p. It follows from the
Riemann-Roch Theorem that hI (lL~lL;;-l) -I- O. Using a non-zero element (7 from
HI(lL~lL;;-l) one constructs an indecomposable rank 2 vector bundle E using the
transition matrices

~a~ = [~ol3 ~:;],
where {~al3} and {rJa~} are transition functions for the bundles lL~ and lL1) relative
to a suitable cover of M. Let lLA be a line bundle of degree 9 - 1. Then lLA ® E
has a "triangular" form with 1,1-entry lLAH . Since this line bundle has sections,
we conclude that hO(lLA ® E) -I- 0, for any line bundle lLA of degree 9 - 1.

Remark 2. In case 9 > 2, there are examples of semi-stable degree zero bundles
E satisfying hO(lL ® E) > 0, for every non-special line bundle lL of degree 9 - 1.
Recall that a bundle E is called semi-stable in case

degF degE
/l-F == --- < /l-E = ---

rankF - rankE

for all subbundles FeE (see, [12], [14]). Every semi-stable bundle of degree
zero is flat. This again follows from the aforementioned result of Wei!. Indeed,
if E is semi-stable of degree zero, then deg Ei ~ 0 for each summand in the
decomposition E = E I EEl··· EEl EJ, where E I , .. · ,EJ are indecomposable. Since
E{=o deg E i = deg E = 0, we have deg E i = 0, i = 1, ... , J, and, consequently, E is
flat. An example, of a semi-stable bundle E of degree zero such that hO(lL®E) > 0
for all degree 9 - 1 line bundles lL can be found in [11].

Remark 3. In the case M has genus one, every flat bundle E is semi-stable. This
follows from the representation E = lLI ® Fhl EEl ... EEl lLs ® F hs of Atiyah and the
fact that direct sums of semi-stable bundles with the same slope are semi-stable
(see, e.g. [14]).

4. The flat case

Let w be a fixed point of M and (8, V) be fixed local coordinates at w, where
as usual we assume 8(W) = O. Then with A satisfying hO(lLA) = 0, for any k 2': 1
an integer, there is a unique meromorphic function ftw whose divisor satisfies
(ftw) + A + kw 2': 0 and such that in the coordinate s, this function f tw has
principal Laurent part at 8 = 0 equal to sk(p). To see this, note that the dimension
of the space of meromorphic functions f whose divisor satisfies (f) + A+ kw 2': 0,
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which is equal to the dimension hO(lL'\+kw) of the space of holomorphic sections
of the line bundle lL,\+kw corresponding to the divisor A + kw, equals k. To see
this note first from the Riemann-Roch theorem h°(lL,\+kw) ~ deg (A + kw) 
(g - 1) = k. On the other hand, it can be easily verified from the assumption
hO(lL,\) = O,that hO(lL'\+kw) ::; k. Thus there exists a one-dimensional space of
meromorphic functions f with (I) + A+ kw ~ °with exactly a kth-order pole at
Wi by normalizing the principal part, we obtain a uniquely defined function ffw'

Suppose that A is the n x n Jordan cell

We extend this definition to an arbitrary nilpotent matrix by following the con
ventions

f~,SAS-l = Sf~,AS-I and f~,AltM2 = f~,Al EB f~,A2'

where, S is an invertible matrix. Then for any nilpotent matrix N, the difference

f~,N(P) - (s(p)I - N)-I

is analytic at P = w. Note this last identity reflects the fact that the local (left)
pole pair of f~ N at w in the coordinate s has the form (en, Arr ) = (IT> N), where
N is r x r. '

We will provide a concrete description of the space of holomorphic sections
of the bundle

lL,\ I8i E:;
where lL,\ is a non-special degree 9 -1 line bundle and E:; is the dual of the bundle
Ev. The divisor A determining the line bundle lL,\ will be assumed to have the
form A= PI + ... +Pg - Po, where the points PO, PI,··· ,Pg are distinct from the
interpolation nodes and f.L = PI + ... +Pg is a non-special divisor.

Let {~0I;3} be a holomorphic cocycle determining a vector bundle E and
~0I;3 = L OI Li3 I a trivialization of E by a family {LOI }OIEA of regular r x r-mero
morphic matrix functions relative to the open cover {VOI }OIEA. We introduce the
collection of vector-valued meromorphic functions of the form
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Note that the condition [hlp = [h",]p[L",]p, where h", is holomorphic "trans
poses" to the condition (L~)-1L~h~ = h~, ("t" denotes the transpose operation)
on the intersection V", nV,B. Thus the space LV (E) is naturally isomorphic to the
space r(E*) of holomorphic sections of the dual bundle E* determined by the
cocycle {(<I>~,B) -1 }.

In order to separate the role of A, we will assume that !L>. and ED are
trivialized separately relative to the open cover {V"'}"'EA. That is, it will be
assumed that k"" Q E A is a family of scalar meromorphic functions which in
terpolates the divisor A = PI + ... + Pg - Po and that L"" Q E A is a fam
ily of r x r meromorphic matrix functions which locally interpolates the divisor
V : {(SI,zl,Yd, ... ,(SK,zK,YK)}. The notation L~ will be used for the ma
trix functions L~ = k;;1 L"" Q E A, and Ei> for the corresponding vector bundle
!L_>. ®ED.

We first claim that the elements in LV (Ei» necessarily have the form

Noo

h = LUjf~i,A"iC7l"i'
i=1

(16)

where Ui is an n11"i-dimensional row vector for i = 1, ... ,Nco. One sees this last
claim as follows: Let h be an element of LV (Ei». Then for each point Wi, we
know that [h]Wi is in the null-pole subspace O~i [L~lwi' From the formula (10)
we see that there is a (necessarily unique) vector Ui such that h(S-I(Z)) and
ui(zI - A11"J-1C11"i have the same principal part at z = °(here S denotes local
coordinates at P = Wi)' This implies h - Ud~i,A" C11"i has an analytic continuation

to P = Wi. Ifwe set g = L:~l Ud~i,A"C7l"i> then'it follows that h - g has analytic
continuation through each of the point~ WI, ... ,WNoo • From the construction, it is
now easy to check that each scalar component hk-gk (k = 1, ... , r) of the vector
function h - g has divisor (hk - gk) satisfying

(17)

Since hO(!L>.) = 0, we conclude that h = g and, therefore, h has the claimed form.
The following lemmas will be used to complete the description of LV (Ei».

Lemma 4. Suppose Wi -=I- Zj, j = 1, ... ,No· If h E M r
, then [h]Wi E O~i [L~]Wi if

and only if

(18)

has analytic continuation at P = Wi for some row vector Ui E en"i .

Proof. This result follows immediately from (10) and the fact that f~i,A" (p) -
(si(p)I - A11"J- 1 is analytic at Wi. '

Before stating the next lemma we introduce the notations

rt = - resZ=o[j~i,A"i (tj l(Z))C11"i B<;j(z - A<;J-lj,
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for all i, j with Zj -j. Wi,

rt = Sij - resz=o[{f~i,A"i (sil(z)) - (z - A".J- l }C1ri B(j(z - A(j)-l],

for i, j with Zj = Wi, and
(19)

Lemma 5. If h has the form (16), then for 1 :::; j :::; No, the row vector function
[h]Zj is in O~j [L~]zj if and only if

Noo

LUir;j = o.
i=O

Proof. The arguments for the cases 1 :::; j :::; N8 and N8 + 1 :::; j :::; No are
similar. We will only present the details for the latter case. Suppose j satisfies
N8 + 1 :::; j :::; No. Without loss of generality assume that WI = Zj. Write h in the
form

Noo

Ud~l,A"l (Sl l(Z))C1r1 +L Ud~i,A"i (sl l(z))C1ri
i=2

Ul(Z - A1r1 )-lC1r1 + ul[f~l,A"l (sll(z)) - (z - A1rJ-l]C1r1
Noo

+L Ud~i,A"i (sl l(z))C1ri
i=2
Ul(Z - A1r1 )-lC1r1 + k(z),

where k is analytic at Z = O. Using the description of O~i [L~]zi in (10) we learn
that h lies in this subspace if and only if

UlSlj resz=o(k(z)B(j(z - A(j)-l)

Ul resZ=o[{f~l,A"l (sll(z)) - (z - A1rJ- l }C1r1B(j (z - A(j )-1]
Noo

+L Ui resZ=o[f~i,A"i (sl l(z))C1ri B(j (z - A(j)-l]
i=2

Noo

UdSlj - r;l] - L Uirt·
i=2

The result follows.

Theorem 6. Let !LA be a line bundle of degree g - 1 determined by the divisor
PI + ... + Pg - Po, where f.t = PI + ... + Pg is a non-special divisor and let the
pole-zero interpolation data be given byV: {(Sl,Zl,l\), ... ,(SK,ZK,lK)}. The
vector space of sections of the vector bundle !LA®ED is isomorphic to the collection

of row vector meromorphic functions of the form h = L:~l Ud~i,A" C1ril where

the row vector U = [Ul,"" UNoo ] satisfies urA = O. In particular, h0(lLA ® ED)
equals the dimension of the left-kernel of r A .



Concrete Interpolation on Riemann Surfaces 151

Proof. The above lemmas imply that the space LV(E£» is isomorphic to the col

lection of row vector meromorphic functions of the form h = 2:~1 Ud~i,A" C1ri ,

where the row vector U = [Ul, ... , UNooJ satisfies ur,x = O. The result no~ fol
lows from the isomorphism between LV(E£» and r(lL,x®E;) which was described
above. This ends the proof.

The following result represents a partial solution to the Second Basic Interpo
lation Problem and is an immediate corollary of the last theorem and Proposition 3:

Corollary 7. Let V : {(Sl, Zl, Y t}, ... , (sK ,ZK, Y K)} be given pole-zero interpola
tion data of degree zero on a closed Riemann surface M with genus g 2:: 1. If there
exists a divisor). = PI + ... + Pg - Po of degree g - 1 with hO(IL,x) = 0 such that
the matrix r,x is invertible, then there is an r x r meromorphic function F on the
universal cover p : M --> M with fiat factor of automorphy interpolating the pole
zero data p*V. In the case, where g = 1, such a matrix function F exists if and
only if r,x is invertible for some non-zero degree g - 1 divisor A with hO(IL,x) = O.

5. The single valued case

In this section we solve the First Basic Interpolation Problem which was introduced
above. We begin with the remark that a necessary condition for the existence of a
solution is that the bundle Ev be trivial and, consequently, for every degree g - 1
divisor). with hO(IL.x.) = 0, we have hO(IL,x ® E;) = O. Thus for all such divisors A,
the matrix r,x is invertible.

In order to simplify the discussion, we will assume the RiemaE.-n surface is
presented as a fundamental domain Flo on the universal cover p : M --> M and
that the interpolation points Zl, ... , ZK as well as points in the divisors A = PI +
... +Pg - Po are in Flo, The function~~w will be assumed to be functions in global
coordinates on the universal cover M which can be assumed to be C or the unit
disc II:». The pole-zero interpolation data will be taken in the form

V: {(Zl, Y l ), ... , (ZK, Y K )},

where we suppress writing the coordinates Sj(u) = U - Zj at the points Zj, j =
1, ... ,K.

Fix a divisor). = PI + ... + Pg - Po satisfying hO(IL,x) = 0, with Po,··· ,Pg
distinct from Zl, ... , ZK. If there exists a solution F of the first basic interpolation
problem, it can be assumed to satisfy F(po) = I r and, therefore, has the form

K

F = I r +L Ud~i,A"i C1ri , (20)
i=l

where Ui are r x n1ri -matrices. This last remark uses the fact that hO(IL,x) = O.
The rows of F are obviously in O~i [F]Zi for i = 1, ... ,K and as in the proof of
Theorem 4, one sees that

[Ul, ... ,UK]r.x. = [B(w .. ,B(KJ (21)
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or, equivalently, the matrices UI , ... , UK, are given by

The following proposition is an immediate consequence of the above discussion.

Proposition 8. Let D : {(Zl, Y d, ... , (ZK' Y K)} be given pole-zero interpolation
data and), = PI + ... + Pg - Po a divisor satisfying hO(lL>.) = 0, with Po,··· ,Pg
distinct from Zl, ... ,ZK. The matrix r>. is invertible if and only if there exists an
r x r-meromorphic matrix function satisfying:

• F and F-I are analytic off {Zl, ... , ZK,PO, ,pg} with F(po) = I r .

• F interpolates the divisor D at the points Zl, , ZK.
• The entries of F have at most simple poles at PI, ... ,Pg'

Further, when the matrix r>. is invertible, the unique F satisfying these last con
ditions is given by (20) with the matrices UI , ... , UK given by (21).

In order that the matrix function F described in the preceding proposition
interpolate only the data D one must ensure that the residues of F at PI, ... ,Pg be
zero. This involves additional linear conditions on the matrices UI , ... , UK which
we now describe. Introduce the notation

R iJ· = resu=p' [fw>'. A (u)C7f'], i = 1, ... ,K;j = 1, ... ,g.
J 1., 1t'i 1.

The matrix function F given by (20) has the property that resu=pj [F(u)],
j = 1, ... ,g is the zero matrix if and only if

where we are using the notations

[

~ll
R= .

RKI

(22)
The following theorem is the main result of this section. It represents a general
ization of the genus one result in [4] and also generalizes results in [2] and [8] to
the case where the poles and zeros have multiplicity.

Theorem 9. Let D : {(Zl' YI), ... , (ZK' YK)} be a given divisor on M. There is
an r x r-meromorphic matrix function F interpolating D if and only if for some
degree g - 1 divisor). with hO(lL>.) = 0 the matrix r>. given in (19) is invertible
and B(r>.)-lR = 0, where the matrices Rand B are given by (22). In this case
the unique solution F of the interpolation problem satisfying F(po) = Ir is given
by (20).
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6. The case of genus 1

As mentioned in the introduction, in the case of simple data, the matrix fA has
a nice form when M is of genus 1 and is realized in the form M = Cj('lL + T'lL),
where 1m T > O. In this section, we will give more details on this representation of
fA when M has genus 1.

The divisor data D will be collected as follows. Let

be distinct points in the complex plane lying in a fundamental domain

Ro = {u = x + iTy : 0 ::; x, y < I})

for Cj('lL + T'lL). We will write the data D in the form

D: (ZI,!h),"" (ZN,QN); (WI, cd,···, (WN' CN);

((1, ((iI' "Yl , Sd), ... , ((k, ((iK' "YK, SK))

where the data (ZI' Ql)' ... , (zN ,QN) consists of only simple right zero data,
(WI, cd, ... , (WN' CN) consists of only simple left pole data and (1, (QN+l' CN+l
,Sd),···, (1, (QN+K, CN+K, SK)) consists of data at points (1, ... ,(K, where we
have pole zero coupling numbers SI,"" SK' In this notation, we suppress writing
the 1 x 1 zero matrices A(i and Anj . Moreover, CjQj = 0, j = N + 1, ... ,N + K.

The r x r-meromorphic function F = F(u) on C will solve the interpolation
problem with data D in case:

• The matrix function F is holomorphic and invertible off

{ZI,"" ZN,WI, ... ,WN,(I,'" ,(K} + 'lL + T'lL.

• The only poles of entries of the matrix function F are at most simple poles
at points in {WI, . .. ,WN, (I, ... , (K} + 'lL + T'lL.

• The matrix function F is holomorphic at Zi + 'lL + T'lL and Qi spans ker[F]
at these points.

• The matrix function F- l is holomorphic at Wj + 'lL +T'lL and Cj spans the
left kernel of F-l at these points.
• At u = (i + 'lL + T'lL, the singular subspace O~[F]u has the description

r _ {/-lCN+i ) . r _ [k(Z)QN+i]0u[F]u - -- + k(z . /-lEC, k E Ou such that /-lSi - resz=u }.
z-u z-u

Given distinct PO,Pl in the fundamental domain Ro the divisor A = PI - Po
satisfies hO(lLA ) = O. Indeed, by fixing Po and varying PI, the divisors A = PI - Po
realize every degree zero divisor A with hO(lLA ) = O. The functions f~ have a very
explicit form in terms of the function

{
Ill 1 I}B*(u) = L exp 21l'i[2(n + 2)T(n + 2) + (n + 2)(u + 2)] .

nEZ
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Note that the function ()* has the automorphic behavior

()*(u +m + nT) = exp{1ri(m - n - n2T)} exp{ -21rinu}()*(u), m, n E Z.

Ifwin Ro is distinct from the points Po, PI, for any constant C~ the function

f>'( ) = c>. ()*(u - Po)()*(u + Po - PI - w)
W u W ()*(u - w)()*(u - pd

is single valued with divisor (J~) = Po + q - w - PI, where q = PI + w - Po. The
choice

c>. = (): (w)()* (w - pd
W ()*(w-Po)()*(PO-P1)

normalizes f~ so that it has the requisite principal part at u = w. The matrix r>.
has the form

where

- f~l (ZN )C1QN ]

- f~N (ZN )~NQN

- f~. ((K )C~!!N+K ]

- fWN((K)CNQN+K

-f&(ZN)~N+lQN ]

-f&(ZN)CN+KQN

r~2 = r 8, - r2, «(tl~~+'!!N+'

81 - r2K((dcN+KQN+1

82 - r2l ((2)CN+lQN+2
82

82 - r2K((2)CN+KQN+2

8K - ril ((K )CN+lQN+K ]
8K - r(2((K )CN+2QN+K

8K

with r&(u) = f&(u) - U~(i' i = 1, ... ,K.
It follows immediately from Corollary 7 that the interpolation problem cor

responding to the data V has a flat solution if and only if r>. is invertible for some



Concrete Interpolation on Riemann Surfaces 155

non-zero A. In this case the zeros of det(fA) in Ro \ {O} correspond precisely to the
non-trivial divisors AI, ... , As providing the decomposition

Ev = lLAl 0 Fhl E& •.. E& lLAs 0 Fhs

of Atiyah which was used earlier (notice that each Atiyah bundle Fh is equivalent
to its dual). Moreover, the dimension of the kernel of fA counts the number of sum
mands in this Atiyah decomposition where lLAappears as a factor. In particular,
the bundle Ev is equivalent to a direct sum of non-trivial line bundles if and only
if det(fA) has r zeros (counting multiplicity) in Ro\ {O}. At the other extreme, Ev
is equivalent to a direct sum of Atiyah bundles Fh if and only if det(fA) doesn't
vanish on Ro\{O}.

In the case where there is no pole-zero coupling (K = 0), the N x N-matrix
fA has the simpler form f~I' with ij-entry

(}:(Wi)(}*(Wi - PI) (}*(Wi - Zj + A)Ci!2.j (}*(Zj - Po)
(}*(Wi - Po)O*(A) (}*(Wi - Zj) (}*(Zj - PI)'

Clearly, the zeros of det fA coincide with the zeros of the determinant of the matrix
function

A _ [(}*(Wi - Zj + A)Ci!2.j]f o - .
(}*(Wi - Zj) NxN

These last remarks complete the proof of Theorem 1.
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On Realizations of Rational Matrix Functions
of Several Complex Variables

M.F. Bessmertny'l

O. Introduction

Holomorphic functions of one complex variable with a non-negative imaginary
part, and the related classes of J-contractive matrix functions (contractive in a
space with an indefinite metric, defined in a standard way by a hermitian matrix
J such that J2 = 1) were actively studied by many mathematicians in the past
years. A series of problems of mathematical analysis and its applications lead to the
necessity of studying analogous classes of holomorphic functions of several complex
variables. Holomorphic functions with a non-negative imaginary part in a tubular
domain over a cone and in the polydisk were studied by V.S. Vladimirov (see [Vla2l,
[Vla5]-[Vla8]) and by Vladimirov and Drozhzhinov [VlaDr]. In bounded strictly
star-shaped domains, and in particular in the classical symmetric domains, they
were studied by L.A. Aizenberg and Sh.A. Dautov [AD]. W. Rudin (see [Rud]) gives
a "parametrical" representation of scalar rational inner functions in the polydisk
lDln . The parameter is an arbitrary polynomial non-vanishing in lDln .

For the additive class of holomorphic functions mapping the right half-plane
into itself, there is a well-known decomposition in terms of a sum of simple frac
tions and a representation as a continued fraction. The elementary functions of
the representation belong to the same class. J-contractive functions which are J
unitary on the imaginary axis admit a multiplicative decomposition [Potll, [EWo].
Darlington's theorem (see [Me]; [EWo]: Chapter V) allows to represent any posi
tive rational function f(>") (i.e. a function mapping the right half-plane into itself)
as a linear fractional transformation of a positive constant. The coefficient matrix
of the transformation is J-contractive in the right half-plane and J-unitary on the
imaginary axis. The possibility to represent a rational function non-negative on
the imaginary axis as a sum of squares of rational functions analytic in the right
half-plane is essential here. The various representations described above play an
important role in various interpolation problems, applications to physics, etc.

This paper is a translation, prepared by D. Alpay and V. Katsnelson, of a part from the intro
duction and of the first chapter from the author's Ph. D. thesis entitled "Functions of Several
Variables in the Theory of Finite Linear Structures", Kharkov, 1982. The manuscript, entitled
"Realization of Rational Functions of Several Variables by Means of a Long Resolvent" was de
posited at VINITI (86 pages, submitted by the Kharkov University, July 8, 1981, No. 3352-81).
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The situation becomes complicated when one goes to the case of functions of
several variables. Although the sum of positive functions is still a positive function
in this case (invariance of the class under addition), it is nevertheless impossible
to obtain an additive representation for an arbitrary (positive) function. This
is related to the fact that among polynomials of several variables one can find
irreducible polynomial of arbitrarily large degree, and, therefore, the "simplest"
components (in the representation of a function as a sum of fractions) may have
arbitrarily large degrees. To trace down positivity here is therefore impossible.
Using Artin's solution (see [Lan]) of Hilbert's 17th problem on the representation
of a non-negative rational function of several variables as a sum of squares of
rational functions to obtain an analogue of Darlington's representation of positive
functions of one variable is difficult for two reasons: Artin's theorem says nothing
on the location of the singularities of the functions in the decomposition, and,
moreover, the proof of the existence of the representation is not constructive.

Recently, a number of authors studied actively the use of functions of several
complex variables in the theory of mutidimensional systems. See [Vla2], [Vla3],
[Vla9]: Chapter III. The Institute of Electrical and Electronics Engineers (IEEE)
devoted an issue [MultI] to "multidimensional systems" .

A convenient model for multidimensional systems consists of an electrical cir
cuit, the characteristic matrix of which is a function of the impedances ZI, . .. ,Zn

of the elements of the circuit, and not of the frequency ,\ as customary in the an
alytic theory of electrical circuits [Kar], [SeRe], [EfPo]. Along with the problem of
analysing such circuits (that is, obtaining a theoretical functional characterization
of the classes of matrix-valued functions which are characteristic matrices of the
circuits) arises the inverse problem of reconstructing the circuit from its character
istic matrix (the synthesis problem). A fundamental difficulty to solve the inverse
problem lies in the necessity to represent the circuit functions in a way convenient
for these aims. In the study of multidimensional circuits and their generalization,
there appears a class of rational positive functions of several variables, analogous
to the class of positive functions of one complex variable.

Koga (see [Kog]) made an attempt to prove that every positive rational ma
trix function of several variables is the characteristic matrix of a multidimensional
circuit. But, as was pointed out by Bose [Bosl], the proof relies on the erroneous
statement that a positive polynomial of several variables, the degree of which with
respect to each variable (the others being fixed) is equal to two, can be represented
as a sum of squares of polynomials.

In the approach of R. Kalman (R. Kalman, P. Falb, M. Arbib [KFAJ), the
model of a system consists in finding a realization of a rational function W('\) of
one variable in the form of a resolvent

W('\) = H(M - F)-Ie,

where H, F, e are constant matrices.
It turns out that a representation of this form admits a generalization to

the case of rational matrix-valued functions of several variables. Moreover, this
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generalization is closely related to the theory of multidimensional linear systems
(and in particular to multidimensional circuits). In connection to this we consider
the following construction, which we will meet often in the sequel.

We denote by H a finite dimensional vector space over the complex field;
en = ex··· x e denotes the direct product of n copies of the complex plane
e; Z= (Zl,"" zn) denotes a point of en. In the sequel, I indicates the operation
of transposition and - indicates the passage to the complex conjugate elements:
if A is a matrix with complex entries, then AI is the transposed matrix, and
if is the matrix with the complex conjugate entries. A* = (AI) = (if) I is the

matrix hermitian conjugate to the matrix A. If Z = (Zl,"" zn) E en, then Z ~f
(Zl' ... , zn).

Let Ao, AI, ... , An be square matrices with entries that are complex num-
bers. We consider a linear matrix bundle A(z) = Ao + zlAl + + znAn. This
bundle is said to be non-singular if the matrix (Ao + z~O)Al + + z~O) An) is
invertible for at least one point Zo E en.

If the linear bundle is non-singular, then the matrix

A(z)-l = (Ao + zlAl + ... + znAn)-l

exists for all z, with a possible exception of some "thin" subset of en. (This thin
set is a zero-set of a non-zero polynomial.)

Definition 0.1. The matrix function A(Z)-l is said to be the long resolvent of the
linear matrix bundle A(z) = Ao+ ziAI + ... + znAn.

Let, moreover, E be a subspace of H, and let n = n2 = n* be the orthogonal
projection from H onto E. We form

[
1 ] [-lJ

fez) = n (Ao+ ziAI + ... + znAn)- n* (R)

(where C[-IJ denotes the inverse of C on the C-invariant subspace E). The ma
trix function fez) is clearly rational. It is symmetric if all the matrices A k are
symmetric. It is real if all the matrices Ak are real.

We note that (R) can be rewritten in a somewhat different way. Indeed, let

n=[~ ~].
We consider the block decomposition of the matrix function A(z) as

A(z) = [All(Z) A12(Z)]
A2I (Z) A 22 (Z) ,

where All(z) is ekxk-valued. Using the formula to compute the inverse of a block
matrix (if A22 (Z)-I exists), we obtain

fez) = All(z) - AI2(Z)A22(Z)-lA21(z). (Ra)

Unlike (R), the expression (Ra) makes sense for a matrix function satisfying the
condition det fez) == o.
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Let us agree to call a function g(z) nonsingular if it holds that det g(z) ¢. O. In
case of nonsingular matrix functions, the representations (R) and (Ro) are clearly
equivalent.

Definition 0.2. Both representations (R) and (Ro) are said to be a representation
of f(z) in the form of a long resolvent.

In the sequel we will often need the following subsets of en:

VA {z: ZECn,ReZl >0, ,Rezn>O}

V R {z: zECn,ReZl<O, ,Rezn<O}

vj {z: Z E Cn,Im Zl > 0, ,1m Zn > O}
V; {z: Z E Cn,Im Zl < 0, ,1m Zn < O}.

Definition 0.3. A rational matrix functions f(z) = f(Zl"'" zn) of the complex
variables Zl, ... , Zn is said to be positive if the following positivity conditions hold:

f(z) + f(z)* ? 0 for Z EVA,
f(z) + f(z)* ::::: 0 for Z E VR'

i (f(z)* - f(z)) ? 0 for Z E vj,
i (f(z)* - f(z)) ::::: 0 for Z EV;.

We will denote by P the class of positive matrix functions.

The aims of this paper are:

1. The study of the possibility of representing rational matrix functions of
several variables by means of the long resolvent of a linear bundle of con
stant matrices and the clarification of the connections between the prop
erties of the functions and the properties of the constant matrices in the
representation.

2. The study of the class of positive real matrix functions of several variables.

In Section 1 we prove the existence of a representation of a rational (square)
matrix-valued function of several variables by means of the long resolvent of a
linear bundle of matrices. In Section 2 we study the properties of positive matrix
functions of several variables. Section 3 is devoted to the study of the properties
of functions which can be represented by means of the long resolvent of a bundle
of positive definite matrices.

1. Realization of rational functions by means of a long resolvent

1. The main aim of this section is to prove the following assertion:

Theorem 1.1. (Main theorem.) Every rational Ckxk-valued matrix function f(Zl'
... , zn) of the variables Zl, . .. Zn can be represented in the form

f(z) = An(z) - A 12 (Z)A22 (Z)-1 A21 (Z) (1.1)
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where A = (Aij (z))i,j=I,2 is the block decomposition of the matrix function A(z),

( ) _ [All(Z) AI2(Z)]_
A z - A21 (Z) A22 (Z) -AO+ZIAI+···+znAn.

into blocks (so that All(z) is <ekxk-valued and A 22 (Z) is square non-singular) and
where Ao, AI, ... , An are square matrices with complex entries.
Moreover:

a) if f(z) = f(z), one can choose the matrices Aj (j = 0,1, ,n) to be real.

b) if f(z) = f(z)', one can choose the matrices Aj (j = 0,1, ,n) to be sym-
metric.

c) if f(AZ) = Af(z), then Ao = 0.

2. We make the following observation. In the introduction it was noticed that,
in the case of a nonsingular f(z), the representation (1.1) is equivalent to the
representation

(1.2)

where

n = [I; ~].
Then, it follows from the trivial equality

A(z)A(z)-ln* f(z) = [f~Z) ~]

that there exists a matrix function <I>(z) such that the identity

A( ) [ Ik ] _ [ f(z) ]
z <I>(z) - 0 (1.3)

holds. Conversely, if (1.3) holds and if A(z) is nonsingular, then (1.2) is valid.
Therefore, to prove the theorem in the case of a nonsingular f(z), it is enough to
build a linear matrix bundle A(z) satisfying condition (1.3).

In the following lemma, the bundle A(z) is as in (1.3), but possibly singular.
Moreover we consider right away the case of an arbitrary (i.e. possibly singular)
function f (z).

Lemma 1.1. Assume that the matrix functions

A(z) = [a(z) b(Z)] and 1IJ(z) = [ h ]
c(z) d(z) <I>(z)

where a(z) is <ekxk-valued and where d(z) ¢. 0, satisfy the conditions

A(z)1IJ(z) = [ f~Z) ] , 1IJ(z)' A(z) = (f(z) 0). (1.4)

Then there exists a submatrix

AI(z) = [ ~~~)
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of A(z) which is symmetric when A(z) is symmetric, and such that:

a) detd1(z) =t 0,

b) f(z) = a(z) - b1(z)d1(z)-lCl(Z).

Proof. If detd(z) =t 0, the statement is trivial. Let detd(z) == 0 and let r =
max rank d(z). We have r ::::: 1 since d(z) =t o. Without loss of generality, we may
assume that the first r lines and the first r columns of the matrix d(z) are linearly
independent. This can always be achieved by a permutation of the lines and of the
columns of the matrix A(z), and, when A(z) is symmetric, by a permutation of
the lines and of the corresponding columns. Then, if d(z) is divided into blocks

d(z) = [d1(Z) d12 (Z)] (1.5)
d21(Z) d22 (Z)

so that d1(z) is Crxr-valued, then:

1) detd1(z) =t 0;

2) There exist rational r x r matrix functions Sj(z) (j = 1,2) such that

(Sl(Z) 1) [d1(Z) d12 (Z)] (0 0),
d21 (Z) d22(Z)

[
dl(Z) d12 (Z)] [ S2(Z) ]
d21 (Z) d22 (Z) I

We decompose according to (1.5) the matrices A(z) and 1J1(z)

[

a(z) b1(z) b2(Z)]
A(z) = Cl(Z) d1(z) d12(Z) ,

C2(Z) d21 (Z) d22 (Z)

and consider the matrix function

where

Then,

[

a(z) b1(z) b2(Z)]
A1(z) = Cl(Z) d1(z) 0

C2(Z) 0 0

and accordingly, (1.4) can be written in the form

1J1'(Z)Sl(Z)-lA1(z) (f(z) , 0),
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It follows from these equations that b2(z) = 0 and C2(Z) = 0, and therefore,

(1.6)

where
q)o(Z) = q)2(Z) - S2(Z)q)3(Z),

Eliminating q)o(z) from (1.6) we obtain

fez) = a(z) - bl(z)dl(z)-ICI(Z),

as wanted. o
3. The proof of the main theorem will be carried out in a number of steps. First
we build in Lemma 1.3 a linear matrix bundle A(w) for the elementary scalar
functions g(w) = g(WI, ... ,W2m+d of the form

()
Wm+1 ...W2m+1

9 W = .
WI"'Wm

Making use of Lemma 1.3, we obtain a matrix bundle A(z) for scalar rational
functions which satisfy the condition

f()..zI, ... ,)..zn) = )..f(ZI' ... zn) = )..f(ZI, ... ,zn)'

After that, we build the matrices A j (j = 0, 1, .. .n) of the representation (1.1) for
arbitrary matrix functions fez) satisfying the conditions of the main theorem.

4. Before turning to the proof we fix the notation and consider an auxiliary lemma,
Lemma 1.2. Let a be a multiindex such that

a = (a(I), ... ,a(d»),

where the components a(j) (j = 1, ... , d) are non-negative integers. The number
d is called the dimension of the multiindex a (d = dim a).

In the set of all multiindices, we introduce the addition of two multiindices
of same dimension as componentwise addition. Moreover, we order the set of mul
tiindices by the relation

a >- 0~ a(l) ::::: 0, ... ,a(d) ::::: O.

We will not be interested in arbitrary multiindices, but only in those for which

1. dim a = 2m + 1,
2. All the components of a are 0 or 1.
3. Ca, a) = m, (Ca, (3) d~. a(1) (3(1) + ... + a(2m+l) (3(2m+l»).

We will denote by U the set of multiindices satisfying the conditions 1), 2) and 3).
Clearly, the multiindex

o= (1, ... 110, ... 0) (1. 7)

(with m times 1 and m + 1 times 0) belongs to U. We will write the other multi
indices ofU in the form

a = (a(1), ... , a(m) Ia(m+l) , ... , a(2m+I»),
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dividing their components with a vertical bar into two groups: m components on
the left of the line and m+ 1 on the right. The set U can be divided into equivalence
classes using the element 0 defined in (1.7). By definition,

a rv (3~ (a,o) = ((3,0).

We will denote by Uk the equivalence class for which (a,o) = k.
The following proposition is at the basis of our subsequent investigations:

Lemma 1.2. Let / = (1, ... 111,1, ... 1) and let ak be fixed multiindieces in the
equivalence classes Uk with respect to the element 0 = (1, ... , 110,0, ... 0). Then
the inequality

(J - ak) - a >- 0
has exactly m + 1 solutions in U, with moreover:

a) (m - k) solutions belonging to the class Um-k-l.

b) (k + 1) solutions belonging to the class Um - k .

Proof. By definition, (ak'o) = k, (ak' ak) = m. Therefore the multiindex (J - ak)
has (m - k) components equal to 1 on the left of the vertical line, and (k + 1)
components equal to 1 on the right of the vertical line. Since for any a E U the
condition (a, a) = m holds, the inequality

(J - ak) - a >- 0

will hold when the multiindex (/- ak) - a has exactly one component equal to 1
and the others equal to O. Thus every solution a of the inequality (/- ak) - a >- 0
can be obtained by replacing in (J - ak) one component equal to 1 by O. Replacing
one component equal to 1 by 0 in the multiindex (J - ak) can be done in (m - k)
places to the left of the vertical bar, and for these we obtain a solution in the class
Um-k-l, and in (k + 1) places to the right of the bar, and these lead to solutions
in Um-k. The lemma is proved. D

5. If W = (WI, ... ,W2m+l) E C2m+1 and
a = (a(l), ... ,a(m) Ia(m+l), ... ,a(2m+l))

is a multiindex in U, we denote by wo. the monomial

wo. - wo., ... Wo. 2"'+1
- I 2m+1 .

Lemma 1.3. For every natural number m there exists a matrix bundle of real sym
metric matrices A j , independent of Wk (k = 1, ... 2m + 1),

A(w) = wlAI + ... +W2m+IA2m+l
such that

(1.8)
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where (3 = (0, ... ,011,1, ... , 1), al = (1, ... ,110,0, ... , 0), M = #U (the
. . (2m+1)!

cardmalzty of the set U : M = , ( ),), {al' ... , aM} is the set of all
m. m+1.

multiindices in U with some ordering.

Proof. We set

A(w) = [CkvW'Y-ak-aV ]~V=l

where"Y = (1, ... 111, 1, ... ,1) and
Ckv = 0, if "Y - ak - a v 'f 0,
Ckv = 'Pm(ko, vo) if "Y - ak - a v >- 0, ak E Uko

where

and a v E Uvo ,
(1.9)

(k ) = (_ )m+k+vk!v!(m - k)!(m - v)! . (1.10)
'Pm ,v 1 m!(m+1)!

Since the inequality "Y - ak - a v >- 0 holds only if the multiindex "Y - ak - a v
has exactly one component equal to 1 and the others equal to 0, the matrix function
A(w) is linear:

A(w) = wlAl + ... + W2m+lA2m+l.

By construction, ckvw'Y-ak-av = cvkw'Y-av-ak and the coefficients Ckv are real.
Therefore, the matrices A j are symmetric and real.

We compute the components ak(w) of the column vector

L Ckv' w'Y-ak-av . w av = W'Y-ak. L Ckv
l::O;v::O;M l::O;v::O;M

(1.11)

Let ak E Uko' Then, by Lemma 1.2, the inequality "Y - ak - a v >- 0 has exactly
(m - ko) solutions in the class Um-ko-l and (ko+ 1) solutions in the class Um-ko'
Therefore in the k-th line of the matrix A(w) only those coefficients Ckv can differ
from zero for which the inequality "Y - ak - a v >- 0 holds and moreover either
a v E Um - ko - l or a v E Um-ko'

In accordance with this, the non-zero coefficients Ckv in (1.11) may be divided
into two groups:

1. (m - ko) coefficients Ckv, equal to 'Pm (ko,m - ko - 1);
2. (ko + 1) coefficients Ckv, equal to 'Pm (ko,m - ko).

Then,

W'Y-ak. L Ckv
l::O;v::O;M

W'Y-ak {(ko + 1) 'Pm(ko, m - ko) + (m - ko) 'Pm(ko, m - ko -I)}.
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It follows from this and from (1.10) that

1) If ko =1= m, then ak(w) = OJ
2) If ko = m, then the class Um consists of one element, namely 0 (which is
defined in (1.7)). This case corresponds to k = 1 in (1.11), i.e. 0:1 = o. Then,
, - 0:1 = (3, and

al(w) = w'-"'l(m + 1) <Pm(m, 0)) = w!3,

as was required. o
Corollary 1.1. Given two arbitrary monomials z!3o and z"'O of n variables and of
degrees respectively m + 1 and m, there exists a matrix bundle

A(z) = ZIAl + ... + znAn (Aj = Aj = Aj ),

such that

[

;::] [ z~o ]
A(z). .. .. .

Z"'N 0

where {Z"'i} (j = 0, 1, ... N) is the set of all different monomials of degree m in
the variables ZI, ... , Zn·

Proof. For the proof, it is enough to make a substitution of eachWj (j = 1, ... ,2m+
1) by some Zi (i = 1, ... ,n) in such a way that w!3 is transformed into z!3o and W"'l
is transformed into z"'o. This is possible because the monomials W"'l and w!3 do
not contain identical variables Wj: W"'l = WI ...Wm, w!3 =Wm+l ... W2m+l. Since
after substituting W by z there can appear identical monomials in the resulting
column vector

[

z"'O ]
Z~kl

Z"'k M - 1

the matrix A(z) should be "reduced" by a transformation T'A(z)T, where the
rectangular matrix T is such that

where all the monomials Z"'i in the column vector in the right-hand side are dif
ferent and this column vector contains all the monomials of degree m. 0

Lemma 1.4. Let f(z) = P(z)/Q(z) be a rational scalar function in the variables
ZI, ... ,Zn, satisfying the condition

f(>"zl,"" >"zn) = >"f(zl,"" Zn), V>.. E C.



On Realizations of Rational Functions of Several Variables 167

Then there exists a matrix bundle

such that

[

~~~) ] [ P~z) ]
A(z). .,. .. .

Zo.N 0

where the zo.j (j = 2, ... N) are monomials in the variables Z1, ... ,Zn oj the same
degree as the polynomial Q(z).

The matrices Aj are symmetric1(Aj = Aj). If, moreover, j(z) = j(z), then the
matrices Aj may be chosen real (Aj = Aj ).

Proof. Since j(>"z) = >"j(z), P(>"z) = >..m+1P(z) and Q(z) = >..mQ(z), i.e. P(z) and
Q(z) are homogeneous polynomials of degrees m+1 and m respectively. Therefore,

P(z) = a1z.81 + ... + av z.8v,

where the z.8j (j = 1, ... , v) are monomials of degree m + 1 of n variables and

where the zo.j (j = 1, ... ,J.l) are monomials of degree m of n variables. Moreover
we can assume that (31 #- O.

Consider one of the monomials z.8j appearing in the numerator of j(z). Mak
ing use of the results of Lemma 1.3, we build matrix functions

such that

o

k-th line

o Zo.k-l
z.8j = Ajk(z) Zo.k
o

o

(k = 1, .. . J.l).

1A scalar function is always symmetric.
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Multiplying the k-th equality by the coefficient bk of the monomial ZCl'.k of the
denominator and summing up, we obtain

b1z{3j ZCl'.l

o
where

Let
o
o

(1.12)

T= 0 0

o 0

1 0

o 1

o
o

0 0 0 0 1

Then
b1P(z) ZCl'.l

,-I bJ.LP(z) ,-1- zCl'."
T

0
= T A(z)T-1 T ZCl'.,,+l

0 ZCl'.N

where .A(z) = alAl(z) + ... + avA.., (z), or, after computations,

[
PbZ)] [~~~)]

· = A(z) . ,· .· .
o ZCl'.N

where
,-1-

A(z) = T A(z)T-t,

as required.

(1.13)
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Remark 1.1. We mention that in the proof of the main theorem we will need
the fact that for any set of rational functions of the form fk(Z) = Pdz)/Q(z),
satisfying the properties of the theorem with one and the same denominator Q(z),
the relation (1.13) can be written in the form

where <Pj(z) = zUj /Q(z), (j = 2, ... ,N) are the same for all the functions fk(Z).

6. We turn now to the proof of the main theorem. First of all, if a matrix function
f(z) satisfies the conditions of the theorem, then the matrix function of (n + 1)
variables

fO(ZO,Zl, ... ,Zn) = zof(zdzo,···,zn/zO)

also satisfies the conditions of the theorem and is moreover a homogeneous matrix
function of degree of homogeneity 1. Since

it is enough to prove the theorem for homogeneous matrix functions.
Let

f(z) = {Iij(z)}7,j=1

be a homogeneous matrix function of degree of homogeneity 1, satisfying the con
ditions of the theorem. Without loss of generality, we may assume that the matrix
functions Iij (z) have the same denominator. Then, making use of Lemma 1.4 we
construct matrix bundles Aij (z) such that

(1.14)
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1 0

0 1
llJ(z) =

~(z) 0

0 ~(z)

By construction, the matrix bundle A(z) inherits the properties of the matrix
function f(z):
a) if f(z)' = f(z), then A(z)' = A(z);

b) if f(z) = f(z), then A(z) = A(z).
Since the matrices in (1.14) are symmetric, we obtain from there

A(z)llJ(z) = [ f~z) ] 'l1(z)' A(z) = (f(z) , 0). (1.15)

If A22(Z) to, then, by Lemma 1.1, A(z) has a submatrix

such that det A22 (z) t 0 and

(1.16)

as required. Moreover, A(z) is symmetric if A(z) is symmetric. If A22 (Z) == 0,
then it follows from (1.15) that also A12 (Z) == 0 and A21 (Z) == o. In this case the
function f(z) is linear:

f(z) = All(z).

This equality can be considered as the degenerate case of the representation (1.16)
in which the dimension of the matrix A22 (Z) is equal to zero: A22 (Z) is the 0 x 0
matrix. 0

2. Positive real matrix functions

In this section we obtain a number of theorems which describe the properties
of rational positive real matrix functions of several variables. We remind that a
rational matrix-function f(z) is said to be positive real if it is holomorphic in the
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domains2 V~, V R, vj, V J and satisfies the conditions
1. f(z) + f(z)* > 0 for z E V~,

2. f(z) + f(z)* < 0 for z E VR'

3. i(f(z)*-f(z)) > 0 for ZEVj,

4. i (f(z)* - f(z)) < 0 for z E V J,
5. f(z) = f(z)

1. The following theorem shows us that for rational matrix functions the analyticity
is the consequence of the inequalities.

Theorem 2.1. If a rational matrix function f(z) satisfies the inequality

f(z)+f*(z)~O, ZEV~,

then f (z) is holomorphic in the domain V~.

Proof Let Zo (z~, ... ,z~) by an arbitrary fixed point from V~. Then the
functions

h(A) = f(A, zg, ... ,z~);

fn(A) = f(z~, ... ,Z~-l ,A)
are rational and satisfy the condition

!J(A) + f;(A) ~ 0 for ReA> O.

From here it follows that !J (A) are holomorphic for Re A > O. Therefore, f (z) is
holomorphic with respect to each variable Zj separately for z = (Zl' ... zn) in V~.
According to Hartogs' Theorem (see, for example, [VIal], 1.4.2 or [Fu1], Theorem
1.6), f(z) is jointly holomorphic for z = (Zl, ... zn) in V~. 0

Remark 2.1. The analyticity of f(z) in the domains VR' vj, V J can be proved
analogously.

Theorem 2.2. Every rational positive real matrix functions f (z) is homogeneous
of degree one:

f(AZ1, .. , , AZn) = Af(zl, ... , zn).

Proof. Let f(z) E P and Xj > 0 (j = 1, 2, ... , n). Let us consider the slice
function of the variable A:

4'X(A) = f(AX1, ... , AXn ).

From the definition of the class P:

4'x(A) + 4'~(A) > 0 for ReA>O;

4'x(A) + 4'~(A) < 0 for ReA<Oj

i(4'~(A) - 4'x(A)) > 0 for 1m A > 0;

i(4'~(A) - 4'x(A)) < 0 for 1m A < O.

2The definition of the domains D~, DR' Dt, DJ was given in the introduction.
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From here it follows that <Px(.X) is of the form

<Px(A) = AA(x).

D

Setting A = 1, we obtain
A(x) = f(Xl, ... , xn ).

Thus,
f(AXl, ... ,AXn ) = Af(Xl' ... , xn )

for real Xl, ... , X n . Since the set

{Zl, ... , Zn: Xl> 0, ... , Xn > O,Yl = 0, ... , Yn = O}
is the uniqueness set for the class of rational functions,

f(AZl, ... ,AZn ) == A!(Zl, ... , zn).

D

Using Theorems 2.1 and 2.2, we can give an equivalent definition of matrix
functions of the class P:

Theorem 2.3. For a rational matrix-function f(z) to be positive real it is necessary
and sufficient that the following three conditions are satisfied:

1) f(z) + f*(z) ~ 0 for Z E V~;

2) f(AZ) = Af(z) for every A E e, Z E en;

3) f(z) = f'(z) = f(z).

Proof. The necessity is the consequence of Theorems 2.1 and 2.2. To prove the
sufficiency, we remark that if Z E V~ then - Z E VR.. Therefore if Z E VR., then

f(z) + f*(z) = -[f(-z) + f*( -z)] :s o.
If z E vj, then (-iz) E V~. Thus,

i[j*(z) - f(z)] = f( -iz) + j*(-iz) ~ O.

For the domain V J the situation is analogous.
Let us remark that the condition

f(z) + j*(z) ~ 0 for z E V~

can be weakened slightly. Namely, the following result holds:

Theorem 2.4. Let f (z) be a rational matrix function. Let us assume that for every
j = 1, 2, ... , n and for every real Tl, T2, ... , Tn, the functions

f; = f( iTl, ... , iTj-l, Zj, iTj+l, ... , iTn )

satisfy the condition
fj + f; ~ 0 for Re Zj > 0 .

Then the inequality
f(z) + j*(z) ~ 0 for z E V~

holds.
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Proof. For a vector ~ that does not depend on z, let us consider the function
ff.(z) = C f(zK It is clear that

2Reif.(z) = C[f(z) + j*(z)]~.

Therefore if the inequality

Re if. (z) ~ 0 for z E 'D~

holds for every ~, then the inequality

f(z) + j*(z) ~ 0 for z E 'D~

holds as well. Therefore, it is enough to consider scalar functions only. Let a scalar
function f(z) satisfy the assumptions of the theorem. We consider the rational
function

(2.1)
f ( 1+(1 l+(n) 1
1-(1 ' ... 'l-(n -

U((l' ... , (n) = (1+(1 l+(n)·
f 1-(1'···' l-(n + 1

It is clear, that for every j = 1, 2, , n and for every t1 E '][', ... , tj-1 E 11', tj+l E

'][', ... , tn E 11', the function u(tl, ,tj-1, (j, tj+1, ... , tn) is holomorphic for
I(j I < 1 and satisfies the inequality

IU(h, ... ,tj-1, (j, tj+l, ... , tn)1 < 1 for I(jl < 1. (2.2)

Let us show that the function u((1, ... , (n) is holomorphic in the polydisk ][])n =
{(: 1(11 < 1, ... , I(nl < I} and satisfies the inequality

IU((l' ... , (n)1 < 1 for (E][])n.

To prove this, we consider the Fourier coefficients u(k1, , , kn) of the function
u(t) considered on the torus ']['n = {(h, ... , tn) : It11 = 1, , Itnl = I}:

u(k1, ... , , kn) =J... JU(t1' ... , tn)t1k1 ... t;;kn m(dtI) ... m(dtn)
1!'n

(m(dt) is the one-dimensional normalized Lebesgue measure). The function u is
contractive on ']['n: lu(t) I ~ 1 for t E ']['n. Therefore, its Fourier coefficients
u(kl, ... , , kn ) exist. If kj < 0 at least for onej = 1, ... , n, then u(k1, ... , , kn ) =
O. Indeed, for definiteness, let k 1 < o. Then

u(kl, ... , , kn) = J...Jt2k2 ... t;;kn m(dt2) ... m(dtn)
1!'n-1

xJu(h, ... , tn)t1k1 m(dtI) ,

1!'

By condition (2.2), the inner integral vanishes. Therefore, the Fourier coefficients
u(k1, ... , , kn) determine the function

g((l' ... , (n) ~fL u(k1, ... ,kn) (~1 ... (~n
'Vk



174 M.F. BessmertnYI

which is holomorphic in j[J)n. On the other hand, denoting (j = rjtj (rj ~ 0, tj E
']['), we obtain

g(i, ... , (n) = L r~l ... r~n . u(k1, ... , kn) t~l ... t~n .
k

Therefore, g(i, ... , (n) is the convolution of the function U(ti, ... , tn) and of
the Poisson kernel

P(r, t) = L r~kll ... r~nl t~l ... t~n.
k

Since IU(ti,"" tn)1 ::; 1 on ']['n and

/ ... / P(ri, ... ,rn;ti, ... ,tn)m(dti)'" m(dtn) = 1,
Tn

we have
Ig(1, ... , (n)1 ::; 1 for (E j[J)n.

Since the Poisson kernel is an approximate identity,

lim g(rti,"" rtn ) = u(h, ... , tn )
r--+i-O

in every point t = (ti, ... , tn ) E ']['n where the function u is continuous. By the
uniqueness theorem,

u() == g() for (= (i, ... ,(n) E j[J)n.

Thus,
lu(1, ... , (n)1 ::; 1 for (E j[J)n.

Returning to !(Zi, ... , zn) by means of the transformation that is inverse to the
transformation (2.1) we obtain the statement of the theorem. D

Theorem 2.5. If f(z) is a positive real matrix-function, then

of
~(X1, ... ,xn ) ~ 0
UZj

for every j = 1, ... ,n and for every real Xi, ... , X n .

Proof. Let g(z) = ~* f(z)~ where ~ is an arbitrary column vector with complex
entries. Then g(z) is a scalar rational function satisfying the conditions

Img(z) ~ 0 for Imzj > 0;

Img(z) = 0 for Imzj = O.

Denoting the real and the imaginary part of g(z) by u(z) and v(z) respectively
and using the Cauchy-Riemann equations, we obtain

og au ov a [Img]
~(Xi' ... , xn ) =~ =~ = a ~ 0,
U~ uXj u~ ~
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where Zj = Xj + iYj . Since ~ is an arbitrary vector,

of
~(Xl, ... , x n ) ;?: 0 for Xj E lR (j = 1, ... , n).
uZj

o
To prove the following property, we need

Theorem 2.6. Let n > 1, P(z) and Q(z) be coprime polynomials of n variables
Zl, ... , Zn such that P(O) = 0, Q(O) = O. Let n be an arbitrary neighborhood of

the origin in en and f(z) = ~~:~. Then for an arbitrary complex number a, there

exists a point Zo in n such that

Q(zo) -I- 0 and f(zo) = a.
A proof can be found in [Rud]: Theorem 1.3.2.

Theorem 2.7. Let f(z) = ~~:~ be a scalar rational positive real function where

P(z) and Q(z) are coprime polynomials. Then the polynomials P(z) and Q(z) do
not vanish in the domains D~, DR' Dj, D"J.
Proof. For definiteness, consider the domain D~. Let Zo E D~ and Q(zo) = O.
Since f is holomorphic at the point zo, P(zo) = O. Let n E D~ be a neighborhood
of the point zoo Take a: Rea < O. According to Theorem 2.6, we find Zl En such
that Q(Zl) -I- 0 and f(zd = a. Since Re f(zd ;?: 0, this is impossible. To prove
that P(z) does not vanish inDt we consider the function f-l(Z): Ref-l(z) ;?: 0
for z E D~. 0

Theorem 2.8. Let f(z) = ~g~ be a scalar rational positive real matrix function

where P(z) and Q(z) are coprime polynomials. Then for every j = 1, ... , n, the
functions

h(z) = Q(z)
oQ (z)
OZj

and f ( ) - P(z)
2 Z - oP

-(z)
OZj

are positive real.

Proof. (For definiteness, we take j = 1.) First of all we remark that
h(AZ) = Ah(z) and h(AZ) = Ah(z).

Let us show that Re h (z) ;?: 0 for z E D~. This condition is equivalent to the
condition

Ref11(z);?:0 for ZjED~.

Let us fix zb = (zg, ... , z~); Re zJ > 0, j = 2, ... , n. Since Q(z) is a denominator
of a rational positive function, Q(Zl, zg, ... , z~) does not vanish in Re Zl > O.
Therefore

Q(Zl' zb) = ao II [Zl - ,8j(zb)]kj
,

l:"=:j:"=:m
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-1) ~ kj
f1 (z = LJ z _fJ(Z/)

l::oj::om 1 J 0

and

1 ~ kj [ZI + ZI - (fJj(zb) + fJj(zb))]
Refl (z)= LJ 2 ~O for Rezl~O.

l::oj::om IZ I - fJj(zb) I
For the function 12, the reasoning is analogous. 0

2. In the sequel, if f(z) = {Jij(z)}:'j=1 is a rational matrix-function and q(z) is a
common denominator of the entries fij (z), we represent f (z) in the form

f(z) = P(z)
q(z)

where

P(z) = {Pij(Z)}tj=1
is a polynomial matrix function and q(z) is a polynomial. Clearly, in order for a
matrix function f (z) to be positive real, it is necessary and sufficient that for any
constant vector ~ of appropriate size, the scalar function

g(z) = ~f(z)C

is positive real.

Theorem 2.9. Let f(z) = P(z)jq(z) be a rational positive real matrix function,
with P(z) a matrix polynomial and q(z) a polynomial. Then, for every j = 1, ... n,
the matrix function

8P (z)
f(z)=~
J ..£2..(z)

8zj

is positive real.

Proof. Let ~ be an arbitrary vector. Then, the scalar function of (n + 1) variables
~P(z)C Zn+lq(Z) + ~P(z)C

Zn+l + q(z) q(z)

is positive real.
In view of Theorems 2.7 and 2.8, the polynomial

oq oP *
zn+l oz. (z) + ~ oz. (z)~

J J

does not vanish for z E D~, Rezn+l > O. Since the equation (with respect to
Zn+l)



On Realizations of Rational Functions of Several Variables 177

has a unique solution

oq
OZj

oP
OZ·

we conclude that Re z~+l ::; O. Thus Re ~ at C 2: 0 for z E D~ .

OZj

Theorem 2.10. Let f(z) be a positive m x m matrix function and

k = sup rankf(z).
zECn

D

Then there exists a constant (i. e. not depending on z) unitary matrix U (i. e.
UU* = 1m ) such that

f(z) = U [h~Z) ~] U* ,

where h (z) is a non-singular positive k x k matrix-function.

Proof. Since rank f (z) takes integer values, there exists a point

xo=(x?, ... ,x~) (Xj>O)

such that rankf(xo) = k. 3

To prove the theorem it is enough to prove that if f(zo)~o = 0 for some vector
~o, then f (z )~o == 0 for all z E en. Since f (z) is positive, the function

S((l, ... ,(n)

_[f(I+(l 1+(n) -1 ] [f(I+(l 1+(n) 1 ]-1 (2.3)
- 1 - (1 ' ... , 1 - (n m 1 - (1 ' ... , 1 - (n + m

is well defined for (= ((1, ... , (n) from the unit polydisk ]j»n. From the identity

1m - S(z)* S(z) = 2f +1m )*-1(J + J*)(J + 1m )-1

we conclude that
S(()*S(() ::; 1m for (E ]j»n,

and, moreover, S(() is a matrix function analytic in the polydisk ][)In.

We note that that f ~ = 0 for some vector ~ if and only if S ~ = -~. This is
easily seen from (2.3) and from its equivalent form S = (f + 1m )-1(J - 1m ).

31'ranslators' Note: Of course there is no a priori reason why the maximal rank k should be
achieved at a point all of whose coordinates are real and positive. However it follows from the
reasoning below that given any point Xo all of whose coordinates are real and positive, with
rank f(xo) = ko, there exists a required factorization with h (z) a non-singular positive ko x ko
matrix-function. Hence necessarily ko = k.
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Let now Xo = (x~, ... ,x~) (x~ > 0, Vj), such that j(xo)1;, = O. Then, for some
inner point (0 of the polydisk ]]))n,

1](0) = 8(0)1;, = -I;, (2.4)

where 1]() ~f 8()1;, is a vector function holomorphic in ]]))n .

Since 1]()*1]() S; CI;, for ( E ][))n and 1](0)*1](0) = CI;" 1]() is a constant
vector function: 1]() == -1;,0. Therefore

8()1;,0 == -1;,0 and j(z) 1;,0 == 0

Making a diagonalization of j (xo) we obtain the assertion of the theorem. D

3. Properties of functions representable as the resolvent of a
bundle of non-negative matrices

Before turning to the examination of the properties of functions which admit
a representation as the resolvent of a bundle of non-negative definite (positive
semidefinite) matrices, we prove the following simple lemma:

Lemma 3.1. Let the matrix junction

g(z) = [;~~ ~~;j]
be positive real, and det c(z) ¢. O. Then the matrix junction

j(z) = a(z) - b(z)C(Z)-lb'(z)

is positive real.

Proof. Let the dimensions of the block matrix a( z) be k x k. If det g(z) f. 0, then
clearly,

where

~k = [~ ~].
The claim of the lemma follows then from the equality

j(z) ± j(z)* = j(Z)~kg-\Z)(g(z) ± g(Z)*)g-l(z)*~kj(Z)*. (3.1)

Assume detg(z) == 0 and suprank g(z) = r+ (n- k). It follows from Theorem 2.10
that there exists a constant orthogonal matrix

such that
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1.

[

Uu
g(z) = U~l

2.

~ ]
3. detg1(z) t o.

Then,

j(z) a(z) - b(z)C(Z)-lb'(z)

U [ a1(z) - b1(Z~C(Z)-lb~(Z) ~] U'

U [(1frg1 (Z):11f;)[-1] ~] U'.

Writing for j (z) a formula analogous to (3.1) we obtain the claim of the lemma. 0

2. Let j(z) be a Ckxk-valued matrix function which can be represented in the form
j(z) = Au(z) - A12(Z)A22(Z)-lA12(Z)', where

[
Au(z) A12(Z)] _ _ ()
A~2(Z) A22 (Z) - zlA1 + ... + znAn - A z ,

and the matrices Aj (j = 1, ... n) are real non-negative definite.
Clearly, A(z) E P and, in accordance with Lemma 3.1, the matrix function

j(z) is positive real. By Theorem 2.10, it is enough to consider the nonsingular
case.

Everywhere in what follows we consider nonsingular matrix functions which
can be represented in the form

j(z) = [1fA(Z)-11f*] [-1] , (3.2)

where
A(z) = zlA1 + ... + znAn

is a bundle of non-negative definite real matrices.

3. Let j (z) = P(z) / q(z) be a rational positive real matrix function, where P(z) and
q(z) are respectively a matrix polynomial and a polynomial which are relatively
prime. Then, by Theorem 2.5, the matrix polynomial

OP oq oj
F(z) = q(z) oz. (z) - P(z) oz. (z) = q(z)2 oz. (z)

J J J

is non-negative definite for real Zk = Xk (k = 1, ... ,n).
The following theorem shows that if j(z) is moreover of the form (3.2), then

F(z) admits a representation as a sum of "squares" of rational matrix functions,
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analytic in the sets 'D~, 'DR' 'Dj and 'D"J. The problem of representing a non
negative polynomial function of several variables as a sum of squares of rational
functions (Hilbert's 17th problem) was solved by Artin, see [Lan]. It is interesting
that the following theorem allows to construct examples of polynomials of several
variables which admit a representation as sums of squares of rational functions
analytic in certain domains.

Theorem 3.1. Set j(z) = P(z)jq(z), where P(z) and q(z) are respectively a matrix
polynomial and a polynomial which are relatively prime. Assume that j can be
represented as

j(z) = (1r(zl A 1 + ... + ZnAn)-l)[-lj,
where the A j (j = 1, ... ,n) are real non-negative definite matrices.

Then, the matrix junction

8P 8q
F(z) = q(z) 8z. (z) - P(z) 8z (z)

J J

admits a representation as a sum oj squares oj rational junctions Sk(Z) analytic
in the domains 'D~, 'DR' 'Dj and 'D"J :

N

F(z) = L Sk(Z)Sk(Z)"
1

Proof. Since A k ~ 0 (k = 1, ... , n), A(Z)-l and j(z) are holomorphic in the
domains 'DR, 'D_, 'Dj and 'D"J. Then,

:;. (z) = j(z)1rA(z)-l A j A(z)-l1r* j(z).
J

It is clear that the matrix function j(z)1rA(z)-l is holomorphic in the required
domains. Moreover, since the A j are real non-negative definite, then

A j = Tj(Aj1 + ... + Ajn)Tj,

where the Ajk (k = 1, ... n) are diagonal matrices of rank one, the entries of which
are 0 or 1. Therefore, setting

Sk(Z) = q(z)j(z)1rA(Z)-l A jk ,

we obtain
8j n

F(z) = q(z)2 8z (z) = L Sk(Z)Sk(Z)',
J k=l

as required. 0

4. In conclusion of this section we consider yet another representation for matrix
functions of the form (3.2). This representation is the analogue of the representa
tion of Hefer4 for functions holomorphic in a domain of holomorphy 9 by means

4This theorem is presented in the paper [Hefj. In a footnote to the paper, Behnke and Stein state
that the author died in 1941 and that the paper represents a part of his 1940 Munster dissertation.
They also mention that papers by Oka [Jap. J. Math. 17,523-531 (1941)] and Cartan [Ann. Sci.



On Realizations of Rational Functions of Several Variables 181

of functions Pj(z, () holomorphic in the domain g x g
n

j(Z) - j(() = 2:(Zj - (j)Pj(z, ().
j=1

Theorem 3.2. Let a matrix-junction j(z) be represented in the jorm

j(z) = [1r (Z1 A1+ ... + Zn An)-1 1r*] [-1] ,

where Aj are non-negative real matrices.

Then j (z) is representable in the jorm

j(z) = 2: zjlf>j(z, (),
1:'Oj:'On

where If>j(z, () are matrix-junctions which are holomorphic in the domains D~ x
D~, DR x DR' Dj x Dj, D"J x D"J and satisfy the following condition: for every
set of points {zkh9:'ON the inequality

holds.

[

If>J(Z1, zd

If>J(Z~' Z1)

If>J(Z1' ZN) ]

: >0

If>j(z;, ZN) -

(3.3)

Remark 3.1. Except the case n = 2, the functions If> j (z, () are determined non
uniquely from f(z). In the case n = 2,

1f>1(Z, () = (2f(z) - z2f(() ;
Z1(2 - Z2(1

1f>2(Z, () = (d(z) - zd(() .
Z1(2 - Z2(1

In the case of two variables, the inequalities (3.3) are a consequence of the Schwarz
Pick inequality for functions with positive real part in the right half-plane. There
fore the inequalities (3.3) can be considered as a generalization of the Schwarz-Pick
inequality to functions in the class P representable as the resolvent of a bundle of
non-negative matrices.

Proof. From the representation

j(z) = [1r (Z1 A1+ ... + Zn An)-1 1r*] [-1J ,

Ecole Norm. Sup. (3) 61, 149-197 (1944)] which have appeared since then contain Refer's results
proved by different methods. The formulation of Refer's Theorem can also be found in [Fu1]:
Theorem 22.1, its proof in [Fu2]: Theorem 7.3.
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it follows that
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j(Z) ± j(() = [lrA- 1(z)1r*] [-lJ ± [lrA-1(()1r*] [-1}

= j(z)lrA-1(z)[A(z) ± A(()]A-1()1r* j(().

Denoting j(z)lrA-1(z) by <p(z), we obtain

j(z)±j(()= L (Zj±(j)<p(z)Aj<p'((),
l:'Oj:'On

or

j(z) ± j(() = L (Zj ± (j)<I>j(z, ()
l:'Oj:'On

where

<I>j(Z,() = <p(z)Aj<p'(().

Since Ak 2: 0, the matrix functions <I>j are holomorphic in the domains Dk x Dk'
DR x DR' Dj x Dj, D"J x D"J . The inequality (3.3) is equivalent to the inequality

[<I>(Zl)' ... , <I>(ZN)] [ ~j
Aj

Since A j 2: 0, the latter inequality holds.
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The Poincare-Hardy Inequality on the
Complement of a Cantor Set

Cristian S. Calude and Boris Pavlov

Dedicated to Harry Dym, scientist and person of highest excellence.

Abstract. The Poincare-Hardy inequality on the complement of the Cantor
set E

/ . ~~12 ) dm ~ 4JC
2
. / I\l U 1

2
dm

dlst x, E

holds for every U E wi (R3)' Corresponding higher-order inequalities will
be also derived. We use a special self-similar tiling and a natural metric on
the space of trajectories generated by a Mauldin-Williams graph which is
homeomorphic with the space of tiles endowed with the Euclidean distance.
A crude estimation of the constant JC is 2,100. Three applications will be
briefly discussed. In the second one, the constant ~JC-l ;::::: 0.0002 plays the
role of an estimate for the dimensionless Planck constant in the corresponding
uncertainty principle.

1. Introduction

In Classical Analysis the Poincare-Hardy inequality (see, for example, Hardy, Lit
tlewood, Polya [10] or [8]; for a recent overview see Davies [6]) is one of most
popular tools for comparing the generalized smoothness of a given function and
its square integrability with a singular weight-function. The inequality is also used
in Quantum Mechanics for deriving the uncertainty principle, Schiff [22], and in
Mathematical Hydrodynamics for proving the existence and uniqueness of solu
tions of Navier-Stokes equations, Ladyzhenskaja [15]. Combined with the Garding
inequality [9] it proves a surprisingly sharp instrument of qualitative spectral anal
ysis of differential operators [2]; it even appears as a central point of the proof of
semi-boundedness of solvable few-body Hamiltonians in Quantum Scattering [19].
A version of the Poincare-Hardy inequality on the complement of a uniformly b
regular set was derived in [1] in connection with the question on the uniqueness of
the solution of the Dirichlet problem for second order elliptic equations in a do
main with a uniformly b-regular boundary. The uniform b-regularity is equivalent
to the existence of the corresponding superharmonic strong barrier function (see
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Theorem 2 in [1]) and is invariant under conformal transformations of the space
(an equivalent of uniform perfectness), [21,12].

For our study of Dirichlet forms in Hilbert spaces of square integrable func
tions with singular weights we need Poincare-Hardy inequalities in multidimen
sional spaces on complements of perfect zero-measure sets (actually fractals) with
explicit estimates of corresponding constants. An exact description (in terms of
capacities) of all "Hardy weights" d- 1 for which the Poincare-Hardy inequality
can be written in the form

k1ul2 ~p ~ 4K
2 'k l\7u I2 dm

is given by Maz'ja [17] (in Chapter 2). Methods of straightforward estimation of
capacities for Cantor sets in geometric terms were suggested by Carleson in [5]
(Chapter 4).

In the present note we derive the simplest version of the Poincare-Hardy
inequality and corresponding higher-order inequalities on the complement of a
Cantor set in R 3 . Our approach is "non-capacitory"; it is based on combinato
rial properties of a special self-similar tiling of the domain. We have chosen the
Cantor set because of its simplicity and usefulness (Cantor sets are highly useful
mathematical models for physical phenomena which include, for example, the dis
tribution of galaxies in the universe and the fractal structure of the rings of Saturn,
see Pickover [20], or [11]). We reduce the proof of the Poincare-Hardy inequality
to the estimation of a discretized integral which appears from the analysis of an
analog of the strong barrier function, see Theorem 3.2 below. This estimation is
based on the generating Mauldin-Williams graph of the Cantor set together with
a proper measure constructed on all cylinder sets of trajectories produced by the
generating finite automaton, see Calude [4].1 The above measure leads to a metric
space homeomorphic with the space of tiles endowed with the Euclidean distance.

This paper describes a simple case study of a connection between the analysis
of smooth functions on the complement of a uniformly 8-regular set (or just a
zero-measure perfect set), on one hand, and Symbolic Dynamics (see, for example,
Schuster [23], Lind and Marcus [16]), on the other hand. Although the phenomenon
studied is analytically trivial, still the characteristic features of a possible general
construction can be already seen here:

• a special self-similar tiling of a neighborhood of a singular set, parameterized
by trajectories generated by some Mauldin-Williams graph which defines the
automorphisms of the set.

• a homeomorphism between an Euclidean metric structure on the tiling and
the metric space of trajectories.

It is obvious that the above structures contain more information on the underlying
set than just the uniform 8-regularity, so they may be used for a more precise

ITrajectories may be represented as paths on a binary Bruhat-Tits tree, [3J.
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estimation of the constant in the Poincare-Hardy inequality (or even for deriving
new versions of it).

In what follows we will also compute an estimation of the constant K2 ap
pearing in the Poincare-Hardy inequality. Our constant is certainly not the best;
sharper estimates need more accurate operations with integrals on tiles.

2. Prerequisites

We denote by I; the binary alphabet {O, I} and by I;* the set of all non-empty
binary strings, i.e., I;* = {O, 1,00,01,10,11,000, ...}. If a = a1a2 ... an is a string
of n digits, then its length is denoted by lal = n. By I;l we denote the set of
strings of length l. The concatenation of two strings a, c is denoted by ac. A string
a is a prefix of a string b (we write a C b) in case b = ac, for some c E I;*. The
negation of a string a E {O, I} is denoted by a = a-I, so that 0 = 1, I = 0.
For a, d E I;* we denote by and the maximum common prefix of the strings a, d.
Clearly, lanbl :::; min{lal, Ibl}, and landl = lal if and only if a C d. Let I;W be the
set of all infinite binary sequences. In analogy with the case of strings, if a and T

are two distinct sequences, then anT denotes the maximum common prefix of a
and T; of course, anT is a string. If a and T are two distinct sequences in I;w and r
is a real number in the unit interval (0,1), then 8r (a, T) = rlO"nrl is an ultrametric
on I;w. The space (I;W, 8r ) is complete, compact and separable. For different r, s in
(0,1), the spaces (I;W,8r ) and (I;W,8s ) are homeomorphic. For more information
see Edgar [7].

A middle third Cantor set is constructed by removing successive open middle
thirds from a sequence of closed intervals. In the traditional construction, the one
we are going to use in this paper, we are starting from the interval .6. = [0,1] (the
pre-Cantor set of zero order) from which we remove the "middle third" (1/3,2/3)
on the first step, leaving the union of closed intervals .6.0 = [0, !J and .6.1 = [~, 1].
The set .6.0 U.6.1 is called the pre-Cantor set of the first order. The endpoints of the
closed intervals constitute its skeleton. In the second step we remove the middle
thirds (1/9,2/9) and (7/9,8/9) respectively from the intervals .6.0 , .6.1 , and thus
obtain the closed intervals

1 2 1 2 7 8
.6.00 = [0, 32 ],.6.01 = [32 '3],.6.10 = [3' 32 ],.6.11 = [32 ' 1],

which constitute the pre-Cantor set of the second order, and so on. For example,
the skeleton of .6. is £0 = {O, I}, the skeleton of .6.0 U.6.1 is £1 = {O,!,~, I}. This
procedure continues indefinitely. The Cantor set E is defined as the intersection
of the countable sequence of pre-Cantor sets E a formed by all closed intervals
enumerated by all binary strings a length lal = l:

00

E =nE1, E1 = U .6.a ·

1=0 lal=l



190 Cristian S. Calude and Boris Pavlov

The endpoints of intervals constituting the pre-Cantor set EI of order l, form
the corresponding skeleton £1 and are enumerated by all binary strings length l +1,
that is, two strings aO, a1 correspond to each interval D.a . The first steps of this
construction are pictured in Figure 1. The Cantor set is compact, perfect and has
length zero.

FIGURE 1. Cantor set

A convenient way to work with the Cantor set is to consider the Mauldin
Williams graph (see Edgar [7]; equivalently, we could use a non-deterministic au
tomaton as in [14]) in Figure 2, the contracting ratio list (ro, rd = (1/3/,1/3),
and the functions fa, h : [0,1] ----; [0,1] defined by fo(x) = x/3, h(x) = (x + 2)/3.
Let rA = 1 (A is the empty string), ro:i = ro: . ri, for 0: E ~*,i E ~ and define
<5(a, r) = rcrnT' It is seen that <5 is an ultrametric and, in fact, <5(a, r) = 3-lcrnTI =
Pl/3(a, r). According to Theorem 4.2.3 in [7] there exists a unique continuous
function h : ~w ----; [0,1] satisfying the following two conditions:

1. h(ia) = fi(h(a)), for all i E ~,a E ~w,

2. h(~W) = E.

0:113 1:2/3

FIGURE 2. Mauldin-Williams graph for the Cantor set

The function h can be defined inductively by the following equations:

h(Oa) = h~), h(la) = h(a~+ 2, (1)
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for all a E I;w, see Edgar [7]. For example, h(0101010101 ...) = 1/4 because of the
equality h(0101010101 ...) = !(2 + h(0101010101 ...)).

The map h has a "bounded distortion" with respect to the ultrametric <51/ 3 ,

that is, for every a, T E I;w,

(2)

Re-phrased, the ultrametric <51/ 3 (a, T) on the set of binary sequences is equivalent
to Euclidean distance between h(a), h(T). Note that h does not have the above
property with respect to any other ultrametric <5r with r i- 1/3.

We consider now the middle-third Cantor set situated on xl-axis in R3 and
define a special tiling of a neighborhood of the Cantor set by extending the map
h to the elliptic body 0 with foci 0, 1

n = {x : Ixl + Ix - 11:::; 5/3} , diam 0 = 5/3.

We shall see below that the sum of all tiles enumerated by these sequences
gives an elliptic body na, diam Oa = 5·3- la!-1, and the metric space of trajectories
is homeomorphic to the space of tiles endowed with the Euclidean distance, see
Lemma 4.1.

We denote by wi ('R3 ) t'he Sobolev space of all square-integrable functions on
'R3 which have square-integrable derivatives of the first order. This is a complete
Hilbert space endowed with the dot-product

(U'V)W' CRs) = r (('\7U'\7u)+uv)dx3,
2 iRs

and the corresponding norm

lulWiCRs) = V(U' u)wiCRs)'

For more details about Sobolev classes which will be used below see [17].

We denote by dist the Euclidean distance. A set E is bounded in case SUPxEE

dist(x,O) < 00. A fractal in 'R3 is a self-similar perfect set E, that is, a closed,
zero-measure set with no isolated points. We assume that E possesses a self-similar
tiling (see below the construction of a tiling for the Cantor set).

Note that the function de(x) = dist(x, E) is generally Lipl-continuous:

on each compact subset K of the complement E' of E in 'R3 .
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FIGURE 3. Cantor tiling

3. Poisson construction

The Lebesgue measure f..l(J) of the J-neighborhood E8 = {x Idist(x, E) < J} of E
in R 3 is a "sufficiently smooth" function of J and can be generally estimated, for
small J, as

f..l(J) = r dm::; C(a)J3- a ,
lEo

with finite non-negative a ::; 3 and some positive C(a). The lower bound aE of
values of the parameter a for which this estimate holds is called the Minkowski
dimension dimE = aE of the set E, see for instance Edgar [7] and the literature
quoted there. The Minkowski dimension of sets in R n may be defined in a similar
way; it does not depend on the dimension n of the space R n and may take any non
negative value less than n. In the most interesting cases the Minkowski dimension
coincides with the Hausdorff dimension [7]. In particular, the Minkowski dimension
of the above Cantor set E E R 3 is equal to :~=;.

Remark 3.1. The Minkowski dimension aE defines the order p of admissible sin
gularity of the integrand in convergent integrals on the complement of a compact
set E in Rn- For instance, the singular integral

1 1 11 f..l(J)
dp ( ) dm = p '1+ df..l(J) + f..l(l) ,

dE(X)<1 E x 0 u P

is convergent if p < n - aE. In particular, the integral on the complement of the
Cantor set in a large ball in R 3 is convergent if p < 2 < 3 - :~~;.
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The following general statement serves as a base for our calculations in the
next section.

Theorem 3.2. For every function u E Wi(R3) and every bounded perfect set E E
R 3 with dimE < 1 which fulfills the condition

dx J 1 dm(s)
ICE = sup -4 1 _ 12 d2 ( ) < 00,

xEE 7r X S E S

the Poincare-Hardy inequality holds with the constant IC'i::

Jd';;X) dm:::; 4IC~· JIV ul
2

dm.

Proof. It is sufficient to obtain the inequality (4) for any smooth function u with
a compact support in the complement E' of E in R3.

If the Minkowski dimension aE is less than 1, then the function dE/eX) =
dist- 2 (x, E) being Lip1-continuous on any compact in E' = R 3 \ E is integrable
on any bounded neighborhood EIj. Indeed, following the above general remark,
we may rewrite the integral IE! dE/ex) dm as I01

5-2 d/1(o) and then reduce it via
integration by parts for any a E (aE, 1) to the following form:

Hence the function d"i/ is integrable on any bounded domain in R3 . Then
we consider a Poisson equation

2 1 2
- ~ V + /'i, U = d,2' /'i, > 0,

E

and represent its generalized solution via the corresponding Green function

( e-l<lx-sl dm(s)

vex) = IR.a 47rlx - sl d~(s) ,

on any compact subdomain of the complement E' of E in R 3 . The generalized
solution (6) is twice continuously differentiable, on any compact K E R 3\E = E',
v E C2+J3(K), (3 > 0, which permits the integration by parts for any smooth real
function u with a compact support K u E K in E':

Jd';;x) dm = - Ju
2 ~ vdm + /'i,2 Ju

2
vdm

= 2Ju < v U , VV > dm + /'i,2 Ju2v dm,
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(8)

so, the following estimate holds true for any positive "':

1d;;X) dm ~ (1 d;;X) dm) 1/2 . (4·1 IV ul2 (I V vldE(x))2 dm) 1/2

+ ",2·1 u2vdm. (7)

We can estimate VV as

1 e-I<lx-sl x - 8 dm(8)
Iv v(x)1 = I (1 + "'Ix - 81) 41rlx _ 812 Ix _ 81 4(8) I

1e-I<lx-sl dm(8) 1e-I<lx-sl dm(8)
~ 41rlx - 812 d'i:(8) + ",. 41rjx - 81 4(8) .

Together with (7), for fixed u, (8) gives:

1d;;X) dm ~ l~{ (4·1 d;;X) dmr/2
(1 2 [1 e-I<!x-sl dm(8) 1e-I<lx-sl dm(8)] 2 ) 1/2

. Ivu(x)jdE(X)· 41r/x-8124(8)+"'· 41rlx-8Id'i:(8) dm(x)

+",2·1 u2v dm}. (9)

which implies, after passing to the limit", -----. 0, the inequality:

1 U2 [d x 1 1 dm(s)] 2 1 2
d'i:(x) dm ~ 4 s~p 41r Ix _ 812 4(8) . Iv u(x)1 dm(x). (10)

The final result can be obtained now via taking the closure of (10) in the Sobolev
space wi CR3 ). 0

In Section 5 we shall derive a crude estimate for the constant K} for the
Cantor set E. Our estimate is not optimal; however, our analysis of the discretized
integral representing JC2 shows that the main part of this constant appears from an
estimate of some infinite sum over a special tiling. This tiling appears from the ex
tension 1t of the parameterizing map h of the Cantor set onto some neighbourhood
in R3 (see the construction in the next section).

4. A special tiling

Consider the Cantor set E on x-axis in R 3 and denote by e1 the unit vector
looking at the positive direction of the x-axis. Consider a tiling of the whole space
R3 formed by the complement R 3 \ n of the rotation-symmetric elliptic body n
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bordered by the ellipsoid 0 with foci in 0, el, that is on the skeleton of zero-order
pre-Cantor set ~ = [0,1] on the x-axis:

o = {x : Ixl + Ix - ell ::; ~ } .
Next we consider the map 'H : ~ x 0 --+ 0 defined for each x E 0 as a splitting

of one point x into two images:2

x 2el + x
'H(O, x) = 3' 1t(1,x) = 3

The function 1t can be extended in a natural way to a function, also denoted
by 1t, from ~* x 0 into 0 by

1t(ia,x) = 1t(i, 'H(a,x)),

for all i E ~,a E ~* and x E O. Clearly, 'H(ab,x) = 1t(a, 'H(b, x)), for all a,b E ~*

and x E O.
The image 1t(~ x 0) consists of two components - two similar elliptic bodies

0 0 = 1t(0, 0) = io, 0 1 = 1t(1, 0) = (~ + iO),

00= {x : Ixl + Ix - ~ell ::; :2 }, 01= {x : Ix - ~ell + Ix - ell ::; :2 },
with foci at the skeleton £1 of the first-order pre-Cantor set E l = ~o U ~l, £1 =
{roo,rol,rlo,rll}:

1 2
roo = 0, rOl = 3' rlO = 3' r11 = 1,

and the basic tile W is formed as a complement 0 \ 1t(~ x 0) = 0 \ (00 uOd.
On the next step we form two tiles Wo, WI of the first order which are similar

to wand are defined respectively as the complement

Wo = 1t(0, 0) \ (1t(00, 0) U1t(01, 0)) = 0 0 \ (000 Uood
of the bodies

0 00 = {x : Ix - 01 + Ix - ~ell ::; :3 } ,

OO! = {x : Ix - ~ell + Ix - ~ell ::; :3}
in 0 0 and the complement

WI = 1t(1, 0) \ (1t(1O, 0) U1t(1l, 0)) = 0 1 \ (OlO U0 11 )

of the bodies

2Note that 1t is the extension of h defined by (1).
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in 0 1. The foci of ellipsoids bordering 0 00 , 0 01 , 0 10 , On form the skeleton £2 of
the second-order pre-Cantor set E 2 = Dooo UDo01 UDolO UDoll and are enumerated
by all binary strings of length 3: roo = rOOO = 0, roo + -b = r001 = -b, r01 = rOlO =
2 2 __ 3_1 __ 2 1 __ 7 2_
~, r01 + ~ - rOll - ~ - 3' rlO - r100 - 3' rlO + ~ - r101 - ~, rlQ + ~ -

8 3 1rno = ~, rlO + 32 = rn1 = .
The construction of the following tiles can be described by induction. On

each step l, lal = l - 1, we begin from the result of the previous step - the set of
21- 1 non-intersecting elliptic bodies Oa bordered by the ellipsoids

Oa = {x : Ix - raol + Ix - ra11 :::; :I}'
with foci at the skeleton £1 of the pre-Cantor set EI = Ulbl=IDob enumerated by all
possible binary strings b = aO, a1 of length l. Then we continue the construction
by forming the tiles Wa as complements Wa = Oa \ (OaO UOad in Oa of the elliptic
bodies, respectively bordered by the ellipsoids

Oao={x Ix-raool+lx-raOlI=31:1}'

and

Oa1 = {x: Ix-ralOl+lx-ranl = 31: 1 } ,

and so on. Hence, for every a E ~*, 7-i(a,O) = Oa and

Wa = 7-i(a, 0) \ (7-i(aO, 0) U 7-i(a1, 0)) = Oa \ (OaO UOad.

The following Lemma 4.1 will be used to derive bilateral estimates for the
coefficient K2 in (4) in terms of the constructed tiling. We enumerate the tiles by
binary strings b.3

Lemma 4.1. The sets {w, W1, W2, we}, enumerated by all possible binary strings
c, lei ~ °form a tiling for the elliptic body 0 with the following properties:

1. The distance dE(x) from the point x E We to the Cantor set E may be bi
laterally estimated by the distance dlel (x) from x to the skeleton £Iel of the
pre- Cantor set E 1el . In particular, the ratio dlel (x) / dE (x) takes the minimal
and maximal values on the border aOe, aOeO , aOe1 of the tile We and

d1el(x)
1 :::; dE(x) :::; 4, x E aOeO U aOd,

d1el(x) 5
1 :::; dE(x) :::; .JI7' x E aOe· (11)

The Euclidean volume of the tile We is equal to 103n3-3Iel+7 and the distance
from the Cantor set E to x E We can be bilaterally estimated as

3-!cl-2 < d (x)1 < .JI7 .3-lel-1.
- E xEwc - 2

3Recall that an b is the maximal common prefix of the strings a, b.
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2. The distance between the points X a E W a and Xb E We may be estimated from
above as:

IXa - xci::::: 5· 3-lancl-I. (12)

If the tiles W a , We do not contact each other (that is, do not have a common
piece of the boundary), then the distance between the points X a E Wa and
Xc E We may be estimated from below as

IXa - xci 2: 3-lancl-2. (13)

Proof. The above constructed tiling is self-similar, hence the estimate (11), if de
rived for the basic tile wand the tiles wo, WI of the first order, remains true, under
proper scaling, for the whole tiling. Note, for instance, that the ratio dI(x)/dE(x)
takes the minimal and maximal values on the boundary of the tile wand can be
estimated as

1< dI(x) <4 xEOnOUOnI ,- de(x) - ,

and
dI(x) 5

1 ::::: dE(x) ::::: 17' x EOn. (14)

Similarly, the last part of the first statement follows from the estimate

1 vU
9" ::::: dE(x)lxEw ::::: -6-·

To prove the last part of the second statement we notice that from the condition
Ua n We = 0 follows that either W a E WdO, We E WdI, for some string d of length k,
or vice versa. This implies the announced inequality:

IXa - xci 2: dist (WdO,wdI) = 3-lkl - 2 . D

Notice, that for every string a, the map H(a,·) acts transitively on the con-
structed tiling, transferring each l-generation of tiles U W a into the following

lal=l
l+ I-generation U W a . The same function maps the l-generation of elliptic bod~

lal=l+'

ies H(L,l, 0,) = ulal=lna into itself. One can easily see that the Cantor set E is an
invariant set of the map H. The restriction H onto [0,1] coincides with h defined by
(1); see the corresponding property of the parameterizing map h : [0,1] --> [0,1]).
This is the exact meaning of the statement at the end of the previous section,
that the special tiling is formed by the extension H of the parameterizing map h
onto n. The transitive action of the map H on the tiling permits to represent the
generating map H(a,·) as an analog of the unilateral shift on the orthogonal sum
of Hilbert spaces E8 L:a .c2 (wa ).

Considering the basic mappings
x

Ho = H(O,·) : X --> 3'
2 X

HI = H(l,·) : x --> se l + 3"
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we form the strings ri(b, .) = rib = ribl ribl_1 ... rib1 enumerated by the binary
strings b = b1b1- I ... bi . These strings form a Cantor scaling of the above tiling,
mapping the basic tile W onto the corresponding tile Wb = rib W such that a given
point ro is transferred into rb = rib roo This scaling will be used in the construction
of the sequence of test-functions in Theorem 7.1.

5. Estimates for the discretized integral

We begin this section with a few preliminary results. Together with a given tile Wb
we consider a triple of its closest neighbours: its mother Wa of Wb such that b = aO
or b = al and two daughters WbO, Wbi which form together with Wb the cut Ub of
the corresponding Bruhat-Tits tree at the level b: Wb n Wa n WhO n Wbi = Ub. We
consider its complement n\Ub in n which is represented by joining of all remaining
tiles

n \ Ub = UWc , c =I- a, b, bO, b1.
c

(15)

(16)

First note that for x E WI, the integral over U1 = WU WI U WlO UWil ,

1 1 1 dm(s)
.Ji(x) = 41f U1 Ix-sI2d~(x)'

is a uniformly continuous function of x E WI, and there exist two absolute constants
AI, B I such that

A dE(X) 1 1 dm(s) B
1 < -- < 1·

- 41f U1 Ix - sl2 d~(s) -

An obviously crude but still reasonable numerical estimate is:

1
A I =3,BI =150. (17)

Indeed, due to the first statement in Lemma 4.1, the distance dE(s) from the
set E on the cut UI can be estimated by the distance d2 (s) from the skeleton £2:

111
d~(s) :<:::: 4(s) :<:::: 16· d~(s)·

Hence,

<

<

Using the following estimate for the standard integral

1 1 1 1 7- < - dm <-
3 - 41f n3 Ix - lllxl - 3'

(18)
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we obtain, after the change of variables, the estimation from above:

dE(x) 1 1 [ "" 1 ] dE(x)4-- I 12 LJ I 12 dm(s):,::: 150· ~() :'::: 150. (19)
1r uix - S SikE[2 S - Sik 2 x

The estimate from below may be obtained as follows:

dE(x) 1 1 dm(s) > dE(x) 1 1 dm
~ U I Ix - sl2 4(s) ~ UI Ix - sl2 d~(s)

> dE(X) 1 1 dmmax --
8ikE£2 41r UI Ix - sl2 Is - sikl2

> ~. dE(x)
3 d2 (s)
1

>
3

It follows from the self-similarity of the tiling that the same estimate holds
for the corresponding integral over any cut Ve , for every string c and x EWe:

A .< dE(x) 1 1 dm(s) < B (20)
1 - 4 I 12 d2 ( ) - 1·1r Ue X - S E S

1 1dm(s)The integral Ow = - -d2 ( ) can be estimated as 3-2 :'::: Ow :'::: 16. Con-
41r w E S

1 1dm(s)sequently, due to the self-similarity, all integrals - d2 ( ) can be estimated
41r We E S

uniformly:

3- 181 - 2 < ~1 dm(s) < 16·3- lel .
- 41r We 4(s) -

Indeed, due to the first statement in Lemma 4.1 the integral

11dm(s)
41r w d~(s)

(21)

may be estimated as

25 1 1dm(s) 25.11/ 3 1 4/ 6 pdpdh 1 1/ 3 h2+ (2/3)2- . - -- < 4 . - < 6 . In dh < 16.
17 41r wd~(s) - 17 a a h2+p2- a h2 -

An estimate of the integral from below may be derived from the estimate of dE in
above Lemma 4.1

Next note that

dE (x) J 1 dm(s)
sup -- 2 2

xE'R3\(lloUllJl 41r Ix - sl dE(s)

can be estimated from above by the sum

dE 1 1 dm(s) dE (x) lId
4 . - 2 2 + 322 m .

1r 'R3\(Uik llik) Ix - sl d2(s) 41r(dE (x) - 2.3-) (U
ik

llik) dE
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Due to (18) we have
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448 dE(x) 0 dE(x) 150
3 . d

2
(x) < 15 . d

2
(x) < ,

in view of (21) and self-similarity,

3-3 . dE(x) 8 2
(dE(X) - 2.3-3)2 . 3:::; 00,

dE (x) J 1 dm(s)
hence the integral -- I 12-d2 ( )' for x E R 3 \(Oo u 0 1 ), is estimated

41l' x - S E S

from above by 350 .
We obtain further the dominating estimate for the integral

dE (x) J 1 dm(s)
~ Ix - sl2 d'i:(s)

for x E W a , lal 2:: 1 .

Lemma 5.1. The integral coefficient

dE (x) J 1 dm(s)
~ Ix - sl2 4(s)

can be discretized and estimated for x E W a as follows:

dE(X) r 1 dm(s) dE(X) r 1 dm(s)
~ IR3 Ix - sl2 d'i:(s) =~ IR3\floufl1 Ix - sl2 d'i:(s)

dE(x) 1 1 dm(s) L dE(x) 1 1 dm(s)
+-1l'- Ua Ix - sl2 4(s) + b -1l'- Wb, Ibl~1,bnua=0 Ix - sl2 4(s)

:::; 300 + 900· L 32·lanbl-labl.

Wb, Ibl~1,bnUa=0

Proof. The proof of the first statement is based on (18):

dE(x) r 1 dm(s) < 112 . dE(X) < 150.
41l' Jn3\(floUfl1 Ix - sl2 d'i:(s) - 3 d1(x)-

In view of (17) and (20) we get:

sup dE(X) 1 1 dm(s) < 150.
xEU

W1
41l' U

W1
Ix - sl2 4(s) -

To get an upper bound for the third term we use the estimate (21) for integrals

dE(x) 1 1 dm(s)
-- 12 2 )' x E W a
41l' Wb, b#a Ix - s dE(s

and the second statement of Lemma 4.1:

dE(x) 1 1 dm(s) < 900. ""' 32·lanbl-labl. D
41l' Ix - sl2 d2 (s) - L.J

Wb, Ibl~1,bnUa=0 E Wb, Ibl~1,bnUa=0
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The next statement, of algebraic nature, completes the estimation of the
integral representing the constant K.

Lemma 5.2. The following inequality holds true for every string b E I;*:

L 32'lanbl-labl ::; 4. (22)
aEB

Proof. Assume that Ibl = m and b = bl b2 ... bm. First, decompose the series in the
left-hand side of (22) into two disjoint series:

00L 32'lanbHabl = L L 32'lanbl-labl

aEB k=llal=k
m-l 00

= L L 32'lanbl-labl + L L 32·lanbl-labl.

k=l lal=k k=m lal=k

A typical string a = al a2 ak of length k ::; m - 1 will be of one of the following
two forms: bl b2 ... bibi+l ak (for some 0 ::; i ::; k - 1) or b1b2 .·· bk-lbk . We
have 2k - i - l different strings of the first form and exactly one string of the last
form. Similarly, a typical string a = al a2 ... ak of length k :::::: m will be of one of
the following two forms: b1b2 ... bibi+l ... am' .. ak (for some 0 ::; i ::; m - 1) or
b1b2 ... bm-1bm ... am+lak. We have 2k - i - l different strings of the first form and
2k - m strings of the last form. An elementary computation, based on the above
combinatorial analysis, justifies the following two inequalities which combine to
prove (22):

f'I:l L 32'lanbHabl = 3-m- k (I: 32i . 2k- i - l + 32k )

k=l k=l lal=k i=O

1 m-l (2)k ((9)m ) 1 ( 1) 4
= 7. 3m . {; "3 . 2 - 1 + 2 1 - 3m - l ::; 7'

and
00

= 1 .((~)m_1)(~)m+3
7·3m - l 2 3

< D

For a string b E I;* of length greater than one let b' be the prefix of b of
length Ibl - 1. We can use now the inequality (22) to deduce the following upper
bound:

L 32'lanbl-labl < L 32'lanbHabl ::; 2,

wb,lbl2:l,bnua=0 aEB\{b,bO,bl,b'}

which leads directly to
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Theorem 5.3. The Poincare-Hardy inequality on the complement of the Cantor
set E

J .~U12 dm:::; 1764· 104 .JI \] u 1
2dm

dzs (x, E)
holds for every u E wi ('R.3 ).

6. Higher-order Poincare-Hardy inequalities

In this section we obtain higher-order Poincare-Hardy inequalities by iterating the
inequality (4). From now on assume that f2 = R 3 \ E.

Lemma 6.1. The function dFl(x), p:::: 1, is a super-harmonic function in a weak
sense: for each smooth non-negative function cp with a compact support in f2,

L6cp(x) dEl(x)dm :::: O. (23)

Proof. Consider a smooth non-negative spherically-symmetric averaging kernel
1](x) = 1](lxl) of zero order with compact support in the unit ball B 1 :

r 1](x)dx = l.
JB!

Each continuous function u may be approximated by the corresponding averaged
functions

1 J (Ix - Sl)U8(X) = 83 1] -8- u(s)ds.

The Laplacian of u can be obtained as a spherical derivative

. 1
6u(x) = hm -'2 (U8(X) - u(x)).

8....,0 u

The integral operator

(24)

1
68U= 82 (U8(X) - u(x))

in the right side of (24) is bounded and symmetric on the class of all continuous
functions with a compact support in the sub-domain

f2y'J = {x E f2 : dE(x) > -/J} .
Using the second Weierstrass Theorem for any x E f2 we find a point ~ E E such
that dil(x) = Ix-~I-p· The function Ix-~I-P, p :::: 1 is obviously super-harmonic,
61x - ~I-P :::: 0, hence for 8 small enough

681x - ~I-P :::: 0,
if x E f2y'J. On the other hand,

0:::; 681x - ~I-P < ;2 (L Is - ~I-Pdm(s) -Ix - ~I-p)



<

The Poincare-Hardy Inequality on the Complement of a Cantor Set 203

~ [~ rmax Is - (I-Pry (Ix - sl) dm(s) -Ix - ~I-p]
52 <53 ill (EE t5

6 0d-i/(x).

This implies, due to the symmetry of 6 0 ,

Jrp(x) 6 0 dpl(x)dm =Jdp/(x) 6 0 rp(x)dm ~ 0, (25)

for any non-negative smooth function rp with a compact support in ny'8, t5 > O.
Passing to the limit t5 ---. 0 we obtain the announced inequality (23). 0

Theorem 6.2. For every smooth function u with compact support vanishing near
E and I ~ 1, the following Poincare-Hardy inequality is true:

r IU~:(x) dm:::; (4K2 )1. rl<;iu(x)1
2

dm. (26)
ill dE(x) ill

Proof. We derive the inequality (26) for real functions and then extend it to
complex functions using quadratic forms. Consider the averaged function, the
smoothened inverse distance, (dE?) 0 (x). It is infinitely-differentiable in ny'8 and
can be estimated as follows:

1- 05 < (d- 1) d < 1+05
1+ 05 - E 0 E - 1- 05'

Then for each smooth real function with a compact support in no

r u2(x) (1+05)21-2 r 2 1 [( 1 ) ]21-2
ill d~(x) dm :::; 1_ 05 .ill U (x) 4(x) dE(X) 0 (x) dm,

where the last integral, due to the inequality (4), does not exceed

4K'l [V (U(X) [(d~)f')]' (x) dm
Integrating by parts we get

l [V (U(X) [(d~) f')r(x) dm ~ l [vu(x)I' [(d~)J-' (x)dm

+i V [u2(x) [ ( d~)J1-1 (x) V (d~) :-1 (X)] dm

-i u
2

(x) 6 [(d~)J21-2(x)dm. (27)

The last integral in the right side can be written, via integration by parts, as

i 6u2 (x) [(d~)J21-2 (x) dm.
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r ( 1 )21-2in 6u
2

(x) dE (x) dm

exists and is positive due to Lemma 6.1. The second integral in (6) vanishes due
to the Stokes Theorem, hence

< ¥~ (: ~ ~r' in u'A[C~)J-2 dm

r ( 1 )21-2
< 4K

2
. in (\7u(x))2 dE (x) dm.

Then continuing by induction we obtain after I steps the inequality (26). D

Corollary 6.3. The statement of Theorem 6.2 remains true, if we consider the
closure in the Sobolev norm WJ in the corresponding Sobolev class WJ(OO) of
functions vanishing on E.

7. Three applications

The inequality (4) can be used to derive several useful facts. In what follows we
will present three such applications.

A. Consider a real measurable function q, locally bounded on each compact in the
complement E' of the fractal E. Then the Dirichlet form f7<.3 (l\7uI2 + q(x)luI2) dm

is closed in Wi(R3) if q satisfies the following additional condition:

lim Iq(x)1 d'iJ(x) = O. (28)
dE(X)--O

To prove the above statement we have to check that the inequality (4) implies
the strong subordination of the quadratic form of the potential f7<.3 q(x)juI2 dm to

the Dirichlet form f7<.3 l\7ul2 dm (see Reed and Simon[24]). Indeed, for any c: > 0
we can choose a positive constant C such that

c:
Iq(x)1 :::; C + K

E
4(x) ,

which implies the strong subordination:

r Iq(x)lluI2dm :::; c:. r l\7ul2dm +C· r lul2dm.
i7<.3 i7<.3 i7<.3

B. The constant K plays the role of an estimate for the dimensionless Planck
constant in the corresponding uncertainty principle. To verify this statement, let
us consider the self-adjoint operator (unbounded in .c2 (R3 )) of multiplication by
the function c:(x)dE(x), where the factor c:(x) = ±1 is chosen such that for a given
smooth function u with a compact support in E' the mean value of the "balanced
distance" with respect to some unitary-valued sign-factor c:(x), c:(x)dE(x) to the
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singular set E is equal to zero: r c(x)dE(x)luI 2 dm = O.IR3
We assume that the mean value of momentum is also zero: r Vu il dm = O.

in3
Under the above hypotheses we may estimate from below the product of the mean
quadratic errors of the balanced distance and the mean quadratic error of the mo
mentum (the Dirichlet integral) as

(r 2)1/2 (1 r lul2 ) 1/2
< in3 IdE (x)u l dm . 4,IC2' i n3 d'i;(x) dm

< (h3 IdE(x)1 2 IuI 2 dm) 1/2 . (h3 IVul 2 dm) 1/2 ,

to obtain an analog of the classical dimensionless Heisenberg's uncertainty relation:

2~ . h31Ul2 dm ~ (h31X121U12 dm) 1/2. (h3 IVul2dm) 1/2

The constant ~,IC-1 >::; 0.0002 plays the role of an estimate for analog of the
classical "dimensionless Planck constant" 1/2. It defines the attainable precision of
simultaneous measurements of deviation of the coordinate of the quantum particle
from the singular set and the deviation of its momentum from zero.

C. The inequality (26) can be applied to the spectral problem for Schrodinger
equation with potentials singular on fractal sets or to polar equations with singular
densities. Both applications are based on the following embedding result:

Theorem 7.1. The unit ball B 1 in wJ(nO), 2l > 3, is compact in the space of
weighted square-integrable functions L 2 (p, n) with non-negative locally bounded
measurable weight p if and only if the weight fulfills the following condition on the
tiling na covering the neighborhood Elio of the singular set E:

lim 3(-21+3Jlbl r p(x)dm=O. (29)
Ibl-o<x> iOb

Proof. We use the embedding ofwJ(nO) into the class of continuous functions, see
[2, 17]. If the condition (29) is not fulfilled, then there exists a sequence of tiles
nb, Ibl = n ~ no such that 3(-21+3Jlbl fOb p(x)dx ~ co > O. We can assume that
this sequence begins with noo and is enumerated by binary strings ending with
O. With the first tile of the sequence noo we associate the smooth function T/oo
which is equal to 1 on the tile noo and equal to zero outside of the corresponding
cut Uoo = no n n oo n n ooo n noo1 . We can also assume that triples of different
tiles of the considered sequence are disjoint. Then we can construct an orthogonal
and almost normalized in L 2 (p, n) self-similar sequence of smooth functions T/b
obtained by scaling T/b = ('Hb) T/o from the first one Tlo:

Ib1 21
-

3
( -1)Tlb(X) = 3- -2-TI ('Hb) x.
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The corresponding sequence of WJ norms is bounded:

On the other hand, the sequence is orthogonal in L 2 (p, D) and almost normalized,
since

Jl1Jbl 2pdx ? 3- lbl (2l-3) Lo p(x)dx ? co> o.

Hence it is not compact, though bounded in WJ(DO). This implies the necessity of
the condition (29).

To prove that the condition is sufficient we use the fact that embedding the
Sobolev class WJ(R3 ) into both L 2 (p, D) and the space of continuous functions
on any bounded domain in R3 with smooth boundary is compact. Hence to finish
the proof we have to derive the uniform estimate of tails of elements in the unit
ball B 1 of WJ(DO) in L 2 (p, D)-norm:

L 1u
2
pdm::; c,

Ibl>M nb

Due to the embedding result cited above there exist two absolute constants
c~, C[ such that for any'; E Db:

u2(x) ::; u2(O +3-(2l-3)lbIC~· r Id~l~r dm+3- lbl (2l-3)C[. r Ivlul2 dm. (30)
Jnb E Jnb

Now we multiply both parts of (30) by p, integrate once more over Db and choose
.; such that

It is clear that

(Lb d"E2IdX) -1 = 3-(21-3)lb ICb =Co . d~~3,

for some absolute constant Co (here dE is bilaterally estimated by the distance
dE,b = 3- lbl between Db and E). Then, after proper re-normalization of constants
C1 = ~Ci, Cl = ~C[ and summation over all tiles fbi> M, we obtain the

o 0

uniform estimate for the L 2 (p, D)-norm of the tail of the function u from the unit
ball of WJ(DO):
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Summarizing the whole history and using Theorem 7.1 we get

L 1u2 pdm < sup d~~31 pdm
Ibl>M 0b Ibl>M 0b

< (Co (4K2
)1 + C1 (4K2

)1-1 + C1). r I'Ii ul 2 dm,
iR 3

which proves formula (29). D

Corollary 7.2. The spectrum of the operator p-1 (- L:,.)l defined by the quadratic
form Joo I \11 ul 2 dm in WJ(OO) n L 2(p, 0) is discrete if and only if the condition
(29) is fulfilled.

Other applications of Theorem 7.1 can be derived using the general technique
of quadratic forms developed in [2].
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Finite Section Method for Linear Ordinary
Differential Equations on the Full Line

I. Gohberg, M.A. Kaashoek, and F. van Schagen

Dedicated to Harry Dym with admiration and friendship,
on the occasion of his sixtieth birthday

Abstract. Sufficient conditions are given in order that the solution of a linear
ordinary differential equation On the full line is obtained as the limit of solu
tions of corresponding equations on finite intervals with boundary conditions
or on half lines with initial conditions. Both the time-variant and the time
invariant case are considered, and in the latter case the sufficient conditions
are also shown to be necessary. Included are applications to integral equations
with semi-separable kernels.

1. Introduction

In this paper we study solutions of linear ordinary differential equations as limits
of solutions of corresponding equations on smaller intervals. We focus on full line
equations which are viewed as limits of equations either on finite intervals with
boundary conditions or on half lines with initial conditions. Our results extend
those of [7], where half line equations were studied as limits of finite interval
equations.

To describe the problems treated here in more detail, we start with approxi
mations by finite interval equations. Consider the equation

x(t) - A(t)x(t) = f(t), -00 < t < 00, (1)

and a corresponding equation on the finite interval of the form

(2)
a ~ t ~ T,

{
x(t) - A(t)x(t) = f(t),

M(a)x(a) + N(T)X(T) = O.

Here A(t) is a locally integrable n x n matrix function on JR, and M(a) and N(T)
are n x n matrices such that rank M (a) + rank N (T) = n. Throughout this paper
we shall impose the following conditions on the function f, the coefficient A(t)
and the boundary conditions in (2). We assume that the right-hand side f in (1)
is in L~( -00,00), where 1 ~ p < 00 is fixed, and we require the solution to be in
L~(-oo,oo). In order that the equation (1) has a unique solution in L~(-oo,oo)
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for each right-hand side f in L~( -00,00), we also assume that there exists an
exponential dichotomy P of

x(t) - A(t)x(t) = 0, -00 < t < 00. (3)

(4)

The latter means that P is a projection and there exist positive real constants M
and a such that

IIU(t)PU(s)-lll ::::: Me-a(t-s), s::::: t,
IIU(t)(I - P)U(s)-lll ::::: Me-a(S-f), t::::: s,

where U(t) is the fundamental matrix of (3). Furthermore, we shall restrict our
selves to the case when for T and -a sufficiently large (T ;:::: To and a ::::: ao, say)
the equation (2) has a unique solution for each right-hand side f in L~(-00,00).

The latter happens (see [5]) if and only if

det(M(a)U(a) + N(T)U(T)) =I- 0, T;:::: To, a::::: ao.

Given f E L~(-oo, 00), our aim is to approximate the unique solution x of
(1) by the solution Xa,T of (2) for i, -a -+ 00. More precisely, we consider the
problem of finding conditions guaJanteeing that for T, -a -+ 00 the solution Xa,T
of the equation (2) converges in L p to the solution x of (1), where convergence of
Xa,T to x in Lp means that

T}~~OO iT Ilxa,T(t) - x(t)IIPdt = 0.

The first main result is that for each f in L~(-00,00) the unique solution
x of (1) in L~(-oo,oo) is obtained as the limit in L p of the unique solution Xa,T
(T ;:::: To, a ::::: ao) of equation (2) whenever the boundary conditions M(a) and
N (T) satisfy

T2:~~;>~ao II ( ~~~j ) (M(a)U(a) + N(T)U(T)) -1 (M(a) N(T)) II < 00.

In this caSe we say that for the equation (1) the finite section method with respect
to the boundary value matrices {M(a)} and {N(T)} converges in Lp .

The result mentioned in the previous paragraph is specified further for the
time-invariant case when A(t) does not depend on t. In this case we also assume
that M(s) and N(s) do not depend on s. We show (see Theorem 3.1) th~t for this
time-invariant case the sufficient condition for convergence of the finite section
met.hod mentioned above is also necessary.
. The results are applied to integral equations

¢(t) +I: k(t, s)¢(s)ds = f(t), -00 < t < 00,

with a semi-separable kernel given by

(5)

{
C(t)U(t)PU(S)-l B(s),

k(t, s) = -C(t)U(t)(I _ P)U(S)-l B(s),
-00 < s < t < 00,
-00 < t < s < 00.
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Here, as usual (d., [4], Section I1L3), the finite section method means that the
solutions of (5) are approximated by solutions of the equation

¢(t) + iT k(t,s)¢(s)ds = f(t), a::; t ::; T.

Analogous results are also obtained for approximations of (1) by half line
equations, both in the time-variant and the time-invariant case.

2. A finite section method for differential equations with dichotomy

Throughout this section U (t) is the fundamental matrix of the differential equation
(3), i.e., U(t) is absolutely continuous on finite intervals, U(O) is the n x n identity
matrix and cfltJU(t) = A(t)U(t) a.e. on -00 < t < 00. Let P be a projection of
en. If P is an exponential dichotomy of U(t), i.e., the inequalities (4) hold true,
then P is also called an exponential dichotomy for the equation (3). A dichotomy
P (assuming that it exists) is unique. This is the contents of the next proposition
(see [3], pp. 16, 17).

Proposition 2.1. The exponential dichotomy of (3) is unique. In fact, if P is an
exponential dichotomy of (3), and U(t) is the fundamental matrix of (3), then for
any p with 1 ::; p < 00

ImP = {x E en IU(t)x E L;[O,oo)}, Ker P = {x E en IU(t)x E L;(-oo, OJ}.

In the time-invariant case, i.e., when A(t) = A for each t E JR, the equation (3)
has an exponential dichotomy if and only if A has no eigenvalues on the imaginary
axis, and in that case the exponential dichotomy P is the spectral projection of A
corresponding to eigenvalues in the left half plane.

Fix f E L;( -00,00) (1 ::; p < 00), and consider the equation

x(t) - A(t)x(t) = f(t), -00 < t < 00, (6)

and a corresponding equation on the finite interval

(7)
a ::; t ::; T,

{
x(t) - A(t)x(t) = f(t),
M(a)x(a) + N(T)X(T) = 0.

Recall that throughout this paper we assume that A(t) is a locally integrable
n x n matrix function on JR, that P is an exponential dichotomy for the equation
x(t) = A(t)x(t), and that M(a) and N(T) are n x n matrices such that rank M(a)+
rankN(T) = n for each a < T. Also, 1::; p < 00 is fixed.

Theorem 2.2. Assume that M(a)U(a) + N(T)U(T) is invertible for each T 2: To
and a::; ao. If, in addition, the sequence of projections Pa,T'
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is uniformly bounded in norm for IJ ---. -00 and T ---. 00, then for (6) the fi
nite section method relative to the boundary value matrices {M(IJ)} and {N (T)}
converges in Lp •

Before we prove this theorem, let us note that one can always choose the
boundary value matrices M(IJ) and N(T) in such a way that the projections Pa,T
given by (8) are uniformly bounded in norm for IJ ---. -00 and T ---. 00. Indeed, the
latter happens if one chooses M(IJ) = (I - P)U(IJ)-l and N(T) = PU(T)-l.

We precede the proof of Theorem 2.2 with two lemmas providing integral
representations of the solution of (6) and (7), respectively.

Lemma 2.3. Assume that U(t) has an exponential dichotomy P on (-00,00). Then
the unique solution of (6) is given by

x(t) = i: )'(t, s)f(s)ds, -00 < t < 00,

where

{

U(t)PU(S)-l, S < t
)'(t, s) = -U(t)(I _ P)U(S)-l, t < s.

Furthermore, the linear operator T : L~(-00,00) ---. L~( -00,00) defined by

(Tf)(t) = i: )'(t,s)f(s)ds

is bounded.

(9)

(10)

Proof. From the estimates (4) it follows that x(t) is well defined and that the
operator T is bounded. Differentiating the right-hand side of (9) yields that x(t)
is indeed the solution of (6). D

Lemma 2.4. Assume that M(IJ)U(IJ) + N(T)U(T) is invertible. Then the solution
of (7) is unique and given by

IJ ::; t < s ::; T,

Xa,T(t) = iT )'a,T(t, s)f(s)ds, IJ::; t ::; T,

where

{
U(t)L(IJ, T)U(S)-l,

)'a,T(t,S) = -U(t)(I _ L(IJ,T))U(s)-l,

and the projection L(IJ, T) is given by

L(IJ, T) = (M(IJ)U(IJ) + N(T)U(T)) -1 M(IJ)U(IJ).

(11)

Proof. The uniqueness of the solution follows from the well-posedness of the bound
ary conditions. By differentiating, and by computing the right-hand side of (11)
for t = IJ and t = T one checks that x(t) is a solution of (7). D
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Proof of Theorem 2.2. For each T > a let Ea,r be the canonical embedding of
L~ [a, T] in L~( -00,00) and Ra,r be the restriction operator from L~( -00,00) to
L~[a,T]. Note that both operators Ea,r and Ra,r are of norm one. Since

Ea,rRa,r f --+ f

for a --+ -00 and T --+ 00, the fact that the operator T given by (10) and the
operators Ra,r are bounded implies that

IIRa,rTf - Ra,rTEa,rRa,rfll --+ 0

for a --+ -00 and T --+ 00. Therefore, it is sufficient to show that for an arbitrary
fixed f E L p one has

a->_l~~->=l r
(--Ya,r(t, s) -/(t, s))f(s)ds = 0,

where the limit is a limit in the norm in L p . Now

/a,r(t, s) -/(t, s) = U(t) (P 1- P ) (U(~-1 U(~)-1)

. P. (u(a) 0 ) ( 1- P ) U( )-1a,r 0 U(T) _p s.

Since P is an exponential dichotomy, for each v E C2n the function

(
U(a)-1 0 )

U(t) (p I -P ) 0 U(T)-1 v, a :S t :S T,

o

belongs to L~[a,T], and as a function of a and T its norm is uniformly bounded
for a --+ -00 and T --+ 00. By assumption Pa,r is uniformly bounded.

It remains to show that

. 1r

(u(a) 0 ) ( 1- P) ()-1 ( )-a~~~= a 0 U(T) _p U s f s ds = O.

For the first block component it follows from standard results on convolutions that

Illr

U(a)(I - p)U(S)-1 f(s)dsll < l r
Me-a(s-a)llf(s)llds

= l r
-

a
Me-atllf(t + a)lldt < 1=Me-atllf(t + a)lldt --+ 0 (a --+ -00).

Similarly, we have for the second block component:

Illr

U(T)PU(S)-1 f(s)dsll < l r
Me-a(r-S)llf(s)llds

= lr
-

a
Me-atllf(T - t)lldt < 1=Me-atllf(T - t)lldt --+ 0 (T --+ 00),

which completes the proof.
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3. The time-invariant case

In this section we consider the differential equation with constant coefficients

x(t) - Ax(t) = f(t), -00 < t < 00,

and a corresponding equation on the finite interval

(12)

{
x(t) - Ax(t) = f(t),
Qx(a) + (I - Q)X(T) = O.

a:::; t:::; T,
(13)

Here Q is a projection, and the right-hand side f E L;( -00,00) (1 :::; p < 00).
Throughout this section we assume that A has no eigenvalue on the imaginary
axis, and that P is the spectral projection of A with respect to the left half plane.
The next result gives a necessary and sufficient condition in terms of P and Q for
the convergence of the finite section method.

Theorem 3.1. Let rankQ = rank P. The finite section method for (12) relative to
the boundary value matrices Q and 1 - Q converges in Lp if and only if (I - P) (1 
Q) + PQ is invertible.

Notice that the invertibility of (1 - P)(1 - Q) +PQ implies rankQ = rank P.

Proof. To prove the theorem we shall use a finite section method result from [2]
for the integral operators that appear as input-output operators of input-output
systems. For this purpose, we embed both (12) and (13) in linear input-output
systems, as follows:

{
x(t) - Ax(t) = f(t),
g(t) = -Cx(t) + f(t),

-00 < t < 00,
-00 < t < 00,

(14)

(15)

a:::; t:::; T,

a:::; t:::; T,

and

{

x(t) - Ax(t) = f(t),
g(t) = -Cx(t) + f(t),
Qx(a) + (I - Q)X(T) = O.

The matrix C will be an invertible matrix and will be specified later on. Given f,
one can compute x easily from g. Therefore we concentrate on the question when
the output ga,T of (15) converges for a ---+ -00 and T ---+ 00 to the output 9 of (14).
We would like to view 9 and ga,T as solutions of integral equations. To arrive at
such a point of view, we first invert the systems (15) and (14). So we get

{
x(t) - (A + C)x(t) = g(t),
f(t) = Cx(t) + g(t),

-00 < t < 00,
-00 < t < 00,

(16)

and

{

x(t) - (A + C)x(t) = g(t),
f(t) = Cx(t) + g(t),
Qx(a) + (1 - Q)X(T) = O.

a:::; t:::; T,

a:::; t:::; T, (17)
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Next we specify the matrix C. We choose a matrix A~ such that Q is the
spectral projection of A~ with respect to the left half plane. This can be done as
follows. Since rankQ = rank P, we know that the projections Q and P are similar.
Let S be the similarity, i.e., S is such that Q = SPS-I. Choose A~ = SAS-I.
Then Q is indeed the spectral projection of A~ with respect to the left half plane.
Now consider A~ - A. If 0 is an eigenvalue, then there is a number E > 0 such
that Q is the spectral projection of €I +A~ with respect to the left half plane and
o is not an eigenvalue of €I + A~ - A. Now choose C = A~ - A, if 0 is not an
eigenvalue of A~ - A, and C = €I + A~ - A, if 0 is an eigenvalue of A~ - A. Thus
C is invertible and Q is the spectral projection with respect to the left half plane
of AX = A+C.

Let us compute x(t) and f(t) from (16). We find

x(t) = I: "(X (t,s)g(s)ds, -00 < t < 00, (18)

and

Here

f(t) = g(t) + CI: "(x (t, s)g(s)ds, -00 < t < 00. (19)

{
Qe(t-s)A X

, t:::; s,
"(X(t,s) = (1 _ Q)e-(t-s)A X , s:::; t. (20)

Next, compute Xa,T(t) and f(t) from (17). One obtains with "(x given by (20) that

(21)

and

f(t) = g(t) + C iT "(X(t,s)g(s)ds, Ij:::; t:::; T. (22)

Consider (19) as an integral equation in the unknown function g. Then the
equation (22) is a finite section of (19). Now use the results of [2], Section 5 to see
that the solution ga,T of (22) converges in Lp to the solution 9 of (19) for each right
hand side f if and only if (1 -Q)(1-P)+QP is invertible. Since g(t) = Cx(t)+ f(t)
and C is invertible, we obtain that the function Xa,T from (21) converges in Lp to
the function x from (18) for each f if and only if (1 - Q)(1 - P) +QP is invertible.
Finally note that (1 -Q)(1-P)+QP is invertible if and only if (I -P)(1-Q)+PQ
is invertible. 0

Let us remark that the above method of proof works equally well for the half
line case when solutions on the half line [Ij, (0) are approximated by solutions on
a finite interval [Ij, T] for a fixed Ij and T going to infinity. Also convergence of
solutions on a half line to solutions on the full line can be treated in this way. This
is based on the fact that for the time invariant case the corresponding results on
integral equations are available, see [2]' Section 5.
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Q + (I - Q)epA

The next proposition shows that the necessary and sufficient condition for
convergence of the finite section method in Theorem 3.1 implies the necessary
condition of Theorem 2.2 when specified for the time invariant case.

Proposition 3.2. If (I - P)(I - Q) + PQ is invertible, then there exist ao and 7 0

such that QeaA + (I - Q)eTA is invertible for a < ao and 7> 70 , and such that

Pa,T= (::~) (QeaA + (I_Q)eTA )-1 ( Q I-Q) (23)

is uniformly bounded in norm for a ---+ -00 and 7 ---+ 00.

Proof. First notice that Pa,T is bounded if and only if Pa,T ( ~ ) is bounded. Hence

it is sufficient to show that (Qe(a-T)A + (I - Q))-1 and (Q + (I - Q)e(T-a)Ar1

exist and are uniformly bounded for a ---+ -00 and 7 ---+ 00. Put P = 7 - a. We will
show that (Qe- pA + (I - Q)) -1 and (Q + (I - Q )ePA ) -1 exist and are uniformly
bounded in norm for p sufficiently large (in fact, we shall prove that the limit
exists for p ---+ 00). The condition (I - P)(I - Q) + PQ is invertible implies that
en = 1mQ EEl Ker P and en = 1m PEEl Ker Q. In what follows P, Q, and A are
represented as 2 x 2 block matrices with respect to the direct sum decomposition
en = 1mQ EEl Ker P. For P and Q this yields

P=(~ ~), Q=(~ ~),
with 1+ SR invertible because en = Ker Q EEl 1m P. For A we get

A = (RAuA~1A22R A~2)'
with the eigenvalues ofAu and A22 all in the left and right half plane, respectively.
It follows that

Thus

(
10 S) (-SRe

PAll + Se
pA22

R _Se
PA22

)
o + RepAll - epA22 R epA22

(
10 S(e-

pA22
- I) ) ( h(p) 0)

I RepAll - epA22 R epA22 '

with h(p) = 1+ SR - Se- pA22 RepAll . Because e-pA22 ---+ 0, epAll ---+ 0 there exists
a number Po such that h(p) is invertible for p > po, and hence



-S + Se- pA22
)

1 .
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(
h(p)-l

= (R - e-pA22 RepAll )h(p)-l

_h(p)-lS(e- pA22 - 1) )
(R - e-pA22 RepAll )h(p)-lS(e- pA22 - 1) + e- pA22

Now since e-pA22 ---+ 0, epAll ---+ 0, it follows that h(p)-l ---+ (I +SR)-l for p ---+ 00.

Thus for p ---+ 00 we see

pA -1 ((I + SR)-l (I + SR)-lS )
(Q + (I - Q)e ) ---+ R(I + SR)-l R(I + SR)-lS

= ( ~ ) (1 + SR)-l (I S). (24)

This shows that (Q + (I - Q)ePA ) -1 is uniformly bounded in norm for p ---+ 00.

(The right-hand side in (24) is the projection of en along KerQ onto 1m P.)
Next

_ A ( (I + SR)e- pAll - Se- pA22 R
Qe p + (I - Q) = 0

Inverting gives

-pA -1 _ (ePAll h(p)-l _epAll h(p)-l (-S + Se- pA22 ) )
(Qe + (I - Q)) - 0 1 '

which converges to

for p ---+ 00. (Note that this operator matrix represents the projection of en along
1mQ onto Ker P.) It follows that (Qe- pA + (I - Q)) -1 is uniformly bounded in
norm for p ---+ 00. 0

By combining Proposition 3.2 with Theorem 2.2 we see that the invertibility
of (I - P)(1 - Q) + PQ implies that for (12) the finite section method relative to
the boundary value matrices Q and I - Q converges in Lp . In other words, for the
time-invariant case Proposition 3.2 provides an alternative proof for the sufficiency
part of Theorem 3.1.

4. From interval to full line via half line

We consider the equation

{
x(t) - A(t)x(t) = J(t),

M(a)x(a) = O.
a ::; t :::; 00,

(25)

We assume that the fundamental matrix U(t) of x(t) = A(t)x(t) has an exponential
dichotomy L on [a, 00), i.e., L is a projection such that there exist positive numbers
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M and 0: such that
IIU(t)LU(s)-lll s:; Me-a(t-s), as:; s s:; t,

IIU(t)(1 - L)U(S)-lll s:; Me-a(s-t) , as:; t s:; s. (26)

Recall that an exponential dichotomy on [a, 00) is not unique. In fact only the
image of an exponential dichotomy on a half line is fixed. For (25) to have a
unique solution in L~[a,oo) for each right-hand side f E L~[a,oo), it is known to
be necessary that rank M(a) = rank Land M(a)U(a) + (I - L) is invertible. The
next result gives the solution of (25).

Lemma 4.1. Let L be an exponential dichotomy of the fundamental matrix U(t)
ofx(t) = A(t)x(t) on [a,oo), and let the boundary value operators M(a) in (25)
be such that rank M (a) = rank Land M (a)U (a) + (I - L) is invertible. Then the
unique solution of (25) is

x(t) = 1= "fff(t, s)f(s)ds, as:; t < 00, (27)

where

{
U(t)L(a)U(s)-l, as:; s < t < 00,

"fff(t,S) = -U(t)(I - L(a))U(s)-l, as:; t < s < 00,
with

L(a) = (M(a)U(a) + (I - L)) -1M(a)U(a).

The linear operatorTff : L~(a,oo) ---+ L~(a,oo) defined by

(Tfff)(t) = 1= "fff(t, s)f(s)ds

is bounded.

(28)

Proof. From (26) it follows that the right-hand side of (27) is well defined, and
that T ff is a bounded linear operator. By differentiation and substitution of t = a
in (27) one verifies that x(t) is a solution of (25) indeed. D

Notice that for L(a) given by (28) one has

1 - L(a) = (M(a)U(a) + (I - L)) -1(1 - L),

and hence Ker (I - L(a)) = Ker (I - L) and 1m L(a) = 1m L, which tells us that
the projection L(a) is an exponential dichotomy for x(t) = A(t)x(t) on [a, 00).
Moreover, Ker L(a) = KerM(a)U(a). So the initial value condition in (25) can
also be written as L(a)U(a)-l x (a) = O.

From now on we assume that rankM(a) = rankL and that M(a)U(a) +
(I - L) is invertible. We recall that the solution of the equation

{
x(t) - A(t)x(t) = f(t), a s:; t s:; r, (29)
M(a)x(a) + N(r)x(r) = 0,

on the finite interval is given in Lemma 2.4. Our assumption that rankM (a) +
rankN(r) = n implies that rankN(r) = rank (I - L) and that L(a,r), as given
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in Lemma 2.4, is a projection, which is called the canonical boundary projection
(cf., [5]).

Theorem 4.2. Assume that rank M(a) = rank L, that M(a)U(a) + (I - L) is
invertible, and that M(a)U(a) +N(T)U(T) is invertible for T 2: To. If, in addition,

sup IIU(T)(M(a)U(a) + N(T)U(T)) -1N(T)II < 00,
72:: 7 0

then for T -+ 00 the solution Xo-,T of (29) converges to the solution Xo- of (25) in Lp.

Proof. Like in the full line case, ef., the proof of Theorem 2.2, it is sufficient to
show that

}~~ lilTb,At, s) - !o-,T(t, s))f(s)dsIIL~[o-,Tl = o.
Because Ker L(a, T) = Ker L(a), we have L(a) = L(a)L(a, T) and L(a, T)
L(a, T)L(a). It follows that

!o-(t, s) - !o-,T(t, s) = U(t)(L(a) - L(a, T))U(S)-l

= -U(t)(I - L(a))U(T)-lU(T)L(a, T)U(T)-1 U(T)L(a)U(s)-1.

First we show that

}~~lT IIU(T)L(a)U(s)-1111If(s)llds = O.

Since L(a) is an exponential dichotomy for U(t), we have

IIU(T)L(a)U(s)-lll:::; Me-cr(T-S), a::; s:::; T.

Thus, in order to prove (30), it suffices to show that

lim iT Me-cr(T-S)llf(s)llds = O.
T~OO a

(30)

Notice that

IT
Me-cr(T-s)llf(s)llds IT

-o- Me-crtllf(T - t)lldt

< 100 Me-crtllf(T - t)lldt -+ 0 (T -+ (0).

which follows from a well-known property of convolutions. Secondly, use again that
L(a) is an exponential dichotomy to see that

IT
IIU(t)(I - L(a))U(T)-11I Pdt

= MP IT
-o- e-crpsds

< IT
Mpe-cr(T-t)Pdt

< MP100 e-crpsds.

Finally, since

U(T)L(a, T)U(T)-1 = U(T)(M(a)U(a) + N(T)U(T))-1 N(T)
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is bounded by assumption, we conclude that

}~~ lilT({a(t, s) -,a,T(t, s))!(s)dsIIL;:[a,T]

:::; lim MP roo e-a:PSdsIIU(r)(M(a)U(a)
1"-+00 Jo

+ N(r)U(r))-1 N(r)'11
T
Me-a:(T-S)II!(s)llds = 0,

as desired. 0

A further examination of the above proof yields the following result.

Corollary 4.3. Assume that rank M(a) = rank L, that M(a)U(a) + (I - L) is
invertible, and that M(a)U(a) + N(r)U(r) is invertible for r ~ ro and a:::; 170 , If,
in addition,

sup IIU(r)(M(a)U(a) + N(r)U(r)) -1N(r)11 < 00,
(j'5:.(jo,T~To

then for r --> 00 the solution Xa,T of (29) converges to the solution Xa of (25) in
Lp uniformly in a.

Next we consider the convergence from half line equation (25) to full line
equation (6). Recall that P is the dichotomy for (6). We suppose that the bound
ary matrix M(a) of (25) has the following properties: rank M(a) = rank P and
M(a)U(a) + I - P is invertible for a < 170 ,

Theorem 4.4. Assume that rankM(a) = rank P and that M(a)U(a) +1- P is
invertible fora < 170 , If U(a)(M(a)U(a) +1-p) -1M(a) is bounded for a --> -00,

then for 17--> -00 the solution Xa of (25) converges in Lp to the solution x of (6).

Proof. As in the proof of Theorem 2.2, it is sufficient to show that in Lp-sense

a!!/!!-ool°O ,(t,s) -,a(t,s)!(s)ds = O.

Put L(a) = (M(a)U(a) + I - p)r
1
M(a)U(a). Then L(a) is a projection with

1m L(a) = 1m P. Thus L(a) is an exponential dichotomy for the half line equation
on [17,00). Write

,(t, s) -'a(t, s) = U(t)(p - L(a))U(s)-1

= -U(t)PU(a)-1U(a)L(a)U(a)-1U(a)(I - P)U(S)-1.

We consider three factors. First {U(t)PU(a)-1 v : v E ~n and /Ivll < M} is a
collection of functions which is uniformly bounded in Lp for a --> -00. Secondly,
the factor U(a)L(a)U(a)-1 is bounded for a --> -00 by assumption. Finally

a~~oo100

U(a)(I - P)U(S)-1 f(s)ds = 0,
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because IIU(a)(I - P)U(s )-111 ::; M e-O:(S-CT). By combining these three results the
theorem follows. 0

From Theorem 4.4 and Corollary 4.3 we obtain the following result. As before
P is the dichotomy for (6). Notice that the sufficient conditions are different from
those in Theorem 2.2.

Theorem 4.5. Assume that rank M(a) = rank P, that M(a)U(a) +1- P is in
vertible for a ::; ao and that M(a)U(a) + N(T)U(T) is invertible for T ~ To and
a ::; a0' If, in addition,

SUPCT~CTo,T~To IIU(T) (M(a)U(a) + N(T)U(T)) -1N(T)II < 00,

SUPCT~CTo IIU(a) (M(a)U(a) + I - p)-lM(a)11 < 00,

then for (6) the finite section method relative to the boundary value matrices
{M(a)} and {N(T)} converges in Lp .

Proof. Consider the full line equation (6) with a fixed right-hand side f. We will
prove that the solution XCT,T of (29) converges in L p to the solution x of (6). Let
E > O. According to Theorem 4.4 there exists a number a1 such that IlxCT - xii < ~

for all a < aI, where XCT is the solution of (25) and x is the solution of (6). Next it
follows from Corollary 4.3 that there exists a number T1 such that IlxCT,T - XCT II < ~

for each T > Tl and all a < ao, where XCT,T is the solution of (29). Thus for T > T1
and a < al we have IlxCT,T - xii < to, which shows that for a -+ -00 and T -+ 00

the solution of (29) converges to the solution of (7). 0

5. Application to integral equations

In this section we apply the finite section method for differential equations with
dichotomy to integral equations with semi-separable kernels. Throughout this sec
tion the projection P is an exponential dichotomy for the differential equation
x(t) = A(t)x(t) on -00 < t < 00, and U(t) is the fundamental matrix of this
differential equation. We consider the integral equation

where

4>(t) +i: k(t,s)4>(s)ds = f(t), -00 < t < 00, (31)

{
C(t)U(t)PU(S)-l B(s),

k(t, s) = -C(t)U(t)(I _ P)U(S)-1 B(s),
-00 < s < t < 00,
-00 < t < s < 00.

(32)

Here B (t) is an n x m matrix and C (t) is an m x n matrix, and the entries of both
matrices are bounded measurable functions on the full line. We require both the
right-hand side and the solution of (31) to be functions in L;'(-oo, 00). Our aim
is to get the solution of (31) as a limit for a -+ -00 and T -+ 00 of the solution of
the corresponding equation on the interval [a, T].
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In our analysis the matrix function A x (t) = A(t) - B(t)C(t) will play an im
portant role. Since the entries of both B(t) and C(t) are assumed to be bounded
measurable functions on (-00,00), the matrix function A x (t) is again locally in
tegrable on -00 < t < 00, and hence the differential equation

x(t) - AX (t)x(t) = 0, -00 < t < 00, (33)

has a well-defined fundamental matrix, which we shall denote by U x (t).
We shall say that the finite section method for the integral equation (31)

converges if there exist numbers (Jo and To such that for every f E L;;'( -00,00)
and each (J ::; (Jo and T 2: To the integral equation

¢J(t) + iT k(t, s)¢J(s)ds = f(t), (J::; t ::; T, (34)

has a unique solution ¢Ja,T E L;;'[(J, T], which converges in Lp for -(J, T ---.. 00 to
the solution ¢J of (31).

The next theorem is the counterpart of Theorem 2.2 for integral operators.

Theorem 5.1. Let k(t, s) be given by (32). Put AX (t) = A(t) - B(t)C(t), and
assume that the fundamental matrix U X(t) of (33) has an exponential dichotomy
p x . Assume that there exist numbers (Jo and To such that the matrix function
PU((J)-lUX((J) + (I - P)U(T)-lUX(T) is invertible for (J < 0 0 and T > To. If the
2 x 2 matrix function

( g:~~j ) (PU(CJ)-lUX(o) + (I - P)U(T)-lUX(T))-l

. (PU(O)-l (I - P)U(T)-l) (35)

is uniformly bounded for 0 < 0 0 and T > To, then the finite section method for
(31) converges.

Proof. According to [6], Theorem 1.2.3, a function ¢J E L;;'(-00,00) is a solution
of (31) if and only if there exists a (unique) function p E L~(-oo,oo) such that
with input u = ¢J the system

{
p(t) = A(t)p(t) + B(t)u(t), -00 < t < 00,
y(t) = C(t)p(t) + u(t), -00 < t < 00,

(36)

has output y = f. Hence to solve (31) one inverts the system (36), i.e., one passes
to the inverse system:

{
p(t) = A x (t)p(t) + B(t)y(t), -00 < t < 00,
u(t) = -C(t)p(t) + y(t), -00 < t < 00,

(37)

For the latter system we know that if the input y = f, then the output u = ¢J. Since
we assumed that the fundamental matrix U X (t) has an exponential dichotomy p x

the system (37) has a unique solution p E L~( -00,00).
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Next we consider the equation (34). According to [5], Theorem 2.1, a function
¢CT,T E L;'[a, r] is a solution of (34) if and only if there exists a (unique) function
PCT,T E L~[a, r] such that with input u = ¢CT,T the system

(39)

(38)

a ~ t ~ r,

a ~ t ~ r,
{

p(t) = A(t)p(t) + B(t)u(t),
y(t) = C(t)p(t) + u(t),
PU(a)-lp(a) + (1 - P)U(r)-lp(r) = 0

has output y = f. In order to solve (34) one inverts the system (38) to get

{

p(t) = AX (t)p(t) + B(t)y(t), a ~ t ~ r,

u(t) = -C(t)p(t) + y(t), a ~ t ~ r,
PU(a)-lp(a) + (I - P)U(r)-lp(r) = 0

which has the output u = ¢ if the input y = f. Since PU(a)-lUX(a) + (I 
P)U(r)-lUX(r) is assumed to be invertible, it follows that the system (39) is
uniquely solvable.

Consider the differential equations

p(t) = AX (t)p(t) + B(t)f(t), a ~ t < 00,
and

a ~ t ~ r,
{

p(t) = A x (t)p(t) + B(t)f(t),
PU(a)-lp(a) + (I - P)U(r)-lp(r) = o.

One sees that the condition (35) implies that we may apply Theorem 2.2 to con
clude that indeed PCT,T converges in L p to p for -a, r --., 00. Now remark that

¢CT,T(t) = C(t)PCT,T(t) + B(t)f(t), ¢(t) = C(t)p(t) + B(t)f(t),

and conclude that ¢CT,T converges in L p to ¢ for -a, r --., 00. 0

There is another way to prove Theorem 5.1. To see this, let us consider the
operator KCT,T on L;'[a, r] defined by

(KCT,T¢)(t) = ¢(t) + iT k(t,s)¢(s)ds,

where k(t, s) is given by (32). Condition (35) and the argument used in the proof
of Theorem 2.2 show that the operators K;;;' are uniformly bounded in the op
erator norm. Hence by the general theory of'the projection method (see [4], The
orem 11.2.1, and also [1], Theorem 4.4) it follows that the finite section method
converges.
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On the Spectral Radius of
Multi-Matrix Functions

Daniel Hershkowitz

Abstract. Several problems that deal with certain spectral properties of multi
matrix functions are discussed:
(i) Denote by p(A) the spectral radius of a nonnegative square matrix A.
Known characterizations of all multi-variable functions j : R+' ----> R+ such
that the Hadamard function j(Al, ... , Am) satisfies

p(j(Al , ... , Am» ::; j(p(Al ), ... , p(Am», VAl, ... , Am E R+.n , Vn E N,

or

p(j(Al , ... , Am» 2 j(p(Ad,···, p(Am», VAl, ... , Am E Rf-n, Vn E N,

are reviewed. The study is then extended to the investigation of functions
that satisfy the above conditions for just some n.
(ii) For a nonnegative square matrix A denote by o-(A) the minimal real
eigenvalue of its comparison matrix M(A) = 2diag(a;;) - A. Denote by HPn

the set of all n-by-n nonnegative H-matrices, i.e. the nonnegative matrices A
for which o-(A) 2 O. The relations between Hadamard functions that preserve
H Pn and functions that satisfy the conditions above are reviewed.
(iii) Known results on the behavior of the spectral radius of products of certain
one cycle matrices as a function of the lengths of the cycles are reviewed.

1. Introduction

In this paper we discuss several problems that deal with certain spectral properties
of multi-matrix functions.

Let A be a nonnegative (entrywise) n x n matrix and let p(A) be the spectral
radius of A, that is, the largest absolute value of an eigenvalue of A. It is well
known from the Perron-Frobenius spectral theory for nonnegative matrices that
p(A) itself is eigenvalue of A, e.g. [8, 1, 9]. Furthermore, if a nonnegative n x n
matrix B satisfies bij :2 aij for all i and j then p(B) :2 p(A). In that respect, it was
proven in [5] that if we increase every positive element of A by 1 and if p(A) > 0
then the spectral radius of the matrix increases by at least 1. This result could be
stated as follows. Define the function sgn(x) on the real numbers by

{

I, x> 0
sgn(x) = 0, x=O

-1, x < 0



226 Daniel Hershkowitz

For a nonnegative n x n matrix A consider the Hadamard function sgn(A), that
is, the n x n matrix whose elements are

Then we have

(sgn(A))ij = sgn(aij), i,j=l, ... ,n.

p(A + sgn(A)) ~ p(A) + sgn(p(A)). (1)

Another interesting result was proven in [10] and in [6]. Let AI, ... ,Am be
nonnegative n x n matrices and let al, ... , am be positive numbers such that
al + ... + am ~ 1. Define the nonnegative n x n matrix C by

Cij = (AI)f/· .... (Am)fr, i,j = 1, ... ,n.

Then
p(C) ::; p(Ad' l

..••• p(Am)"'m.

This result too can be restated in terms similar to those used in the previous prob
lem. Let f(XI, ... ,xm ) = Xfl .... ·x~m be a function from JR.+, to JR.+. For nonneg
ative n x n matrices Al, ... , Am consider the Hadamard function j(AI, ... , Am)
defined by

(f(A I , ... , Am))ij = f((AI)ij, ... , (Am)ij).

Then we have p(f(AI , ... , Am)) ::; j(p(AI), ... , p(Am)).

These two problems raise the natural question of characterizing all multi-va
riable functions j : JR.+' ~ JR.+ such that the Hadamard function f(A I, ... , Am)
satisfies

or

p(f(AI, ... , Am)) ~ j(p(AI), ... , p(Am)), \fAI, ... , Am E JR.+n, \fn EN, (3)

where JR.+.n denotes the set of all n x n nonnegative matrices and N denotes the
set of all positive integers. This question is investigated in [3]. The results of that
paper are discussed in Sections 2 and 3. Furthermore, in these sections we extend
the study of [3] by discussing functions that do not necessarily satisfy (2) or (3)
but they do satisfy the weaker condition

p(f(AI, ... ,Am)) ::; j(p(Ad, ... , p(Am)), \fAI, ... ,Am E JR.+n, (4)

or
p(f(AI, ... ,Am)) ~ j(p(AI), ... ,p(Am)), \fA I , ... , Am E JR.+n, (5)

for some positive integer n.

For a nonnegative square matrix A we denote by a(A) the minimal real
eigenvalue of its comparison matrix M(A) = 2diag(aii) - A. We denote by HPn

the set of all n-by-n nonnegative H-matrices, i.e. the nonnegative matrices A for
which a(A) ~ O. These are the nonnegative matrices whose comparison matrices
are M-matrices.
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Let m be a positive integer, let f : lR+ --+ lR+, and let K be a set of
nonnegative matrices of same size. We say that the Hadamard function f preserves
K if AI, ... ,Am E K implies f(AI, . .. , Am) E K. The functions that preserve
H Pn are characterized in [2]. In particular, it is proven there that these functions
satisfy (2) as well. It turns out that these are exactly the functions f of the form
f(xI, ... ,xm) = exr l

..• x~m where ai 2 0, e 2 °and ~~lai 2 1. (The latter
condition is required whenever n > 2.) These functions are also characterized by
the inequality

o-(f(AI, ... , A k )) 2 f(o-(A I ), ... , a(Ak )) ,

for all Ai E H Pn for some n, n > 2. These results are discussed in the conclusion
of Section 3.

Another interesting question comes up in connection with investigations of
iterative methods for solving a linear system x = Bx+e, where B is a nonnegative
square matrix and pCB) < 1. In such a case, the basic iteration XCHI) = BxCi ) + c
converges to the solution x* = (1 - B)-Ie of the system. Splitting the work to
calculate Bx + c between several parallel processors, operating independently one
of each other in an asynchronous manner, and where the assignment of subtasks
and storage for the current iterate is done by a central processor, leads to an
iterative procedure whose convergence rate depends on the spectral radius of a
product of n x n matrices Adl,c, ... ,Adp,c, where the matrix Adk,c is defined by

{

I, i = j + 1
(Adk,c)ij = e, (i,j) = (l,dk) .

0, otherwise

Here c is a positive scalar, e < 1, and dk is a positive integer, dk ~ n. The
behavior of the spectral radius of that product of matrices as a function of the
sequence (d l , ... , dp ) is investigated in [4]. In Section 4 we discuss some of the
results of [4]. While in the previous sections the functions under discussion are
Hadamard functions of matrices, in Section 5 we discuss "regular" multi-variable
matrix functions.

Most of this article is a survey, reviewing results of [2, 3, 4]. Nevertheless, in
several places we have slightly changed the exposition from the original papers,
and also added some examples to illustrate the assertions. In Sections 2 and 3 we
have also included a discussion with original results of the functions satisfying (4)
and (5). The paper is based on an invited talk given at the Applied Linear Algebra
Workshop dedicated to Ludwig Elsner on the occasion of his 60th birthday, held
in Bielefeld, Germany, on January 21-23, 1999, and an invited talk given at the
Workshop on Operator Theory and its Applications dedicated to Harry Dym on
the occasion of his 60th birthday, held in Rehovot, Israel, on March 7-12, 1999.
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2. The inequality p(f(A1 , ... ,Am)) :::; f(p(A 1), ... ,p(Am))

In this section we review results of [3] characterizing Hadamard functions that
satisfy (2). We also extend the study to obtain results on functions satisfying the
weaker condition (4). We start with functions of one variable.

Theorem 2.1. [3, Theorem 2.1] Let f : 1R+ ------> 1R+. The following are equivalent:
(i) We have

p(J(A)) ::; f(p(A)),

(ii) We have

{

f(x) + f(y) ::; f(x + y) ,

J f(x)f(y) ::; f(ftY)

A similar result holds for continuous multi-variable functions. Here, for two
matrices A and B of same size we denote by A 0 B the Hadamard product of A
and B, that is, the matrix (of same size) whose elements are the products of the
corresponding elements of A and B.

Theorem 2.2. [3, Theorem 2.1] Let m be a positive integer and let f : 1R+ ------> 1R+
be a continuous function. The following are equivalent:
(i) We have

(ii) We have

{

f(x) + f(y) ::; f(x + y)

J f(x)f(y) ::; f( Jx 0 y)
Vx,y E 1R+.

If the function f is not continuous then Condition (ii) in Theorem 2.2 should
be modified, as follows.

Theorem 2.3. [3, Theorem 2.1] Let m be a positive integer and let f be a function
f : 1R+ ------> 1R+. The following are equivalent:
(i) We have

p(J(AI, ... ,Am)) ::; f(p(A1 ), ... , p(Am)),

(ii) We have

{

f(x) + f(y) ::; f(x + y),

(I1~=1 f(Xk))l/S ::; f((Xl 0 ... 0 xs)l/s),

Vx,y E 1R+

s = 2,3, ...

The following result follows from the previous theorems and corresponds to
combinations of functions satisfying (2).
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Theorem 2.4. [3, Proposition 2.5] Let m and p be positive integers, let f, 9 : lR+" ----t
lR+, let h : lR+ ----t lR+, and let ql, ... , qm : lR~ ----t lR+, all satisfy (2). Then so
do

(i) h(f(x)), x E lR+".
(ii) f(ql(X), ... ,qm(x)), X E lR~.

(iii) min{f(x),g(x)}, x E lR+".
(iv) f(cx), x E lR+", c > o.
(v) cf(x), x E lR+", c> o.
(vi) f"'(x)g!3(x), x E lR+", whenever a, (3 > 0, 0'.+(3 :::: l.

As an immediate corollary of Theorems 2.1 and 2.4, one can obtain the result
of [10] and [6] mentioned in the introduction.

Corollary 2.5. Let 0'.1, , am be positive numbers such that 0'.1 + ... + am :::: 1.
Then the function f(Xl' ' xm) = Xfl ..... x~'" satisfies (2).

The functions that satisfy (2) do not form a convex cone, as is demonstrated
by the following example.

Example 2.6. By Corollary 2.5, the functions f(x) = x and g(x) = x2 satisfy (2).
Nevertheless, the function h(x) = f(x) + g(x) does not satisfy (2). For example,
for the matrix

we have

p(h(A)) = p ([ ~ ~] + [~ ~]) = 3.4641> h(p(A)) = h(1.4142) = 3.4141.

In [3] the authors characterize all functions f that satisfy (2). It would be in
teresting to study functions that satisfy the weaker condition (4) for some positive
integer n. Clearly, every function f satisfies

p(f(Al , ... ,Am)) = f(p(A l ), ... ,p(Am)), VAl, ... ,Am E lR~l.

In order to address larger n's we prove

Lemma 2.7. Let m and n be positive integers, n :::: 2, and let f be a function
f : lR+" ----t lR+. If f satisfies (4) then f(O) = o.
Proof If we choose AI, ... , Am to be the zero n x n matrix then f(A l , ... , Am) is
an n x n matrix all of whose are entries are equal to f(O). Therefore, it is a rank
1 matrix, and since f(O) :::: 0 it now follows that

nf(O) = p(f(Al , ... , Am)) :::; f(p(Ad,··· ,p(Am)) = f(O).

Since f(O) :::: 0, it follows that f(O) = o. 0

We remark that the assertion of Lemma 2.7 is proven in the proof of Theorem
2.1 in [3]. We provided a proof here for the sake of completeness since in [3] it is
proven that if (4) is satisfied for n = 2 then the conclusion follows, while here we
state it for any n, n :::: 2.
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Corollary 2.8. Let m and n be positive integers, n ;:::: 2, and let f be a function
f : JRt' ----+ JR+. If f satisfies (4) then we have

p(f(AI, ... , Am)) :S f(p(A I ), ... , p(Am)), VAl, ... ,Am E JRik, k = 1, ... ,n.

Proof Let 1 :S k < n, and let AI,"" Am E JRik. We append zero rows and
columns to AI, ... , Am to obtain n x n matrices B I, ... , Bm. In view of Lemma
2.7 we have

p(f(Al , ... , Am)) = p(f(Bl , ... , Bm))

:S f(p(Bl ), ... ,p(Bm)) = f(p(Ad, ... ,p(Am)),

proving our assertion. 0

We use Lemma 2.7 and Corollary 2.8 to obtain the following necessary con
dition for the inequality (4) to hold.

Theorem 2.9. Let m and n be positive integers, n ;:::: 2, and let f be a function
f : JRt' ----+ JR+. If f satisfies (4) then we have

{

f(x)+f(y):Sf(x+y), Vx,yEJRt'

(TI~=l f(Xk))l/s :S f((Xl 0 .•• 0 xs)l/s), VXl,'" Xs E JRt', s = 2, ... ,n.
(6)

Proof The first inequality of (6) follows exactly as in the proof of Theorem 2.1 in
[3, p. 112], since the proof in [3] uses only 2 x 2 matrices, and by Corollary 2.8 the
function f satisfies (4) for 2 x 2 matrices. To prove the second inequality of (6)
note that, in view of Corollary 2.8, it is enough to prove that that inequality holds
just for s = n. The proof of this assertion actually exists in the proof of Theorem
2.1 of [3]. Nevertheless, since it is not stated there explicitly, we provide it here for
the sake of completeness.

Let Xk = (Xik,'" ,Xmk), k E {l, ... ,n}. Define the matrices

o
o

k= 1, ... ,m.

Observe that we have p(Ak) = (TI?=l Xkj) lin, k = 1, ... ,m. Therefore, we have

f(p(Ad, ... , p(Am)) = f((Xl 0 ... 0 xs)l/n). (7)

By Lemma 2.7 we have

f(A" ,Am) ~ [ r
f(xd 0

],0 f(xn-d
f(xn) 0 0
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and hence

(

n ) l/n

p(f(Al , ... ,Am)) = IT f(Xk)

Our claim now follows from (7), (8) and the fact that f satisfies (4).

231

(8)

o
It now follows that we can characterize continuous functions f satisfying (4)

for some n, n ~ 2, by strengthening Theorem 2.2 to say the following

Theorem 2.10. Let m be a positive integer and let f : lR+, ------. lR+ be a continuous
function. The following are equivalent:
(i) We have

p(f(Al, ... ,Am)) ::; f(p(Ad, ... ,p(Am)),

(ii) We have

p(f(Al , ... ,Am)) ::; f(p(Ad, ... ,p(Am)),

for some positive integer n, n ~ 2.
(iii) We have

{

f(x) + f(y) ::; f(x + y)

J f(x)f(y) ::; f(Jx 0 y)

(iv) We have

{

f(x) + f(y) ::; f(x + y),

(I1~=1 f(Xk))l/S ::; f((Xl 0 •.• 0 xs)l/s),

Proof (i) ==} (ii) is trivial.
(ii) ==} (iii) follows from Theorem 2.9.
(iii) ==} (i) is in Theorem 2.2.
(i) {::::=} (iv) is in Theorem 2.3.

\:Ix, y E lR+'.

\:Ix,y E lR+'

s = 2,3, ....

o
Theorem 2.10 does not hold in general for non-continuous functions f. It is

shown in [3] that the function

{

xy, xy> 1
f = 1, xy = 1, x = ek /

2ffi
, where k and m are positive integers,

0, otherwise

satisfies Condition (iii) of Theorem 2.10 but not Conditions (i) and (iv). Also, it
does not satisfy Condition (ii) whenever n ~ 3.

We have no counter-example that shows that the converse of Theorem 2.9
does not hold. Therefore, we leave it as the following open problem.
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\ix,y E 1Rf'

Open Problem 2.11. Let m and n be positive integers, n > 2, and let f be a
function f : 1Rf' ----+ IR+ satisfying

{

f(x) + f(y) ::; f(x + y),
(I1~=1 f(Xk))I/S ::; f((XI 0 ... 0 xs)l/s), \iXI,'" Xs E 1Rf', s = 2, ... ,n.

Does it follow that

3. The inequality p(f(A1 , ... , Am)) ~ f(p(Ad,·.·, p(Am))

The characterization of functions satisfying (3) is more complicated and is not
quite complete. Nevertheless, paper [3] contains an extensive study of the subject.
In this section we review some of the corresponding results of [3]. We also extend
the study to obtain results on functions satisfying the weaker condition (5).

It is shown in [3] that the behavior of multi-variable functions with respect to
the inequality (3) strongly relates to the reductions of these functions. We therefore
use the following notation, which is a slight generalization of the notation used in
[3].

Notation 3.1. (i) Let m be a positive integer and let ex be a subset of {I, ... ,m}.
For a vector x = (Xl, ... , X m ) E 1Rf' we denote by Xa the vector defined by

) {
Xk, k E ex

(xa k = 0, otherwise.

(ii) For a function f : 1Rf' ----+ IR+ we denote by fa the function from Rf' to IR+
defined by fa(x) = f(xa ). Note that f can be regarded also as a function from

R~I to IR+.
(iii) Let k be an integer, 1 ::; k ::; m. We denote by !k the function f{k}' considering
it as a function from R+ to itself.

The following theorem strengthens Proposition 3.2 of [3] in two directions.
First, it addresses the inequality (5) rather than the stronger inequality (3). Sec
ond, it gives a condition on f in terms of fa and f aC for any subset ex of {I, ... ,n}
rather than the functions fk only. In our proof we very much imitate the proof of
Proposition 3.2 of [3].

Theorem 3.2. Let m be a positive integer, let f : 1Rf' ----+ IR+ be a function sat
isfying f(O) = 0, let ex be a subset of {I, ... ,m}, and let n be a positive integer,
n ;:::: 2. The following are equivalent:
(i) We have

p(f(A I , . .. , Am)) ;:::: f(p(At}, ... , p(Am)),

(ii) We have

(9)

(10)
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and

{
p(Ja(AI, ,Am));::::fa(p(Ad,···,p(Am)), VAI, ,AmEJR+n (11)
p(JaC (AI, ,Am)) ;:::: f aC (p(A I), ... ,p(Am)), VAl, ,Am E JR+n.

Proof (i)=} (ii). It is easy to check that (9) implies (11). We now prove that (10)
holds. For a vector x = (kl , . .. , xm) E JR+ we define n x n matrices AI, ... ,Am
by

{

f(x), (i,j) = (1,2)
(J(AI, ... , Am))ij = fa(x), (i,j) = (2,1) ,

0, otherwise

Note that

Also

and hence

{

Xk, (i,j) = (1,2)
(Ak)ij = Xk, (i,j) = (2,1), k E 0:,

0, otherwise

(A ) = {Xk, k E 0:,
P k 0, otherwise

k= 1, ... ,m.

k= 1, ... ,m. (12)

p(J(AI, . .. ,Am)) = J f(x)fa(x). (13)

It now follows from (9), (12) and (13) that J f(x)fa(x) ;:::: fa(x), implying that

f(x) ;:::: fa(x). (14)

Similarly, we prove that
f(x) ;:::: fac(x).

Now, define n x n matrices AI, ... , Am by
(15)

(i,j) = (1,1), k E 0:

(i,j) = (2,2), k E o:c,
otherwise

k= 1, ... ,m.

Note that
p(Ak) = Xk, k = 1, ... , m.

Also

{

fa(x), (i,j) = (1,1)
(J(A I, ... , Am))ij = fac(x), (i,j) = (2,2),

0, otherwise
and hence

p(J(AI, ... ,Am)) = max {fa(x), fac (x)}.
It now follows from (9), (16) and (17) that

max {fa(x), fac(x)} ;:::: f(x).

The inequalities (14), (15) and (18) give (10).

(ii)=} (i). Let AI, ... , Am E JR+n. By (10) we have

f(p(AI), ... , p(Am)) :s; { fa(p(AI), , p(Am))
fac(p(A I), ,p(Am))

(16)

(17)

(18)

(19)
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By (11) we have

{
fc,,(p(AI), ... ,p(Am)) ~ p(f,:;;(Al , ,Am)) (20)
f"c(p(Ad,···, p(Am)) ~ p(f"c(Al , , Am))

It follows from (10) that

f(A l , 00" Am) 2: { f,,(A l , , Am)
f"c(A l , , Am)

Thus, by the Perron-Frobenius spectral theory for nonnegative matrices we have

p(f(Al'Oo.,Am)) 2: { p(f,,(Al,Oo.,Am)) . (21)
p(f"c (A l , ... ,Am))

Inequalities (19), (20) and (21) give (9). 0

A repeated application of Theorem 3.2 to f" and f "c yields the following.

Theorem 3.3. Let m be a positive integer, let f : JR+ ----+ JR+ be a function satisfy
ing f(O) = 0, and let n be a positive integer, n 2: 2. The following are equivalent:
(i) We have

p(f(Al , 00" Am)) 2: f(p(Ad, 00', p(Am)), VAl,' 00' Am E JR~n.

(ii) We have
f(x) = max !k(Xk)

k=l, .. "m

and
p(!k(A)) 2: fk(p(A)), VA E JR~n.

As a corollary we now obtain Proposition 3.2 of [3].

Corollary 3.4. Let m be a positive integer and let f : JR+ ----+ JR+ be a function
satisfying f(O) = O. The following are equivalent:
(i) We have

p(f(Al, 00" Am)) 2: f(p(Ad, 00" p(Am)), VAl, .. " Am E JR~n, Vn E N.

(ii) We have

and
p(fk(A)) 2: fk(p(A)), VA E JR~n, Vn E N.

We remark that the condition f(O) = 0 is not necessary for a function to
satisfy (5) or not even (3), as is demonstrated by the following (original) example.

Example 3.5. Let f(x) = x + 1 and let A be an n x n matrix. Denote by J the
n x n matrix all of whose elements are 1, and note that f(A) = A + J. Since
the matrix A + J is entrywise greater than or equal to the matrix A + sgn(A), it
follows from the Perron-Frobenius spectral theory for nonnegative matrices that
p(A + J) 2: p(A + sgn(A)). It now follows by (1) that

p(f(A)) = p(A + J) 2: p(A + sgn(A)) 2: p(A) + sgn(p(A)). (22)
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If p(A) > 0 then it follows from (22) that p(J(A)) 2: p(A) + 1. If p(A) = 0 then,
since A + J 2: J, it follows from the Perron-F'robenius theory that p(A + J) 2:
p(J) = n 2: 1 = p(A)+1. So, in either case we have p(J(A)) 2: p(A)+1 = f(p(A)),
and so although f(O) -=I- 0, the function f satisfies (3).

In view of Theorem 3.3 and Corollary 3.4, it is essential to study one vari
able functions that satisfy (3) or (5). The following is a technical improvement of
Proposition 3.3 in [3]. It particular, it refers also to functions satisfying the weaker
condition (5). The claim involves a set of functions that is larger than the set of
continuous functions. Recall that a function is said to be bounded above at a point
if there exist a neighborhood of the point such that the function is bounded above
in this neighborhood.

Theorem 3.6. Let f : lR+ --. lR+ be a function that is bounded above at some
point 0: E (0,00) and such that f(O) = O. The following are equivalent:
(i) We have

(ii) We have

p(J(A)) 2: f(p(A)), \fA E lR:;:.n, \fn E N.

p(J(A)) 2: f(p(A)),

for some integer n, n 2: 2.
(iii) We have

p(J(A)) 2: f(p(A)),

(iv) We have

{

f(x) + f(y) 2: f(x + y)

J f(x)f(y) 2: f(.jXY)

Proof. (i) ===} (ii) is trivial.
(ii) ===} (iii). Let A E lR~. We append zero rows and columns to A to obtain an
n x n matrix B. Since f(O) = 0, it follows from (ii) that

p(J(A)) = p(J(B)) 2: f(p(B)) = f(p(A)).

(iii) ===} (iv) is actually proven in the proof of the implication (i) ===} (iii) in Propo
sition 3.3 in [3], since only 2 x 2 matrices are used there.
(iv) ===} (i) is proven in [3]. 0

Remark 3.7. The condition f(O) = 0 in Theorem 3.6 is needed only to prove the
implications (ii) ===} (iii) ===} (iv), while the implications (iv) ===} (i) ===} (ii) hold
also without that condition.

As a corollary of Theorems 3.3 and 3.6 we now obtain the following improve
ment of Theorem 3.1 of [3].

Theorem 3.8. Let m be a positive integer and let f : lRt' --. lR+ be a function that
is bounded above at some point Q E int lRt' and such that f (0) = O. The following
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are equivalent:
(i) We have

p(f(A1 , ... , Am)) ~ f(p(Ad,· .. , p(Am )),

(ii) We have

p(f(A1 , ..• , Am)) ~ f(p(A 1 ), ... , p(Am)),

for some n, n ~ 2.
(iii) We have

p(f(A1 , ... , Am)) ~ f(p(A 1 ), ... , p(Am)),

(iv) We have

and

{

fk(X) + fk(Y) ~ fk(X + y)

vih(x)fk(Y) ~ h(.jXY)
\:Ix, y E lR+, k = 1, ... ,m.

Since the condition f(O) = 0 is not necessary for a matrix to satisfy (3),
it follows that Theorem 3.8 does not provide a characterization not even for all
continuous functions f that satisfy (3). Other two sets of functions that satisfy (3)
are given by the following theorem.

Theorem 3.9. [3, Theorem 3.8] Let m be a positive integer and let f : lR+ -----+ lR+.
Then
(i) if f is componentwise decreasing then f satisfies (3).
(ii) if there exists a positive scalar c such that c :S f(x) :S 2c for all x E lR+ then
f satisfies (3).

The following result on combinations of functions satisfying (3) easily follows
from inequality (3).

Theorem 3.10. [3, Proposition 3.4] Let m and p be positive integers, let f, g :
lR+ -----+ lR+, let h : lR+ -----+ lR+, and let ql, ... ,qm : lR~ -----+ lR+, all satisfy (3).
Then so do

(i) h(f(x)), x E lR+, whenever h is increasing.
(ii) f(ql(X), ... , qm(x)), x E lR~, whenever f is componentwise increasing.
(iii) max{f(x),g(x)}, x E lR+.
(iv) f(cx), xElR+, c>O.
(v) cf(x), x E lR+, c> O.

Another result on combinations is the following.

Theorem 3.11. [3, Proposition 3.7] Let f,g : lR+ -----+ lR+ be continuous functions
on (0,00). If both f and g satisfy (3) then so does f + g.
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The inequality (1), proven in [5], is an immediate corollary of Theorems 3.6
and 3.1l.

We remark that the results brought here do not cover all functions that satisfy
(3). It is observed in [3] that, by Theorem 3.10, the function f(x) = maxi x, I~X}

satisfies (3) although it does not belong to any of the sets discussed above.

We conclude this section by noting that the study of functions satisfying (2)
is related to the study of functions that preserve the set H Pn . In particular, it is
shown in [2] that if for some positive integers m and n a function f, f :~+ -----+ ~+

preserves H Pn then

p(J(A I , ... , Am)) ::; f(p(Ad, ... , p(Am)). VAl, ... ,Am E ~+n.

It is also shown there that for the set iIPn of all nonnegative H-matrices with
constant diagonal we have

Theorem 3.12. [2, Theorem 3.1] Let f : ~+ -----+ ~+ be a continuous function. The
following are equivalent.

(i) f preserves iIPn for some n, n ~ 3.
(ii) f preserves iIPn for all n, n = 2,3, ....
(iii) f satisfies (2).

4. Spectral radii of product of iteration matrices

While in the previous sections we discussed the spectral radius of Hadamard func
tions of matrices, in this section we discuss "regular" multi-variable functions of
matrices. More specifically, we review results of [4] on the behavior of the spectral
radius of that product of iteration matrices Adl,e, ... ,Adp,e as a function of the
sequence 8 = (d l , ... ,dp ).

Definition 4.1. (i) We denote by .6.(8) the arc-weighted digraph with vertex set
{I, ... ,p}, and with an arc from ito j with weight di whenever j - i == di(modp).
Such an arc is denoted by idij. The weight di of the arc is also called the length
of that arc.
(ii) Let, be a cycle in .6.(8). We denote by /1,(,) the cycle mean of" that is, the
average of weights of arcs in ,. We denote by f.l(.6.(8)) the maximal cycle mean of
.6.(8), that is, the maximal f.lb) where, is a cycle in .6.(8).
(iii) A cycle, in .6.(8) is said to be maximal if f.lb) = f.l(.6.(8)). A cycle, in .6.(8)
is said to be minimal if f.lb) ::; f.lb') for every cycle " in .6.(8).

Theorem 4.2. [4, Theorem 3.5] The spectral radius p(8, c) of the product Adl,e .....

Ad is equal to cp/fJ.(t::.(o».p,e

In view of Theorem 4.2, in order to study p(8, c) it is enough to study f.l(.6.(8)).
Indeed, in [4] the authors study maximal cycle means of digraphs .6.(8). Since
0< c < 1, it also follows from Theorem 4.2 that the bigger f.l(.6.(8)) is the bigger
p(8, c) is. This observtion motivates the following definition.
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Definition 4.3. We denote by a ~ a' the case where di ~ d~, i = 1, ... ,po The
sequence a is said to be downward optimal if JL(~(a)) ~ JL(~(a')) whenever a ~ a'.
The sequence a is said to be upward optimal if JL(~(a)) :::; JL(~(a')) whenever
a:::; a'.

In order to find conditions for sequences to be downward or upward optimal
we define

Definition 4.4. We denote by Li(a) the digraph whose vertices are the positive
integers, and with an arc from ito j whenever j - i = di . Such an arc (i,j) is said
to be of length di . The total length of the arcs in a path l' in Li(a) is said to be
the length of 1'.

Remark 4.5. There is a correspondence between an arc idj in ~(a) and all arcs
(k, l) in Li(a) such that i =: (k-l)(modp)+l. Therefore, a path in Li(a) corresponds
to a unique path in ~ (a), but a path in ~(a) corresponds to infinitely many paths in
Li(a) (with different starting points). Also, a path in Li(a) whose length is divisible
by p corresponds to a unique cycle in ~(a), and a cycle in ~(a) corresponds to
infinitely many paths in Li(a), where the length of each is equal to the total weight
of the arcs in '"Y.

Theorem 4.6. [4, Theorem 4.15] If there exists a cycle '"Y in ~(a) and a positive
integer k such that for every k consecutive arcs of '"Y, a path in Li (a) corresponding
to those arcs does not lie in the interior of the union of any k arcs of Li(a), then
'"Y is a maximal cycle and a is a downward optimal sequence.

Corollary 4.7. [4, Corollary 4.16] If there exists a positive integer k such that for
every k consecutive arcs in ~(a), a path in Li(a) corresponding to those arcs does
not lie in the interior of the union of any k arcs of ~(a), then every cycle in ~(a)

is a maximal cycle, and a is a downward optimal sequence.

It is shown in [4]' by means of an example, that the condition, proven in
Theorem 4.6 and Corollary 4.7 to be sufficient for a sequence a to be downward
optimal, is not necessary. However, this condition is also necessary in the case of
sequences of two elements. In this case, the graphs ~ (d1 , d2 ) and ~ (d2 , d1 ) are the
same up to relabeling of the vertices, and therefore it may be assumed, without
loss of generality, that d1 ~ d2 . We thus have

Theorem 4.8. [4, Theorem 4.21] Let d1 and d2 be positive integers, d1 ~ d2. The
following are equivalent.
(i) (d1 , d2) is a downward optimal sequence.
(ii) Either d1 is odd and d1 - d2 :::; 2, or d1 is even.
(iii) For every two consecutive arcs of a maximal cycle in ~(dl, d2), a path in
Li(d1 , d2) corresponding to those arcs does not lie in the interior of the union of
any two arcs of Li(d1 ,d2).

The following example illustrates the equivalence (i) ¢=> (ii) in Theorem 4.8.
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(23)

Example 4.9. Let n = 5 and choose c = 0.5. For all possible sequences of two
elements we have

p((l, 1),0.5) = 0.25
p((2, 1),0.5) = 0.5
p((2,2),0.5) = 0.5
p((3, 1),0.5) = 0.5
p((3,2),0.5) = 0.5
p((3, 3), 0.5) = 0.63
p((4, 1),0.5) =0.7071
p((4,2),0.5) =0.7071
p((4,3),0.5) = 0.7071
p((4,4),0.5) = 0.7071
p((5, 1),0.5) = 0.63
p((5, 2), 0.5) = 0.5
p((5, 3), 0.5) = 0.7071
p((5, 4), 0.5) = 0.7071
p((5, 5), 0.5) = 0.7579

By Theorem 4.8, the only sequences that are not downward optimal are (5,1) and
(5,2). Indeed, from (23) we have p((5, 1),0.5) = 0.63 < 0.7071 = p((4, 1),0.5) and

{

0.7071=p((4,1),0.5)
p((5,2),0.5)=0.5< 0.7071 = p((4, 2),0.5) .

0.63 = p((5, 1),0.5)

It is shown in [4] that the sufficient condition for downward optimality proven
in Theorem 4.6 is not sufficient for upward optimality. In order to handle upward
optimal sequences we define

Definition 4.10. A set S of arcs in b.(<5) is said to be non-overlapping if for every
two arcs (tl, tz) and (t3, t4) in S we have either tz :::; t3 or t4 :::; it·

We then have

Theorem 4.11. [4, Theorem 5.6] If there exists a maximal cycle "( in ~(<5) and a
positive integer k such that no union of k non-overlapping arcs of b.(<5) lies in the
interior of a path of k arcs in b.(<5) corresponding to k consecutive arcs of "(, then
<5 is an upward optimal sequence.

Here too, he converse of Theorem 4.11 does not hold in general. However, it
does hold in the case of sequences of two elements.

Theorem 4.12. [4, Theorem 5.11] Let d l and dz be positive integers, d l ~ dz. The
following are equivalent.

(i) (d l , dz) is an upward optimal sequence.
(ii) Either d l is odd and dz is even, or dz is odd and d l - dz :::; 2, or dl is even

and dz = d l .
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(iii) No union of two non-overlapping arcs of Li(d1 ,d2) lies in the interior of
a path of two arcs in Li(dI, d2) corresponding to two consecutive arcs of a
maximal cycle in ~ (dI, d2)'

The following example illustrates the equivalence (i) {:=} (ii) in Theorem 4.12.

Example 4.13. As in Example 4.9, let n = 5 and choose c = 0.5. By Theorem 4.12,
the only sequences that are not upward optimal are (4,1), (4.2) and (5,2). Indeed,
from (23) we have

((41) 05) 07071 {
0.63 = p((5,1),0.5)

p . ,. =. > 0.5=p((5,2),0.5)'

as well as p((5,1),0.5) = 0.63 > 0.5 = p((5,2),0.5) and p((4,2),0.5) = 0.63 >
0.5 = p((5, 2), 0.5).

A sufficient condition for a sequence to be both downward optimal and up
ward optimal is given in the following theorem.

Theorem 4.14. [4, Corollary 5.13] If no arc of Li(<5) lies in the interior of another
arc of Li(<5) , then every cycle in ~(<5) is both a maximal cycle and a minimal cycle,
and <5 is both a downward optimal sequence and an upward optimal sequence.

An immediate consequence of Theorem 4.14 is the following theorem, proven
in [7]

Theorem 4.15. If di ~ r + di+r for all i, r E {I, ... ,p} then <5 is both a downward
optimal sequence and an upward optimal sequence.

Another issue discussed in [4J is order invariance of sequences.

Definition 4.16. The sequence <5 is said to be order invariant (for the graph ~(<5))

if f1-(~(<5)) is order invariant, that is, if f1-(~(di"'" dp)) = f1-(~(<5)) for every per
mutation di , ... , dp of d1 , ... ,dp •

We conclude this article with a bunch of conditions for order invariance of <5.

Theorem 4.17. [4, Theorems 6.8-6.12J Let <5 = (dl, ... ,dp ) be a sequence of positive
integers. Then

(i) If all the di's but one are the same, then <5 is order invariant.
(ii) If there exists a positive integer d, relatively prime to p, such that di

d( modp), i E {I, ... ,p}, then <5 is order invariant.
(iii) If the largest di that is divisible by p is greater than or equal to the average

of the two largest di 's that are not divisible by p, then <5 is order invariant.
(iv) If the largest di is divisible by p, then <5 is order invariant.
(v) If no partial sum of the set of di 's that are not divisible by p is divisible by p,

then <5 is order invariant.
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A Generic Schur Function is an Inner One

V. Katsnelson

Abstract. A Schur function s is a function which is holomorphic in an open
unit disk JI)) of the complex plane and is contractive there, i.e. I s(z)1 :::; 1 for
z E JI)). A Schur function is called exceptional if it is rational inner one. A
contmctive sequence w is a sequence w = {,k }o:O;k<oo of complex numbers
satisfying the condition I,k I < 1 for every k. The Schur algorithm establishes
a one-to-one correspondence between the set n of all contractive sequences
w = (rk}O:O;k<oo and the set of all non-exceptional Schur functions. A se
quence wEn is the sequence of the Schur pammeters of the appropriate
Schur function denoted as sw. Using this Schur correspondence, we intro
duce a probability measure on the set n, or, equivalently, on the set of all
Schur functions. Namely, starting from an arbitrary probability measure 1-£

on JI)), we consider the set n as the set of sequences of independent identi
cally distributed complex numbers from JI)), with common distribution 1-£. (In
other words, we introduce the product measure PI' = 1-£ 18) 1-£ 18) 1-£ 18) ••. on
n = JI)) x JI)) x JI)) x ... ). We show that if the support of the measure 1-£ consists
of more than one point (otherwise there is no randomness), then PI' almost
every Schur function Sw is inner. If, in addition, the logarithmic integral con
verges: JIn(l -1,1) 1-£(d,) > -00, then for PI' almost every Schur function the

D
sequence of its Schur approximants converges pointwise almost everywhere
(with respect to the Lebesgue measure) on the unit circle. The multiplicative
ergodic theory is the main tool of investigation.

1. The Schur class, the Schur algorithm and the
Schur parametrization

Definition 1. A function s( .) is said to be a Schur function if s( .) is holomorphic
in the open unit disk lJ)) and satisfies the inequality

Is(z)1 :s; 1 (z E lJ))). (1.1 )

The set of all Schur functions is said to be the Schur class. The Schur class is
denoted by 6. 0

Key words and phrases. Holomorphic contractive functions, Schur functions, Schur algorithm,
Schur approximants, Schur continued fractions, random Schur functions, random orthogonal
polynomials on the circle, random linear dynamic system, random matrices, random operators,
singular spectrum, multiplicative ergodic theory.
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If s( .) is a Schur function then for almost every t E 1I' (with respect to the
Lebesgue measure m(dt)), the radial limit

s(t) ~ lim s(rt) (1.2)
r->1-0

exists. The function s(t), which is defined m(dt)-almost everywhere on the unit
circle 1I', is said to be the boundary value oj the junction s.

Definition 2. A Schur junction s is said to be inner ij the absolute value oj its
boundary value is equal to one almost everywhere on 1I' with respect to the Lebesgue
measure:

Is(t)1 = 1 a.e. with respect to the Lebesgue measure m(dt). (1.3)

o

Definition 3. A Schur junction s(.) is said to be exceptional ij it is a rational
inner junction. The class oj all exceptional Schur junctions is denoted by 6 e . The

class 6 ne oj non-exceptional Schur functions is defined as 6 ne ~ 6 \ 6 e . 0

The class of exceptional inner functions coincides with the class of functions
which are finite Blaschke products. (This statement is a particular case of the
Factorization Theorem for inner functions.)

Now we discuss the Schur algorithm. To introduce this algorithm we start
from the linear fractional transformation

(1.4)

(1.5)

where'Y is a complex number, I'YI < 1. This transformation provides a one to one
mapping of the open unit disk IT» onto itself. It also maps the unit circle 1I' , which
is the boundary of IT» , one to one onto itself. If bl = 1 the transformation (1.4)
maps the set C \ {'Y} into the point {-'Y} and is not defined at the point 'Y.

Let j be a Schur function which is not a unitary constant. Then Ij(O)1 < 1.
Substituting j(z) as ( and j(O) as 'Y into (1.4) we come to the function :~;)(:{)~J)

which is a Schur function as well. The latter function vanishes at the origin. Ac
cording to the Schwarz Lemma the function :~;t{)~J) .~ is a Schur function as
well. If the function j is a unitary constant then the :~;)(:{}~J) .~ is not defined.
Thus the transformation

j(z) -+ j(z) - j(O) . ~
1 - j(z) j(O) z

maps the class of all Schur functions which are not unitary constants into the class
6 of all Schur functions. In particular if j is a non-exceptional Schur function then
Ij(O)1 < 1 and the transformation (1.5) is well defined. It is easy to see that the
function j(z)-{(O\ .1. also is a non-exceptional Schur function in this case. Thus

1- j(z j(O z

we have
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Proposition 1. The transjorm (1.5) is well defined on the class 6 ne oj all non
exceptional Schur junctions and maps this class into itself. D

If j is a rational inner function and j(O) =I- °then it is of the form j(z) =

zn~~:;I) where P is a polynomial of the degree n, 0::; n < 00. This n is deter

mined uniquely from f and said to be the degree oj the rational inner junction j.

Proposition 2. Let j(z) be a rational inner junction oj degree n, n 2: 1. Then the
transjorm (1.5) is defined jor this j and the right-hand side oj (1.5) is a rational
inner junction oj degree n - 1. D

Description of the Schur algorithm. The Schur algorithm relates recursively a
certain sequence of Schur functions {Sk(' )}O<k<oo to the given Schur function
s(.). We provide the given Schur function s with index zero

SO(z) ~f s(z) (1.6)

(1.7)

and then define

Sk(Z)
~f Sk-l(Z) - Sk-l(O) . ~ ( )k = 1, 2, 3, ....

1 - Sk-l(Z) Sk-l(O) Z

If the starting function s is a non-exceptional Schur function, then, applying Propo
sition 1 to the functions so, SI, S2, ... , we deduce by induction that each of the
functions Sk is well defined and is a non-exceptional Schur function as well. In this
case the Schur algorithm can be continued and produces infinitely many Schur
functions Sk(Z), k = 0, 1,2,3, ... without any restrictions.

If the starting function S is an exceptional Schur function, Le. it is rational
inner, then Schur algorithm will end after finitely many steps. Namely, let S be
a rational inner function of degree n. Then, following Proposition 2, the function
Sk, 0::; k ::; (n - 1) is a rational inner function of degree n - k. (It can be proved
by induction.) The function Sn is a unitary constant. The function Sn+l is not
defined because the transformation (1.5) is not applicable to the unitary constant.
So in this case it is possible to perform only n steps of Schur algorithm. D

Schur parameters. Let S be a Schur junction and let {Sk} be the sequence (infinite
or finite) oj junctions generated by the junction S according the Schur algorithm.
The values

clef ()
'Yk = Sk ° (1.8)

playa crucial role in considerations related to the Schur class. The numbers 'Yk =
'Yk (s) are said to be the Schur parameters of the function s. D

If S is a non-exceptional Schur function then it generates an infinite sequence
of the Schur parameters bdo::;k<oo. In this case

bkl < 1, k=O, 1, 2, .... (1.9)
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If s is an exceptional Schur function, say a rational function of degree n, then it
generates a finite sequence of Schur parameters {'k}O:Sk:Sn. In this case

I'kl < 1, k = 0, 1, 2, ... , n - 1; I,nl = 1. (1.10)

If
S(z) = L Ck(S)zk (1.11)

O:Sk

is a Taylor expansion of a Schur function s (which surely converges in the open unit
disk ID», then the Schur parameter Ik(S) depends only on the Taylor coefficients
co(s), C1 (s), ... , Ck(S) of the function s:

Ik(S) = <I>k(CO(S), C1(S), ... , Ck(S)) , (1.12)

where <I>k(CO, C1, ... , Ck) is a rational function of the variables

Co, Co, C1, C1, ... , Ck-1, Ck-1, Ck·

Conversely, the Taylor coefficient Ck (s) of the Schur function depends only
on the Schur parameters 10(S), 11 (S), ... , Ik (s) of this function:

Ck(S) = IJIk(rO(S), 11(S), ... , Ik(S)) , (1.13)

where IJIk(rO, 11, ... , Ik) is a polynomial in 10, 10, 11> 11, ... , Ik-1, Ik-1, Ik·
In [SI] an explicit expression for <I>k and IJI k has been given. There, the

function <I>k is represented as the quotients of determinants which are constructed
from the coefficients Co, C1, ... , Cn-1, Cn and their conjugates Co, C1, ... , Cn-1.
(See Theorem III in §3 of [SI].) In §2 of [SI] a recursion formula is provided which
allows us to calculate all functions IJIk.

Definition 4. A sequence {,k}O:Sk<oo of complex numbers is said to be contractive
if it satisfies the condition Irk I< 1 for every k.

We showed that the sequence of Schur parameters of a Schur function is
contractive.

It turns out that every preassigned contractive sequence

{10, 11, 12, ... , Ik, ... }

is the sequence of the Schur parameters for some unique non-exceptional Schur
function. Such a function can be constructed by means of a certain continued
fractions algorithm.

Schur continued fractions. Given an arbitrary contractive sequence

{,o, 11> ... , Ik, ... }

of complex numbers, we construct a sequence of rational Schur functions which
converges to the Schur functions S which sequence of Schur parameters

{rO(S), 11 (S), ... ,'k(S), ... }

coincides with this preassigned sequence. The underlying reason for this construc
tion is the following. The desired function s is sought in the form which may
be considered as a special kind of continued fraction. The n-th rational function
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of the mentioned sequences can be considered as n-th convergent of this contin
ued fraction. The transformation on which the elementary step (1.5) of the Schur
algorithm is based is given by

f(z)-+ f(z)-'Y .~.
1- f(z)"( z

The transformation inverse to (1.14) is of the form

f(z) -+ 'Y + zf(z) .
1 + 'Yzf(z)

(1.14)

(1.15)

If f is a Schur function then the function l~z!NJ) is a Schur function as well.
We use the 'inverse Schur algorithm' in a recursive manner to construct the n-th
Schur approximant, which we (following I. Schur) will denote by [z; 'Yo, 'Y1, ... ,'YnJ.
Namely, we write

[z; 'YnJ = 'Yn;

[ ]
'Yk + z . [z; 'Yk+l, 'Yk+2, ... ,'YnJ

Zi'Yk, 'Yk+1, 'Yk+2,··· ,'Yn = 1 [ J'+ 'Yk . z· z; 'Yk+1, 'Yk+2, ... ,'Yn
(1.16)

k = n - 1, n - 2, ,1, O.

The function [z; 'Yo, 'Y1, ,'YnJ is a rational Schur function whose Schur parame-
ters 'Yk ( [z; 'Yo, 'Y1, ... ,'YnJ) are equal to

'Yk ([z; 'Yo, 'Y1> ,'YnJ) = 'Yk for k = 0, 1, ... ,n;

'Yk( [z; 'Yo, 'Y1> ,'YnJ) = 0 for k > n.

Let n1 and n2 be two non-negative integers. Since the Schur parameters
with the indices k : 0 :::; k :::; min(n1' n2) for the functions [z; 'YO, 'Y1, ... ,'YnlJ
and [z; 'YO, 'Y1, ... ,'Yn2J coincide, the Taylor coefficients c~ and c~ (0 :::; k <
min(n1, n2)) for these functions coincide as well. Hence

[z; 'Yo, 'Y1, ... ,'Ynll - [z; 'Yo, 'Y1, ... ,'Yn2] = L (c~ - c~) Zk .
min(nl,n2)<k<oo

Using the estimates [z; 'YO, 'Y1, ... ,'Ynl J :::; 1, [z; 'Yo, 'Y1, ... ,'Yn2l :::; 1 for z E ]IJ) and
Schwarz Lemma we come to the inequality

I[z; 'YO, 'Y1, ... ,'YnlJ - [z;'Yo, 'Y1, ... ,'Yn2JI :::; 2Izll+min(nl,n2) for z E]IJ). (1.17)

From (1.17) it follows that the limit

[z; 'Yo, 'Y1, ... ,'Yk, ... J~ lim [z; 'Yo, 'Y1> ... ,'YnJ
n-+oo

(1.18)

exists in the unit disk. The function [z; 'YO, 'Y1, ... ,'Yk, ... J is said to be the Schur
continued fraction constructed from the sequence {'Yo, 'Y1, ... ,'Yk, ... }. 0

The function [z; 'Yo, 'Y1, ... ,'Yk, ... J is a non-exceptional Schur function. Its
Schur parameters 'Yk ([z; 'YO, 'Y1, ,'Yk, J) coincide with the numbers 'Yk:

'Yk([Z; 'Yo, 'Y1, ,'Yk, J) = 'Yk, 0:::; k < 00.
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Given a non-exceptional Schur function s, we can form the sequence

bo(s), 1't{s), ... , 1'k(S), ... }

of its Schur parameters and then construct the Schur continued fraction

[z; 1'0 (s ), 1'1 (S), . .. , 1'k (S), ... ].

The function represented by this fraction is a Schur function whose sequence of
Schur parameters coincide with the sequence of Schur parameters of the original
function s. Hence, Taylor coefficients of these two functions coincide as well.

Thus, every non-exceptional Schur function s admits the Schur Continued
Fraction Expansion

s(z) = [z; 1'o(s), 1'l(S), ... , 1'k(S), ... ]. (1.19)

Definition 5. Let s(z) be a non-exceptional Schur function and n be a non-negative
integer. Let (1.19) be the Schur continued fraction expansion of the function s. The
function

APn(s; z) ~f [z;1'o(s), 1'1 (s), ... ,1'n(s)]

is said to be the n-th Schur approximant of the function s.

(1.20)

Remark 1. The n-th Schur approximant is a rational function ofz whose numerator
and denominator are polynomials of degree not greater than n. In fact the n-th
Schur approximant of a non-exceptional Schur function s is the n-th convergent
of its Schur continued fraction expansion (1.19).

The estimate
Is(z) - APn(s; z)1 ::::; 2lzln+l (1.21)

holds for every non-exceptional Schur function. (As in (1.17), this estimate can
be obtained using Schwarz Lemma.) From the estimate (1.21) it follows that the
sequences of the Schur approximants of the non-exceptional Schur function s con
verges to this function locally uniformly in the open unit disk []). The problem of
convergence of Schur approximants to s on the unit circle '][' is much more difficult.
One of our main results is concerned with this problem.

Let us summarize results related to the Schur algorithm:

1. If for two non-exceptional Schur functions the sequences of their Schur pa
rameters coincide then these functions coincide as well.

2. The Schur parameters of a non-exceptional Schur function form a contractive
sequence.

3. Every non-exceptional Schur function s admits the Schur Continued Fraction
Expansion (1.19).

4. The sequence of the Schur approximants of any non-exceptional Schur func
tion s converges to this function locally uniformly in the unit disk []), and the
estimate (1.21) holds.

5. For an arbitrary preassigned contractive sequence {1'0, 1'1, ... ,1'k, ... } there
exists a non-exceptional Schur function whose Schur parameters coincide with
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o

these numbers "Ik. Such a function can be constructed as the Schur continued
fraction (1.18).

In particular, from the above mentioned results about the Schur algorithm it fol
lows that the correspondence

ho, "11, ... ,"Ik, ... } {o} [z; "10, "II, ... ,"Ik, ... ] (1.22)

is a free parametrization of the class \'3 ne of all non-exceptional Schur functions
by means of the set of all contractive sequences {"IO, "11, "12, ... , "Ik, ... }, where
sequences serve as free parameters of this class.

The later fact is of principal importance for us. The point is that the pa
rametrization (1.22) is an appropriate tool for probabilistic study of Schur class.
The geometry of the set of all Taylor coefficients of functions of this class is rather
complicated. Therefore Taylor coefficients are not suitable for our purpose. On
the other hand, the geometry of the set of all Schur parameters is very simple: the
latter set is the direct product of the unit disks. Such a geometry is well compatible
with probabilistic structures and is very suitable for our purpose.

Remark 2. It is not easy to express properties of a concrete Schur function s
in terms of its Schur parameters "Ik(S). In particular, it is not easy to recognize
whether the function s is inner or not. Not much is known about this.

If l: l"Ik(S)1 < 00, then the function s is continuous in the closed unit
O::;k<oo

disk ll), and max Is(z)1 < 1. (Of course, s is not inner.) This result was obtained
zEIIli

by I. Schur, [S2], §15, Theorem XVIII.
If l: l"Ik(SW < 00, then the function s is also not inner. This follows
O::;k<oo

from the identity

II (1 - hk(SW) = exp {J In (1- Is(t)1 2
) m(dt)}.

O::;k<oo 1['

(See [Boy]. See also the formula (8.14) in [Gers3], which expresses a similar result
for polynomials orthogonal on 1f.)

If lim l"Ik (s) I = 1, then the function s is inner. This result was obtained by
k->oo

E.A. Rakhmanov, [Rakh] and it is known as Rakhmanov's Lemma. We present a
proof of Rakhmanov's Lemma in Section 4 of our paper (Lemma 8).

If the sequence of the Schur parameters hk(S)}O::;k<oo satisfies Mate-Nevai
condition lim "Ik"lk+n = 0 for n = 1, 2, 3, ... , but lim hkl > 0, then s is an

k->oo k->oo

inner function. This is Theorem 5 and Corollary 9.1 in [Khru2].
It is also known that there exists infinite Blaschke product s such that

L hk(s)IP < 00
O::;k<oo

for every p > 2. (This is shown in [Khru3].)
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2. The formulations of the main results

A random Schur function is a non-exceptional Schur function whose Schur param
eters are independent identically distributed random variables in the open unit
disk. We will show that such a function is inner almost surely. First we introduce
necessary definitions.

Let f1 be an arbitrary probability measure in the unit disk ][)). The probability
space, which is denoted by 0, is the countable product

o =][)) x][)) x][)) x ... x]])) x .... (2.1)

Points W of 0 are contractive sequences

W = ho, 1'1, 1'2, ... , I'k, ... } (2.2)

of complex numbers I'k. So the set 0 is the set of all contractive sequences w.
The space 0, equipped with the product topology, becomes a topological space. In
particular the notion of a Borel set in 0 is defined. The collection of all Borel sets
in 0 forms a a-algebra which is denoted by ~(O) and is called the Borel a-algebra
ofO.

The measure PI-' on ~(O) is defined as the product measure

(2.3)

Of course, the measure PI-' is a probability measure on the Borel a-algebra ~(O) .
The completion of the measure PI-' is defined on the a-algebra ~ generated by the
a-algebra ~(O) and all subsets of all Borel sets of zero pl-'-measure.

Thus we have defined the probability space (0, ~, PI-')' 0 is a sample space,
~ is a a-algebra of events, PI-' is a probability measure:

(2.4)

(2.6)

As it was mentioned in Sction 3, to every sequence

W = {I'o, 1'1,1'2, ... , I'k, ... } E 0,

there corresponds a unique Schur function sw(z) such that the sequence of its
Schur parameters coincides with this sequence w. We denote this Schur function
by sw(z). The function sw(z) can be constructed by means of the Schur continued
fraction (1.18):

sw(z) = [z; 1'0, 1'1,··· ,I'k,·· .J. (2.5)

It was also mentioned that every non-exceptional Schur function is of the form
Sw for some w E 0 and if WI =I- W2 then SWI =I- SW2' Thus the class 6 ne can be
considered as the set {Sw}wEfl:

6 ne ~ {SwLEfl.

The measure PI-' can be considered as a measure on the class 6 ne .

Theorem I. Let f1 be a probability measure in the open unit disk]])) whose support
consists of more than one point. Then almost every (with respect to the measure
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(2.7)

PM) non-exceptional Schur function is an inner one: there exists a set R c n such
that
i. PM(R) = 0;
ii. For every wEn \ R, the function Sw is an inner one.

Theorem II.Let f..l be a probability measure in the open unit disk [j) whose support
consists of more than one point and which satisfies the condition

JIn 1 :I"fl f..l(d"f) < 00.
II)l

Then for almost every (with respect to the measure PM) non-exceptional Schur
function s, the sequence of its Schur approximants APn(s; .) converges to s(.)
almost everywhere (with respect to Lebesgue measure m(dt)) on the unit circle 11':
there exists a set R c n such that
i. PM(R) = 0;
ii. For every wEn \ R,

lim Apn(sw; t) = sw(t) for a.e. t E 11' w.r.t. Lebesgue measure m(dt) (2.8)
n->oo

(Sw(t) is the boundary value of the function sw).

Remark 3. The rate of convergence in (2.8) is in some sense exponential. (See
Remark 8 later.)

Remark 4. For every inner function s the sequence of its Schur approximants
Apn(s) converges to s in L 2 (m(dt)):

nl!..~JIs(t) - Apn(s; t)1
2

m(dt) = O. (2.9)
11'

Let Ck(S) and ck(APn(s)) be Taylor coefficients of the functions sand Apn(s)
respectively. Since Ck(S) = ck(APn(s)) for k = 0, 1, ... ,n, the Parseval identity
gives us:

J Is(t) - APn(s; t)1
2

m(dt) = E /Ck(S) - ck(APn(s)1
2

11' n+l::;k<oo

< 2 E (I ck(s)1 2 + Ick(APn (s)1 2
) .

n+l::;k<oo

It is clear that E ICk(SW -+ 0 as n -+ 00. (The later sum is the n-th
n+l::;k<oo

remainder of a convergent series.) The sum E /ck(APn(s))1
2
is not the

n+l::;k<oo
n-th remainder of a certain series: the series depends on n itself. Nevertheless,
this sum also tends to zero as n -+ 00. Since IAPn(s; t)1 ~ 1 on 11', the Parse
val identity for the function APn(s; .) gives us: E 1ck(APn(s))1 2 ~ 1. Since

O::;k<oo
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Ck(S) = ck(APn(s)) for 0 :::; k :::; nand 1 = L ICk(SW (the later identity is the
0:5k<oo

Parseval identity for the inner function s), we obtain: L Ick(APn(s)W :::;
n+1:5k<oo

L Ick(s)1 2. Thus,
n+1:5k<oo

JIs(t) - APn(s; t)j2 m(dt) :::; 4 L Ick(s)1 2 .
11" n+1:5k<oo

o

According to Theorem I, p/-,-almost every Schur function is an inner one.
Thus for p/-,-almost every Schur function s, the sequence of its Schur approximants
converges to s in £2 (m(dt)). However, Theorem II claims that under the condition
(2.7), the convergence is also pointwise for p/-,-almost every Schur function.

3. The matrices related to the Schur algorithm

It is very useful to present the Schur algorithm in matrix form. Given a complex

number c, we associate the vector [ ~ ] with this number. In this agreement, the
k-th elementary step (1.7) of the Schur algorithm can be presented in the form

-'Yk-1 Z-l] [Sk-1(Z)] 1
-'Yk-1 1 . 1 . -'Yk-1 Sk-1(Z) + 1 '

where 'Yk-1 = Sk-1 (0). So, it is natural to associate the matrix

[-~~~1 -'Yk~l Z-l ]

with the k-th elementary step of Schur algorithm. However, it turns out that it
is much more fruitful to deal with a proportional matrix. Namely, instead of this
matrix we consider the matrix m,k_l' where the matrix m, is defined below.

For a complex number 'Y : hi < 1, let us introduce the matrix function

[

-1

m,(z) = z_
-'Y

1
(3.1)

By a direct calculation we obtain that

m,(z)-l = [z 'Y]
z·;:y 1

m,(z)" ~ [
(Z)-l

-;:y. (z)-l

1

)1 -1'Y1 2 '

] . Vi ~ 1,1'

(3.2)

(3.3)
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and
z''Y

1 ]
1

(3.4)

The matrix m, is a matrix of the linear fractional transformation (1.14) which is
the elementary step (1.5) of the Schur algorithm.

The matrix of a linear fractional transformation is determined up to a nonzero
scalar factor. We choose the matrix of the linear fractional transformation (1.14)
in the form (3.1) for the following reason. The matrix m, of the form (3.1) satisfies
j - properties. Let j be the matrix

(3.5)

Then

(m, (Z)*)-l j (m, (z))-l - j = (1 -lzI 2 ) . [ ~ ] [1 0]. (3.6)

Definition 6. Let w = bdo::;k<oo be a contractive sequence of complex numbers.
Let us define a sequence of matrices (or matrix-functions) {Mw,n(z)}O::;n<oo:

Mw,n(z) ~m'n (z) .m'n_l (z)· .... m'l (z) .m,o (z), n = 0,1,2, ...

Mw,-l(Z) ~ I -the identity matrix.
(3.7)

The entries of the matrix M w, n are denoted as

( )
_ [ aw,n(z)

M w n Z -
, cw,n(Z)

]. (3.8)

The entries of the inverse matrix are denoted as

M-1 (z) = [ Aw,n(z)
w,n Cw,n(z) ]. (3.9)

Remark 5. For a certain n, the matrix M w, n depends not on the whole sequence
w = bd O::;k<oo, but only on its "initial interval" {'YdO::;k::;n : ifw' = bD 09<00
and wI! = {'Y{} 09<00 are two sequences for which 'Y~ = 'Yt by 0 ::; k ::; n, then
MW',n = MW",n. 0

We use the sequence of matrices M w, n in two ways:

1. First, we can study a given Schur function s starting from the sequence
w = {'Yk} of its Schur parameters, with an aim to express the properties of s
in terms of the behavior of the sequence {Mw, n}.
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(3.10)

2. Second, we can try to specify a Schur function s with prescribed proper
ties choosing a sequence w = bd for which the sequence {Mw, n} has an
appropriate behavior.

If s(z) is a non-exceptional Schur function, w = {'YdO<k<oo is the sequence
of its Schur parameters and {Sk(Z)}O<k<oo is the sequence of Schur functions gen
erated by the Schur algorithm (so 'Yk = Sk(O)) , then

Mw,n(z) [ S~Z) ] = [ Sn+~ (z) ] . (cw,n(z) s(z) + dw,n(z)) ,

or

Hence

aw,n(Z) s(z) + bw,n(z) ( )= Sn+l Z .
cw,n(z) s(z) + dwn(z)

(3.11)

S(Z) = Aw,n(z) sn+l (z) + Bw,n(z) . (3.12)
Cw,n(z) Sn+l (z) + Dw,n(z)

If we replace Sn+l(z) by 0 in (3.12) we obtain the n-th Schur approximant of the
function s:

( ) Bw n(z) ( )
APn S; Z = Dw:n(z) . 3.13

This follows from the definition of Schur approximant (see Definition 5). In fact,
the Schur approximant of the function S was defined from its Schur parameters
using the inverse Schur algorithm (see (1.16)). Since an "elementary step" (1.15)
of the inverse Schur algorithm is described by the matrix (3.2), the n-th Schur
approximant can be expressed in terms of the entries of the matrix M;:;-ln (Z) (see
(3.13)). However it is more convenient to express it in terms of the ent~ies of the
matrix Mw,n(z). The inverse matrix can be easily calculated:

= [dw,n(Z) -bw,n(Z)] 1
-cw,n(z) aw,n(z) . aw,n(z)dw,n(z) - bw,n(z)cwn(z) .

Thus, using (3.13), we obtain

Lemma 1. For a non-exceptional Schur function S with the sequence of Schur pa
rameters w = {'YdO:::;k<oo, the n-th Schur approximant APn(s,z) can be expressed
in terms of the entries of the matrix-function M w, n :

APn(s; z) = - bw,n(z) . (3.14)
aw,n(z)

Of course, we can also derive the expression (3.14) for APn(s; z) in the follow
ing way. Replacing Sn+l(z) with zero in (3.11), we obtain the following equation
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(3.15)

(3.16)

aw,n(Z) APn(s; z) + bw,n(z) = o.
Cw,n(Z) Apn(s; z) + dwn(z)

Solving this equation for APn(s; z), we obtain (3.14).
Let us derive the so-called Christoffel-Darboux formula. From (3.7) it follows

that

'" '" -1 . -1.
= Mw,k(z)·{m"Yk(z) Jm"Yk(Z) -J}.Mw,k(Z),

Using (3.6) we obtain,

M~,k_l(Z)jMw,k-l(Z) - M~,k(Z)j Mw,k(Z)

=(1-lzI2)M~,k(Z) [~]. [1 OJ Mw,k(Z),

In view of (3.8), the last expression can be written in terms of matrix entries

M~,k_l(Z)jMw,k-l(Z) - M~,k(Z)j Mw,k(Z)

= (1-lzI2) [aw,k(Z) ] . [aw,k(z) bw,k(Z) ]
bw,k(Z)

Summing over k from k = 0 to k = n, we obtain

j - M~,n(z)j Mw,n(z) =

(3.17)

(3.18)
= (1-lzI2) L [aw,k(Z)]. [aw,k(z) bw,k(Z) ]

O<::;k<::;n bw,k(Z)

Multiplying by [s(z) 1 ] on the left and by [ s~) ] on the right, we obtain:

(1-ls(z)1 2) - (1-lsn+l(z)12). ICw,n(z)S(Z) +dw,n(z)1 2

=(1-lzI 2) L la w,k(z)S(z)+bw,k(Z)1 2

O<::;k<::;n

The formula (3.19) is called the Christoffel-Darboux formula.
Since 1 - ISn+! (z)1 2 2: 0 the inequality

"" 2 1-ls(z)/2
L..J law,k(Z)S(z)+bw,k(Z) I ::; 1-lz1 2

O<::;k<::;n

holds. Letting n tend to infinity, we get

"" 2 1 -ls(zW
L..J Iaw,k(z) s(z) + bw,k(Z) I ::; 1-lz12 .

O<::;k<oo

(3.19)

(3.20)

(3.21 )
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Remark 6. In particular,

L la w,k(z)s(z)+bw,k(z)1 2 <oo for Izl<1.
O:::;k<oo

(3.22)

(3.23)

(3.24)

For Izi < 1, the series E law, k(ZW and E Ibw,k(ZW can diverge even
O:::;k<oo O:::;k<oo

exponentially. Despite this, the series (3.22) converges for Izi < 1. The linear
combination {aw,k(z)S(Z) + bw,k(z)} is analogous to the so-called Weyl solution
in the theory of the singular Sturm-Liouville differential equation.

Now we would like to discuss the j-properties of the matrix-functions Mw,n(.)
and derive consequences of these j-properties. By j-properties, we mean such prop
erties as the j-contractivity and the j-unitarity.

Definition 7. Let j be a d x d matrix such that

j=j*, j2=I.

i. A d x d matrix M is said to be j-contractive if the inequality

j-M*jM?O

or, equivalently, the inequality

j - MjM* ? 0 (3.25)

holds. (It is possible to prove that (3.24) and (3.25) are equivalent.)
ii A d x d matrix M is said to be j -unitary if the equality

j - M*jM = 0 (3.26)

or, equivalently, the equality

holds.

j - MjM* = 0 (3.27)

o
In what follows we consider only the 2 x 2 matrix j of the form (3.5) and

discuss j - properties of 2 x 2 matrices with respect to this matrix j.

Lemma 2. Given a contractive sequence w = bd, the value of the appropriate
matrix-function M w, n( .) is j -contractive in the unit disk and is j -unitary on its
boundary:

j - M~,n(z)jMw,n(z) ? 0, or equivalently, j - Mw,n(z)jM~,n(z) ? 0 (3.28)

for Izi ::; 1,
j - M~,n(t)jMw,n(t) = 0, or equivalently, j - Mw,n(t)jM~,n(t) = 0 (3.29)

for ItI = 1.
Proof. The "left" inequality (3.28) and the "left" equality (3.29) are consequences
of the identity (3.18). The equivalency of the "left" and the "right" relations is a
general fact of the linear j-algebra. 0
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Now we derive some inequalities for entries of j-contractive and j-unitary
matrices, with an aim to apply these inequalities to the values of the matrix
function M w, n(.)·

Lemma 3. Let M = [~ ~] be a 2 x 2 matrix, which is j -contractive with respect

to j of the form (3.5). Then the following inequalities hold:

i). lal2:1; ii). Ib·a-Il < 1; iii). Ic·a-Il < 1. (3.30)

If, in addition, the matrix M is j -unitary, then

i). Ial = Idl ; ii)·lbl=lel; iii). lad - bel = 1, (3.31 )

and, in addition to (3.30), the following inequalities hold:

(3.32)

Proof. The inequalities j - M*jM 2: 0 and j - M j M* 2: 0, written in terms of
matrix entries, mean

(3.33)

(3.34)

and

[
lal2 -IW_-1 ac-bd ]

2: O.
ea-db leI 2 -ldI2 +1

Since the diagonal entries of a non-negative matrix are non-negative, the inequal
ities

Ial 2
- Ibl 2

- 1 2: 0 and Ial 2
- Iel 2 - 1 2: 0 (3.35)

hold. From here (3.30) follows. If the matrix M is j-unitary, then equalities hold
in (3.33) and (3.34). In particular,

i). Ial 2
- Iel 2 - 1 = 0; ii). Idl 2

- Ibl 2 - 1 = 0; (3.36)

and

i). Ial 2
- Ibl 2

- 1 = 0; ii). Idl 2
- Iel 2 - 1 = O. (3.37)

From here the equalities (3.31.i) and (3.31.ii) follow. To derive the equality (3.31.iii)
we observe that the equality j - M*jM = 0 impliesthe equality IdetMI = 1, or
Iad - bel = 1. To derive the equalities (3.32.i) and (3.32.ii) we use the equalities
(3.37.i) and (3.36.i) which can be written in the form

1
lal - Ibl = lal + Ibl and

1
lal - lei = lal + lei

Since lal 2: 1, lal-Ibl ~ 1 and lal-Iel ~ 1. The later inequalities are the inequalities
(3.32.i) and (3.32.ii). D
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Lemma 4. Let M = [~ ~] be a 2 x 2 matrix, which is j -unitary with respect to

j of the form (3.5). Then the following norm estimate holds:

i). II [~ ~] II = Ial + )1 al
2
- 1, and hence, ii). II [~ ~] II < 21 al·

(3.38)

Proof It is clear that II [~ ~] II ~ II [ \~II I~I ]II· In view of (3.3l.i), (3.3l.ii)
. [I al Ibl ] [ Ial )1 al

2
- 1 ] . .and (3.36.1), Icl Idl = )1 al2 _ 1 Ial . The later matnx IS sym-

metric, and its norm is equal to its largest eigenvalue. This eigenvalue is equal to
Iaj + )1 al 2

- 1 < 21 aI- 0

Lemma 5. Let w = ho, 'Yl, ... , 'Yk, ... ) be a contractive sequence of complex num
bers and let Mw,n(') be the matrix function, with the entries (3.8), which is con
structed from w as the product (3.7).

Then

1. The inequalities

ii). 1-1 cw,n(t) 1< 1
aw,n(t) - Iaw,n(t)1

i).law,n(z)1 ~ 1; 00) I bw,n(z) I < l'
11 • ( ) ,aw,n z

hold in the closed unit disk.
2. The inequalities

.) 1 _I bw,n(t) I< 1 .
1 . aw,n(t) - Iaw,n(t)1 '

and the equality

'00) I cw,n(z) I < 1
lll. ()aw,n z

(3.39)

(3.40)

(3.42)

(3.41 )!aw,n(t)dw,n(t) - bw,n(t)Cw,n(t)1 = 1

hold on the boundary of the unit disk.
3. The estimate for 11Mw, t(t) II :

II [
aw,n(t) bw,n(t)] 11< 21 aw,n(t)1
cw,n(t) dw,n(t)

holds on the boundary of the unit disk.

Proof The lemma is an immediate consequence of Lemma 2, Lemma 3 and
Lemma 4. 0

4. Some deterministic considerations

Lemma 6. Let s be a Schur function, w = {'YdO:::;k<oo be a sequence of its Schur
parameters (so 'Yk = 'Yk(S), k = 0,1,2, ...) and let {Mw,n (. )}O:::;n<oo be the
sequence of the matrix functions, with the entries (3.8), which is constructed from



A Generic Schur Function is an Inner One 259

w as the product (3.7) of the matrices m-Yk(t) where the matrix m-y(t) is defined
by (3.1).

For this w, let Tw be the set of all those t E 'II' for which the following two
conditions are satisfied:

i.
law,n(t)l---. 00 as n ---. 00; (4.1)

ii. there exists a linear combination of a w, n(t) and bw, n (t), with an appropriate
coefficient (w(t), which vanishes asymptotically:

aw,n(t)(w(t) +bw,n(t) ---.0 as n ---. 00. (4.2)

Assume that the set Tw is a set of full Lebesgue measure:

(4.3)

Then the function (w (t) (which is defined on the set Tw ) coincides with the bound
ary value s(t) of the function s(t) for m(dt)-almost every t E Tw. Moreover,
i. The function s is inner:

Is(t)1 = 1 for m(dt) almost every t E 11'. (4.4)

ii. The sequence APn (s; .) of the Schur approximants of the function s converges
to its boundary value s pointwise almost everywhere on 11':

APn(s; t) ---. s(t) as n ---. 00 for m(dt) almost every t E 'II'. (4.5)

Lemma 7. The set Tw is a Borel subset of'lI'.

Proof. Note that the functions a w,n(t) and bw,n(t) are continuous on 11'. Therefore,
the set E1 = {t E 11' : law, n(t)1 ---. oo} is a Borel set. The set E3 = {t E '][' :

3 lim bw n(t)/aw n(t) ~f -(w(t)} is a Borel set and the function (w(t) is defined
n-7OO' ,

and Borel measurable on E3 . Finally, the set E2 = {t E E3 : lim (aw,n(t) (:(t) +
n--+oo

bw,n(t)) = O} is a Borel set as well. It is clear that (:(t) = (w(t) for t E E2 and
that Tw = E1 n E2 . D

Proof of Lemma 6. Since according to Ian, w(t)1 2 1 on 11', it follows from (4.2)
that

(w(t) = lim - bw,n(t) for t E T w '
n--+oo aw,n(t)

From (4.1) and from (3.39.ii), (3.40.i) it follows that

I
bw,n(t)!---.l as n---.oo for tETw .
a w , n(t)

Thus,
I(w(t)1 = 1 for t E T w . (4.6)

We will now prove that (w (t) coincides with s(t) for m(dt) - a. e. t E 'II'. First of all
we remark that the function (w(t) can be "continued analytically" into the unit
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disk. By (3.39.ii) APn(s; z) = - b w,n~z~ is a contractive rational function in the
aw,n z

unit disk. Hence, for each n

By (3.14),

JAPn(s; t) . t k
. m(dt) = 0,

T

k = 1,2,3, ...

(izi < 1),

k = 1, 2, 3,

(lzl<l).

(izi < 1).

APn(s; t) --+ (w(t) for t E T w . (4.7)

Letting n tend to infinity and applying the Lebesgue dominated convergence the
orem we conclude that

J(w(t)· t k
. m(dt) = 0,

1I'

From the last condition it follows that the function

defJ ) 1(w(z) = (w(t --- m(dt)
1- tz

1I'

defined by means of the Cauchy integral, is also representable by the Poisson
integral:

J 1-lz12
(w(z) = (w(t) It _ zl2 m(dt)

1I'

Indeed, for t E 11' and z E IDJ,

1 - Izl
2

1 t-z 1 '" k-k
It - Zl2 = 1 - Iz + 1 - tz = 1 _ Iz + ~ t z .

l::;k<oo

From the Cauchy integral representation it follows that the function (w (z) is holo
morphic in the open unit disk IDJ and from the Poisson integral representation it
follows that the boundary values lim (w (pt) of the function (w (z) coincide with

p->1-0

the original function (w(t) for m-a. e. t E 11' and that l(w(z)1 :s; 1 (z E IDJ). It is
clear that

J 1-lz12
(w(z) - APn(s; z) = ((w(t) - APn(s; t)) It _ zl2 m(dt)

1I'

Since I(w(t) - APn(s; t)1 :s; 2 on 11' and (w(t) - Apn(s; t) --+ 0 for m-a.e. t E 11',
by the Lebesgue dominated convergence theorem

APn(s; z) --+ (w(z) locally uniformly in IDJ . (4.8)

According to (1.21),

APn(s; z) --+ s(z) locally uniformly in IDJ . (4.9)

From (4.9) and (4.8) it follows that (w(z) = s(z) for all z E IDJ. Hence, C(t) = s(t)
for m - a. e. t E 11'. This completes the proof of Lemma 6. 0
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Lemma 8. Let the sequence h'n}o::;n<oo of the Schur parameters of a non-excep
tional Schur function s satisfy the condition

lim hnl = 1.n--+oo
(4.10)

Then s is an inner function.

Proof. Let {sn (. )} 1<n<oo be the sequence of Schur functions generated by the
Schur algorithm applied to the function s(.) : (1.6) and (1.7). From the Parseval
identity for the function s n+l we derive that 1Sn+l (0)1 2 :::; J I Sn+l (t) 12 m(dt) which

1l'
implies

j (1-ISn+l(tW) m(dt) :::; 1 -1'n+112 . (4.11)

1l'

Let {Mw,n (. )}O::;n<oo be the sequence of the matrix functions, with the entries
(3.8), which is constructed from the sequence w = (To, ,1, ... , ,k, ... ) of Schur
parameters of the function s as the product (3.7) of matrices m'k(') where the
matrixm,(.) is defined by (3.1). Using the linear fractional transformation (3.11),
the function Sn+l can be expressed in the matrix form (3.10). Since the matrix
function M w, n+l takes j-unitary values on 'f (Lemma 2: identities (3.29)), it fol
lows from (3.10) that

1-1 s(tW = (1-1 Sn+1(t)1 2) ICw,n(t) s(t) + dw,n(t)1
2
for t E 11'. (4.12)

From (3.11) we obtain:

( ) _ ( ) ( ) _ aw,n(t)dw,n(t) - bw,n(t)Cw,n(t)
aw,n t cw,n t Sn+1 t - cw,n(t) s(t) + dw,n(t) .

The determinant relation (3.41) implies the identity

2 1
1aw,n(t) - cw,n(t) sn+l(t)1 = ICw,n(t) s(t) + dw,n(t)12 . (4.13)

From (4.12) and (4.13) it follows that

(1-ls(t)12)·law,n(t)-cw,n(t)Sn+l(tW=I-lsn+l(t)12 for tElr. (4.14)

Since law,n(t)1 2: 1 (Lemma 5: (3.39.i)), we obtain

(1 -ls(t)1 2 ) .11 - ::',:~~~ sn+l(t)1
2
:::; 1 -I Sn+l(t)1 2

for t E 11'. (4.15)

Integrating over 11' with respect to the Lebesgue measure and using (4.11), we get

j(1-ls(t)1
2
) 11- ::::~~~ sn+l(t)1

2
m(dt):::; I-lTn+l1

2
. (4.16)

1l'

If the function s is not inner, then there exists a set E of positive Lebesgue measure
and a positive constant E such that

l-ls(t)1 2 2: E for tEE. (4.17)
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From (4.16) and (4.17) we derive the crucial estimate

J11 - ::', :~~~ Sn+1 (t) 1

2

m(dt) ~ f -1 (1- ITn+11 2 )
E

(n=O, 1,2, ... ).

(4.18)

According to Lemma 5: (3.39.iii), the quotient c w
, n , which in particular appears

aw,n

in (4.18), represents a contractive holomorphic function in lDJ. It is important to
know the value of this function at the origin. However, it is not possible to calculate
this value by substituting z = 0 into cw,n (z) and aw,n (z): the function cw,n and
a w , n themselves are not holomorphic at the origin. They have a pole there, only
their quotient is holomorphic.

To "resolve" the singularity at z = 0, we consider znaw,n(Z) and zncw,n(Z)
which have the same quotient but are polynomials. By (3.7) and (3.1) the matrix
znMw,n(z) has the representation

(4.19)

For z = 0,

[
znaw,n (z)lz=o znbw,n (z)lz=o ]
zncw,n (z)lz=o zndw,n (z)lz=o

= IT [1 -'k]. 1 = [1 -'0]. IT 1 (4.20)
0SkSn 0 0 Jl - ITkl 2 0 0 OSkSn Jl - ITkl2

In particular, Iznaw,n(Z) Iz=ol > 1, zncw,n(Z)lz=o = 0, and

cw,n(z)1 =0.
aw,n (z) z=o

Let us introduce the notation

( )
def cw,n(z) ()

in Z = 1 - ( ) Sn+1 Z .
aw,n z

(4.21)

(4.22)

Since both Sn+l and Cw,n+l/aw,n+l are holomorphic and contractive in lDJ, the
sequence Un} is uniformly bounded in lDJ:

Ifn (Z ) I ~ 2 for z E lDJ , (n=0,1,2, ... ). (4.23)

By (4.21),
in(O) = 1, (n = 0, 1,2, ... ).

The inequality (4.18) can now be written as

Jlin (tWm(dt) ~ f-1(1- ITn12
) , (n = 0, 1, 2, ... ).

E

(4.24)

(4.25)
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Here E is a set of positive Lebesgue measure and E is a positive number which do
not depend on n.

However, the totality of the conditions (4.23), (4.24), (4.25) for a holomorphic
function fn is incompatible if 1-h'nI2 is small enough and E and E are fixed. Indeed,
this contradict to the Jensen inequality. The Jensen inequality for a bounded
holomorphic function <P in the unit disk is given by

I<p(0) I ~ exp{ j In I<p(t)1 m(dt)} ,
'II'

where <p(t) is the boundary values of the function <P. Applying (4.24) and the
Jensen inequality to the function fn, we obtain

1 ~ exp { j In I fn(t)1 m(dt)}
'II'

= exp{ j In I fn(t)1 m(dt)} . exp{ j In I fn(t)1 m(dt)} , (4.26)

'II'\E E

where E is the set on which the inequality (4.17) holds. By (4.23), I fn(t)1 ~

2 on 1r, thus

exp { j In I fn(t)1 m(dt)} ~ 2. (4.27)

'II'\E

Using inequality between arithmetic and geometric mean (for the probability mea
sure m(dt)jm(E) on E) we obtain

m(E)

exp{£In I fn(t) Im(dt)} = (exp{£In I fn(t)1 2 :t~j }) 2

(4.28)
m~E) m(E) m~E)

~ (£ I fn(t)1 2 :i~j) = (m(E)) 2 . (£ I fn(tW m(dt))

From (4.26), (4.27) and (4.28) we obtain the inequality:

m(E).TmtE) ~ jlfn(t) 12 m(dt). (4.29)

E

Finally, the inequality (4.25) implies

E.m(E).T",tE) ~1-I')'nI2, (n=O, 1,2, ... ), (4.30)

where E and E are same as in (4.17) and ')'n is the n-th Schur parameter of the
function s. Thus, if the function s is not inner, its Schur parameters ')'n(s) are
separated from 1: (sup I')'k(S) I < 1), which contradicts (4.10). 0

k

In the framework of polynomials orthogonal on the unit circle a result similar
to our Lemma 8 was obtained by E.A. Rakhmanov (see [Rakh], Lemma 4 there).
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This result by E.A. Rakhmanov was adopted for Schur functions by L. Golinskii
(see [Gol2], Theorem 2). Our proof of Lemma 8 is different from the proof by
E.A. Rakhmanov. Another proof of the lemma was given by S.V. Khrushchev in
[Khru1] (see Theorem 9.3 and Corollary 9.5).

To apply Lemma 8, we need the following

Lemma 9. Let f.-L be a probability measure on the open unit disk lI)l, and let n be the
product space (2.1), i.e. the set of all contractive sequences w of complex numbers.
Let PI-' be the product measure on n generated by f.-L. If the support of the measure
f.-L is not separated from 11', i. e. if the condition

sup hi = 1
I'Esupp I-'

(4.31 )

is satisfied, then for pl-'-almost every sequence w = ho, 1'1, 1'2, ... , I'k, ... ) the
condition

(4.32)

holds.

Proof. Proving the Lemma is equivalent to showing that (4.31) implies

pl-'(L1) = 0, where L 1 = {w: lim hkl < I}.
k-oo

Since

L 1 - 1/ n ,where L 1- 1/ n = {w: lim hkl < 1 - lin},
k->oo

l::on<oo

it is enough to prove that pl-'(L1- 1/ n ) = 0. However L 1 - 1/ n ~ U C1- 1/ n , m ,

l::om<oo
where

C1- 1/ n ,m = {w : hk < 1 for k = 0,1, ... ,m - 1
and hkl < 1 - lin for k ~ m}.

Since the set C1- 1/ n ,m is a cylindric set (direct product),

where
(1 - 1/n)·lI)l = bEe: hi < 1 - lin}.

In view of (4.31),
f.-L ((1 - lin) lI)l) < 1 for every n.

Thus,

PI-'(C1- 1/ n,m) = ° for every m, n, PI-' (L 1 - 1/ n ) = °for every n

and hence PI-' (Ld = 0. 0
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5. Furstenberg-Kesten, Furstenberg and
Oseledets ergodic theorems

265

(5.2)

To prove that some Schur function s is inner we use Lemma 6. For an individual
function s, verification of conditions (4.1) and (4.2) is extremely difficult. However
the situation is changed by a probabilistic consideration. It turns out that for vast
majority of sequences w = ho, 11, 12, ... , Ik, ... } the family (3.7) of matrices
m'n (t)· m'n_l (t)· .... m" (t) .m,o (t) behaves appropriately. The probabilistic
basis for our consideration are results on noncommutative random products which
are known as Furstenberg-Kesten theorem, Furstenberg theorem and Oseledets
theorem. We will formulate these theorems in generality which is sufficient for our
consideration. These theorems are related to arbitrary d x d matrices. However for
simplicity we formulate these theorems for 2 x 2 matrices only.

Definition 8. PSL(2, q is the set of all 2 x 2 matrices 9 with complex entries which
satisfy the condition Idet 9 I = 1.

PSL(2, q is a noncompact Lie group.
The above mentioned theorems deal with products of independent identi

cally distributed (i.i.d.) matrices. The common distribution of these matrices is
described by a probability measure f-t on the O'-algebra of Borel sets of PSL(2, q.
The condition J (In Ilgll) f-t(dg) < 00 (5.1)

PSL(2, <C)

is usually imposed on the measure f-t. (Since Idet gl = 1, Ilgll ~ 1 for 9 E PSL(2, q.
Thus, ln Ilgll ::::: °in (5.1).) For every sequence

Wg = {gO, gl, g2, ... , gk, ... }

we consider the sequence of products

Mwg,n = gn' gn-1 . gn-2' .... gl . go, n = 0,1,2, ... . (5.3)

We consider the sequence {Mwg ,n}O:5n<oo as a sequence of matrix valued random
functions. The appropriate sample space, which we denote by Oe, is the space of
all sequences W of the form (5.2). On other words, Oe is the countable product

Oe = PSL(2, q x PSL(2, q x ... x PSL(2, q x ... . (5.4)

Being the product of the topological spaces PSL(2, q, Oe itself is a topologi
cal space. The O'-algebra of events ~ is the algebra of all Borel sets in Oe. The
probability measure PJ.L is the product measure

PJ.L = f-t ® f-t ® ... ® f-t ® .... (5.5)

Of course, the measure PJ.L is generated from the original probability measure f-t on
PSL(2, q.

Thus we have constructed the probability space (Oe, I:, PJ.L)' This space is
used for the probabilistic study of the products M w, n of independent identically
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distributed random matrices (with the common distribution described by the mea
sure p,.)

The following theorem can be considered as a matrix generalization of the
strong law of large numbers:

Theorem (Furstenberg-Kesten). Let p, be a probability measure on PSL(2, C) which
satisfies the condition (5.1). Let (Dc, ~,p,.,) be the above probability space. Let
M W g , n be the sequence of successive products for a sequence W g of matrices, as it
is described in (5.2)-(5.3).

Then there exist an "exceptional" set R, R r;;; Dc, of zero p,.,-measure:
pJ.l(R) = 0, and a number A 2:: 0 such that for every sequence wg E Dc \ R,
the limit

lim In IIMwg,nll = A.
n->oo n + 1

exists. (This limit does not depend on wg E Dc \ R.)

(5.6)

o
This value A of the limit (5.6) (which is common for almost every wg E D) is

said to be the upper Lyapunov exponent of the probability measure p,. There is an
expression for the upper Lyapunov exponent:

A= lim ~'JlnIIMw,n-tIIdP"'(W)
n--+oo n

n

= lim ~. {{ ...J(In Ilgn-1 . gn-2' .... g1 . gall)
n--+oo n JJ

dp, (go) dp, (gd ... dp, (gn-d. (5.7)

The limit in (5.7) exists because the sequence !lnIIMw,n-1 dp,.,(w)11 is subaddi-
n

tive with respect to n. However, the expression (5.7) is practically useless for our
purpose. We need conditions which ensure that the upper Lyapunov exponent
is strictly positive: A > O. (Since In 11MW g , n II 2:: 0, A 2:: 0 always.) The follow
ing remarkable theorem of Furstenberg gives conditions which guarantee that the
Lyapunov exponent A is strictly positive.

To formulate Furstenberg's theorem we need to introduce some notion. Every

non-degenerate 2 x 2 matrix 9 = [~ ~] acts on the projective space ClP'1 (which

can be identified with the Riemann sphere C = C U {oo}). If ~ : r] is a point of
the space C1P'1, then the point 9 (~ : r]) is: 9 (~ : r]) = (a~ + br]) : (c~ + dr]). If
we identify the point ~ : r] E ClP'1 with the point ( = ~/r] E C, then the point

. ~+b 1 -
g(() IS: g(() = c( + d' As 9 acts on the space CIP' = C, g acts also on measures

on this space: if v is a measure on C, then 9 (v) (E) ~f v (g-1(E)) for the set E.
(Of course, we assume that the domain of definition of the measure v is invariant
under the action of g.)
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Definition 9. The measure v on C is said to be invariant for a (non-degenerated)
matrix 9 if g(v) = v. The measure v on C is said to be invariant for a family G of
non-degenerated matrices if v is invariant for every matrix 9 from this family. D

Definition 10. For a Borelian measure J-L, G(supp J-L) is the subgroup of PSL(2, C)
generated by matrices 9 from the set supp J-L. In other words, G(supp J-L) is the set
of all the matrices of the form g{l . g;2 .... g{"", where g1, g2, ... , g/ E supp J-L,
l is an arbitrary natural number and Ck = ±l. D

Theorem (Furstenberg). Let J-L be a Borel probability measure on PSL(2, C), which
satisfies (5.1) and the following additional condition: there is no Borel probability
measure v on C which is invariant with respect to all the matrices from the subgroup
G(supp J-L).

Then the upper Lyapunov exponent A of the measure J-L is strictly positive:
(A> 0). 0

The following result can be considered as a generalization of Furstenberg
Kesten theorem.

Multiplicative ergodic theorem (Oseledets). Let J-L be a Borel probability measure
on PSL(2, C) which satisfies the condition (5.1). Let (nc , 2:, PJl-) be the above
probability space. Let M W g , n be the sequence of successive products (for a sequence
W g of matrices) as it is described in (5.2)-(5.3).

Then there exists an "exceptional" set R, R ~ nc, of zero pJl--measure such
that for every wg E nc \ R the following holds:

i. The limit
. {* }1/2n d.flim M w nMw,n = \If(Wg ) , (5.8)

n--t(X) g, 9

exists. Here \If(wg ) is a 2 x 2 Hermitian matrix with eigenvalues eA and e->.,
where A is the Lyapunov exponent of the measure J-L. (So, the eigenvalues of
the matrix \If do not depend on wg E nc \ R, but the eigenspaces may depend).

ii. If A> 0, which is the case of different eigenvalues of the matrix \If(wg ), then

lim lnllMwg,nYII = _A (5.9)
n--+oo n

for every non-zero y in the eigenspace V_A, W g of the matrix \If(wg ) corre
sponding to the eigenvalue e-A and

lim lnllMwg,nxll = A (5.10)
n--+(X) n

for every non-zero x which does not belong to this eigenspace (i.e. for x E
c 2 \ V-A,wJ 0

The multiplicative ergodic theorem of Oseledets is informative in the case of
different eigenvalues of \If (w), that is in the case of strictly positive upper Lyapunov
exponent of the measure J-L. Because of this, Oseledets' theorem is usually used
together with Furstenberg's theorem.
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The Furstenberg-Kesten theorem first appeared in [FuKe]. The original proof
is based on Birkgoff ergodic theorem. A good presentation (also based on Birkgoff
ergodic theorem) is contained in [BoLa]. Another proof (which appeared as a
simple corollary the so-called subadditive ergodic theory) is contained in [King]
(Theorem 6 ). The Furstenberg theorem first appeared in [Fur]. This is Theorem
8.6 in [Fur] 1. A presentation of the Furstenberg theorem is also contained in
[BoLa]. [BoLa] contains not only a presentation for the general case (of d x d
matrices) but also a simplified presentation for 2 x 2 matrices. (For 2 x 2 matrices,
the Furstenberg theorem appears as Theorem 4.4 of the part A of [BoLa].) The
multiplicative ergodic theorem first appeared in [Os]. This theorem was motivated
by smooth ergodic theory. It was first applied to smooth dynamical system. Later
on other important applications of this fundamental theorem had been found. One
of these applications there is the application to random Schr6dinger operator which
is conceptually close to our consideration. The original proof in [Os] was given for
matrices with real entries but in fact this proof is valid for matrices with complex
entries as well. A new proof under very general assumptions (for matrices whose
entries belong to a local field, archimedian or non-archimedian) was given by M.S.
Raghunathan in [Ragh]. The book [Am] contains proofs of the Furstenberg-Kesten
and Oseledets theorem as well as a lot of other results about products of random
matrices and a rich bibliography. The paper by I.Ya. Goldsheid and G.A. Margulis
[GoMa] contains a good overview of the above mentioned classical results about
products of random matrices. It also contains a new criterion for simplicity of
the Lyapunov spectrum (the set of Lyapunov exponents) of the product of d x d
random matrices in terms of algebraic geometry. (Namely, in terms of the Zariski
closure of the support of the measure p,.) The books [CarLa] by R. Carmona and
J. Lacroix and [PaFig] by L. Pastur and A. Figotin contain a lot of applications
of results on products of random matrices to random differential and difference
operators. Part B of the book [BoLa] is also dedicated to such applications.

It should be mentioned that we intentionally formulated the results for se
quences of 2 x 2 matrices. We also assumed that the matrices in the sequences are
independent. However, the classical papers [FuKe], [Fur] and [Os]' as well as many
other sources, deal with stationary (but not necessary independent) sequences of
d x d matrices. In some sources, results of this kind are obtained even under weaker
assumptions on dependence than the stationarity.

1In the formulation of Theorem 8.6, which is stated in [Furl, it is not assumed that the subgroup
G(supp J.L) cannot leave a measure fixed, but some other assumptions are made. However, from
these assumptions, it follows immediately that there is no Borel probability measure v on C
which is invariant with respect to all the matrices from the subgroup G(sllPp J.L). Th~J11~ill P8:rt
of the proof of Theorem 8.6 is dedicated to prove that if the Lyapunov exponent >'(J.L) of the
measure J.L is equal to zero then there exists a probability measure v on C which is invariant for
all the matrices from the subgroup G(supp J.L).
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(6.4)

6. Checking the conditions for the positivity of
the upper Lyapunov exponent

To prove our main results, Theorems I and II, we use Lemma 6 (Section 4). To ver
ify the assumptions (4.1) and (4.2) of Lemma 6 (for almost all sequences {m'k (tn),
we apply Oseledets' theorem (together with Furstenberg' theorem) to these ran
dom sequences. Let t be an arbitrary but fixed point of the unit circle. We introduce
a mapping f t which takes a point, E j[)) to the matrix m,(t):

fth) = m,(t) , where m,(t) = [C
I

-,. t-
I

] . 1 (6.1)
-'7 1 Jl - 1,12

The mapping f t : j[)) --+ PSL (2, q is injective and continuous. We define a new
measure fLt (= fL . f t I) by

fLt (9) = fL(ft l (9) for 9 S;; PSL (2, q. (6.2)

fLt is a Borel measure on PSL (2, q. The image ft(j[))) of the open unit disk j[)) is
the closed (but non-compact) subset of PSL (2, q. It is clear that

supp fLt S;; f t (j[))). (6.3)

In view of (6.1) and (6.2),

J (In II gil fLt)(dg) = J(In IIm,(t)ll) fL(d,).

PSL(2,C) D

. 1
Smce ItI = 1 and 1,1 < 1, the values Ilm,(t)11 and are comparable and

JI-1T12
we have the following lemma.

Lemma 10. The conditions

J (In II gil) fLt(dg) < 00 and

PSL(2,Q

are equivalent.

Jln 1_1
1T1

fL(d,) < 00

D

(6.5)

Definition 11. Let ,', ," E j[)), t E 1I'. The subgroup ofPSL (2, q generated by two
matrices m,,(t) and m,,,(t) will be denoted as Ch', ,", t). 0

To apply Furstenberg's theorem, we need the following two results:

Lemma 11. If,' :f. ,", then for every t E 1I'

II (m,,(t) .m,,,(t)-I til --+ 00, II (m,,(t)-I .m,,,(t)tll --+ 00 as n --+ ±oo
(6.6)
o

Lemma 12. Let at least one of the following two conditions be satisfied:
i. " :f. ," and t :f. ±1.
ii. ,',":f. ,',".
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. (6.7)
1 1

Jl - 11"12. Jl - 1,"12]

Then there exists no Borel probability measure 1/ on C which is invariant with
respect to all the matrices from the subgroup C(t', ,", t). 0

Proof of Lemma 11. Using (3.1) we obtain

m')',(t) . (m')'lI(t))-1

[

1-,',"

- (t"-,')t

and

(m')',(t))-1 .m')'lI(t)

[

1-,',"

- -(t" -,')

-(t" -,') ] 1 1

Jl _1,'12 JI-I,"12
. (6.8)

Since det m')'(t) = r 1,

det (m')',(t)· m')'lI(t)-I) = 1 and det (m')',(t)-1 .m')'lI(t)) = 1.

The characteristic equation for each of two matrices (m')',(t))-1 . m')'lI(t) and
m')',(t) . (m')'II(t))-1 is of the form

2 2-,',"-1","
A - . A+ 1 = O. (69)Jl - 1,'12.Jl - 11'''12 .

Since 1,'1 < 1 and 11"1 < 1, the coefficient of A is negative. If the discriminant of
the characteristic equation is positive, then both characteristic roots are positive,
one of them, say A', is larger than 1, the second, say A", is less than 1. In particular,
the eigenvalues of the matrix (m ')' ,(t)) -1 .m ')' II (t) (as well as the eigenvalues of the
matrix m')',(t)· (m')'II(t))-I) are distinct. Moreover, A' . A" = 1. Let us prove that
if,' =I- ,", 11'1 < 1, 1,"1 < 1, then the discriminant of the characteristic equation
(6.9) is strictly positive. The discriminant is positive if and only if the expression
(2 -,'1''' _,',")2 - 4(1 _11'12) (1 _11"12) is strictly positive. However,

(2 - 1"," -,' 1''')2 - 4(1 _11'12)(1 _11"12)
=(2_,',"_,',")2 - (2 - 211'111"1)2

+4((1-11'11,"1)2 - (1_1,'/2)(1_11"12))

= (4 - 21,'111"1-,'," - ,',") (211'/1,"1 - ,'," - ,',")

+ 4 (1,'1 - 1,"lf· (6.10)

It is clear that the last expression is non-negative and it vanishes if and only if
1,'1 = 1,"1 and 11'111"1 = ,',", that is if and only if,' = ,". Since,' =1-,", the
discriminant is strictly positive, and eigenvalues A' and A" of each of two matrices
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m-y/(t) . m-y,,(t)-l and (m-yl(t))-l . m-y,,(t) (these two matrices have the same
eigenvalues) satisfy the condition

0<>"//<1<>'" and >"'·>"//=1. (6.11)

Since (>,,')n is an eigenvalue for each of the matrices (m-y/(t) . m-y,,(t)-lr and
(m-y/(t)-l . m-y,,(t)r,

II (m-y/(t) . m-y,,(t)-lrll 2: (>..'r, II (m-y/(t)-l . m-y,,(t)rll 2: (>,,'r

(n = 0, 1,2, ... ). Since (>..//)-n = (>,,')n is an eigenvalue for each of the matrices

( l)-n ( I )-nm -y I ( t) . m -y " (t )- and m -y I ( t) - . m -y " (t ) ,

II (m-y/(t) . m-y,,(t)-l) -nil 2: (>..'r, II (m-y/(t)-l .m-y,,(t)) -nil 2: (>..'r

(n = 0,1,2, ... ). Since >..' > 1,

II (m-y/(t) .m-y,,(t)-lrll-> 00, II(m-y/(t)-1 .m-y,,(t)rll-> 00

as n -> ±oo. o
Proof of Lemma 12. We will prove a stronger result in this case. Namely we will
show that no probability measure v exists which is invariant for all matrices from
the group generated by Al and A 2 , where

and (6.12)

(Since Al and A 2 belong to the group G(r','"Y//; t), the group generated by AI, A 2

is contained in G(r','"Y//; t).)
If a matrix A is j - unitary: A*j A = j, then the eigenvector x that corresponds

to the eigenvalue>.. with 1>"1 =I- 1 is j - neutral: x* jx = O. Indeed, the identity
Ax = >..X implies x*A*jAx = I>..J 2x*jx, and j-unitarity of the matrix A implies
x* jx = 1>"1 2x* jx. Therefore, each eigenvector of such a matrix A is proportional to

a vector of the form [ i ]where ( is an appropriate unimodular complex number
(which depends on the choice of the matrix and its eigenvalue). If the matrix A is
hermitian, i.e. A * = A, and X and X' are two distinct eigenvalues of the matrix
A, then the corresponding eigenvectors e' and e// are orthogonal: (e//)* . e' = O.

Thus if A = [au a12 ] is a 2 x2 matrix which is both j - unitary as well
a21 a22

as hermitian and if its eigenvalues >..' and >..// satisfy the conditions X =I- )..//, I)..'1 =I-

1, I)..//1 =I- 1, then its eigenvectors can be chosen in the form e' = [ i ] and
e// = [-i ]where ( is an unimodular complex number. The eigenvectors e' and
e // of the matrix A correspond to the fixed points {(} and {-(} of the linear

au z + al2 .
fractional transformation z -> , and these are the only fixed pomts of

a2l z + a22

this transformation on C.
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Now we investigate whether a probability measure v exists on C which is
invariant under the actions of all the matrices from the group generated by the
matrices A l and A2 . Both matrices are j-unitary and hermitian. First we consider
the action of the matrix Al . Let )...', )..." be the eigenvalues of the matrix Al , )...' E
(1, (0), )..." E (0, 1). Let

e' = [ f ] and

where ( is a unimodular complex number, be the corresponding eigenvectors. The
points ( E C and -( E C are the fixed points for the linear fractional transforma
tion

(1 - "'('"'(") z + (--y" - "'(') C l

Z ----+ (6.13)
(--y" - "'(') t z + (1 -"'(' "'(")

which corresponds to the matrix A l (see (6.12) and (6.7)), as well as for all integer
powers of this transformation. The point ( is an attracting fixed point for the
transformation (6.13), the point -( is a repelling one.

The measure v is also invariant under the action of all matrices AI, n E Z.
Under the action of the matrix Al , the punctured Riemann sphere C\(-() shrinks
to the point ( as n ----+ +00. Hence,

supp v ~ {(} U {-(}. (6.14)

(6.15)

Now we consider the action of the matrix A2 . We will show that each of the
fixed points ( and -( for the linear fractional transformation (6.13) is also a fixed
point for the linear fractional transformation

(1 - "'( ';::;") z - (--y" - "'(')
z----+ ,

_(--y" - "'(') z + (1 -"'(' "'(")

which corresponds to the matrix A2 , or, equivalently, the vectors [ f ]and [ -f ],
which originally appear as eigenvectors of the matrix A l , are eigenvectors of the
matrix A2 as well.

Since the measure v is invariant for the matrices A2 ,Ail, its support supp v
is A2 - invariant.

If supp v consists of one point, say (, then the one-point set {(} must be

invariant under the transformation (6.15), i.e. the vector [ f ] is an eigenvector
of the matrix A2 . Since A2 is selfadjoint, the orthogonal vector [ -f ] must be
an eigenvector of the matrix A2 , i.e. the point {-(} must be a fixed point of the
linear fractional transformation (6.15).

If supp v consists of both points ( and -( but v( {(}) :f. v({-(}), then both
sets {(} and {-(} are invariant under the actions of transformatios (6.13) and
(6.15).
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(6.16)

-(,

-h" - "(') t ( + (1 - "(' "(")(1 - "('''('') - ("(" - "(') r l ("

respectively. Similarly, the equations

(1 - "('"1") ( - ("(" - "(')

-("(" -"(')( + (1- "('''('')

Finally consider the case where supp v consists of both points {(} and {-(}
and v(() = v(-(). In this case the linear fractional transformations (6.13) pre
serves ( and -( and the linear fractional transformation (6.15) either preserves
these points or permutes them. In any case the points ( and -( are fixed points

for the square of the transformation(6.15). Thus [ i ]and [ ~( ] are eigenvectors
of the matrix A~. However, the mapping ,\ --+ ,\2 is one-to-one on the spectrum
of matrix A2 . Therefore these vectors are eigenvectors for the matrix A2 as well.
Hence, both ( and -( are fixed points of the transformation (6.15).

Thus, if a probability measure v exists which is invariant for the group gen
erated by the matrices Al and A2 then a unimodular complex number ( exists
such that the points ( and -( are fixed points for both the linear fractional trans
formations (6.13) and (6.15). The equations

(1- "('"1") ( + ("(" - "(')r l

("(" - "(') t ( + (1 - "(' "(")

(1 - "('"1") (-() + ("(" - "(') r l

("("-"(')t (-() + (1-"('''('')

which express that ( and -( are fixed points for the transformation (6.13), are
equivalent to the equations

(1 - "('''('') + ("(" - "(') r l
("

-(,
(1 - "('"1") (-() - ("(" - "(')

-("(" - "(') (-() + (1 - "(' "(")
which express that ( and -( are fixed points for the transformation (6.15), are
equivalent to the equations

(1 - "('''('') - ("(" - "(') ("

(1 - "('''('') + ("(" - "(') ("

-("(" - "(') ( + (1 - "(' "("),

("("-"(')( + (1-"('''('')
(6.17)

respectively.
From (6.16) and (6.17) it follows that

"('''('' = "(' "(" , (6.18)

(6.19)

and
(6.20)
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The equation (6.21) gives us the possible values for common fixed points ±( of
the linear fractional transformations (6.13) and (6.15):

," -,'
( = ± "" _ ,'I' (6.21)

The system of equations (6.16)-(6.17) is compatible only under the conditions
(6.18) and t = ±1.

Therefore if either one of the conditions (6.18) or (6.20) is violated, the linear
fractional transformations (6.13) and (6.15) will have no common fixed point. In
this case no probability measure v exists which is invariant for the group generated
by Al and A2 . D

7. Proofs of the main results

In this section we prove our main results - Theorems I and II. For a contractive
sequence w = (ro, ,1, ,2, ... , ,k, ... ) of complex numbers ,k, we consider the
sequence of matrices {Mw, n(t)}n=O, 1, 2, ... , where

(7.1)

. ml', (t) .ml'o (t) , n = 0, 1, 2, .... (7.2)

1 ] 1

As before, n is the product space (2.1), i.e. the set of all sequences
w = (ro, ,1, ,2, ... )

of complex numbers ,k satisfying the condition I,kl < 1, k = 0, 1, 2, ...
Lemma 13. For a given t on the unit circle, let nt be the set of all those wEn for
which the following two conditions are satisfied:
1.

Ian,w(t)1 -t 00 as n -t 00, (7.3)

ii. There exists a linear combination of a n, w(t) and bn, w(t), with an appropriate
coefficient (w(t) , which vanishes asymptotically:

(7.4)

where a w,n (t) and bw,n (t) are the entries of the matrix M w, n (t).
Let M be a probability measure on the open unit disk ll) and PI-' be the probability

product measure on n generated by M: PI-' = MQ9 MQ9 MQ9 ••• Q9 MQ9 ••..



A Generic Schur Function is an Inner One 275

Assume that the measure J.L satisfies the following two conditions:
i. The logarithmic integral converges:

Jln 1 ~ 1,1 J.L(d,) < 00; (7.5)
IDi

ii. The support of the measure J.L consists of more than one point:

:3 I"'" ElIJ): ,'ESUPPJ.L, ,"ESUppJ.L, ,'i-,". (7.6)

Then Ot is a Borel set of full p~-measure in 0:

p~(Od = 1 (7.7)

for every t E 1r except possibly t = ±1.
ii '. If instead (7.6), the following stronger condition is satisfied:

:3 ,', ,"ElIJ): ,'ESUPPJ.L, ,"EsuppJ.L, ,',"i-I"'" (7.8)

then (7.7) holds for every t E 1r.

Proof. The fact that 0t is a Borel set can be established by the same reasoning
that we have already used in the proof of Lemma 7. Now we are going to apply
the Furstenberg theorem and the Oseledets theorem to the family of the matri
ces {m-y(t)}-YEIDi. (T is the parameter which enumerates the family, t E 1r \ {±1}
is fixed.) We consider matrices m-y(t) as members of the group PSL (2, q. The
measure J.Lt on PSL(2, q is the image of the original measure J.L on lIJ) under the
embedding r t : lIJ) --+ PSL(2, q, as it was explained at the beginning of Section
6 (see (6.1) and (6.2)). The measure J.Lt is supported on the set r t (lIJ)), and only
those g E PSL(2, q can belong to the support of the measure J.Lt which are of
the form g = m-y for some, E lIJ). Therefore, applying theorems on products of
random matrices which were formulated in Section 5, we can restrict our con
sideration only to those sequences we = (go, gl, g2, ... ) which are of the form
We = (m-yo' m-Yl' m-Y2' ... ) : the sequences which are not of this form constitute a
set of zero probability (Le. of zero p~t-measure). By the assumptions on the sup
port of J.L, there exist ,I, ," E lIJ), " i- ," such that m-y, E supp J.Lt, m-y" E supp J.Lt.
By Lemma 11, the group generated by the matrices m-y, and m-y" is non-compact.
By Lemma 12, this group is irreducible as well. By Furstenberg's theorem, the
upper Lyapunov exponent At of the measure J.Lt is strictly positive: At > O. This
implies that

lim ln IIMw,n (t)11 = At> 0 (7.9)
n--->oo n + 1

for P~t -almost every sequences wg = (m-yo, m-yl' , m-Yk' ) E 0 G, or, equiva-
lently, for P~ -almost every sequences W= (To, ,1, , ,k, ) E O. (The sample
spaces 0 and OG were defined in section 2 and 5 respectively.) Using (3.42) we
obtain

1
· ln Iaw,n (t)1 \ 0
1m = At>

n--->oo n + 1
All the more, the claim (7.3) of Lemma 13 holds.

(7.10)
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Since M w, n (t) X = [ ~:: :gj ]for x = [ ~ ] , it follows from (7.10) that

lim In 11Mw,n (t) xii = At
n---HXl n + 1

In particular, this vector x does not belong to the eigenspace V->. t, w(t) of the
matrix \]! (w-, t):

\]! (w, t) ~f lim {M':,n(t) Mw,n (t)}1/2n, (7.11)
n--->oo

which corresponds to its eigenvalue e->' t • (See the formulation of the multiplicative

ergodic theorem by Oseledets in Section 5.) For any vector y = [ ; ] f:. a in the
eigenspace V_>'t,w(t), the limiting relation

lim In IIMw,n (t)Y11 = -At (7.12)
n--->oo n + 1

holds. The second entry 'T/ of such a vector y is not equal to zero: For, if'T/ were

equal to zero then y would be proportional to the vector x = [ ~ ]. Therefore the

eigenspace V_ >. t, w (t) contains the "normalized" eigenvector of the form

(7.13)

where (w is a complex number: we can start from an arbitrary eigenvector y with
entries ~ and 'T/ and then form the vector yw(t) with (w (t) = ~'T/-1. From the
relation (7.12) for the vector y = yw(t) it follows that

lim Inlaw,n(t)(w(t)+bw,n(t)l:::; -At. (7.14)
n--->oo n + 1

(The expression
aw,n(t) (w(t) + bw,n(t)

is the first entry of the vector M w, n (t) Yw (t) .) In particular, the claim (7.4) of
Lemma 13 holds. 0

Remark 7. It is possible to prove that for arbitrary probability measure fl on ]JJJ

the Lyapunov exponent At of the matrix family {m, (t)},EIIlI (with respect to this
measure) depends continuously on t (on the unit circle). By Lemmas 11 and 12
and Furstenberg theorem, under the condition (7.6) At > a for t E 11' \ {±1}, and
under the condition (7.8) At > a for all t E 11'. Thus, under the condition (7.8),
m~At>O. 0
tE1l'

Proofs of Theorems I and II. We consider the following two cases. Either the
logarithmic integral (7.5) converges, or it diverges. If this integral diverges, then
the support of the measure fl is not separated from 11', i.e. the condition (4.31
holds. In this case, using Lemma 9, we conclude that PI-' almost every sequence
w = (To, ')'1, ')'2, ... ) satisfies the condition (4.32): lim I')'kl = 1. By Lemma 8,

k--->oo
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for every sequence w = (,0, )'1, )'2, ... ) which satisfies the condition (4.32), the
corresponding function Sw is inner. So, if the logarithmic integral, corresponding
to the measure p" diverges, then almost every (with respect to the measure PM)
Schur function Sw is inner, i.e. Theorem I holds.

In the case of divergence of the logarithmic integral, the proof of Theorem
I is essentially deterministic. It is mainly based on Lemma 8 which is purely de
terministic. The only probabilistic fact that we use is Lemma 9 which is quite
elementary. The case of the convergence of the logarithmic integral is much more
complicated. In this case, our reasoning are essentially probabilistic. It is based
on Furstenberg theorem and in the end on Oseledets theorem. So, let the loga
rithmic integral converge. We will derive Theorems I and II from Lemma 6. To
apply this Lemma, we have to find a full PM measure set Ogen, Ogen ~ 0 such that
for every wE Ogen the conditions (4.1), (4.2) are satisfied for almost every (with
respect to m(dt)) t E 'IT'. For each fixed t E 'IT', the existence of a full PM measure
set Ot such that for every w E Ot the conditions (4.1) and (4.2) are satisfied is
provided by Lemma 13. If n0t is a set of full measure, it would serve as the set

tE1r
Ogen' Unfortunately, we cannot assert that this is a full measure set because we
have an uncountable intersection of full measure sets. However this obstacle can
be overcome using Fubini's theorem.

Let us consider the product space 0 x 'IT' and the product measure

PM ~f PM 0 m on 0 x 'IT' . (7.15)

We equip the set 0 x 'IT' with the product topology. The measure PM is defined on
the Borel o--algebra of the topological space 0 x 'IT' and is a probability measure:

PM (0 X 'IT') = 1. (7.16)

Again, we consider the sequence of matrix functions {Mw,n(t)}O:5n<oo which is
constructed from wand t as the product (3.7) of the matrices m"Yk (t) where the
matrix m"Y(t) is defined by (3.1).

Let us define the set M , M ~ Ox'IT' in a similar manner as we have introduced
the sets Tw and Ot (see formulations of Lemmas 6 and 13):

Thus, let M be the set of all those (w, t) E 0 x 'IT' for which the following two
conditions are satisfied:
1.

Ian,w(t)1 ~ 00 as n ~ 00, (7.17)

ii. There exists a linear combination of a n, w(t) and bn, w(t), with an appropriate
coefficient (w(t) , which vanishes asymptotically:

(7.18)

where a w, n (t) and bw, n (t) are matrix entries of the matrix M w, n (t).
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The set M is a Borel set of 0 x 11'. The proof of this statement is similar to
the proof of Lemma 7. Let M t and M w be the sections of the set M:

For fixed t E 11', M t = {w EO: (w, t) EM},

For fixed w E 0, M w = {t E 11': (w, t) EM}.

By Fubini's theorem and the definition (7.15) of the product measure Pp"

Pp,(M) = JPp, (M t ) m(dt)
1l'

and

(7.19)

(7.20)

(7.21 )

Pp,(M) = Jm(Mw)pp, (dw). (7.22)
n

It is clear that the sections M t and M w of the set M coincide with the sets Ot
and Tw which were considered in Lemmas 6 and 13 respectively. By Lemma 13,
pp,(Md = 1 for every t E 11' \ {±1}. From here and from (7.21) it follows that

Pp,(M) = 1.

It is clear that

O:S: m(Mw ) :S: 1 for every wE O.

Since pp,(O) = 1, it follows from (7.22) and (7.24) that

m(Mw) = 1 for Pp, almost every wE O.

Let us define

Ogen = {w EO: m(Mw ) = I}.
(7.25) means that Ogen is a set of full PP, measure:

Pp,(Ogen) = 1

and that

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

m(Tw ) = 1 for every wE Ogen. (7.28)

(Here we recall that the section M w of the set M is the same as the set Tw ,

considered in Lemma 6.)
Let us consider an arbitrary w E Ogen. Since (7.28) holds, Lemma 6 is appli

cable to the sequence of the matrix functions {Mw,n (t)}O::;n<oo. (Now w is fixed, t
runs over T.) By this lemma, the function sw, whose sequence of Schur parameters
is w, is inner, and the sequence of the Schur approximants converges pointwise
almost everywhere on 11'. The pointwise limit of this sequence coincide with the
boundary value of the function Sw almost everywhere on T. Thus, Theorems I and
II hold with R = 0 \ Ogen' 0

Remark 8. In fact we have proved more than what was formulated in Theorem II.
Namely we proved that if the assumption of Theorem II is satisfied then for every
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(7.29)

wEn \ R, where pp,(R) = 0, the sequence APn(sw, .) of the Schur approximants
of the function sw( .) satisfies the condition

-1'- 1sw(t) - APn(sw, t)1 2\ W \ R
1m < - /It v t E 'll' w ,
n-oo n + 1 -

where Rw is a subset of'll' of zero Lebesgue measure (which depends on w, i.e. on
function sw). Since At > 0 for t E 'll' \ {±1}, the sequence APn (sw, t)) converges to
sw(t) exponentially for almost all t. However, since the convergence is not uniform
with respect to t, we cannot say anything about the rate of convergence in L2 even
if min At > O. This holds under the condition (7.8). (See Remark 7.) 0

tE'lI'

8. Concluding remarks

In this section we discuss the relation between our results and numerous results
on random differential and difference equations. Note that

(---.1+(
1-(

is a one-to-one mapping of the unit disk {( : 1(I < 1} onto the right half-plane
{( : Re ( > O}. Therefore, if s(z) is a Schur function, then the function

w(z) = 1 + zs(z) (8.1)
1-zs(z)

is a Caratheodory function, Le. a function which is holomorphic and has a non
negative real part in the unit disk:

Rew( z) ~ 0 for z E JI)l .

The factor z in (8.1) leads to the normalizing condition

w(O) = 1.

(8.2)

(8.3)

(8.4)

Conversely, if w(z) is a Caratheodory function satisfying the normalizing condi
tion (8.3) then it can be uniquely represented in the form (8.1) where s(z) is a
Schur function. Every Caratheodory function w(z) which satisfies the normalizing
condition (8.3) admits the Herglotz representation

Jt+z
w(z) = - a(dt) ,

t-z
'lI'

where a is a probability measure on 'll'. Conversely, if a is a probability measure
on 'll', the formula (8.4) defines a normalized Caratheodory function w(z). Thus,
the transformation (8.1) together with the representation (8.4), establishes a one
to-one correspondence between Schur functions and probability measures on 'll'.
It is easy to see that the Schur function is exceptional (Le. a rational inner one)
if and only if the corresponding probability measure a on 'll' is exceptional. (We
call a probability measure on 'll' exceptional if its support is a finite subset of 'll'.)
A Caratheodory function w(z) is called exceptional if it is rational and its poles
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are situated on ']['. It is clear that a probability measure a on '][' is exceptional
if and only if the CaratModory function w(z) represented by (8.4) with this a
is exceptional. Thus, the formula (8.1), together with the representation (8.4),
establishes a one-to-one correspondence between the set of all non-exceptional
Schur functions s(z) and the set of all non-exceptional normalized Caratheodory
functions w(z), or equivalently, the set of all non-exceptional probability measures
a on ']['.

Given a non-exceptional probability measure a on '][', we can relate this mea
sure to the sequence {ct/do:Sk<oo of polynomials orthonormal, with respect to a.
Such a sequence of polynomials can be obtained by applying of Gram-Schmidt
orthogonalization procedure to the sequence {zk}O<k<oo. Since the support of
the measure a is not a finite set, the system {zk} is linearly independent in
L 2 ('][', a(dt)) and the Gram-Schmidt procedure can be performed unrestrictively
for all k : 0 ~ k < 00. As usual, for each polynomial ct/k of degree k, the so-called
reciprocal polynomial ct/r, can be defined: ct/k(z) ~f zkct/k(ljz). It turns out that
the system of polynomials {ct/k, ct/r,}o:Sk<oo satisfies a linear recurrence relation,
which can be written in the matrix form:

[
ct/k+l(Z) ] 1 [z
ct/r,+l(Z) - JI-l akl 2 -zak

with the initial condition

-ak ] . [ ct/k (z) ] , o~ k < 00, (8.5)
1 ct/r,(z)

[
ct/O(Z)] [1]
ct/(j(z) 1

(8.6)

Here {ak }O:5k<oo is a contractive sequence of complex numbers. The sequence
{ad is determined uniquely from the probability measure a which generates the
sequence {ct/dO:5k<oo of orthogonal polynomials: ak = ak (a), 0 ~ k < 00. Con
versely, given a contractive sequence of complex numbers {ak }o:5k<oo, we can
define the sequence of polynomials {ct/k}O<k<oo using the linear recurrence rela
tions (8.5). It turns out that these polynomials form an orthonormal sequence
with respect to some non-exceptional probability measure a on ']['. Thus, there
exists a one-to-one correspondence between non-exceptional probability measures
on '][' and contractive sequences {adO:5k<oo of complex numbers. These numbers
ak can be considered as free parameters in the set of all non-exceptional proba
bility measures. Different names are used for the numbers ak(a): one calls them
cyclic parameters or circular parameters or reflection coetHcients of the measure
a or of the sequence {ct/d of orthogonal polynomials. The theory of polynomials
orthogonal on the unit circle was started by G. Szego in the early twenties, in con
nection with the trigonometric moment problem and with the Theory of Toeplitz
matrices. It was further elaborated in great details by Ya.L. Geronimus, [Gersl],
[Gers2]. For us the following result is of great importance:

Theorem [Ya.L. Geronimus]. Let a non-exceptional Schur function s(z) and a
non-exceptional normalized Caratheodory function w(z) are related by (8.1). Let
hk(S)}O:5k<oo be the sequence of the Schur parameters of the function s, and
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{ak(a )}O:5k<oo be the sequence of cyclic parameters (or, in other terminology, of
reflection coefficients) of the probability measure a, representing the function w(z).
Then

(8.7)

This theorem first appears in [Gers1], (Theorem IX.) It also appears in [Gers2],
(Theorem 18.2 there). The paper [Gers1] is not easily available and it is not trans
lated into English. The original paper [Gers2] is even more difficult to avail, but
its English translation is available. The simplified presentation of this Geronimus
result can be found in [Khru1] and in [PiNe].

Many (but not all) properties of a Schur function s(z) can be naturally refor
mulated in terms of the related function w(z), i.e. in terms of the related sequence
of orthogonal polynomials. In particular: a Schur function s(z) is inner ifand only if
the related measure a(dt) is singular. Indeed, Is(t)1 = 1 if and only if Re w(t) = O.
On the other hand, Rew(t) = a'(t) for m almost every t E T. (Here s(t) and w(t)
are the boundary values of the appropriate functions. a'(t) is the derivative of
the measure a with respect to the normalized Lebesgue measure m.) Some other
connections between Schur functions and orthogonal polynomials can be found in
[Goll], [GoI2] and [Khru2].

The quoted theorem of Ya.L. Geronimus built a bridge between the theory
of Schur function and the theory of polynomials orthogonal on the circle. In par
ticular this theorem relates a study of random Schur functions and a study of
random orthogonal polynomials and allied linear difference systems of the form
(8.5). Especially spectral properties of such linear systems are important.

A study of spectral properties of random linear systems was initiated by
physicists in connection with disordered physical structures. Starting from the
fifties both numerical experiments and theoretical researches were carried out.
Some of these investigations are summarized in the overviews [Lifj , [MaIsh] , [Ish].
(See also monographs [Hor] and [LGP]' especially Chapter III of the later.) Around
the end of the sixties, the role of the positivity of Lyapunov exponents (Le. the
role of exponentially growing and exponentially decaying solutions) in the study
of spectral properties of randomly disordered systems was already clear to phYSl~

cists. This role was mentioned in [MaIsh] where the Furstenberg theorem was
invoked to prove the positivity of Lyapunov exponent. In [CaLeb] and in [Ish]
some mathematical models of concrete physical disordered systems were studied
and it was proved (on the "physical level of rigorousness") that the correspond
ing linear random systems don't have absolutely continuous spectrum, i.e. their
spectrum is purely singular (see §9 of the paper [Ish]). At the beginning of the sev
enties mathematicians joined these investigations. A lot of research papers, many
overviews and several monographs appeared which are dedicated to spectral prop
erties ofrandom linear systems. See the monographs [BoLa], [CarLa], [PaFig] and
the overview [Pas2]' [Pas3]. In particular, the paper [Pas1] of L. Pastur contains
the rigorous proof of the fact that the spectrum of the one-dimensional Schr6dinger
operator, continuous or discrete, with random potential, is purely singular. (See
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Theorems 9 and 10 of [Pas1] and Appendix.) This result is commonly known as
theorem of Ishii-Pastur. As it was mentioned in [Pas1], the main ideas and results
of this paper were first published in his preprint in 1974. (See the reference in
[Pas1].) The proof of the positivity of the Lyapunov exponent, which was given
by L. Pastur in Appendix to [Pas1]' did not use the Furstenberg theorem but did
use peculiar features of a Sturm-Liouville equation. A deep study of the Lyapunov
exponents and their connection to the structure of the spectrum of the Sturm
Liouville (Schr6dinger) operator was done by S. Kotani. (See his papers [Kotl],
[Kot2] and his other papers quoted there.) The results by S. Kotany are based on
the ingenious homology-like identities which was first discovered and used by R.
Johnson and J. Moser in [JohMo] in the almost periodic situation. In particular, S.
Kotani proved that for non-deterministic potential, the Lyapunov exponent of the
Sturm-Liouville operator is strictly positive almost everywhere on ~ (with respect
to the Lebesgue measure) (Theorem 4.5 and Corollary 1 in [Kot2]). S. Kotani did
not use the Furstenberg theorem. He proved that if the Lyapunov exponent were
to vanish on some subset of~ of positive Lebesgue measure, the potential would be
predictable. The reasoning and the results of S. Kotani were reproduced to some
extent in [CarLa] and [PaFig]. A study of random polynomials orthogonal on the
circle was initiated by E.M. Nikishin, [Nik]. Methods and results related to random
Schrodinger operators, discrete and continuous, was later adopted to polynomials
orthogonal on the unit circle. This was done by J.S. Geronimo [Germo], and by J.S.
Geronimo and A. Teplyaev [GerTe]. (Some results in this direction were obtained
in [Tep].) In particular, in [Germo], results of Kotani [Kot2] on relations between
Lyapunov exponent and the structure of the spectrum of Schrodinger operator
were extended to polynomials orthogonal on the circle. In the paper [GerTe] this
study was continued. In particular, it was proved in [GerTe] (Theorem 6.2 there)
that if the reflection coefficients {ad in the system (8.5) form a sequence of inde
pendent identically distributed random values, then under the condition (7.5), the
Lyapunov exponent At is strictly positive almost everywhere with respect to the
Lebesgue measure and hence the measure (j is purely singular. Thus we can use
these results of the paper [GerTe] instead of the Furstenberg theorem in proofs of
our Theorems I and II. However, the use of the Furstenberg theorem allows us to
prove a little bit more then the reasoning used by S. Kotani. Namely, using the
Furstenberg theorem we proved that At > 0 for all t E T \ {±1}, and under the
condition (7.8) for all t E T. Kotani's reasoning led to the result that At > 0 for
almost all t only. Moreover, the paper [GerTe] is a little bit bulky.

Finally we would like to emphasize the following remarkable circumstance.
The ideas and the methods which originally appeared in theoretical physics to
study the transport phenomena in disordered physical structure [MaIsh], [CaLeb],
work successfully in a quite distant field: in complex function theory to study the
convergence of the Schur algorithm on the boundary of the disk of the analyticity.
We address the reader to the beautiful paper of the F. Dyson [Dys] where other
examples of such kind were given.
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Abstract Interpolation Scheme
for Harmonic Functions

A. Kheifets

Dedicated to Professor Harry Dym on the occasion of his 60th birthday
with deep appreciation

Abstract. In Section 1 we recall the setting and solution of the Abstract In
terpolation Problem (AlP) from [KKY]. In Section 2 we rephrase the AlP
in terms of unitary scattering systems rather than in terms of unitary colli
gations. This allows us to give up the orthogonality assumption on the data
scales and to formulate a more general setting of the AlP that corresponds to
interpolation problems for harmonic functions also. (The original formulation
of the AlP corresponded naturally to interpolating analytic functions only.)
In Section 3 we give a complete solution to this more general AlP under an
additional assumption regarding the data scale po. Solutions are the spectral
functions of the feedback coupling with respect to the scale po. In Section 4
we give up the additional assumption of Section 3 regarding the data scale po,
and define the scale p associated with any feedback coupling by means of the
corresponding wave operator and develop the appropriate modification of the
results of Section 3. In Section 5 a remark is given on the feedback coupling of
the scattering systems. We plan to demonstrate applications of this approach
to the General Commutant Lifting problem at another occasion.

1. Abstract Interpolation Problem

The following Abstract Interpolation Problem (AlP) was introduced and studied
in [KKY] (see also [Kh1], [Kh2], [Kh3], [KhY] and [Kh4]). Define first the data of
the problem. Let X be a linear space, D(x, y) be a positive semidefinite sesquilinear
form on X, TI and T2 be linear operators On X, M I : X ---. EI , M 2 : X ---. E2

be two linear mappings from the space X into given Hilbert spaces E I and E2

respectively. All the listed objects are related by the following identity

D(TIx, TIy) + (MIX, MIY)El = D(T2x, T2y) + (M2x, M 2y). (1.1)

Analytic on the unit disc J!)) = {( E C : 1(1 < I} contractive operator-valued
function w(() : E I ---. E2 is said to be a solution of the Abstract Interpolation
Problem if there exists a linear mapping

F: X ---. H W
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such that

(i) f((FTix)(t) + [wit)] Mix) = (FT2X)(t) + f [w(~)* ] M2X, (1.2)

for a.a. t on the unit circle 1I' = {t E C: ItI = I};

(ii) IIFxl11w :::; D(x, x). (1.3)

We use the following notations throughout the paper:

LW = [1 W] i/2 [L
2
(E2)]

w* 1 L2(Ed'

endowed with the range norm;

H W = LW n [H~(E2)]
H:(E i ) ,

(1.4)

(1.5)

with the norm induced from LW. L2 here is the usual space of square integrable
with respect to Lebesgue measure vector-functions on the unit circle 1I'; H~, H:
are the correspondent vector Hardy spaces.

The description of the solution set depends on the following construction. The
positive semidefinite form D endows the space X with a Hilbert space structure
(after proper quotioning and completing). This Hilbert space will be denoted by
Ho. Then identity (1.1) can be read as a definition of this isometry

V : E i EB Ho ---> Ho EB E2 ,

with domain

dv = Clos{Mix EB [Tix], X E X} ~ E i EB Ho

and the range

~v = Clos{[T2x] EB M2x,x E X} ~ Ho EB E2,

where [Tix] and [T2x] stand for correspondent equivalent classes.
Due to inequality (1.3) the range Fx depends on the equivalence class [x]

rather than on x itself and, hence, the mapping F can be extended by continuity
to Ho, keeping the inequality

IIFhol11w :::; Ilhol11o ·
The space L W defined by (1.4) can be decomposed as follows

L
W

= [~] H~(Ed EB H
W
EB [:* ]H:(E2).

Define

this way

(1.6)

(1.7)

(1.8)
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observe that according to (1.7) F(EI), F(Ho), F(E2 ) are mutually orthogonal in
LW

, and

F : E I EEl Ho -+ [~] E I EEl H W
,

w - [ 1 ]F : Ho EEl E2-+ H EEl t w* E2·

Under these notations (1.2) reads as

If

N dv = (EI EEl Ho) e dv and N~v = (Ho EEl E2 ) e ~v.
then one can define the unitary colligation

where N1 and N 2 are copies of Ndv and N~v respectively, by letting

(1.9)

(1.10)

(1.11)

(1.12)

AoIdv = V,

Ao : Ndv -+ N 1

Ao : N 2 -+ N~v

identically,

identically.

(1.13)

Denote by S(() the characteristic function of Ao:

S(() = PN2$EIAo(l- (PHoA)-I IE2$Nll

S(() = [S2(() SO(()]: [E2] -+ [N2] .
Sl(() s(() N I E I

(1.14)

Let Al : N I EEl HI -+ HI EEl N 2 be an arbitrary unitary colligation with the same
as the above spaces N I and N 2 as input and output respectively. Let w(() be its
characteristic function, w(() : N I -+ N 2 .

Feedback loadings of Ao with Al produce all the unitary extensions A of V,

where H = Ho EEl HI. A is a minimal extension if and only if Al is a simple
colligation. The principal fact is that the characteristic functions of the extensions
A give exactly the solution set of the AlP. This leads to this formula

(1.15)

that describes the solution set of the AlP. The correspondent mappings Fare
also described in this way. See references at the beginning of this section for more
details.
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(2.1)

2. From AlP to a more general setting

We are going to rephrase the setting of AlP first and to make it more general than
in this section. The rephrasing goes in terms of scattering systems rather than in
terms of unitary colligations.

Let X be the space of vectors x:
- ( (1) (0) (-1) (-2) )
X = ... e1 , e2 , x, e2 , e2 , ...

such that

define

X (k) Ex E ,e1 E 1,

<Xl

k ~ 0 and L Ile~k) 11
2 < 00,

k=O

-1

k::; -1 and L Ile~k)1I2 < 00
k=-<Xl

and

<Xl -1

D(x, x) = L Ile~k) 11
2 + D(x, x) + L Ile~k) 11

2,
k=O k=-<Xl

T- - - ( (1) (0) M T (-1) (-2) (-3) )
IX - ... , e1 ,e1 , IX, IX, e2 , e2 , e2 , . .. ,

(2.2)

(2.3)

- __ ( (2) (1) (0) (-1) (-2) )T2 X - .•• , e1 , e1 , e1 , T2 X , M2x , e2 , e2 , . .. .

Then (1.1) can be rephrased as

D(T1X, Ttf;) = D(T2X, T2Y)'

(2.4)

(2.5)

D endows the space Xwith a Hilbert space structure, which results with the space
fIo = ... EB E?) EB E~O) EB H o EB E~ -1) EB E~ -2) EB . .. . (2.6)

We denoted here by E~k), k ~ 0 (E~k), k ::; -1) the subspaces of vectors x, such
that all the entries but e~k) (e~k) , respectively) are zeros.
One can define the isometry V:

(2.7)

with domain
(2.8)

and range

It is easy to see that

fIo 8 dv = Ndv = Ho 8 dv

and
fI0 8D-v =Nt:.v =H0 8D-v

are the same spaces as in Section 1.

(2.9)

(2.10)

(2.11)
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One can extend the mapping F : X --+ H W of Section 1 to the mapping

F: X --+ LW

by letting

(FX)(t) = [w(t)] f: tke~k) + Fx + [w ~ *] f: t1kle~k),
1 k=O () k=-oo

291

(2.12)

(2.13)

(2.14)

ItI = 1, where convergence of the series is understood in L 2 sense. Thus,

FIX = F: X --+ H W
,

- ° (k) [W] 2F: Xk=oo E 1 --+ 1 H+(E1)

- -00 (k) [ :n.] 2 ( )F: Xk=-l E 2 --+ w* H_ E 2 ,

two last subspaces are mapped one-to-one and onto. Obviously, for vectors xwith
zero x entry

IIFxllLw = D(x, x).
Property (1.3) of Section 1 implies now

IIFxllLw ::; D(x, x).

(2.15)

(2.16)

(2.17)

(2.19)

(2.18)

Analogously to Section 1, the mapping F can be viewed as a mapping from Ho,

F: Ho --+ L W
•

Then (2.16) can be read as

IIFhollLw ::; Ilholl1-o '

Property (1.2), combined with definitions of i! and F, reads

Fi! Idv = IF Idv·
Emphasize also the property

F maps EiO) onto [~] E1 isometrically,

F maps E~-l) onto [~] IE2 isometrically,

that is crucial in what follows. It turns out that any mapping F X --+ LW

possessing properties (2.17)-(2.19) is of the structure described above. Namely,
the following proposition holds true.

Proposition 2.1. Let X and Dbe the same as above. Let the mapping F :X --+ L W

possess the properties (2.17)-(2.19). Let F = Fix. Then
(i) F: X --+ HW, and F possesses (1.2);

(ii) F: Eik) --+ [1] tkEl, k ~ 0, F : E~k) --+ [!. ] t1 kI E2 , k::; -1,
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- (0 E(k)) {O} (-<Xl E(k))x E xk=<Xl 1 X X X k=_1 2

Proof. Properties (ii) follow immediately from (2.19), (2.18) and the definition of
V. The main point one has to check is

F: X ---. H W
•

According to property (2.17)

[
~IFx~llw (Ffj~ Fx) LW] :::; [~(x, x) ~(fj, X)] (2.20)

(Fx, Ffj)Lw IlFfjlllw D(x, fj) D(fj, fj)

for any x,fj E X. Pick up x = x E X, fj E (x~=<Xl E~k)) X {O} X (X"k:'-1 E~k)).

Then according to the definition of D:
D(x, fj) = 0, D(x, x) = D(x, x).

As we have already proved

IIFfjlllw = D(fj, fj).

Substituting (2.21) and (2.22) into (2.20) we obtain

[
~IFx~llw (F~,FX)LW]:::; [D(X,X)

(Fx, Ffj) LW D(fj, fj) 0

In other words

(2.21)

(2.22)

[D(X'~) ~ IIFxlllw (Ffj, FX)LW] :::: o.
(Fx, Ffj) Lw 0

Which means that
(Fx, Ffj) LW = 0 (2.23)

for any x E X and fj of chosen type. But as we know from property (ii) Ffj runs

through [~] H~(Ed EEl [~*] H~(E2)' Then (2.23) means that Fx E HW, for any
x EX. The first part of assertion (i) follows. The rest of the assertion (i) follows
immediately from (2.18) and definition of V. This completes the proof. D

We are going to impose now an additional assumption that we will get rid of
in Section 4. Till the end of this section and in Section 3 we assume that

E~-1) C ~y. (2.24)

Then
V- 1E~-1) C dy ~ iIo.

Define Po : E1 EEl E2 ---. iIo by
(0) --1 (-1)Po : E1 ---. E1 ; Po: E2 ---. V E2 .

(2.25)

(2.26)
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By definition

IIpoelllHo = IIeIilE1

IIpoe211HO = Ile2l1Ez·
The whole of Po need not be an isometry, but one can see that for e= el EB e2

(2.28)

Denote by a(() the harmonic operator function

and by a(dt):

a(dt) = [ 1
w(t)*

(2.29)

(2.30)

the correspondent measure on 'JI', where m(dt) is the normalized Lebesgue measure.
The space LW can be identified with the Hellinger space La (see, e.g. [BDKh], and
Appendix to [Kh5] for definitions and notations). Now we are ready to reformulate
the AlP.

AIP-. Let X be a linear space, fJ be a positive semidefinite form on X, TI and
T2 be two linear operators on X, related by the identity

for all i, if EX. Let E be a Hilbert space and

Po: E -+ flo

(2.31 )

(2.32)

be a bounded linear operator, where flo is the Hilbert space associated to X and
to the form fJ (as it was described above). A positive semidefinite harmonic in
the unit disc j[J) operator-valued (on E) function a(() (or correspondent operator
valued measure a(dt) on the unit circle 'JI') is said to be a solution of the AIP- if
there exists a linear mapping

F: X -+ La, (2.33)

(where La is the Hellinger space associated to a, see [BDKh], Appendix to [Kh5])
such that

(i)

(ii)

(iii)

FT2i = [FTIx
IIFilli" s:; D(i, i)

Fpoe = a(dt)e, \::Ie E E.

(2.34)

(In the latter property F is understood as the continuation of F to flo).
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Remark. If all the data of AIP- come from the AlP then these two problems are
equivalent and any solution u(dt) of the AIP- is of the form (2.30). In fact, in this
case

U IE~-I) EB E~-2) EB .. · = if IE~-I) EB E~-2) EB· ..

for any extension U of V, since E~-I) EB E~-2) EB ... <:::;; d\!. Hence, E~-I) is a
wandering subspace for all U's also. Similarly,

U* I ... EB EP) EB E~O) = V-I I ... EB EP) EB E~O)

implying E~O) is also a wandering subspace for all U's which guarantees the desired
structure of a(dt). See, e.g. [BDKh] for more details.

In Section 3 we will solve the AIP- without any special assumptions about
the structure of X, j\, T2 , E, Po.

3. Solving the AIP-

We will omit - throughout this section (although we are talking about AIP-) to
simplify notations. Hopefully this will not lead to any misunderstanding since we
are not talking about AlP in this section but only about AIP-.

3.1.We associate to the data of the AIP-, the Hilbert space H o and the isometry V
on it with domain dv and range ~v. Ndv and N~v are orthogonal complements
of dv and ~v, respectively. The subspaces Ndv and N~v are called the defect
subspaces. To formulate the first theorem of this section we need to remind of
some definitions (see, e.g. [BDKh] for more details).

Let U be a unitary linear operator on a Hilbert space L. Let E be another
Hilbert space and P : E -+ L be a bounded linear operator, called the scale. The
triple (L, U, p) is called the scattering system.

The positive harmonic on ][)J operator (on E)-valued function a(()

a() = p*Pu()p

is called the spectral function of U with respect to the scale p. Here Pu() is the
Poisson kernel:

Pu() = (1 - (U)-I + (I - (U*)-I - 1

= (1-1(1 2)(1- (U)-I(I_ (U*)-I.

Theorem 3.1. The solution set of the AIP- coincides with the set of spectral
functions a() of unitary extensions U of V with respect to the scale p = PO. (By
unitary extension we understand a unitary operator U : L -+ L, such that L :2 Ho
and U Idv = V.) The proof is similar to the correspondent theorem in the context

of the AlP (see [KKYJ, [Kh1J, [Kh2J, [Kh3J, [Kh4] and [BTr]).
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3.2. We are interested in explicit parameterization of these functions o-((). To this
end we need more detailed information about the structure of unitary extensions.
Define the unitary colligation

Ao : N2 EEl Ho -+ Ho EEl N I,

where N I and N 2 are copies of N dv and N t:.v respectively, and

Ao Idv = V,

A o maps identically Ndv onto N I and N 2 onto N t:.v. Then unitary extensions U
of V are feedback couplings of Ao with unitary colligations Al of the form

Al : N I EEl HI -+ HI EEl N2 ,

where N I and N 2 are the same spaces as above. The feedback coupling U of the
colligation Ao with the colligation Al is a unitary operator acting on the space
L = H o EEl HI. We define U along with auxiliary operator r : H o EEl HI -+ N I EEl N 2

as follows:

(3.1)

(3.2)

where ho', hI/, nI, n2 is the unique solution of the following system of linear equa
tions

Ao(n2 EEl ho) = h~ EEl nI,

AI(nl EEl hI) = h~ EEln2.

Solvability of the system (3.2) and uniqueness of the solution are guaranteed by
the property

Ao : N2 -+ Ho.

Define i : N I EEl N2 -+ Ho EEl HI as

i = r*,

(3.3)

(3.4)

and will call it the defect scale correspondent to the coupling U.
Turning now to the data of AIP- one can see that it provides us with another

scale (we will call it the data scale)

P = Po : E -+ Ho C L, (3.5)

that does not depend on the operator U (according to assumption (2.32) that
Po: E -+ Ho).

Our goal (according to Theorem 3.1) is computing the spectral function of
the scattering system (L, U, p). Consider also the scale

i + p : N I EEl N 2 EEl E -+ L,

where the sum is defined as i on N 1 E9 N 2 and p on E.

(3.6)
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(3.9)

Denote the spectral function of the scattering system (L,U,i + p) by ~((),

then

~=[O": O"i
P

] (3.7)
O"ip O"p

where O"i is the spectral function of U with respect to the scale i, 0"p is the one
with respect to the scale p. We are interested in 0"p, but we will compute all the
other entries of (3.7) as well.
The Fourier transform is associated to any scattering system (see, e.g. [DBKh]).
For a system (L, U, i) it is defined as

(FU,i£)(() = i*Pu(()£, £ E L.

It turns out that (see, e.g. [DBKh])

where La, is the Hellinger space associated to the spectral function O"i (see Sec
tion 2).

3.3. We describe objects related to Ao and to A 1 separately in this subsection, and
will do coupling computations in the next one. Denote the characteristic function
of the colligation A 1 by w((). It can be an arbitrary Schur class operator-valued
function on iDl, w(() : N 1 ---> N2.

Define the scattering system (Lo,Uo, io) associated to the colligation Ao:

L o = ... EB NJ1) EB NJO) EB H o EB Ni -1) EB Ni -2) EB ... , (3.8)

where

N (O) - N N(-l) - N
2 - 2, 1 - 1,

and other components of (3.8) are copies of N 1 and N 2 respectively, added orthog

onally; Uo acts on NJO) EB Ho in the same way as Ao does,

Uo : NJO) EB Ho ---> Ho EB NiO)

and Uo acts as shifts on the "tails":

(3.10)

TT • N(k) N(k-1)uo· 1 ---> 1 ,

TT • N(k) N(k-1)uo· 2 ---> 2 ,

k ~ -1,

k 2: 1;
(3.11)

The scale io is defined as follows:

io : N 1 EB N 2 ---> Lo

i~2) : N 2 ---> NJO) identically, (3.12)

.(1) . N u.*N(-l) de! N(O) C IT
Zo . 1 ---> ° 1 - 1 _ no·

We remark here that the scattering system (Lo, Un, io) coincides with the feedback
loading of Aowith a colligation A 1 whose characteristic function is zero, w(() == O.
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Observe that the spectral function of the scattering system (Lo, Uo, io) is

[
INI S(()]: N 1 EB N2 --> N 1 EB N2, (3.13)

s(()* IN2

where s(() is the characteristic function of the colligation Ao. s((): N 2 --> N 1 is
a Schur class operator-valued function, and

s(O) = 0, (3.14)

(3.15)

(3.16)

due to the property (3.3) of the colligation Ao.
We will also need the spectral function ofUowith respect to the scale io+Po,

that we denote by Eo(():

Eo = [1::, 1:, ~;]: N 1 EB N 2 EB E --> N 1 EB N 2 EB E.

r 1 r2 ao

Since Po : E --> H, rl(() is analytic on lDJ, r2(()* is antianalytic on lDJ, r2(0)* = O.
Moreover, since Eo(() ~ 0,

Ih(()ell~1 ~ < ao(()e, e >,
Ilr2(()*ell~2 ~ < ao(()e, e > .

Since ao(() is a harmonic function, (3.16) implies that rl is a strong H~ operator
function and r2 is a strong H:' operator function (see [NFl).

The Hellinger space LU'o can be identified with £8 (see (1.4)). Moreover,

FUo,io : Ho --> H S
,

where HS = L Sn [H;(Nd] . According to the definition of io (3.12),
H_(N2 )

[
'(1)*]

io= :r2) * ,

and, hence,

(3.18)

(3.19)

[

Fn .(1)]
VOlta

FUo,io = F . (3.20)
UO,i~2)

Then (3.18) means that for ho E Ho,

FU(I)ho E Hi(Nd,
0,'0 (3.21)

F n .(2) ho E H:' (N2 ).
UO,1.o

Similarly, one can associate the scattering system (L 1, Ul, id, i 1 : N 1 EBN2 -->
L 1 , to the unitary colligation

Al : N 1 EB HI --> HI EB N2
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(3.22)

(3.23)

UI : N}O) tfJHI --t HI tfJN~-I) like AI,

UI acts like shift on the "tails"; i~I): N I --t N}O) , i~2): N 2 --t U:N~-1).

The spectral function of the system (L I , UI , iI) is equal to

W*]
IN2 '

where w is the characteristic function of the colligation AI. The correspondent
Hellinger space can be identified with LW' ,

According to definition (3.22) of iI,

[
.(1)'].* ZI

ZI = i~2)' ,

and, hence,

For hI E HI,

Thus

3.4. Now we are in the position to start computing:

Lemma 3.2.

(3.24)

(3.25)

(3.26)

PU~(()] +

Pu,:,y]

Pt,:,)<]

(3.27)
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Proof. According to definitions (3.1), (3.2), (3.4) of U and i, (3.12) of io, and (3.22)
of i 1 one can write

{

UO(ib
2
)i(2). +PHO)(~:) =PHOuG:) +Uoibl)i(I)'(~:)

(3.28)

U ( .(1) -(I)' + P ) (ho) = P U (ho) + U .(2) ·(2)' (ho)
1 t 1 t Hl hI Hl hI 1 t 1 t hI'

Substitute in (3.28) P& (()(~~) instead of (~~). Since

UP&(() = P&(O - 1 (3.29)
(

that leads to

{

UO(ib2)i(2)'P&(() + PHo P&(()) = PHo P&+(~ - 1 +Uoib1)i(I)'P&(()

(3.30)

Ul(i~l)i(I)'Pt(() + PHl P&(()) = PHl Pu(~ - 1 + Uli~2)i(2)'P&(()

which can be rearranged as follows:

{

(I- (UO)PHoP&(O = PHo + (Uo(ib2)i(2)' - ib1)i(I)")P&(()
(3.31)

(I - (U1 )PHl P&(() = PHl + (Ul(i~I)i(I)' - i~2)i(2)·)P&(().

Or,

Finally,

(3.33)
Pt~«(J

Pi/,:(» ] [

_i(l) i(2) ]

o ° i*P&(() .
.(1) .(2)
t 1 -t1

Similarly, substituting Pi! (0 (~~) in (3.28) instead of (~~), and using

UPi!(() = ((Pi!(() + I), (3.34)

one obtains

{

UO(ib2)i(2)'Pi!(() + PHoPi!(()) = (PHo (Pi! (() + I) + Uoib1)i(l)"pi!(O,

Ul(i~l)i(l)"pi!+ PHl Pi! (()) = (PHl (Pi!(() + I) + Uli~2)i(2)'Pi!(O.
(3.35)
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[

.(1) .(2)]z -z
~(1) .(~) i*PC; (().

-zl zl

(3.37)
oCombining (3.33) and (3.37) we obtain (3.27). Thus, the Lemma follows.

Lemma 3.3.

Multiplying the first equation by Uoand the second by Ui we get to

{

(I- c'UO)PHoPC;(() = c'U;PHo + [i~l) _i~2)] i*PC;(()
(3.36)

(I - c,UnPH, PC; (() = C,U;PH, + [-ii1) ii2)] i*PC; (()

which leads to

PC;(() = [PC;°o(() 0] [Pit (()* 0]
PC;, (() + 0 pt, (()*

(FU,i [hO] )(() = (I _[0
h1 w(()

( [

0
+ 1-

s(()*

(3.38)

Proof. Apply F u .(1) to the first entry of (3.33) and use the property that
0'&0

(F . p+ (I")h )(t) = (FUo,iohO)(t)
uo,'o Uo '" 0 1 - t(

(
T . P- (I")h )(t) = (FUo,iohO)(t) t 1 I I.ruo,'o Uo '" 0 1 _ t( "', a.e. ,t = 1.

(3.39)

Then

(Fuo,i~l)PHo pto (() (~~) )(t)

(3.42)

(3.41)

(3.40)
(F .(l)ho)(t) [I" (h )= uO"o + _"'__F .(1) ([_ .(1) .(2)] )(t) . i*P+(() 0

1 - t( 1 - t( uO"o zo zo U h1

t(F .(l)ho)(t) I" (h )
= uO"o + _"'_ [-I s(t)]. i*pt(() o.

t - ( t - ( h1

The latter equality follows from (3.13). According to (3.21), the left-hand side of
(3.40) is in H'i(Nt), which implies

(Fu .(l)ho)(() + [-I s(()]· i*pt(() (hho) = O.
o,'Lo 1

In the same way, applying Fu (2) to the second entry of (3.33) we obtain
1,1. 1

(Fu .(2)ht}(() + [w(() -I]· i*pt(() (hho) = O.
},'L I 1



Abstract Interpolation Scheme for Harmonic Functions 301

(3.41) and (3.42) together give

[
1 -S(()] i*Pi!(() [hO] = [(FUO'i~l)hO)(()] , (3.43)

-w(() 1 h1 (Fu1A2JhI)(()

which leads to the first term in (3.38). The second term comes from (3.37) by
similar reasons. Thus, the Lemma follows. 0

(3.44)

(3.45)

0"P = 0"0 + r2w(I - sw)-l r1 + r~ (1 - w* s*)-lw*r; (3.46)

where 0"1, O"ip, 0"P are entries of (3.7), s, r1, r2, 0"0 are defined by (3.13), (3.15), w by
(3.23).

Proof. It suffices to substitute (~~) = i (~~) and (~~) = pe in (3.38) to obtain (3.44)
and (3.45), respectively. Substitute first

G:) =pe.

According to our assumption p = Po : E -+ Ho. Hence,

(3.47)

(3.48)

(3.49)

ho = poe, h1 = 0

in (3.47). But now, according to Definition (3.15)

(1) *(Fu .(lJPoe)(() = io Puo(()poe = r1(()e
a,to

(Fu .(2)pOe)(() = i~2)* Puo(()poe = r;(()e.
0,200

Substituting (3.48) in (3.38) we get (3.45). We need a new expression for i to
compute (3.44). Letting ( = 0 in (3.38) one gets

.* [ho] [1 01] [i~l)*ho]
Z h1 = w(O) i~2)* h1 .

Therefore,

i [::] = [i~)
According to Definition (3.22)

.(2) l\T _ U*N(-l)
Zl 1V2 - 1 2 ,

(3.50)
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But again, according to Definition (3.22)

Thus

P .(2) _ .(2) .(1) .(1)* .(2)
HI ~1 - ~1 - ~1 ~1 ~1 .

But according to (3.23),

.(1)* .(2) - (0)*
~1 Zl - W .

Hence

Now (3.50) looks like

This we are going to substitute in (3.38). Remind that

Now (3.38) turns into

(3.51)

(3.52)

( [

0
+ 1-

s(()*

[
n1 +w(0)*n2 ]

(1- w(()w(0)*)n2

w(()*]) -1 [ w(()* - w(0)*)n2 ] .

o s(()*(n1 +w(0)*n2)
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Meaning that

(3.53)

w(()* - W(O)*)]

s(()*w(O)*

W~)']) -,

w(O)* ]

-w(()w(O)*

w(O)* ]

-s(()*w(O)*

s(()]) -1 [I W(O)*]

o 0 1 - W(()W(O)*

W(()*]) -1 [ 0

o s(()*

s(()])-1 ( [0
o + 1- s(()*

The third term in (3.53) equals to

Similarly the last term in (3.35) is equal to

Thus, the two last terms in (3.53) are cancelled. Then (3.53) can be transformed
to the claimed from (3.44) by subtracting ~I from the first term and adding it to
the second one.

We turn now to proving formula (3.46). We have to compute (see (3.47))

(3.54)
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Then, according to (3.27) and (3.45)

p*1'u(()p = p~1'uo(()Po

+ p~1'uo(()* [_i~l) i~2)] i*1't(() [:0]
+ p~1'to (()* [i~l) _i~2)] i*1'u (() [:0]
= O'o(() + [0 r2(()] [I -S(()] -1 [r1(()]

-w(() 1 0

+ [r.«)' OJ [-S~()' -w~()r [r2(:)']
= O'o(() + r2(()w(()(I- s(()w(())-l r1 (()

+ r1(()*(I-w(()*s(()*)-lw(()*r2(()*.

At the last stage we used the formula

-S] -1 = [ (I - sw)-l
1 w(1 - SW)-l

s(1 - WS)-l] ,
(1 - WS)-l

(3.55)

that is valid for all 1(1 < 1, since s(O) = 0 (see (3.14)). o

Remark. In the case of AlP (see Section 2), E = E1 EB E 2 , Po(E1 ) and Po(E2 ) are
wandering subspaces for Uowith orthogonal semichannels. Then 0'0 is of the form

0'0 = [I
So

SO]
1 '

where So is a Schur class function, r1 and r2 are of the form

in this case. Then 0'p is also of the form

where

W = So + s2w(l- SW)-lSl,

and W is a Schur class function. The latter formula is known as the Arov-Grossman
formula ([AG]).
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4. Wave operators and induced scales

In this section we are going to get rid of the assumption

Po : E ---+ Ho ,

imposed in Section 2 and used throughout Section 3. Now,

Po : E ---+ Lo ,

where
L o = ... EB NJI) EB NJO) EB H o EB Ni- I ) EB Ni- 2

) EB··· (4.1)

(see Section 3.3). We cannot compute now the spectral function of U with respect
to Po (as we did in Section 3.4) since the range of Po does not belong to the space L
the extension U acts on. The problem is to realize what the natural scale P : E ---+ L
is, that we have to compute the spectral function of U with respect to. The scale
P will, generically, depend on the extension U. We are going to demonstrate in
another opportunity some examples where the very choice of the p corresponds to
concrete problems of analysis.

Remark here, that for CTi the same formula (3.44) remains valid, since it deals
neither with p, nor with Po. To define the scale p correspondent to the extension
U we will need the wave operator.

4.1. Define the wave operator W : Lo ---+ L of an extension U with respect to the
data scattering system Uo this way:

W : Ho ---+ Ho identically, (4.2)

WIN(k) = U-kU.kIN(k) k < -1 (4.3)I 0 I , - ,

WINJk) = U-k-IU;+lINJk) , k 2 0 . (4.4)

W extends then by linearity. Thus, W is at least densely defined on Lo, but
generically it need not be a bounded operator.

Lemma 4.1.
i(l) = ibl) (4.5)

i(2) = U*Uoib2
) . (4.6)

Actually (4.5) is contained in (3.51), but we will give here an independent proof.

Proof. Let nl E N I , then according to Definition (3.12),

ibl)nI = UO'(O EB nI) .

For ho E Ho and hI E HI, denote

h~ EB h~ = U(ho EB hI)

nl EB n2 = i*(ho EB hI) . (4.8)

According to the definition of U and i* ((3.1),(3.2)) system (4.8) is equivalent to

Ao(n2 EB ho) = h~ EB nl

AI(nl EBhI) = h~ EBn2 .
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Consider now

(inl' ho EEl hI) Ho$H, = (nl EEl 0, i*(ho EEl hI))N,$N2

= (nl,nl)N, (nl is from (4.8))

= (0 EEl nl, h~ EEl nl) Ho$N,

= (0 EEl nl, Ao(n2 EEl ho)) (because of (4.9))

= (Ao(O EEl nI),n2 EEl hO)N2$Ho

= (iOn l' hO)Ho

= (iOnl' ho EEl h1)Ho$H, .

Hence

inl = iOnl ,

which is (4.5). Similarly, for n2 E N2,

iOn2 = n2 EEl 0 E N2 EEl H o .

Then

(in2' ho EEl h1 )Ho$H, = (0 EEl n2, i*(ho EEl h1 ))N,$N2

= (n2' n2) N2 = (n2 EEl 0, n2 EEl ho)N2fJ)HO

= (AO(n2 EEl 0), AO(n2 EEl hO))Ho$N, = (AO(n2 EEl 0), h~ EEl nl)Ho$N,

= (Ao(n2EElO),h~)Ho = (Aoion2,h~EElh~)Ho$Hl

= (Uoion2, U(ho EEl hI))Ho$Hl = (U*Uoion2, ho EEl h1)Ho$H, .

Hence

in2 = U*UOiOn2 ,

which is (4.6). The lemma follows.

Remark. (4.5) and (4.6) mean that

Wio = i .

o

(4.10)

I £ . .(1) N n*N(-I) C H h W·(I) .(1) S' .(2) N N(O)n act, smce to : 1 ---+ uo 1 _ 0, t en to = to . mce to : 2 ---+ 2 ,

th W ·(2) U*TT .(2)en to = uoto '
A vector £0 E L o we will call a finite vector if its projection onto Ni-k) and

NJk) is zero except for a finite number of indexes. All finite vectors are obviously
in the domain of W.

Lemma 4.2.
o -00

W = L U-ki(2)i~2)' U~ + PHo + L U-ki(l)i~I)' U~ .
k=oo k=-1

(For finite vectors £0, only a finite number of terms appear in the formula.)

(4.11)



Abstract Interpolation Scheme for Harmonic Functions 307

Proof. Consider orthogonal decomposition of identity of the space L o:
o 00

1= 2:= PN~k) + PHo + 2:= P N ?)
k=oo k=-l

o -00

= 2:= Ur;k PN~O) U~ + PHo + 2:= Ur;k PNiO) U~ .
k=oo k=-l

Remind that NiO) = uoNi-l). According to Definitions (3.12),

P _ .(2) .(2)*
N~O) - 20 20

P _ .(1) .(1)*
NiO) - 20 20 .

Then
o -00

1 = '\"" u.-k .(2) .(2)*u.k + P + '\"" u.- k .(1) .(l)*u.k
~ 0 20 20 0 Ho ~ 0 20 20 O·

k=oo k=-l
Apply now W to (4.14):

(4.12)

(4.13)

(4.14)

o -00

W - '\"" U- k- 1u.k+1 u.-k .(2) .(2)*u.k + P + '\"" U-ku.k u.- k .(1) .(l)*u.k
- ~ o' 0 20 20 0 Ho ~ o' 0 20 20 0

k=oo k=-l
o -00

_ '\"" U- k ·(2) .(2)*u.k + P + '\"" U- k ·(1) .(l)*u.k
- ~ 2 20 0 Ho ~ 2 20 0'

k=oo k=-l

by Lemma 4.1. The lemma follows. D

(4.16)

4.2. In this section we obtain a formula that leads to a generalization of the formula
(3.45). For £0 E Lo, denote

(.rUo,io£O)(t) = [~~~m E L S (4.15)

(see Section 3.3) . .rUo,io sends Ho onto HS, that is for £0 E Ho, n1 E H~(N1),

n2 E H:(N2). Remind that .ruo,io is isometric on a part of Ho and on Ht, and

. (1) (0) [8] 2( ).rUo,io .... EB N 2 EB N 2 -+ 1 H+ N 2 ,

.rUo,io : Ni-
1
) EB NJ-2) EB··· -+ [8~] H:(Nd .

Any vector [~~] E LS can be decomposed as

(4.17)
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(4.19)

(4.18)

( [
0 W*])-l [ 0 ] [n1]+ 1 - s* 0 ni - s* . n1 + (7i nt '

where nl,n2 are defined by (4.15).

Remarks.

1. This is well defined at least for finite vectors fo.
2. The sum of the first two terms is understood as a vector-measure on 11'
correspondent to the harmonic function on ]j)). The measure belongs to the
Hellinger space Lai .

3. The last term also belongs to La,.

Proof. Denote

in accordance with the decomposition

U = [~] H~(N2) EB H S EB [s~] H:(N1 ) .

Lemma 4.3.

FU,iWfO = (1- [: ~]) -1 [nt -;. nt ]

n2,k = i~2)'U~fo E N 2 , k 2: 0

nl,k = i~l)'U~fo E N1 , k::; -1 ,

then (see (4.14) and (4.17))

(4.20)

= -1

nt = L n2,ktk , n1 = L nl,ktk . (4.21)
k=O k=-=

For a finite fo, there is only a finite number of nonvanishing terms. Using Lemma
4.2,

o -=
Wfo = L U-ki(2)n2,k + PHofo + L U- ki(l)nl,k .

k== k=-l
(4.22)

Since

FU,iU = tFU,i and

then

According to (4.17),

[ + +]. _ n 1 - s· n2FUo,.oPHofo - - * _ .n 2 - s . n 1

(4.19) follows now from (4.23) by applying (3.38) to ho = PHofo and hI = o. The
lemma follows. 0
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4.3. In this section we are going to obtain a formula that leads to a generalization
of the formula (3.46). Namely, our goal is computing

W*pu(()W.

Denote by Lbo the minimal subspace of La that contains Niol , NJol and is invariant
under Uo and Uo(see, e.g. [BDKh]). Obviously, (LbO)J. ~ Ho. Denote it by H~. It
is known (see, e.g. [BDKh]) that H~ is characterized by the property

(4.24)

Similarly, define L i to be the minimal subspace of L that contains the range of i
and is invariant under U and U*. Denote by

(4.25)

Lemma 4.4. H' = H~.

Proof. The space H' is characterized by the property

FU,i£ = 0 . (4.26)

According to formula (3.38), for e= hoffi hI the equality (4.26) holds if and only if

(4.27)

and

FU1,ilhl = 0 . (4.28)

Since we are dealing with minimal extensions U, the colligation Al is simple. Then
(4.28) implies hI = O. But as it was mentioned above, (4.27) means that

ho E H~ .

The lemma follows. o
Remark. It follows from formula (4.11) that W : Ht ---. L i . It follows from the
previous lemma that actually W : (H~)J. ---. L i . If £0 = hoffihcl-, ho E Ho, hcl- E Ht,
then, according to (4.15), (4.17),

according to (4.19)

FUO,iOhO = [~~] - [s~ ~] [~t] ,
FUo,ioh~ = [s~ ~] [~t] ,

FU,iWhO = FU,ihO

(4.29)

(4.30)

and

(4.32)
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Theorem 4.4.

A. Kheifets

(Pu(()Wfo,Wfo) = (Puo(()fo,fo)+

+ (w(()(1 - s(()w(())-l(nt(() - s(()nf(()), n2(() - s(()+ni(()) + (c.c.)

(4.33)
Remind here that the expression in braces is understood as a vector-measure on 11'
correspondent to the harmonic function on][)). Symbol (c.c) stands for the complex
conjugate of the preceding term.

Proof.

(Pu(()Wfo,Wfo) = (Pu(()ho, ho) + (Pu(()ho,Wh*)

+ (Pu(()Wh*, ho) + (Pu(()Wh*, Wh*) .
(4.34)

Completely similar to the proof of the formula (3.46) in Theorem 3.4 one can show
that the first term is computed as follows:

(Pu(()ho, ho) = (Puo(()ho, ho)

+/(1-[ 0 S(()])-l[nt(()-s(()n f (()] [ 0 ])
\ w(() 0 0' n2(() - s(()*ni(()

+ (c.c.)

= (Puo(()ho, ho)

+ (w(()(I- s(()w(())-l(nt(() - s(()nf(()),n2 (() - s(()*ni(()) + (c.c.) .
(4.35)

In turn,

(Puo(()ho,ho) = (Puo(()fo,fo) - (Puo(()ho,h*)

- (Puo (()h*, ho) - (Puo (()h*, h*) .
(4.36)
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Since ht E Lbo, then the last three terms in (4.36) can be replaced by their Fourier
transforms, i.e.,

(4.37)
Substituting (4.29) and (4.30) we get

(Puo(()ho,ho) = (Puo(()£o,£o)

_ f 1 - 1(12 / [nt(t) - s(t) . nt(t)] , [n1(t)]) m(dt) _ (c.c.)
IF It - (1 2

\ n2"(t) - s(t)* 0 n1(t) nt(t) (4.38)

_ f 1 -1(12 /[ 1 S(t)] [n1(t)] [n1(t)])m(dt).
iT It - (1 2 \ s(t)* 1 nt(t)' nt(t)

Similarly, since Wht ELi, the last three terms in (4.34) can be replaced by their
Fourier transforms:

(Pu(()Wht,Wht) =1~t-=-I~II: \(Ji(dt) [~t~m, [~t~~~]) . (4.40)

Putting together (4.34), (4.35), (4.38), (4.39) and (4.40), we obtain

(Pu(()W£o, W£O)

= (Puo(()£o£o)

+ (w(()(l- s(()w(())-l(nt(() - s(()nt(()),n2"(() - s(()*n1 (()) + (coc.)

_ f 1 _1(12 / [nt(t) - s(t)nt(t)] [n1(t)]) m(dt) _ (c.c.)
iT It - (1 2 \ n2"(t) - s(t)nl(t) , nt(t)

_ f 1_1(12 / [1 s(t)] [n1(t)] [n1(t)]) m(dt)
iT It - (1 2 \ s(t)* 1 nt(t)' nt(t)
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+ r 1 - 1(1 2 /{ [1 -s] [nt - s· nt ]
IIr It - (1 2

\ -w 1 0

[
1 _W*]-1 [ 0 ]} [n-(t)])

+ -s* 1 n2" - s* . n1 (dt), nt(t) +

Since

(c.c.)

(4.41 )

[
nt(t) - s(t)nt(t)] _ [n1(t)] [1 s(t)] [n1(t)]
n2"(t) - s(t)n1(t) - n2(t) - s(t)* 1 nt(t) ,

(4.41) reads as

(Pu(()W£o, W£o) = (Puo(()£o£o)

+ (w(()(l - s(()w(())-1(nr(() - s(()nt(()), n2"(() - s(()*n1 (()) + (c.c.)

_r 1 _1(1
2
/ [n1(t)] , [n1(t)]) m(dt) _ (c.c.)

IIr It - (1 2
\ n2(t) nt(t)

+ l ~t~I~II: ([S(:)* S~)] [:~i~~], [:~i~~])m(dt)

r1_1(12 ({ [1 -IS] -1 [nt -os. nt]
+ IIr It - (1 2 -w

+ [1 -s*] -1 [_ 0* _]} (dt), [nI]) + (c.c.)
-w* 1 n2 - s . n1 n2

(4.42)
Putting together the third and the fifth lines, we get (4.33). D

4.4. Define now the scale p correspondent to the extension U. We assume here that
there is a dense set Eo ~ E such that for any e E Eo, poe is a finite vector. Then
define p : E --+ L by the formula

p = W Po . (4.43)

It is defined at least on Eo. Let e E Eo, then

£0 = poe (4.44)

is a finite vector. According to the notations (3.15) and (4.15) we will get for
£0 = pe,

(4.45)
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Applying now (4.33) to £0 = pe, we get

Theorem 4.5.

(Pu(()pe,pe) = (Pu(()Wpoe, Wpoe) = (O'o(()e,e)

+ (w(()(l- s(()w(())-I(rt(() - s(()(r~)+(())e, ((r~)-(() - s(()*r1(())e)

+ (c.c.)

r1 - 1(1 2 / { [1 -s] -1 [ 0 ]
+ Ir It - (1 2 \ -w 1 wrt - (r~D+

+ [1 -w*] -1 [-r1 + w*(r:n-]}(dt)e, [ r1(t) ] e) + (c.c.)
-s* 1 0 (rz)+(t)

r 1 - 1(12
/ [1 S(t)] [ r1(t)] [r1(t) ] )

+ J1f It - (1 2 \ s(t)* 1 (rz)+(t) e, (rz)+(t) e

r 1 - 1(12
/ d [r1(t)] [r1(t) ] )

+ Ir It - (1 2 \ O'i( t) (rz)+(t) e, (rz)+(t) e .
(4.46)

The latter formula is a generalization of the formula (3.45) for the case when rl (()e
and r2(()e need not be H~(Nl) and H~(N2) functions respectively. In this special
case (4.46) turns into (3.45).

5. One remark on the feedback coupling

We are going to give here one more perspective on the feedback coupling discussed
above, but now in terms of the scattering systems rather than in terms of unitary
colligations. The main point of this section is Lemma 5.2.

5.1. Consider the model unitary colligations Ao and Al (after performing Fourier
transforms FUo,io and FU"i, respectively, see Section 3.3):

where

Ao : N 2 EB H S
---. H S EB N 1 ,

Al : N 1 EB H W
---. H W EB N 2 ,

(5.1)
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(see (3.18), (3.26)). Remind that

£S = [~J H~JN2) ffi H
8

ffi [s~] H:(Nd

L W
' = [~] H~(NI) ffi H W

' ffi [:*] H:(N2) .

(5.2)

For h8 E H8, denote

and for hW E HW' denote

h
8

= [~~]

h
W

= [~~] .

(5.3)

(5.4)

(5.5)

Ao and Al act as multiplications by t in these models:

t : [~J N 2 ffi H
8

-+ H
8

ffi t [s~] N I

- [1] -[w*]t: w N I ffi H W
-+ H W ffi t I N2.

Denote by U the feedback coupling of Ao and Al (see Definitions (3.1), (3.2)):

(5.6)

Lemma 5.1. Let

(5.7)

(5.8)

then

g8 = t (h8 + [s~ s] [ -h+(O) ])
1 w(O)h+(O) + h'+(O)

gW = t (hW _ [wI w*] [ -h+(O) ])
I w(O)h+(O) + h'+(O)

Proof. By definition of the coupling ((3.1),(3.2)) the operator U in (5.7) is com
puted from the system of equations (see (5.5))

t ( [:J n2 ffi h
8

) = g8 ffi t [~ ] ni

t (e] ni ffi h
W

) = gW ffi t [:*] n2 .

(5.9)

Remind that the coupling condition means that nl from the first equation and ni
from the second one is the same vector, the same holds for n2. Since
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then

Similarly,

which means

n2 =W(O)nl + h~(O) .

Or, taking into account that nl = h~JO) (see (5.11)), we obtain

_( [1 w*] [ h+(O) ])
gW = t h

W
+ w 1 -w(O)h+(O) _ h~(O)

n2 = w(O)h+(O) + h~(O) .

Substituting n2 from (5.14) into (5.11), we get

nl = h+(O) .

(5.15) and (5.14) give us (5.8). The lemma follows.

Remark. By the way we obtained that in this model,

5.2. Discuss now the Fourier representation

FU,i : H S EB H W -> Lai ,

where (see (3.44))

1 (1 + [LcJ~() S~()] 1+ [S(~)* W~)*])
(Ji(() = "2 _ [0 S(()] + _ [0 w(()*] , 1(1 < 1.

1 w(() 1 1 s(()* 0

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

o

(5.16)
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According to (3.38) for 1(1 < 1,

(5.17)

Let us denote it by

By [~f] we denote the analytic term

and by [~f] the antianalytic term

Lemma 5.2. Formulas (5.18)-(5.20) are equivalent to

[VI] [8] + s [1] - [1] + W [w*] _
V2 = 1 v2 + h + 8* VI = W VI + h + 1 v2 ,

for 1(1 < 1, where

hs [h+] hW [h~]- h'=--' - h,+
(see (5.3), (5.4)).

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

Proof. By straightforward computation, separating entries, analytic and antiana
lytic parts. 0

Comment. The sides of (5.21) look like vectors from £8 and LW' respectively (see
(5.2)), but the functions vi, VI, v:[, vi" need not be H~ or H: functions. Thus,
in terms of scattering systems, the feedback coupling means (in a sense) that we
add to the state vectors hS and hW the "channel" terms in order to make the sums
in (5.21) equal.
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Chains of Space-Time Open Systems and DNA

M.S. Livsic

Dedicated to Harry Dym

Abstract. There is a striking resemblance between chains of space-time open
systems and chains of nucleotides in molecular biology. It seems, hypotheti
cally, that nucleotides can be treated as some kind of space-time systems. In
particular, there exist attraction forces between corresponding links of two
complementary chains of space-time systems going in the opposite directions.
Chains of space-time systems can be replicated with the help of primers, elon
gations and templets. We show also that under some conditions the structure
of a chain is a Bertrand curve - in particular, a double helix.

Introduction

"James Watson and Francis Crick showed that the structure of DNA is a double
helix in which each helix is a chain of nucleotides held together by a phospodiester
bond, and in which specific hydrogen bonds are formed by pairs of bases" [1,
Chapter 11]. We show that some important properties of DNA can be given a
natural explanation using the methods of system theory. In this way we can also
obtain a new information about the properties of DNA.

Let us recall the basic results of the theory of operator vessels [2].
A collection

x = (AI, A2 ; H, <I> , E; 0'1, 0'2) ,

where AI, A 2 are linear operators in a Hilbert space H (dimH = N ~ 00), E is a
finite dimensional Hilbert space, <I> : H ---+ E is a linear mapping, and 0'1, 0'2 are
selfadjoint operators in E, is called a colligation if the following conditions hold:

;(Aj - Aj) = <I>*O'j<I> (j = 1,2). (1)
z

The spaces Hand E are called respectively the inner space and the outer space (or
the coupling space) of the colligation X, and the mapping <I> is called the window
of X. The colligation is said to be commutative if A l A 2 = A 2 A l . The colligation
is said to be strict if

1. ipH = E.
2. ker 0'1 n ker 0'2 = O.
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(T2<1>1
A* ,
2

Systems

We consider also the following family of systems:

Fr : {i! + ( A, ~:) f(s) = <1>* ((T, ~:) u(s), f(Mo) = fo,

v(s) = u(s) - i<l>f(s).

Here f: Xk = Xk(S) (k = 1,2, So ~ s ~ SI), is a (piecewise smooth) path in ]R2,

(
dX) dXl dX2 (dX) dXl dX2

A, ds = Al ds + A2 ds ' (T, ds = (Tl di + (T2 ds ;

u(s) E E is the input, f(s) E H is the inner state, and v(s) E E is the output. For
such systems the "energy" balance law holds:

dU,!) (( dX) ) (( dX) )~ = (T, ds u(s), u(s) - (T, ds v(s), v(s) .

Vortica! systems

In the case of infinitely many revolutions along an infinitesimal circle, a so-called
vortical system appears [3]. Besides the original window <I> : H ----. E, the vortical
system acquires its own "vortical" windows:

in", "'A* "'A* 1(T1 <I>vort '*' = (Tl'*' 2 - (T2'*' 1 = Ai

and

Vessels

A collection
v = (Xj')'in,')'out),

where X is a colligation and ')'in, ')'out are operators in E, is called a vessel if the
following relations hold:

Here

vortin <I> = ')'in<l>,

vortOut <I> = ')'out<l>,
')'out _ ')'in = w(X).

(2)

(2')

(3)

w(X) = i((Tl<1><I>*(T2 - (T2<1><I>*(Tl) = i 1;;;1 ;=;21·

It is known [2, Section 2.3] that conditions (1), (2), (3) are equivalent to the
conditions (1), (2'), (3), i.e., in the figure below the left side of the quadrilateral
is equivalent to the right side:

Theorem ([2, Section 2.3]). Any commutative strict colligation can be embedded
into a uniquely determined vessel. In this case ')'in = ')'in*, ')'out = ')'out*.
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(4)

Conditions (2), (2') can be viewed as the adaptation conditions of the vortical
windows to the original window <J! : H ----+ E. It is interesting to notice that
the adaptation factors ")'in, ")'out play also the role of compatibility factors for the
overdetermined system of equations of a 2D system:

l
i~f + Al/(Xl,X2) = <J!*0"1U(Xl,X2),
UXI

F(X): . af A f( ).iI'.* ( )Zn-- + 2 Xl, X2 = 'J!' 0"2U Xl, X2 ,
uX2

V(Xl' X2) = U(Xl, X2) - i<J! f(Xl, X2).

Theorem ([2, Section 3.2]). Let X be a commutative strict colligation. Then the
equations of F(X) are compatible if and only if the input u(xl, X2) satisfies the
following PDE:

in( ) au au. inD U:= 0"2n-- - 0"1 n-- + z")' U= O.
UXI UX2

In this case the output V(Xl,X2) satisfies the PDE:

av av
Dout(v) := 0"2n-- - 0"1 n-- + i")'0utv = O.

UXI UX2

(5)

(6)

(7)

Remark. If <J!H =I- E, then the condition Din(u) = 0 is sufficient for the compati
bility of the equations of F(X), and in this case the condition Dout(v) = 0 holds
as well.

1. Spectral analysis and synthesis of 2D systems

Spectral analysis

It is known [2, Section 2.4] that if H(2) is a common invariant subspace of the
operators Al and A2 , then

(

A(l) 0)
Aj = J (2) (j = 1,2),

Cj Aj

where Cj : H(1) ----+ H(2), <J! = (<J!(1) <J!(2)) , and Cj = i<J!(2)*O"j<J!(1). The colliga-
tion X is the coupling X = X(!) --; X(2), where

X(!) = (A~l), A~l); H(1), <J!(l) , E; 0"1,0"2), X(2) = (A~2), A~2); H(2), <J!(2) , E; 0"1,0"2),
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and the corresponding 2D system is the coupling of F(X(1)) and F(X(2)), F(X) =
F(X(1)) --+ F(X(2)):

FIGURE 1. Cooperative States

If X is a commutative colligation with a finite dimensional inner space, then
there exists a decreasing chain of common invariant subspaces

H = HO ~ HI ~ H 2 ~ ... ~ H N - 1 ~ H N = 0,

such that dim(Hk - 1 8 H k ) = 1. In this case we obtain a spectral resolution of X
into elementary colligations X k with one dimensional inner spaces ilk = H k - 1 8
Hk: X = Xl --+ x2 --+ ... --+ X N and F(X) = F(X1) --+ F(X2) --+ ... --+ F(X N ).

Spectral synthesis

Unfortunately, the inverse problem of spectral synthesis is a difficult and even
a "wild" problem, because the coupling of elementary colligations is generally
speaking not commutative. To overcome this difficulty we will use the method of
an initial primer and its elongations.

Let XO = (A~,Ag;Ho,q,o,E;0'1,0'2) be a given commutative strict colliga
tion, and let M' = (a~, a~) be a given point in ([:2. We will consider the following
elongation problem: find an embedding of the point M' = (a~, a~) into an elemen
tary colligation

X' = (A~, A;; H' , q,' ,E; 0'1, 0'2), dimH' = 1,
such that the coupling X = XO --+ X' is a commutative colligation. We remind that
XO admits an embedding into a uniquely determined vessel V O = (XO; ,oin , ,oout),
where ,oin, ,oout are the compatibility factors.

Elongation Theorem I. If XO is a commutative strict colligation, then there exists
a commutative elongation of XO with the help of a given point M' = (a~, a~) if
and only if this point admits an embedding into a vessel

v, (' 'H';J,,' E ,in ,out)= a1,a2; ,'I', ;0'1,0'2;", ,

such that "in = ,oout.

Proof. By the definition of the coupling of colligations (see (7) and [2, Section
2.4]), XO --+ X' = X = (A1,A2;H,q"E;0'1,0'2), where

A.- (A~ 0) (. -12)
) - ';J,,' .;J"O A' _, J - , ,

Z'l' 0') 'I' j - aj

q,H = (q,o q,') (~~) = q,0HO + q,'H' = E.
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The commutator

where
C21 = i<l>'* [0"1 <1>0A~ - 0"2<1>°A~ - (a~O"l - a~ 0"2 )<1>0] .

Using the vessel condition (2') for VO = (XO; ')'0 in ,')'oout):

"",OAO ;';'0AO _ oout;,;,o0"1'¥ 2 - 0"2'¥ 1 - ')' '¥,

we conclude that

C .;,;,,* [oout (' ')] ;,;,021 = Z,*, ')' - a20"1 - a10"2 '*'.

Hence C21 = 0 if and only if <1>'* (a~O"l - ai 0"2) = <1>'* ')'oout (<1>0 can be cancelled
because XO is strict). Taking the adjoints we obtain

(
_' _') ;,;,' oout;,;,'a20"1 - a10"2 '*' = ')' '*' ,

which is the vessel condition (2) for X' with ')',in = ')'oout. Now we define ')',out in
accordance with the condition (3):

,out ,in (X') (X') .( ;,;,';,;,1* ;,;,1 ;,;,1* )')' = ')' + 1r ,1r = Z 0"1'*' '*' 0"2 - 0"2'*' '*' 0"1 .

Then the condition (2') for X' holds as well, proving the Elongation Theorem. 0

In terms of 2D systems, the Elongation Theorem means that the 2D field
F(XO) admits a consistent elongation F(XO) ---> F(X') with the help of a given
point M'(ai,a~) if and only if the elementary system F(X') inherits the com
patibility factor ')'/in = ')'oout from the primer F(XO). Hence every 2D field that
corresponds to a commutative strict colligation can be used as a primer.

It is known [2, Section 4.2J that for an arbitrary commutative vessel the
following determinants are equal:

D(A1' A2) := det(A10"2 - A20"1 + ')'in) = det(A10"2 - A20"1 + ')'out).
It is known also (the Generalized Cayley-Hamilton Theorem) that the operators
AI, A2 satisfy the equation D(A1,A2) = 0 (on the so-called principal subspace).
The algebraic curve D(A1' A2) = 0 is called the discriminant curve of the given
vessel V.

The Elongation Theorem implies that the primer XO defines uniquely the
discriminant curve

D(A1' A2) = DO(A1, A2) = det(A10"2 - A20"1 + ')'oout).
If ')',in = ')'oout, then the point M' (ai, a~) belongs to the same discriminant curve:
DO(ai,a~) = o.
Elongation Theorem II. Let XO be a primer such that 0"2 > 0, and let M'(ai, a~),

Ima~ > 0, be a given point. Then there exists a commutative elongation of XO
with the help of M' if and only if the point M ' belongs to the discriminant curve
of XO.
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Proof. If DO(a~,a~) = 0 then also DO(a~,a~) = O. Hence the equation

(a~a2 - a~al + ,oout) ell = 0

has a nontrivial solution </;'. Multiplying from the left by </;'* and taking imaginary
parts we obtain

There are two cases:

1. </;'*al </;' -=I- 0; then 1m a~ -=I- 0 and

(lma~): </;'*al</;' = (lma~): </;'*a2</;' > O.

Multiplying ¢' by an appropriate factor, we can normalize </;' in such a way
that the two colligation conditions 1maj = </;'* aj</;' are fulfilled, and we obtain
a colligation which satisfies the conditions of Elongation Theorem 1.

2. If </;'*al ¢' = 0 then 1m a~ = O. The second colligation condition can be easily
obtained by an appropriate normalization of </;'. 0

Given a sequence Mk(a~, a~), k = 1, ... ,N, 1m a~ > 0, of points on the dis
criminant curve, one can synthesize step by step, using the Elongation Theorems,
a commutative chain corresponding to the sequence M k , k = 1, ... ,N (after the
synthesis is completed the primer XO can be omitted):

I oout,=, ,
(a~a2 - akl + ,k) </;k = 0,

1 (k -k) k* k ( . )-;- aj - aj = ¢ aj¢ J = 1,2 ,
z

,HI = ,k + i [al ¢k</;k* a2 - a2</;k¢k* al ]

(8)

(k = 1, ... ,N).
In the case a2 > 0, the compatibility equations (5) are of the hyperbolic

(parabolic) type and we can assume that Xl = t, X2 = X are the time coordinate
and the space coordinate, respectively. The equations of the links F(Xk) have the
form:

(9)
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(k = 1, ... ,N), and the compatibility equations are
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(10)

We see that in the presence of a primer, the spectral synthesis is a uniquely
determined process. But without a primer, the synthesized chain will, generally
speaking, be in a chaotic (turbulent) state. Therefore, 2D synthesis can extend a
chain but cannot start a chain.

Damaged chains

Consider two strict consistent chains F1 and F II :

n n1
-"'(,""",----u

1in
-to=:a=-_..:....-.-..--=*- "'(out =J "'(in to=:a= ... --=*-

consistent 1 11 chaotic

v
"V0ut
III

If the compatibility factors at the coupling location are distinct: "'(Jut =J "'(Y},
then F1 destroys the consistency of F11. One can try to repair the chain F1 ----7 F11
by inserting a third chain F R , such that "'(W = "'(Jut and "'(Ir = "'(}'j.

If the repair is possible then the discriminant curves D1 = 0, D11 = °coin
cide. In this case DR = D1 = D11 .

2. Antiparallel reciprocity

Let us consider two mutually adjoint commutative strict vessels:

and

where

<p' = -<p,
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To these vessels there correspond two "complementary" space-time systems:

au au. in 0
a2 at - al ax + 2, U = ,

!
i~~ + Ad = <I>*alu,

F(V): .af A f ;1;.*
2 ax + 2 = '¥ a2U ,

v = u - i<I>f,
av av. out 0

a2 at - al ax +2, V = ,

and

au' au'. out ,
a27ft - al ax' + 2, U = 0,

!
of'i- + A*f' = <I>*a u'at 1 1 ,

Fev*): .af' A*f' ;1;.* ,

2 ax' + 2 = '¥ a2U ,

v' = u' + i<I>f',

av' aV'. in ,
a2 - - al- + 2, V = o.

at ax'

The spatial coordinates x, x' are chosen as follows

(11)

(11')

•o
x

M
•
G

•
M'

x'
0'

Here x 0 M, x' = 0'M' are the distances between the corresponding
points, the points 0 and 0' are fixed, and the point G is located in the middle
between 0 and 0': OG = O'G = a. We will consider the case x = x' = p
(0 s: p s: a), when the points M and M' are symmetric with respect to the point
G.

Reciprocity Theorem. Assume that the output of F(V) is supplied as the input to
F(V*): u'(t,p) = v(t,p), and that the initial values of the inner state are equal:
f (to, Po) = f' (to, Po)· Then the inner state of Fev) and the inner state of Fev*)
coincide identically: f (t, p) = f' (t, p) (to s: t s: tl, 0 s: P s: a), and the output of
F(V*) coincides with the input of F(V): v'(t,p) = u(t,p).

Proof Let u'(t,p) = v(t,p) and f'(to,Po) = f(to,Po). Consider the equations of
F(V) and of Fev*) at t = to:

Fev) : {i~~ +A2f(to,p) = <I>*a2u (to,p), f(to,Po) = fo,

veto, p) = u(to, p) - i<I>f(to,p),
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v(t,p) u'(t,p)=v(t,p)

0--·----l$t-------c------l$~---.O,
327

u(t,p) v'(t,p) = u(t,p)

and

FIGURE 2. Reciprocity: OM = 0'M' = p, f(M) = f'(M')

F(V*) : {i% +A2f'f(to,p) = 4>*0"2V(tO'p), f'(to, PO) = fo,

v'(to, p) = v(to, p) + i4> f'(to, p).

Let f(to, p) be the solution of the equations ofF(V) (satisfying the initial condition
f(to, Po) = fo). Substituting f(to, p) on the left-hand side of the first equation of
F(V*) we obtain

i~~ + A2f = i~~ + Ad + (A; - A2 )f =

4>*0"2U - i4>*0"24>f = 4>*0"2(U - i4>j) = 4>*0"2V. (12)

Hence f(to, p) satisfies the equations ofF(V*) (and the initial condition f(to, po) =
fo), and therefore f(to,p) == f'(to,p) (0 ~ p ~ a). Analogously, using the time
equations of F(V) and of F(V*), we conclude that f(t,p) == f'(t,p). Then

v' = v + i4> f = u - i4> f + i4> f = u. D

3. Attraction and repulsion forces

As we saw, to each commutative strict vessel V there corresponds an open 2D
field F(V). It is easy to check that the compatibility, equations Vin(u) = 0 and
vout(v) = 0 imply that

{) {) {) {)
{)t(0"2U,U) = {)X(0"1U, '11,), {)t(0"2V,V) = {)X(0"1V, v).

From these relations it follows that there exist two potentials Win(t,x) and
wout(t, x) such that

dWin = (0"1 '11" '11,) dt + (0"2U, '11,) dx,

dWout = (0"1 v, v) dt + (0"2V, v) dx.

From the relations

(13)
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it follows that d(f, J)
formula:
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dWin - dwout , and we arrive at the three potentials

(f, J) = Win - wout + 0, (14)

where (f, J) is the "inner" potential. We can consider now the "inner state force":

8(f, J)
Px = -",gradx(f,J) = -"'~ = ",[(azv,v) - (azu,u)], (15)

where", is a constant factor. If the conditions of the Reciprocity Theorem hold,

u(t,p) = v'(t,p), f(t,p) = f'(t,p), v(t,p) = u'(t,p),

in a domain 0 :S x = x' = p :S a, to :S t :S tl, then the inner state force of the
complementary system is

P~, (t, p) = '" [(a~v', v') - (a~u', u')] = '" [(azv, v) - (azu, u)] = Px(t, p).

Assuming", > 0, there are two possible cases:
1. (azu(t, x), u(t, x» < (azv(t, x), v(t, x» (in some domain, (t, x) E f2). In this
case Px = P~, > 0. This is the case of attraction between the systems F(V)
and F(V*).

2. (azu(t,x),u(t,x» > (azv(t,x),v(t,x» ((t,x) E f2). This is the case of repul
sion: Px = P~, < 0.

o M(x) o M'(x')

£ = ",(f', 1')

0'

FIGURE 3. Attraction ('" > 0, x = x', Px = P~, > 0)

Remark. In the case az > 0, '" > 0, all the channels of the system F(V) are direct
with respect to the space coordinate: energy enters the system through the input
and leaves the system through the output, if the displacement dx > O. All the
channels of F(V*) are inverse with respect to the displacement dx' > 0: energy
enters through the output and leaves through the input. If the conditions of the
Reciprocity Theorem hold, both systems emit or absorb energy simultaneously.
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£ = K(f,j)

o M(x) c M'(x')

£ = K(f', 1')

0'

FIGURE 4. Repulsion (K > 0, X = x', Px = P~, < 0)

Let us consider some special cases.

1. U = v' = 0, 'P fa 1= 0. Then v = u' = _i'Pei(tA 1+pA
2) fa 1= 0, and therefore,

assuming a2 > 0, K > 0, we have °= (a2u, u) < (a2v, v). This is the case of
attraction. Analogously, if u' = v = 0, it will be the case of repulsion.

2. Let U A = v~ = ei (tAl+PA2)u1, (>'1, A2) E ((:2. Assuming that the compatibility
PDE V in (u A) =°is satisfied, we obtain the following algebraic equation

(AW2 - A2al + lin)u1 = 0. (16)

If u1 1= 0, then the point M(Al' A2) belongs to the discriminant curve D(Zl' Z2) =
0, where

D(Zl' Z2) = det(zla2 - Z2al + lin) = det(zla2 - Z2 al + lout).

The equations of F(V) have in this case a common solution fA = ei(tAl+PA2)n,
where

f~ = (AI - AII)-1'P*alu1 = (A2 - A2I)-1'P*a2u~.

The output is VA = ei(tAl +PA2)V~, where

v~ = Sl(Al)u1 = S2(A2)U~ = S(M)u~.

Here

Sj(Aj) = 1- i'P(Aj - AjI)-l'P*aj (j = 1,2)

are the characteristic functions of the (single-operator) colligations

X j = (Aj;H,'P,E;aj),

(17)

(18)
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and S(M) is the joint characteristic (transfer) function; see [2, Sections 3.4 and
4.3]. The forces in this case are

Px = I\; [(0"2VA,VA) - (0"2UA'UA)]

= l\;e-2CtlmA,+plmA2) ((S2(A2)*0"2S2(A2) - 0"2)U~,U~). (19)

The equality
a(j, f)
~ = (0"2UA,UA) - (0"2VA'VA)

is equivalent in this case to

(2ImA2)(j~,f~)= (0"2S2(A2)utS2(A2)U~) - (0"2U~,U~) =

((S2(A2)*0"2S2(A2) - 0"2)U~, u~) .

Hence the following relations hold

{

> 0, ImA2 > 0,
((S2(A2)*0"2S2(A2) - 0"2)U~,U~) < 0, ImA2 < 0,

= 0, ImA2 = O.
We obtain therefore, assuming I\; > 0, the following classification:

2+. 1m A2 > 0: attraction;
2_. 1m A2 < 0: repulsion;
20. 1m A2 = 0: neutral.

If, in the case 20, we have also 1mAl = 0, then (j, f) == const for all (t, x).

Double chains of elementary systems

If the colligation X is the coupling of XCI) and X(2) as in (7),

X = (AI, A2;H, <I>, E; 0"1, 0"2) = X(1) -7 X (2),

then the adjoint colligation X* is the coupling of (XC2))* and (X(1))*,

X = (Ai, A2;H, -<I>, E; -0"1, -0"2) = (x(1))* +- (XC2))*.

Let us consider now two mutually adjoint chains of elementary vessels V k and
(V k )* (k = 1,2, ... ,N) as in (8), and the related chains of elementary space-time
systems, F(V) = F(V1) -7 F(V2 ) -7 ... -7 F(VN) and F(V*) = F((V1)*) +
F((V2 )*) +- ... +- F((VN)*). If the conditions of the Reciprocity Theorem are
fulfilled: U = v', f = f', v = u', then these two chains of systems form a pair of
complementary chains:

In the special case u~ (t, p) = eiCtA, +PA2)U~ (0), it follows from the factorization
theorem for characteristic functions [2, Theorem 3.4.6J that the sequence u~ (0) is
given by u~(O) = S;-l(Aj)'" S](Aj)ul(O), where

k . ¢k¢k*
Sj (Aj) = I - ~ aj _ Aj O"j (j = 1,2; k = 1,2, ... ,N).
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FIGURE 5. Two Snakes Bite Each Other

In the case of attraction 1m A2 > O. The attraction forces between the links F(Vk )

and F((Vk)*) (k = 1,2, ... ,N) of the two complementary chains are

P; = Ke-2(tImAl+pImAz) ((S~(A2)*(J"2S~(A2)- (J"2)U~(0), u~(O)) .

In the case of repulsion, 1m A2 < O.
If only one of the two complementary chains is given, then this chain can be

used as a templet for the synthesis of the other chain. If, for instance, F = F I ~

F 2 ~ ... ~ F N , then the joint transfer function is as above a product

Sv = SVN" ,SV2SV1.

It is known [2, Proposition 3.4.5] that the transfer function of the adjoint vessel

and the transfer function of a given vessel are related by Sv* = (Sv ) -1. Hence

_ (_ )-1 (_ )-1 (_ )-1Sv* = SVl SV2 . .. SVN

Therefore using the product expansion for Sv step by step in the opposite direc
tion, we can carry out the synthesis of the complementary chain.

The four elements case

Consider the case when all the points M k (k = 1,2, ... ,N) are chosen from some
basic set of four points,

M k E {K,.c,M,N},

belonging to the given discriminant curve D(AI, A2) = O. Since all the coefficients
of D(AI' A2) are real, D(XI, 'X2) = D(AI, A2)' Assume that D(AI, A2) is symmetrical
also with respect to the transformation [M(AI' A2)]' = M(AI, -A2): D(AI' -A2) =
D(AI,A2)' We will choose four points K(bLb~), .c(bi,b~), M(cLc~), N(ci,c~),

such that
b2 - bl b2 _ bl 2 _ 1" 2 _ 1"
1 - l' 2 - - 2' CI - c l , c2 - -c2 ,

and Imb~ > 0, Imc~ > O. Evidently, .c' = K*, M' = N*. The pairs {K, £'} and
{M,N'} are pairs of corresponding points in the complementary chains F(V),
F(V*). As an example of the discriminant curve, we may consider a smooth cubic,

A~AI - (AI - ad(AI - a2)(AI - a3) = O.
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1 1
q = -(u - v) = -<I>h.

2 2

In this case [2, Section 1.4] dimE = 3 and we may take

al = [~ ~ ~], a2 = h·
o 0 -1

4. Self conjugate systems

If the conditions of the Reciprocity Theorem hold, then the equations of the two
mutually complementary systems are

!
i~~ + Alh = <I>*alu,

F(V) .ah A h ;0..*
~ ap + 2 = 'I.' a2U ,

v = u - i<I>h,

and

!
.ah A*h ;0..*
~ at + 1 = 'I.' alV,

F(V*): .ah + A*h _ ;0..*

~ ap 2 - 'I.' a2V ,

u = v + i<I>h,

where p = x = x', h(t, p) = f(t, x)/x=p = ret, x')lx'=p' Adding the respective
equations for F(V) and for F(V*), we obtain the following equations for h(t, p):

{

.ah A'h ;0..*
* ~ at + 1 = 'I.' alP, 1

F(VV ): ah P = "2(u + v),
i ap + A~h = <I>*a2P,

where Aj = ReAj = ~(Aj + Aj) (j = 1,2). It can be checked easily that the
following relations hold:

{

a(h, h)-----at = 4Re(alP,q),

a(h,h)8P = 4Re(a2P,q),

The system F(VV*) is said to be self conjugate; p(t, p) and q(t, p) are the input
and the output of F(VV*), respectively.

In general, the real parts of commuting operators do not commute. It is
known [2, Section 4.7] that the commutator of the real parts is given by

[A~,A;] = ~<I>*CJout _,in)<I>.

The coincidence of the compatibility factors at the input and at the output:
,in = ,out, is therefore sufficient (and for strict vessels, also necessary) for the
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commutativity of the real parts. For such "exclusive" systems, the compatibility
PDEs at the input and at the output coincide,

V == Vin == vout ,

and the input p(t, p) and the output q(t, p) satisfy the same PDE: V(p) = 0,
V(q) = O. In the exclusive case we can take p == 0; then the equations of F(VV*)
will be

{

.ah A'hzat + I = 0,

.ah A'
zap + 2 h = 0

These equations have a common solution

h = ei(tA~ +pA;) ho ,

such that (h, h) = (ho,ho). Therefore, in the exclusive case ')'in
U + V = 0, F(VV*) is a closed conservative system.

5. Tensor colligations and tube systems

')'out, when

Let us consider the following tensor of operators:

[~~~~ ~~~~ ~~~~ ~]
A A A 0 (aaf3 = aaf3).

a31 a32 a33
o 0 0 B

Assume that (A, Bj H, <I>, Ej O'(A), O'(B)) is a strict commutative colligation. Let
~ = (6,6,6), a+ ~~ + ~§ = 1, be a unit vector in 1R3 . Then we can construct
the following 4D colligation depending on ~:

Xt; = (Aa = TJaA,B;H,<I>,EjO'a = TJaO'(A),O'(B)) ,

where TJa = L~=l aaf3E:,f3 (here and below the index a runs from 1 to 3; for details
on the definitions and basic properties of 4D colligations, systems, and vessels,
which are analogous to the 2D case, see [2, Chapters 2 and 3]). Assume that
O'(A) > 0 and that X4 = t is the time coordinate. The corresponding 4D system is

!
i :~ + TJaAf(XI, X2, X3, t) = TJa<I>*O'(A)u(xI, X2, X3, t),

Ft;: .af f( ) * ( ) ( )zat + B Xl, X2, X3, t = <I> 0' B U Xl, X2, X3, t ,

V(XI, X2, X3, t) = U(XI, X2, X3, t) - i<I>f(XI, X2, X3, t).

From the relations

~(AaA~ - Af3A~) = TJaTJf3~(AA* - AA*) = 0,
z z
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we conclude (as we assumed strictness) that 'Y~n,6 = O. The xol.x,6 compatibility
equations are

CJ(A) (1],6 :x: -1]01. :x:) = O.

au au
Therefore~ : 1]01. =~ : 1],6 = G and

uXOl. ux,6

du = (1]1 dX1 + 1]2 dX2 + 1]3 dX3) G,

and U(X1, X2, X3, t) is a function of t and p = 2:(XOI. - x~)1]OI.: u(xl, X2, X3, t)
u(p,t). Then also f(X1,X2,x3,t) = j(p,t), V(X1,X2,x3,t) = fJ(p,t), and the equa
tions of the 4D system Ft; can be reduced to the equations of a 2D system:

j(p, t)

oj -
i op + Af(p, t) = <.p*CJ(A)u(p, t),

oj -
i at + Bf(p,t) = <.P*CJ(B)u(p,t),

fJ(p, t) = u(p, t) - i<.p j(p, t).

We will consider the special case aOl.,6 = 001.,6. In this case 1]01. = ~OI. and p =
((x - xo),~) = 2:(XOI. - x~)~OI.' Assume that the system j is defined in some
cylindrical domain (tube) T in the direction of the unit vector~:

)Crl

u

f)
Here R is the ray XOI. = x~ + P~OI.' and £(p) is the unit vector in the input

output direction.
Let'cP : x~ = x~(s) (so:::; s :::; Sl, 0 :::; p:::; d) be a family of smooth curves,

and let 9Jts be the set of points of ,CP (0 :::; P :::; d) corresponding to a fixed value
of the parameter s.

Definition. We will say that a family of tubes T S (so:::; s :::; Sl) is attached to the
family of curves ,CP (0 :::; p :::; d) if:

1. The sets 9Jts (so:::; s :::; sd coincide with the corresponding rays RS.
2. The directions of the principal normal vectors to the curves ,CP coincide with
the directions of the corresponding rays.

3. The input-output directions of the tube systems TS coincide with the direc
tions of the tangent vectors to ,CP at the corresponding points.
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When the conditions 1-3 of the definition are fulfilled, the family of curves
£P (0 ::; p ::; d) is said to be a tube-admissible family.

From condition 2 we conclude that if £P are tube-admissible, then the prin
cipal normal vectors to the curves £P coincide at the points corresponding to the
same value of the parameter s. Such curves are well known in classical differential
geometry, and they are called Bertrand curves; see, e.g., [5], [4, p. 72]. The cur
vature ~l (s) and the torsion ~2 (s) of the Bertrand curve £0 are connected by the
relation

P~l (8) sin a + p~2(8) cos a = sin a,
where a is the necessarily constant angle between the tangent vectors to the curves
£0 and £P at the corresponding points (which depends, generally speaking, on p).

Theorem. Let £0 be a tube-admissible curve. If all the principal normal vectors to
£0 lie in a fixed plane, then this curve is a simplex helix.

Proof. It is well known that if all the principal normal vectors to a curve lie in
a fixed plane and ~2 i- 0, then ~d~2 = const along the curve. If in addition the
curve is a Bertrand curve then from the relation

~l . 1 .
p-sma+pcosa= -sma
~2 ~2

it follows that ~l = const, ~2 = const. In this case the equations of the curve can
be brought to the form

Xl = a cosB, X2 = a sin B, X3 = bB,

which are the equations of a simple helix. o

Remark. The case of a general tensor ao.{3 can be obtained from the case of ao.{3 =
oo.{3 that we have considered by an affine change of space variables.
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6. Summary: Systems and genetics

We summarize in the following table the correspondence between the properties
of 2D (space-time) systems that we described in this paper, and the standard
properties of DNA.

I. Elementary 2D systems. I. Nucleotides.

II. Chain synthesis of 2D systems goes
in the direction from the input to the
output.

III. Chain synthesis of 2D systems
cannot start without a "primer" - an
initial strict commutative colligation
which defines the initial adaptation
coefficient )'0.

IV. Double chain of mutually adjoint
elements going in the opposite
directions; open systems forces.

V. Templets go in the direction from
out to in; leading and lagging strands.

VI. Tube systems and Bertrand curves.
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A Class of Robustness Problems
in Matrix Analysis

Andre C.M. Ran and Leiba Rodman

Dedicated to Harry Dym on the occasion of his sixtieth birthday

Abstract. We present an overview of several results and a literature guide,
prove some new results, and state open problems concerning description of all
robust matrices in the following sense: Let be given a class of real or complex
matrices A, and for each X E A, a set 9(X) is given. An element Yo E 9(Xo)
will be called robust (relative to the sets A and 9(X)) if for every X E A
close enough to Xo there is aYE 9(X) that is as close to Yo as we wish.
The following topics are covered, with respect to the robustness property: 1.
Invariant subspaces of matrices; here the set 9(X) is the set of all X-invariant
subspaces. 2. Invariant subspaces of matrices with symmetries related to in
definite inner products. The invariant subspaces in question include semidef
inite and neutral subspaces (with respect to an indefinite inner product). 3.
Applications of invariant subspaces of matrices with or without symmetries.
The applications include: general matrix quadratic equations, the continu
ous and discrete algebraic Riccati equations, minimal factorization of rational
matrix functions with symmetries and the transport equation from mathe
matical physics. 4. Several matrix decompositions: polar decompositions with
respect to an indefinite inner product, Cholesky factorizations, singular value
decomposition.

Other related notions of robustness are studied as well, for example, a
stronger notion of a-robustness, in which the magnitude of degree of closeness
of Y and Yo (as measured in some appropriate metric) does not exceed the
magnitude of IIX - XoI1 1

/
Q
•

1. The metaproblem

Many problems in applied mathematics, engineering, and physics require for their
solutions that certain quantities associated with given matrices be computed. For
example, these quantities may be solutions of a matrix equation with specified
additional properties, an invariant subspace, a Cholesky factorization of a posi
tive semidefinite matrix, or the set of singular values. From the point of view of

The work of the second author was partially supported by NSF grant DMS-9800704, and by a
Faculty Research Assignment Grant from the College of William and Mary. The work of both
authors was partially supported by NATO Grant 9600700.
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computation or approximation of a solution of the problem at hand it is there
fore important to know whether or not the required quantities can be in principle
computed more or less accurately. This involves approximation of the required
quantities of a matrix by the corresponding quantities of matrices that are per
turbations (often restricted to a certain class of matrices) of the given matrix. To
formalize this notion, we state a metaproblem:

Metaproblem. Let be given a class of matrices A, and for each X E A, a set
of mathematical quantities Q(X) is given. An element Yo E Q(Xo) will be called
robust, or stable, with respect to A and the collection {Q(X)} XEA, if for every
X E A which is sufficiently close to X o there exists an element Y E Q(X) that is
as close to Yo as we wish. Give criteria for existence of a robust Yo, and describe
all of them.

The statement of the metaproblem presumes a topology on A and on
UXEAF(X). In all cases, these will be natural, or standard, topologies. For exam
ple, if A is a subset of n x n matrices with complex entries, the topology induced
by the operator norm will be assumed on A. If UXEAF(X) is a subset of the set
of subspaces in Cn then the topology induced by the gap metric will be given on
UXEAF(X).

Assuming that Yo is robust, one might be interested in the degree of robust
ness, in other words, comparison of magnitudes between approximation of Yo by
Y and approximation of Xo by X. This approach leads to a more refined scale of
robustness properties.

In the present paper we present an overview of several results and a liter
ature guide concerning the metaproblem, including the degree of robustness, as
well as prove some new results and state open problems. The main topics covered
include: 1. Invariant subspaces of matrices; in this case we let Q(X) be the set of
invariant subspaces of a matrix X. 2. Invariant subspaces of matrices with sym
metries related to indefinite inner products; for example, we let Q(X) be the set of
X-invariant subspaces that are simultaneously maximal semidefinite with respect
to a given indefinite inner product. 3. Applications of invariant subspaces of matri
ces, with or without symmetries. 4. Matrix decompositions: polar decompositions
with respect to an indefinite inner product, Cholesky factorizations, singular value
decomposition.

Many of the results presented here are not new. For new results, at least an
indication of a proof is given. To keep the paper within reasonable limits, we avoid
detailed proofs (with few exceptions).

The report [62) contains a preliminary version of exposition in Sections 2
and 3.

Throughout the paper, we use the notation ImX for the range {Xx: x E

Fm} of an n x m matrix X with entries in F, where F = C, the field of complex
numbers, or F = R, the field of real numbers. Also,

Ker X = {x E F m
: X x = O}.
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2. Stability of invariant subspaces

339

Invariant subspaces of a matrix or linear operator become increasingly important
in applied problems. Recently, both theory and algorithms for computations of
invariant subspaces have been developed, see, for example, [27], [40], [70]. The
notion of a robust invariant subspace, as defined in the metaproblem, takes the
following form (keeping in line with the terminology established here, we use "sta
bility" rather than "robustness" in the sections concerning invariant subspaces):
Let A be an n x n matrix, and let M be an invariant subspace of A, i. e., Ax EM
for every x EM. Then M is called stable if for every c > 0 there is a <5 > 0 such
that IIA - BII < <5 implies the existence of a B-invariant subspace N such that
IIPM -PNII < c. Here PM, respectively PN, denote the orthogonal projection onto
M, respectively, N.

Stable invariant subspaces were introduced and discussed in [14] and [3] (see
also [4]) in the late seventies. A complete description of the stable invariant sub
spaces of a given matrix A was given there. Since then many refinements of this
concept have been studied. See, for instance [22, 25,49, 51, 63]. In [49, 51, 63] the
rate of convergence to a stable invariant subspace was investigated. Although of
less practical value from a numerical point of view, these results are interesting in
their own right, and can also be applied in several situations as we shall show (see
Sections 2.4 and 3.3).

The results on various notions of stability of invariant subspaces have ap
plications (at least potentially) in the areas in which invariant subspaces playa
key role. One such broad area is the state space methods in the theory of linear
systems. More specifically, stability of solutions of matrix polynomial equations,
factorizations of matrix polynomials, minimal and Wiener-Hopf factorizations of
rational matrix functions, (see [4, 22]), cascade decompositions [26] have been
studied in the literature using the invariant subspaces approach. In Section 2.4 we
give some results in this direction concerning quadratic matrix equations.

It should be noted that the corresponding problems for invariant subspaces
of linear bounded operators on infinite dimensional Banach spaces are also of in
terest, in particular, from the point of view of applications. However, not much is
known here, and development of the theory of stable invariant subspaces of infinite
dimensional operators is a challenge for future research. We note that Theorem
2.2 is valid in one direction in the infinite dimensional case, namely, every spectral
invariant subspace is Lipschitz stable (there are examples of Lipschitz stable non
spectral invariant subspaces in infinite dimensions; these examples are constructed
using one-sided resolvents, see [68]). Theorem 2.9 is valid in infinite dimensions as
well. Some general results and additional references on stable invariant subspaces
of infinite dimensional operators are found in [68].
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2.1. General theory: The complex case

In this and the next subsection results concerning stability properties of matrices
will be presented. We will study the concepts of stability, Lipschitz stability, a
stability and strong a-stability. Both the real and the complex case are considered.
The results presented here have been proved in [3,4, 14,49, 63, 51].

We start with the complex case. For two subspaces Nand M in the complex
vector space en of n-dimensional column vectors, the gap ()(M,N) is defined as
follows: ()(M,N) = IIPM - PNII, where PM, respectively PN, denote the orthog
onal projection onto M, respectively, N. Here and elsewhere in the paper we use
the operator norm IIXII, i.e., the maximal singular value of the matrix X (our re
sults however are independent of the choice of the matrix norm). It is well known
that ()(M,N) is a metric on the set of subspaces in en which makes this set a
complete compact metric space (see, e.g., [22] for more details). Other measures
of closeness between subspaces in en (spherical gap, minimal opening, canonical
angles) have been extensively studied in the literature as well, also for the infinite
dimensional Banach spaces; see the books [22, 4, 31, 70], for example.

Let A be a complex n x n matrix, and let M ~ en be an invariant subspace of
A. Then M is called stable if for every E > 0 there is a J > 0 such that IIA - B II < J
implies the existence of a B-invariant subspace N such that ()(M,N) < E.

We introduce the following notation. Let A be an n x n matrix, and let>. be
one of its eigenvalues. We denote by R,\(A) the root subspace of A corresponding
to >., Le., the subspace Ker (A - >.In)n.

The following theorem describes stable invariant subspaces in the case of
complex matrices.

Theorem 2.1. Let A be an n x n complex matrix. An invariant subspace M is a
stable A-invariant subspace if and only if for every eigenvalue>' of A for which
the geometric multiplicity is larger than one, i.e., for which dim Ker (>. - A) > 1,
we have R,\(A) nM is either {O} or R,\(A).

For each eigenvalue >. of A for which the geometric multiplicity is equal to
one R,\(A) nM is an arbitrary A-invariant subspace ofR,\(A).

Note that an A-invariant subspace is stable if and only if it is isolated (in the
metric topology) in the set of all A-invariant subspaces (see [4]). The connection
between stability and isolatedness is a recurrent theme in the study of stable
invariant subspaces, although it is not always "if and only if": for example, in the
real case (see the next subsection) every stable invariant subspace is isolated, but
there are isolated invariant subspaces that are not stable.

We shall also use the following notion. An A-invariant subspace M is called
Lipschitz stable if there are positive constants J and K such that IIA - BII < J
implies that B has an invariant subspace N with ()(M,N) ::; KIIA - BII. The
following theorem describes such subspaces (see [30]).
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Theorem 2.2. Let A be an n x n complex matrix. An invariant subspace M is
Lipschitz stable if and only if it is a spectral subspace, i. e., for all eigenvalues A of
A we have R>.(A) n M is either {O} or R>.(A).

An important issue in numerical analysis of Lipschitz stable invariant sub
spaces is finding good bounds for the constant K. Without going into details,
we note that there exist bounds for K based on the concept of separation: Write

A in the form A = [A~l ~~~] with respect to a suitable orthonormal ba
sis in cn; it is assumed that the spectra of All E Cpxp and A22 E cqxq do
not intersect. The separation sep(All , A 22 ) between All and A22 is defined as
the norm of T- 1 , where T is the invertible linear operator on Cpxq defined by
T(X) = AllX - X A 22 . The Lipschitz constant corresponding to the spectral A
invariant subspace spanned by the first p vectors of the orthonormal basis can be
expressed in terms of sep(All , A22 ). We refer the reader to Chapter V of [70], for
example, for complete details.

There are several possible notions that are weaker than Lipschitz stability and
stronger than stability. One of them is connected to the following observation: ifM
is Lipschitz stable, and An --+ A is a sequence of matrices, then for every sequence
of subspace M n, with M n invariant under An, such that M n is sufficiently close
to M, we have actually that O(M,Mn) ::::; KIIA - Anll.

We now introduce two closely related notions that are weaker than Lipschitz
stability and stronger than stability. An A-invariant subspace M ~ Cn is called
a-stable if there exist constants K > 0, E: > 0, such that every matrix B E cnxn

with IIA - BII < E: has an invariant subspace N ~ pn with the property that

O(M,N) ::::; KIIA - BII i-.

An A-invariant subspace M ~ Cn is called strongly a-stable if for every
sequence An --+ A and every sequence M n --+ M, where M n is An-invariant, we
have

O(M,Mn)::::; KIIA-Anlli-·

The following result that describes a-stable invariant subspaces was obtained
in [63].

Before stating the results, let us introduce the following notation. For two
natural numbers k and n, with k < n, we introduce a number ,(k, n), as follows:
,(k, n) = n, whenever there is no set of k distinct n-th roots of unity that sum
to zero, while ,(k, n) = n - 1 if such a set of k distinct n-th roots of unity does
exist.

With these notations we first state the main result of [63].

Theorem 2.3. Let A be an n x n matrix, and let M ~ Cn be a nontrivial A
invariant subspace. The subspace M is a-stable for some positive a if and only
if for every eigenvalue A of A with geometric multiplicity larger than one either
M n R>.(A) = (0), or M n R>.(A) = R>.(A).
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In that case M is a-stable if and only if

,(dim (M n R>.(A)), dim R>.(A)) ::; a,

for all eigenvalues A of A such that

If there are no such eigenvalues, then M is I-stable.
In particular, M is a-stable for some a if and only if M is stable.

Next we describe the strongly a-stable subspaces (see [49]).

Theorem 2.4. Let A be an n x n matrix, and let M ~ en be a nontrivial A
invariant subspace. Let a > 0 be given. The subspace M is strongly a-stable if and
only if either M nR>.(A) = (0), or M nR>.(A) = R>.(A), for every eigenvalue A
of A that satisfies one of the following two conditions:

(i) >. has geometric multiplicity larger than one,
(ii) A has geometric multiplicity one and dim R>.(A) > a.

For all other eigenvalues A of A there is no restriction on M n R>.(A) other than
that it is A -invariant.

Observe that, unlike the case of Lipschitz stability (where the set of strongly
Lipschitz stable subspaces coincides with the set of Lipschitz stable subspaces),
an a-stable subspace need not be strongly a-stable for a > 1. (See also [50] for an
explicit example.)

The fact that the function " involving sums of n-th roots of unity, plays an
essential role in a-stability may seem mysterious at first glance. Its role is perhaps
best explained by considering the following example.

Example. Let A = In(O), i.e., the n x n upper triangular Jordan block with zero
eigenvalue. Consider the perturbation A(c) of A, which differs from A only in the
(n, I)-entry where there is c > 0 instead ofzero. The eigenvalues of A(c) are c~ 'Ci,
where Ci, i = 1, ... ,n are the n-the roots of unity. The corresponding eigenvectors
are

Yi(c) = (I,ci'c;,· .. ,c~-l)T.

Consider the unique k-dimensional invariant subspace M of A, i.e., M = span
{el,'" ,ek}, where ei denotes the i-th standard basis vector. Any k-dimensional
invariant subspace of A(c) is given by

N=span{Yil"" ,Yik}'

where {i l ,··· , ik} is a set of k different numbers from {I"" ,n}. So N is the

range of the matrix Y = [Yil Yik]' Let Y = [ ~~ ], where Yl is a k x k

matrix and Y2 is an (n - k) x k matrix. Then N = 1m [ Y
2
~l-l ]. Computing the
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last column of y2 y1 1 we find in the (1, k)-entry the number (Sil + ... + Sik)S~,

Let u be the last column of [ Y2~1-1 ]. Then

N 2 2 2 1
(}(M, ) = I!PM - PAfII ~ II (PM - PAf )ull . Ilu11 2 '

One easily sees that for S small enough Ilull < 2, while PMU = ek and PNU = u.

SO (}(M,N) ~ ~llu - ekll ~ ~s~ ISil + ... + Sik I· Therefore, if there is no set
of k distinct n-th roots of unity summing to zero, we have for any k-dimensional
subspace N of A(s) that (}(M,N) ~ c· s~ = ciiA - A(s)II~.

2.2. General theory: The real case

In this subsection we study stability properties of real invariant subspaces of real
matrices. Thus, every matrix is assumed to be real, and a subspace is in ~n.

Keeping these restrictions in mind, the definitions of stable, Lipschitz stable, a
stable and strongly a-stable do not change. For sake of brevity we therefore do
not repeat these definitions.

For a real n xn matrix A, and real A, we will interpret R A(A) in this subsection
as a real subspace. Also, when A is real and a ± ib a complex conjugate pair of
nonreal eigenvalues of A, we denote by Ra±ib(A) the real root subspace of A
corresponding to a ± ib, i.e.,

Ra±ib(A) = Ker ((A2
- 2aA + (a2 + b2 )I)n) ~ ~n.

We first state the analogue of Theorems 2.1 and 2.2.

Theorem 2.5. Let A be a real n x n matrix, and let M ~ ~n be a real invariant
subspace of A. Then M is stable if and only if the following conditions hold.

(i) M n RA(A) is either {O} or RA(A) for every real eigenvalue A of A for
which the geometric multiplicity is larger than one,

(ii) dim (M n RA(A)) is even whenever dim RA(A) is even and A is a real
eigenvalue of A with geometric multiplicity one,

(iii) M n Ra±ib(A) is either {O} or Ra±ib(A) for every pair of non-real eigen-
values a ± ib of A for which the geometric multiplicity is larger than one.

For each real eigenvalue A of A with geometric multiplicity one and odd algebraic
multiplicity there are no restrictions on M n RA(A) other than that it is an A
invariant subspace.

For each pair of non-real eigenvalues a ± ib of A with geometric multiplicity
one there are no restrictions on M nRa±ib(A) other than that it is an A-invariant
subspace.

Theorem 2.6. Let A be a real n x n matrix, and let M ~ ~n be an invariant
subspace of A. Then M is Lipschitz stable if and only if M is a real spectral
subspace, i.e.) a sum of real root subspaces of A (each of them corresponding either
to a real eigenvalue of A or to a pair of nonreal complex conjugate eigenvalues
of A).
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To state the analogue of Theorem 2.3 in the real case (which can be found
in [51]), we have to introduce some additional notation. A finite set of complex
numbers S = {(ll ... , (m} will be called zero sum self conjugate if (1+.. ·+(m = 0,
and the non-real elements in S can be arranged in pairs of complex conjugate
numbers. For two natural numbers k and n, with k < n, we define b(k, n) as
follows: b(k, n) = n in the following three cases: (i) n is odd and there is no zero
sum self conjugate set of k distinct n-th roots of 1, (ii) n is even and k is odd,
(iii) n is even and divisible by 4, k is also even but not divisible by 4, and there is
no zero sum self conjugate set of k distinct n-th roots of -1. In all other cases we
define b(k, n) = n - 1.

Theorem 2.7. Let A be an n x n real matrix, and let M ~ jRn be a nontrivial
A-invariant subspace. Let AI, ... , Ar be the distinct real eigenvalues of A, and let
a1 ± ib1, ... , as ± ibs be the distinct pairs of complex conjugate non-real eigenvalues
of A. Decompose M as follows:

M =N1 + ... +Nr +£l+' ... +£s,

with N j <;;; RAj (A), £j <;;; Raj±ibj(A). The subspace M is a-stable if and only if
all of the following conditions (i)-(v) are satisfied:

(i) Nj = (0) or Nj = RAj (A) whenever dim Ker (Ajl - A) > 1.
(ii) £j = (0) or £j = Raj±ibj(A) whenever the geometric multiplicity of aj ±

ibj is larger than 1,
(iii) for every real eigenvalue Aj of A such that dim Ker (Ajl - A) = 1 and

dim RAj (A) is odd, we have one of the three possibilities: (a) N j = 0, or (b)
N j = RAj (A), or (c) (0) f::. N j f::. RAj (A) and 0'. ~ b(dimNj, dim RAj (A)).

(iv) for every real eigenvalue Aj of A such that dim Ker (Ajl - A) = 1 and
dim RAj (A) is even we have one of the three possibilities: (a) Nj = 0, or
(b) N j = RAj (A), or (c) (0) f::. Nj f::. RAj (A), and Nj is even dimensional
and 0'. ~ b(dim Nj, dim RAj (A)).

(v) for every pair of non-real eigenvalues aj ± ibj of A having geometric mul
tiplicity one, we have one of the three possibilities: (a) £j = 0, or (b)
£j = Raj±ibj (A), or (c) (0) f::. £j f::. Raj±ibj (A) and

1 . 1 .
0'. ~ ')'( 2"dIm £j, 2"d1m Raj±ibj (A)).

Observe that in the situation described in (v) the dimensions of both
Raj±ibj (A) and £j are even.

Finally, we give here the real analogue of Theorem 2.4.

Theorem 2.8. Let A be a real n x n matrix and let M be a real A -invariant subspace.
Denote by AI, ... ,Ar be the different real eigenvalues, and let a1 ± ib1, . .. , as ± ibs
be the different non-real eigenvalues of A. Write

(2.1)
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where Nj ~ RAJ (A), Lj ~ Raj±ibj(A) (the existence and uniqueness of represen
tation (2.1) is well known). Then M is strongly a-stable if and only if the following
conditions (i)-(vii) are all satisfied:

(i) Nj = (0) or Nj = RAJ (A) whenever dim Ker (AjI - A) > 1,
(ii) Lj = (0) or Lj = Raj±ibj (A) whenever the geometric multiplicity of aj ±

ibj is larger than 1,
(iii) N j = (0) or Nj = RAJ (A) whenever 0: < dim RAJ (A) and dim Ker (>..jI

A) = 1,
(iv) Lj = (0) OrLj = Raj±ibj(A) whenever a < ~dim Raj±ibj(A) and aj ±ibj

have geometric multiplicity one,
(v) Nj is an arbitrary A-invariant subspace contained in RAJ (A) whenever

dim Ker (AjI - A) = 1,

a ~ dim RAJ (A) and dim RAJ (A) is odd,
(vi) N j is an arbitrary even-dimensional A-invariant subspace contained in

RAJ (A) whenever dim Ker (AjI -A)= 1, a ~ dim RAJ (A) and dim RAJ (A)
is even,

(vii) Lj is an arbitrary A-invariant subspace contained in Raj±ibj (A) whenever
aj ± ibj have geometric multiplicity one and a ~ ~dim Raj±ibj (A).

2.3. Stability of subspaces that are invariant modulo a subspace

We consider here both the complex case and the real case, thus we let F = C or
F = lR. Let A E F nxn , and let V ~ Fn be a subspace. A subspace M ~ Fn is
called A-invariant modulo V if Ax E M + V for every x EM. Thus, this is a
generalization of the familiar notion of an A-invariant subspace (which is obtained
as a particular case if V = (0)).

Invariant subspaces modulo a subspace playa key role in solving many prob
lems in linear systems theory, see, e.g., [77,22], where they often appear as (A, B)
invariant subspaces. Given A E Fnxn, B E F nxm , a subspace M ~ F n is called
(A, B)-invariant if M is (A + BG)-invariant for some G E Fmxn. It is well known
that M is (A, B)-invariant if and only if M is A-invariant modulo 1m B.

An (A, B)-invariant subspace M is called stable if for every c > 0 there exists
o> 0 such that for every pair of matrices (with entries in F) A' and B' satisfying
IIA - A'ii + liB - B'll < 0 there exists an (A', B')-invariant subspace M ' such that
O(M, M ' ) < c. The notions of a-stability and of Lipschitz stability are introduced
analogously to the definitions given in Section 2.l.

In the controllable case, the Lipschitz stability is universal:

Theorem 2.9. If the pair (A, B) is controllable, i.e. L:}:o 1m (Aj B) = Fn, then
every (A, B)-invariant subspace is Lipschitz stable.

This result is proved in [26] using the pole assignment theorem (in the com
plex case; the same proof works in the real case as well); see also [22].
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Theorem 2.9 plays a key role in proving Lipschitz stability of linear fractional
decompositions of rational matrix functions. These are decompositions of the form

U(>') = W21(>') + W22 (>,)V(>')(I - W12 (>.)V(>.))-lWU (>'),

where U()., V(>.), and W(>') = [~~~~~~ ~~~~~~] are rational matrix functions
of suitable sizes (with coefficients in F). Such decomposition represents the transfer
function of the feedback (or cascade) connection of two systems given by their
respective transfer functions W(>') and V(>') (see, e.g., Section 8.3 in [22]). The
Lipschitz stability of linear fractional decompositions is proved in [26] (in the
complex case) using the description of minimal linear fractional decompositions in
terms of minimal realizations obtained in [2J. A complete proof is found also in
[22]. We refer the reader to these sources for more details.

Without the controllability hypothesis in Theorem 2.9, the situation is more
complicated, and so far there is no general description of stable, or Lipschitz stable,
or a-stable (A, B)-invariant subspaces. We present one result in this direction taken
from [67]. Denote by

00

J(A, B) = L 1m (Ai B)
j=O

the controllable subspace of the pair (A, B), and let K be a direct complement for
J(A,B) in F n . Let 11K: : F n ~ K be the projection on K parallel to J(A,B).
One easily verifies that the subspace IIdM) is IIx;A k-invariant for every (A, B)
invariant subspace M.

Theorem 2.10. Let M be an (A, B)-invariant subspace. If IIx;(M) is stable as a
IIx;A k-invariant subspace, then M is a stable (A, B)-invariant subspace. Con
versely, if M is a stable (A, B)-invariant subspace and M n J(A, B) = (0), then
IIdM) is a stable IIx;A k-invariant subspace.

Note that the statement of Theorem 2.10 does not depend on the choice of
the direct complement K. We refer the reader to [67J for the proof of this theorem.
In the same paper an example is given showing that the condition M nJ(A, B) =
(0) is essential for the converse statement. Further results concerning stability of
(A, B)-invariant subspaces are proved in the recent paper [73J.

Returning to the invariance modulo a subspace, we say that a subspace M
that is A-invariant modulo V is stable if for every E > 0 there exists 8 > 0 such
that there is an A'-invariant subspace M ' modulo V' with O(M,M' ) < E as soon
as the subspace V' and the matrix A' satisfy IIA - A'ii + B(V, V') < 8. Another
version of this notion is obtained if we keep V fixed, i.e., insist that V = V'; then
we say that the stability is with fixed V.

Problem 2.11. Characterize Lipschitz stable and a-stable A-invariant subspaces
modulo a subspace V, also with fixed V, not assuming controllability, i. e., not
assuming that 2::;:0 Aj (V) = Fn.
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Note that Theorem 2.10 remains valid for subspaces M that are stable A
invariant subspaces modulo V or stable A-invariant subspaces modulo V with fixed
V; in this case .J(A, B) should be replaced by the smallest A-invariant subspace
containing V.

2.4. Quadratic matrix equation

Again, we consider two cases simultaneously: F = C or F = R Consider the
equation

XBX+XA-DX-e=O, (2.2)

where A, B, e, D are matrices (over F) of sizes n x n, n x m, m x n, and m x m,
respectively, and X is an m x n matrix (over F) to be found. A solution X of (2.2)
is called a-stable if there exist K > °such that every equation

Y EY + Y A - DY - G= 0,

with coefficients A, E, G, D sufficiently close to A, B, e, D, respectively, has a
solution Y satisfying

IIX - YII ::; K(IIA - All + liB - Ell + lie - Gil + liD - DII)i-·
Stability of solutions of (2.2) was studied in [14, 4].
There is a one-to-one correspondence between the solutions X and the n-

dimensional subspaces M ~ F n +m which are [~ ~] -invariant and are direct

complements of the fixed m-dimensional subspace Mo = 1m [ I: ]. The corre

spondence is given by the formula

M(X) = 1m [ i ].
Since the set of all direct complements ofMo is open, and for a fixed m x n matrix
X o there is a constant e > °such that

e-111x - Xoll ::; O(M(X),M(Xo)) ::; G\lX - Xoll,
for all X sufficiently close X o (see, e.g., formula (17.8.3) in [22]) it is easily seen that

a solution X of (2.2) is a-stable if and only if the [~ ~] -invariant subspace
M(X) is a-stable. Combining this observation with Theorem 2.3, the following
result is obtained.

Theorem 2.12. Case F = C. A solution X of (2.2) is a-stable if and only if for
every common eigenvalue A of A + BX and D - X B the following two conditions
are satisfied:

(i) A has geometric multiplicity one as an eigenvalue of [~ ~],
(ii) if k and l are the algebraic multiplicity of A as an eigenvalue of A + BX

and D - X B, respectively, then 'Y(k, k + l) ::; a.
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The proof is done by applying similarity to the matrix [~ ~] with the

matrix [.i ~] as the transformation matrix; one obtains the matrix

M = [A+BX B ]
a D-XB'

Clearly, M(X) is a-stable as a [~ ~ ]-invariant subspace if and only if the

subspace M = 1m [ 10] is a-stable as an M-invariant subspace.
Considering the set of all eigenvalues Ao of M for which

(2.3)

and taking into account the special form of M and M, one sees that

M n R>'o(M) = {[ ~ ] I ((A + BX) - Ao)mX = a} . (2.4)

It is now easily seen that the set of eigenvalues for which (2.3) holds is precisely
the set of common eigenvalues of A + BX and D - X B. Clearly, condition (i)
must hold for the subspace to be a-stable for some a. Next, one computes for such
an eigenvalue '}'(dim (M n R>'o(M)), dim R>.o(M)). Since condition (i) holds,
dim R>.o(M)) is the algebraic multiplicity of Ao as an eigenvalue of M. Because
of (2.4) one has that dim (M n R>'o(M)) is the algebraic multiplicity of Ao as an
eigenvalue of A+BX (taking into account that also A+BX must have geometric
multiplicity one at the eigenvalue Ao). Considering det(M - A) = det((A+BX)
A) det((D-XB)-A), it is seen that the algebraic multiplicity of Ao as an eigenvalue
of M is precisely the sum of the algebraic multiplicities of AO as an eigenvalue of
A+BX and D-XB. Thus '}'(dim (MnR>'o(M)), dim R>'o(M)) ='}'(k, k+l),
and the theorem follows by applying Theorem 2.3.

The next theorem gives the analogue of Theorem 2.12 for the real case. The
proof is analogous to the proof of Theorem 2.12.

Theorem 2.13. Case F = R A solution X of (3.1) is a-stable if and only if for
every common eigenvalue A of A + BX and D - X B the following conditions are
satisfied:

(i) A has geometric multiplicity one as an eigenvalue of [~ ~],
(ii) ifA is non-real and k and l are the algebraic multiplicity of A as an eigen

value of A + BX and D - X B, respectively, then '}'(k, k + l) :::; (t,
(iii) if A is real, k and l are as above, and k + l is odd, then J(k, k + l) :::; a,
(iv) if A is real, k and l are as above, and k + l is even, then k is even and

J(k, k + l) :::; a.
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Many applications making use of invariant subspaces of matrices involve symme
try in one or another way. Among these, we mention symmetric factorizations of
selfadjoint matrix polynomials or selfadjoint rational matrix functions; the study
of hermitian or positive semidefinite solutions to algebraic Riccati equations, and
transport theory. In these applications an indefinite inner product space structure
plays an important role. To give an example, let H = H* be an invertible selfad
joint n x n matrix. A matrix A is called H -selfadjoint if H A = A*H. A subspace
M <;;; en is called H-Iagrangian if H(M) ~f {Hx : x E M} = M.l. Such sub
spaces appear naturally in the study of hermitian solutions of algebraic Riccati
equations, as well as in the study of symmetric factorizations of selfadjoint matrix
polynomials and selfadjoint rational matrix functions. It is therefore of interest to
study the perturbation theory of such subspaces. This was started in [52], and in
a long series of papers by the authors this study was carried through.

Let H be an invertible n x n matrix. Introduce on en the indefinite scalar
product given by [x, y] = (Hx, y), where (., .) stands for the standard scalar prod
uct in en. An n x n matrix A will be called H-selfadjoint if it is selfadjoint in
this indefinite scalar product, i.e., if H A = A*H. It is well known that for such
a matrix there is an A-invariant maximal H-nonnegative subspace, as well as an
A-invariant maximal H-nonpositive subspace (see, e.g., [23], where such subspaces
were explicitly constructed). Such subspaces play an important role in many ap
plications, as we shall see in the following sections.

Some of the applications do lead in a natural way to the study of maximal
semidefinite invariant subspaces for classes of matrices that are not selfadjoint
in an indefinite scalar product, but have another special property, such as being
H-unitary, i.e. A*H A = H, or H-contractive (A* H A - H ::; 0) or H-dissipative
(1i(HA - A*H) ~ 0). Explicit construction of invariant maximal semidefinite
subspaces can be found in [23] for the case of H-unitary matrices and in [65] (see
also [71]) for the case of H-dissipative matrices.

Several important applications in which stability, or robustness, of invariant
subspaces with additional symmetries plays a key role, are not discussed in the
present paper. These include factorizations of selfadjoint matrix polynomials [36],
[21] (see also [23]) and their stability [53], factorizations of positive real rational
matrix functions and of rational matrix functions of the form I + contraction on
the real line (see [24]), and stability of those factorizations (see [64]). Stability
properties of certain solutions of matrix polynomial equations, where the polyno
mial is weakly hyperbolic (see for the theory of such polynomials [37, 38, 42]), are
studied in [57]; these results also will not be discussed here.

Problems of stability of invariant subspaces with symmetries in the context
of infinite dimensional Hilbert spaces are also of interest. Again, a thorough inves
tigation of these problems is a challenge for future research. A few results in this
direction are already available, in connection with stability of stationary transport
equations (see [58], [46]).
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3.1. Selfadjoint matrices in indefinite inner products

We assume F = C in this and next subsections. We start with the canonical form
of the pair (A, H), where A is H -selfadjoint, under congruent similarity, Le., under
transformation of the pair (A, H) to (S-1 AS, S* H S) for invertible matrices S.

Theorem 3.1. Let H be an invertible hermitian n x n matrix, and let A be H
selfadjoint. Then there exists an invertible S such that S-1 AS and S*HS have
the form

S-1 AS = Jk l (AI) EB ... EB Jka(Au)

EB Jka+l (Au+I) EB Jka+l ('xu+I) EB··· EB Jkj3(A/3) EB Jkj3('xf3), (3.1)

where AI, . .. ,Au are real and Au+!,' .. ,Af3 are non-real with positive imaginary
parts, and

S* H S = ClQkl EB ... EB cuQk", EB Q2k"'+l EB ... EB Q2kj3' (3.2)

where Cl, ... ,Cu are ±1. For a given pair (A, H), where A is H -selfadjoint, the
canonical form (3.1), (3.2) is unique up to permutation of orthogonal components
in (3.2) and the same simultaneous permutation of the corresponding blocks in
(3.1).

Theorem 3.1 is well known and goes back to Weierstrass and Kronecker. A
complete proof of this theorem can be found in many sources, see, e.g., [23, 72].

The signs Cj in (3.2) form the sign characteristic of the pair (A, H). Thus,
the sign characteristic consists of signs +1 or -1 attached to every partial multi
plicity (= size of a Jordan block in the Jordan form) of A corresponding to a real
eigenvalue.

From (3.1), (3.2) one can construct explicitly an A-invariant maximal H-non

negative subspace as follows. Let {eij }f=~; j=1 u{eij }~=~k+l j=1 be the vectors from
the Jordan basis with respect to which A and H have the form (3.1) and (3.2),
respectively. In other words, these vectors are the columns of S. For i = 1, ... ,a
let

Mi = span {eil,'" ,e.l:i.} if ki is even,
t 2

M i = span {ei 1, . .. ,ei k;+!} if ki is odd and C i = 1,

M i = span {ei 1, . .. ,ei k; _!} if ki is odd and Ci = -1.
For i = a + 1, . .. ,{3, let

Put

M = EB~=1 Mi. (3.3)
Then M is A-invariant and maximal H-nonnegative (see, e.g., [23]).

Let A be H-selfadjoint. An A-invariant maximal H-nonnegative subspace M
is called stable if for any H-selfadjoint matrix B with IIA - BII small enough there



A Class of Robustness Problems in Matrix Analysis 351

exists a B-invariant maximal H-nonnegative subspace N with B(N, M) as small
as one wants.

An important property for the pair of matrices (A, H) connected to its canon
ical form is the following: the pair (A, H) is said to satisfy the sign condition if for
any real eigenvalue AD the signs in the sign characteristic of (A, H) corresponding
to blocks of even order and eigenvalue AD are all the same, and the same holds
for blocks of odd order and eigenvalue AD. The sign condition was introduced and
studied in [52] in connection with uniqueness of invariant maximal semidefinite
subspaces (see Theorem 3.2 below).

Denote by R+(A) (respectively R_(A)) the spectral invariant subspace of A
corresponding to the open upper (respectively, lower) half plane, i.e., the span of
the eigenvectors and generalized eigenvectors corresponding to eigenvalues of A in
the open upper (respectively, lower) half plane.

The following theorem (which subsumes several results proved in [52]) gives
necessary and sufficient conditions for the existence of stable invariant maximal
semidefinite subspaces, and provides a full description of such subspaces.

Theorem 3.2. Let A be an n x n H -selfadjoint matrix. Then the following state
ments are equivalent.

(i) There exists a stable A-invariant maximal H -nonnegative subspace.
(ii) There exists a stable A-invariant maximal H -nonpositive subspace.
(iii) There is a unique A-invariant maximal H-nonnegative subspace M such

that the eigenvalues of AIM are in the closed upper half plane.
(iv) There is a unique A -invariant maximal H -nonnegative subspace M such

that the eigenvalues of AIM are in the closed lower half plane.
(v) There is a unique A-invariant maximal H -nonpositive subspace M such

that the eigenvalues of AIM are in the closed upper half plane.
(vi) There is a unique A-invariant maximal H -nonpositive subspace M such

that the eigenvalues of AIM are in the closed lower half plane.
(vii) The pair (A, H) satisfies the sign condition.

In that case the following are equivalent.

(i) The A-invariant maximal H -nonnegative subspace M is stable.
(ii) M n R+(A) is stable as an A-invariant subspace.
(iii) M n R_(A) is stable as an A-invariant subspace.
(iv) For any eigenvalue AD of A in the open upper half plane with geometric

multiplicity larger than one either RAO(A) is contained in M or it has
zero intersection with M.

When (A, H) satisfies the sign condition the subspace defined by (3.3) is the
unique A-invariant maximal H-nonnegative subspace M such that the eigenvalues
of AIM are in the closed upper half plane, and, according to the second part of
the theorem, this subspace is stable.

An A-invariant maximal H-nonnegative subspace M is called Lipschitz stable
if there are positive numbers K and 0 such that for any H -selfadjoint matrix B
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with IIA - BII < 8 there exists a B-invariant maximal H-nonnegative subspaceN
with B(N, M) ::; KIIA - BII. The following theorem gives necessary and sufficient
conditions for the existence of such subspaces and describes them.

Theorem 3.3. Let A be an n x n H -selfadjoint matrix. Then the following conditions
are equivalent.

(i) There exists a Lipschitz stable A-invariant maximal H -nonnegative sub
space.

(ii) There exists a Lipschitz stable A-invariant maximal H -nonpositive sub
space.

(iii) For every real eigenvalue Ao of A the subspace Ker (A - Ao) is H -definite
(either positive definite or negative definite).

In that case a maximal nonnegative invariant subspace is Lipschitz stable if
and only if it is a spectral subspace.

Observe that condition (iii) in the theorem above also implies that the al
gebraic and geometric multiplicities of A at each of its real eigenvalues coincide.
Moreover, the pair (A, H) satisfies the sign condition.

For several problems considered in the sequel A-invariant subspaces M that
have the property that H(M) = Ml- play an important role. A subspace with this
property is called an H -lagrangian subspace. Such subspaces are both maximal
H-nonnegative and maximal H-nonpositive. We first describe the existence of A
invariant H-Iagrangian subspaces in terms of the sign characteristic of the pair
(A,H).

Theorem 3.4. Let A be an n x n H -selfadjoint matrix. Then there exists an A
invariant H -lagrangian subspace if and only if for each real eigenvalue Ao of A the
number of odd partial multiplicities of A at Ao is even, and the number of +1 's in
the sign characteristic of the pair (A, H) corresponding to blocks in the canonical
form with eigenvalue Ao and odd size is equal to the number of -1 's in the sign
characteristic of the pair (A, H) corresponding to those blocks.

In particular, if there are only even partial multiplicities corresponding to
real eigenvalues of A, then there exists an A-invariant H-Iagrangian subspace.

An A-invariant H-Iagrangian subspace M is called unconditionally stable
if for every E > 0 there is a 8 > 0 such that for every H-selfadjoint B with
IIA- BII < 8 there exists a B-invariant H-Iagrangian subspace N with B(M,N) <
E. The subspace M is called conditionally stable if for every E > 0 there is a 8 > 0
such that for every H-selfadjoint B with IIA - BII < 8 and for which there exists a
B-invariant H-Iagrangian subspace, there is such a subspaceN with B(M,N) < E.

Note that the difference is that in the latter case we restrict the class of matrices
we allow as perturbations.

The following theorem is proved in [52].

Theorem 3.5. Let A be an n x n H -selfadjoint matrix for which there exists an
invariant H -lagrangian subspace.
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(a) There exists an unconditionally stable A -invariant H -lagrangian subspace
if and only if A does not have real eigenvalues. In that case an A-invariant H
lagrangian subspace M is unconditionally stable if and only if M nR+ (A) is stable
as an A -invariant subspace.

(b) The following conditions are equivalent:

(i) There exists a conditionally stable A-invariant H -lagrangian subspace,
(ii) A has only even partial multiplicities corresponding to real eigenvalues,

and the pair (A, H) satisfies the sign condition,
(iii) for every A-invariant subspace N c R+(A) there is a unique A-invariant

H -lagrangian subspace M with M n R+ (A) = N.
In that case an A-invariant H -lagrangian subspace M is conditionally stable if
and only if M n R+(A) is stable as an A-invariant subspace.

When the conditions in part (b) (i) hold the A-invariant H-Iagrangian sub
spaces M are in one-one correspondence with the set of A-invariant subspaces N
contained in R+(A), because of the equivalence with (iii). This parametrization is
given by

M =N -t-Mo-t-(HN.L nR_(A)),

where Mo is the A-invariant subspace spanned by first halves of Jordan chains of
A corresponding to real eigenvalues.

Analogues of Theorems 3.1-3.5 for several real cases were studied in [54, 55,
56].

Problem 3.6. Study the degree of stability (a-stability) of stable A-invariant max
imal H -semidefinite subspaces and of (conditionally or unconditionally) stable A
invariant Lagrangian subspaces, both in the real and the complex cases.

3.2. Dissipative matrices in indefinite inner products

We continue to assume F = C in this subsection. Recall that a matrix A is called
H-dissipative, where H = H* if :h (HA - A* H) is positive semidefinite. For dissi
pative matrices in an indefinite inner product space there does not exist a canon
ical form; however, by applying similarity to A and congruence to H (with the
same invertible matrix) we can transform the pair (A, H) into a simple form, from
which it is easy to read off that invariant maximal semidefinite subspaces always
exist. In fact, the simple form allows one to construct an A-invariant maximal H
nonnegative subspace in essentially the same way as in formula (4.3). The part of
the construction pertaining to the real eigenvalues of A stays the same, yielding a
subspaceMo; an A-invariant maximal H-nonnegative subspace is then constructed
by taking the direct sum of M o with the spectral subspace of A corresponding
to the open upper half plane. We refer the reader to [65], where the main results
concerning the simple form are proved.

Let H = H* be invertible, and let A be H-dissipative. The A-invariant
maximal H-nonnegative subspace M is called stable if for every c > 0 there is
a J > 0 such that every H-dissipative matrix B with IIA - BII < J has an invariant
maximal H-nonnegative subspace N with B(M,N) < c.
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Before we can state the main result on stability of invariant maximal nonne
gative subspaces for an H-dissipative matrix A we need to introduce the notion of
the numerical range condition for the pair (A, H) (see [71]' Chapter 3).

Let us denote the number of negative eigenvalues of H by,..,. It is well known
that the maximal length of a Jordan chain of A corresponding to a real eigenvalue
is then 2,.., + l.

Let ,\ be a real eigenvalue of A. Consider a Jordan basis for R(A, {A}) and
split it into the sets J('\,j), where J('\,j) consists of the basis vectors belonging
to Jordan chains oflength j. Denote by nA,j the number of chains of length j. Now
denote the basis vectors in J('\, j) \ Ker (A - ,\)j-I by Xj;l, ... ,Xj;n>..j' Let mj be
(j~I) in case j is odd, and ~ in case j is even. Define Yj;k = (A - ,\)mj-lXj;k.

From here on there is a difference in the situation for Jordan chains of odd
length and Jordan chains of even length. We first deal with the case of Jordan
chains of odd length.

For j = 1,3, ... ,2,.., + 1 let

[

(HY];ll Y];I) (HYj;n>.,j' Yj;l) ]
CMj =

(HY];I, Y];n>.) (HYj;n>.,j:, Yj;n>.,j)

(here CM stands for characteristic matrix). Define

CModd(A,'\) = diag (CMI , ... , CM2t<+d,

and, finally, put

NRodd(A,'\) = {(CModd(A,'\)x, x) I x =I- O}.

(here N R stands for numerical range).

It turns out that CModd(A,'\) is hermitian and invertible and that N Rodd(A,'\)
is independent of the choice of the Jordan basis one starts with.

The pair (A, H) is said to satisfy the odd numerical range condition if 0 fl
N Rodd(A,'\) for all real eigenvalues of A.

For even length chains, let j, k E {2, 4, ... ,2,..,} and put

[

(H(A - '\)Yj;I' Yk;l) (H(A - '\)Yj;n>.,j' Yk;l) ]
CMjk = :

, (H(A - ,\)~j;I' Yk;n>.,k) (H(A - '\)Yj:;nA,j, Yk;n>.,J .

One can show that for j < k one has CMj,k = 0, and that CMj,j is invertible. Put

[

CM 22

CMeven(A,'\) = :'
CM2,2t< ...

Then CMeven(A,'\) is an invertible block upper triangular matrix. Define

N Reven(A,'\) = {(CMeven(A, '\)x, x) I x =I- o}.
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It turns out that N Reven(A, A) is independent of the choice of the Jordan basis
one starts with.

The pair (A, H) is said to satisfy the even numerical range condition if 0 rt
NReven(A,A) for all real eigenvalues of A, and we say that (A,H) satisfies the
numerical range condition if it satisfies both the odd numerical range condition
and the even numerical range condition.

Even though the odd and even numerical ranges do not depend on the choice
of the Jordan basis, and hence neither does the numerical range condition, a basis
free definition does not exist so far.

It can be shown that if A is H-selfadjoint then the pair (A, H) satisfies the
numerical range condition if and only if it satisfies the sign condition introduced
in the previous subsection.

In [71], [64] the following result was proved:

Theorem 3.7. The following are equivalent:

(i) there exists a stable A-invariant maximal H -nonnegative subspace,
(ii) there exists a stable A-invariant maximal H-nonpositive subspace,
(iii) the numerical range condition holds for the pair (A, H),
(iv) there is a unique A-invariant maximal H-nonnegative subspace M with

a(AI.A,d contained in the closed upper half plane,
(v) there is a unique A-invariant maximal H -nonpositive subspace M with

a(AIM) contained in the closed lower half plane.

In that case, there is a unique stable A-invariant maximal H -nonnegative subspace,
being the one with a(AIM) contained in the closed upper half plane, and there is
a unique stable A-invariant maximal H -nonpositive subspace, being the one with
a(AIM) contained in the closed lower half plane.

Problem 3.8. Find the degree of stability of stable A-invariant maximal H -semi
definite subspaces described in Theorem 3.7.

Problem 3.9. Study invariant maximal semidefinite subspaces (existence, unique
ness, stability, degree of stability) of real n x n matrices that are dissipative with
respect to an indefinite inner product in IEtn .

The definition of dissipativity should be modified in the real case. We say
that a real n x n matrix A is H-dissipative, where H = H* is an invertible real
n x n matrix, if H A +A*H is positive semidefinite. One way to approach Problem
3.9 is by developing simple forms for real dissipative matrices analogous to those
developed in [71], [65] for the complex case. Another notion of dissipativity in
the real case is obtained by the condition that H A - A* H is positive semidefinite,
where now the real matrix H is skew-symmetric (and invertible). Again, a study of
simple forms, and of A-invariant subspaces H-neutral subspaces, for H-dissipative
real matrices A, is an open problem.
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3.3. Continuous algebraic Riccati equations

In this subsection we treat stability properties of solutions of the equation

XDX-XA-A*X-C=O, (3.4)

where A, D = D*, C = C* are nxn matrices (over P = Cor P = lR). Equations of
type (3.4), sometimes under additional assumptions that C is positive semidefinite,
and D has the form D = BR-1B* for an invertible positive definite m x m
matrix R and an n x m matrix B, are known as continuous algebraic Riccati
equations. Because of their central role in various control problems in continuous
time, including linear quadratic optimal control, there is a voluminous literature
on the equations (3.4), especially concerning numerical methods. We mention here
only the books [7, 35, 47], where many additional references may be found. See, in
particular, [35] for a background and general information concerning continuous
algebraic Riccati equations.

Only hermitian solutions X E p nxn of (3.4) will be considered here. Such a
solution is called a-stable if there exist E: > 0, K > 0 such that every equation
with coefficients in pnxn

XVX-XA-A*X-G=O,

with V = V*, G = G* and

liD - VII + IIA - All + IIC - Gil < E:

has a hermitian solution Y E pnxn such that

IIX - YII ::; K(IID - DII + IIA - All + IIC - GII)"~·

(3.5)

In the rest of this subsection we consider the complex case: P = C. The study
of a-stability and other stability properties in this section will be given in terms
of the Hamiltonian matrix

M= i [_AC -=-~ ].
Observe that M is selfadjoint in the indefinite scalar product induced by H =
. [ 0 I]z -I 0 .

It is well known (and easily seen) that X E cnxn is a hermitian solution of
(3.4) if and only if the graph subspace

M(X) = 1m [ i ]
is M-invariant and H-Iagrangian. Thus, the investigation of stability properties
of X is reduced to that of the M-invariant H-Iagrangian subspace M(X). Recall
that a H-Iagrangian subspace M is certainly H-neutral, Le., (Hx, x) = 0 for all
xEM.

There is an extensive literature on hermitian solutions of the equation (3.4), as
well as the discrete Riccati equation ((3.9) below), in terms of invariant lagrangian
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graph subspaces, including numerical analysis and algorithms for computation
of such subspaces. The numerical analysis concerns almost exclusively the graph
subspaces that are actually spectral subspaces; see, for example, [12, 11, 32] for
algorithms based on the sign function. A review of numerical methods for the
algebraic Riccati equations is found in [40]. A Newton's method based algorithm
that works also for some nonspectral subspaces was developed recently in [28]. In
certain applications, for example, the well-known two Riccati equations approach
for suboptimal Hoc control problems [16], one encounters situations when the graph
subspace in question is very close to being non-spectral. Thus, it is desirable to
study stability of solutions of the Riccati equations (3.9) (below) and (3.4), also
for nonspectral graph subspaces.

Before turning to a-stability let us consider stability. A solution X of (3.4)
is called conditionally stable if for every E > 0 there is a 8 > 0 such that every
equation (3.5) such that

liD - .611 + IIA - All + lie - Gil < 8
and which has a hermitian solution, also has a hermitian solution Y with IIX- YII <
E. The solution X of (3.4) is called unconditionally stable if in the above definition
the restriction to equations (3.5) that have a hermitian solution is dropped, that
is, every perturbed equation should have a solution.

These concepts where studied in [53] for F = C and in [59] for F = IR (see
also [60] for the analogue for the discrete algebraic Riccati equation).

Assume that D 2: 0 and (A, D) is controllable, that is

rank [D AD An-1D] =n.

Then one can show that there exists a solution to equation (3.4) if and only if there
exists an M-invariant H-lagrangian subspace (see [35], also [69]). In that case it
turns out that M has only even partial multiplicities at its real eigenvalues, and
that the pair (M, H) satisifies the sign condition.

To state the main results in this direction we introduce the M-invariant
subspace M+, which is the direct sum of the subspaces R>.(M) with 1m oX > o.
We then have the following theorem.

Theorem 3.10. Assume that (A, D) is controllable, D 2: 0 and that equation (3.4)
has a hermitian solution X. Then

(a) There exists an unconditionally stable solution of equation (3.4) if and only
if M does not have real eigenvalues. In that case the following statements
are equivalent:
(i) The solution X is unconditionally stable.

(iii) The subspace 1m [i- ]is an unconditionally stable M -invariant H

lagrangian subspace.
(iv) The common eigenvalues of i(A - D X) and its adjoint are eigenvalues

of M of geometric multiplicity one.
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(b) There exists a conditionally stable solution of (3.4). In that case the fol-
lowing statements are equivalent:
(i) The solution X is conditionally stable.

(ii) The subspace 1m [ i- ]n M+ is stable as an M -invariant subspace.

(iii) The subspace 1m [ i- ] is a conditionally stable M -invariant H -la-

grangian subspace.
(iv) The common non-real eigenvalues of i(A - DX) and its adjoint are

eigenvalues of M of geometric multiplicity one.

Returning to a-stability, we need the following definition. An M -invariant,
H-neutral subspace M is called neutrally a-stable if there is constant K > 0 such
that every H-selfadjoint matrix M' which is sufficiently close to M has H-neutral
invariant subspace M' such that

B(M,M'):::; KIIM - M'II~·

In view of the above remark we obtain:

Proposition 3.11. A hermitian solution X is a-stable if and only if the subspace
M(X) is neutrally a-stable.

Our main result on a-stability of hermitian solutions of (3.4) is the following.

Theorem 3.12. (a) If there exists an a-stable hermitian solution X of (3.4)
for some a, then M has no real eigenvalues.

(b) If D ?: 0 and the pair (A, D) is sign controllable i.e., for every eigenvalue
), of A at least one of the root subspaces R>. (A) and R_>. (A) is contained
in the controllable subspace 1m [D, AD"" ,An-lD] of (A, D), then the
necessary condition of part (a) is also sufficient; moreover, there exists a
i-stable hermitian solution X of (3.4).

(c) Assume that M has no real eigenvalues, and let X be a hermitian solution
of (3.4). Let ax be the set of all eigenvalues of M in the upper half plane
which have geometric multiplicity one and which are common eigenvalues
of i(A +DX) and -i(A + DX)*. Then X is a-stable if and only if for all
), E ax we have

l'(dim (M(X) n R>.(M)), dim R>.(M)) :::; a. (3.6)

(d) Assume that M has no real eigenvalues, and let X be a hermitian solution
of (3.4). Then X is a-stable if and only if for each common eigenvalue ),
of i(A + DX) and its adjoint we have the following two conditions: (i) ),
is an eigenvalue of M of geometric multiplicity one, (ii) if k, respectively
l, denote the algebraic multiplicity of), as an eigenvalue of i(A + DX),
respectively, -i(A + DX)*, then l'(k, k + l) :::; a.

The a-stability of a hermitian solution X can fail because a nearby equation
(3.5) has no hermitian solution at all. To eliminate this reason for absence of
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a-stability, we introduce the following definition (which applies equally to the
complex and the real case). A hermitian solution X of (3.4) is called conditionally
a-stable if it satisfies the definition of a-stability under the additional assumption
that the perturbed equation (3.5) has hermitian solutions to start with. Theorems
3.13 and 3.14 below were proved in [57].

Theorem 3.13. A necessary condition for existence of a conditionally a-stable her
mitian solution of (3.4) for some a is that all real eigenvalues of M (if any) have
only even partial multiplicities, and for every real eigenvalue Ao of M there is
a number E = E(AO) = ±1 such that for every Jordan chain xo, Xl,'" ,Xm of
eigenvector and generalized eigenvectors of M corresponding to Ao the inequality
E(HXo, x m ) ?: 0 holds.

In terms of the sign characteristic of the pair (M, H) the condition on the Jor
dan chains in Theorem 3.13 simply means that the signs in the sign characteristic
of (M, H) corresponding to Ao are all equal.

We are able to obtain more detailed information in the particular (but generic)
case when all real eigenvalues of M (if any) have geometric multiplicity one.

Theorem 3.14. Case F = C. Assume D ?: 0, the pair (A, D) is sign control
lable, and the distinct real eigenvalues AI, ... , Ar of M (if any) have geometric
multiplicity one and even algebraic multiplicities ml, ... ,m r , respectively. Let

ao = max(2,ml -1, ... ,mr -1), (3.7)

or ao = 1 if M has no real eigenvalues. Then

(i) There exist conditionally ao-stable hermitian solutions X of (3.4). They
are characterized by the following properties:

(a) eitherR>.(M)n(Im [ ~ ]) = (0) orR>.(M) <;:; 1m [ ~ ],forevery

non-real eigenvalue A of M having geometric multiplicity at least 2,
or having geometric multiplicity 1 and algebraic multiplicity at least
ao +2,

(b) for every non-real eigenvalue A of M having geometric multiplicity 1
and algebraic multiplicity precisely ao + 1 we have either

(3.8)

[~ ]R>.(M) <;:; 1mor

or

R>.(M) n (1m [ ~ ]) = (0),

dim (R>.(M) n (1m [ ~ ])) = k > 0,

where the positive integer k is such that there is a set of k distinct
(ao + 1)-th roots of unity that sum up to zero,

(c) for every non-real eigenvalue A of M having geometric multiplicity 1
and algebraic multiplicity precisely ao we have either

R>.(M) n (1m [ ~ ]) = (0), or R>.(M) <;:; 1m [ ~ ]
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dim (R>,(M) n (rm [ i ])) = k > 0,

where the positive integer k is such that there is no set of k distinct
ao-th roots of unity that sum up to zero.

(ii) No hermitian solution X of (3.4) is conditionally a-stable with Q < ao.

Conditions (a)-(c) in part (i) of Theorem 3.14 can be rephrased as follows.
A hermitian solution X of (3.4) is ao-stable if and only if for each common non
real eigenvalue A of i(A + DX) and its adjoint we have that A is an eigenvalue
of M of geometric multiplicity one, and if k, respectively l, denote the algebraic
multiplicities of A as an eigenvalue of i(A + DX), respectively -i(A + DX)*, then
,(k, k + l) :::; ao. (Compare part (d) of Theorem 3.12.)

A hermitian solution X of (3.4) is called unmixed if the spectrum of i(A+DX)
does not contain pairs of non-real complex conjugate eigenvalues; this concept was
introduced and studied in [69]. rt follows from Theorem 3.14 and the observation
above that, under the conditions of Theorem 3.14, the unmixed hermitian solutions
of (3.4) are ao-stable.

To demonstrate typical techniques used in proofs of results concerning sta
bility of invariant subspaces with symmetries, and of solutions of algebraic Riccati
equations, we reproduce here a more or less detailed proof of Theorem 3.14. The
proof is based on a series of lemmas.

Lemma 3.15. For a fixed positive integerm, there is a real number a > 1 such that
no sum of any k roots (1 :::; k < m) of the polynomial p(x) = xm - X + a is equal
to zero.

Proof The existence of such an a close to zero was proved in Lemma 2.2 in [63].
Therefore, the product of all possible sums of less than m roots of p(x), which is
a polynomial function of a, is not identically zero, and hence there exists a > 1
with the required properties. 0

We now fix an a as in Lemma 3.15.

Lemma 3.16. Let J be an m x m nilpotent Jordan block, and for every real number
u, lui:::; 1, let B(u) be an mx m matrix with the characteristic polynomial x m 

Um-IX + aum and such that

IIB(u) - JII :::; C1ulm
-

I
,

where the constant C > 0 is independent on u. Then there exists a positive constant
K such that for every nontrivial (i. e., different from (0) and the whole space) J
invariant subspace N and every B(u)-invariant subspace M the inequality

()(M,N) ~ KIIB(u) - JII "':-1
holds.
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The proof of this lemma follows from the proof of Lemma 2.3 in [63].
Let H be an invertible hermitian m x m matrix, and let A be an H -selfadjoint

m x m matrix. An A-invariant H-neutral subspace M will be called conditionally
neutrally a-stable if it satisfies the definition of neutral a-stability (see the para
graph before Proposition 3.11) with the additional requirement that there is an
M'-invariant H-neutral subspace of the same dimension as M to start with.

Lemma 3.17. Assume that A has geometric multiplicity one for every real eigen
value (if any). Let M be an rg:. -dimensional, A -invariant, H -neutral subspace (it
is implicitly assumed that such subspaces exist; in particular m is even). If M
is not a-stable as an A-invariant subspace, then M is not conditionally neutrally
a-stable as an rg:. -dimensional, A -invariant, H -neutral subspace.

Proof. Using the local principle (which is described in [53, 55], see especially The
orem 3.1 there), the proof is reduced to two separate cases: (1) a(A) = {Ao}, ..\0
is real; (2) a(A) = {..\0,5.0}, ..\0 non-real.

Let us first consider the case a(A) = {Ao}, ..\0 is real. We may assume that
..\0 = 0, and since A has geometric multiplicity one, we may further assume that
A is the m x m Jordan block with eigenvalue zero, and H is the matrix with zeros
everywhere except for the entries on the southwest-northeast diagonal, which are
all ones. A justification of these assumptions is based on the canonical form of
pairs of matrices (A, H), where A is H-selfadjoint (see, e.g., Theorem 1.3.3 in
[23]). Then M = span {el"" ,e~}. As an A-invariant subspace, Mis (m -1)
stable and is not a-stable for a < m - 1 (if m > 2); M is 2-stable and not a-stable
for a < 2 (if m = 2). In what follows we assume m > 2, leaving the relatively
simple case m = 2 to the interested readers.

Fix a> 1 as in Lemma 3.15. For a real parameter u, 0 < lui ~ 1, let C(u) be
the companion m x m matrix having the characteristic polynomial p(..\) = ..\m 
um - l

..\ + aum , in other words, C(u) is obtained from the nilpotent m x m Jordan
block by adding -aum and um - l in the (m,I) and (m,2) positions, respectively.
Let S(u) be the m x m matrix obtained from the m x m identity matrix by adding
~um-l in the (m,I) position. A straightforward computation verifies that the
matrix B(u) = S(U)-lC(U)S(u) is H-selfadjoint. Clearly,

IIB(u) - All ~ Klul m
-

l
,

where the positive constant K is independent of u. Elementary calculus shows that
the polynomial p(..\) has no real roots (indeed, since m is even and u i- 0, there
is only one minimum, call it "\0, of p(..\) on the real line, and because a > 1, the
value p(..\o) is positive). Thus, there exist rg:.-dimensional B(u)-invariant H-neutral
subspaces. By Lemma 3.16, the subspace M is not conditionally neutrally a-stable
for any a < m - 1.

Next, consider the case a(A) = {Ao,5.o}, ..\0 non-real. In case dim Ker (A 
Ao) > 1 the result is known. Indeed, as an A-invariant subspace M is I-stable
or not stable at all, depending on whether or not it is a spectral subspace (recall
that an A-invariant subspace M is called a spectral subspace ifM = (0) or M is a
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direct sum of root subspaces R,\(A)). The same holds when we consider conditional
neutral a stability, Le., M is conditionally neutrally I-stable or not conditionally
neutrally stable at all, depending on whether or not M is a spectral subspace for A
(see Theorem 1.11 in [50]). So, it remains to consider the case dim Ker (A-Ao) = 1.
Using the canonical form of (A, H), without loss of generality we assume that

[
Jm(AO) 0] [0 I]

A = 0 Jm(Ao)*' H = I 0 '

where Jm(Ao) is the m xm Jordan block with eigenvalue Ao. Let dim MnR,\o (A) =
k. Then dim M n R>.o (A) = m - k. If k = 0 or k = m then again M is a
spectral subspace, and the arguments of the preceding paragraph apply. So, let
1 :::; k :::; m - 1. By Theorem 2.1, for a < l'(k, m) M is not a-stable, while
for a ~ l'(k, m) M is a-stable as an A-invariant subspace. So, we have to show
that for a < l'(k, m) M is not conditionally neutrally a-stable as an H-neutral
A-invariant subspace of dimension !f. For this purpose let

[
AoI + B(u) 0 ]

A(u) = 0 (AoI + B(u))* ,

where B(u) is the matrix constructed in the above proof of the case (1). As in
that proof, we verify that there is a positive constant K such that for every A(u)
invariant subspace N the inequality

()(M,N) ~ KIIA(u) - All m~l,
holds, and that there exist A(u)-invariant H-neutral subspaces of dimension !f.

D

Proof of Theorem 3.14. Let M be an n-dimensional, M-invariant, H-neutral sub
space which is, in addition, a graph subspace, and is such that the spectral sub
space of MIM corresponding to the non-real eigenvalues is a direct sum of root
subspaces of M (the existence of such M is well known; see, for example, Lemma
7.2.6 and its proof in [35]). Clearly, AI,"" Ar are the real eigenvalues of MIM
with geometric multiplicity one and the algebraic multiplicities ~ml"'" ~mTl re
spectively. Thus, by Theorem 2.1 the corresponding hermitian solution X of (5.3)

given by M = 1m [ .i ] is conditionally a-stable. Here we use the fact that
l'(k, 2k) = 2k - 1 for all k > 1, while 1'(1, 2) = 2. The same Theorem 2.1 guar
antees that every hermitian solution X satisfying the conditions (a) and (b) is
conditionally ao-stable.

That there are no other conditionally ao-stable hermitian solutions, as well
as the part (ii) of Theorem 3.14, follows from Lemma 3.17. D

Problem 3.18. Characterize conditionally a-stable hermitian solutions of (3.4) in
the general case.

We refer to [57J for the proofs of other theorems in this subsection, as well
as for analogous results concerning a-stability of real symmetric solutions of the
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(3.9)

equation (3.4) with real coefficients. The a-stability of hermitian solutions of the
discrete algebraic Riccati equation

x = A*XA - Q - A*XB(R+ B*XB)-lB*XA,

in both the real and the complex cases is studied also in [57].

3.4. Positive semidefinite solutions of the algebraic Riccati equations

In this subsection we discuss stability properties of positive semidefinite solutions
of the algebraic Riccati equation

XBB*X - XA - A*X - G*G = O. (3.10)

All matrices in this subsection are assumed complex. It is proved in [17, 18] that
(3.10) has a positive semidefinite solution if and only if the system (A, B, G) is
output-stabilizable, i.e., there is a matrix G such that every solution ~(t) of a linear
system of differential equations x(t) = (A +BG)x(t) satisfies G~(t) -> 0 as t -> 00.

However, following [39], the stronger hypothesis of controllability of the pair (A, B)
will be imposed. This hypothesis guarantees the possibility to describe the set
of positive semidefinite solutions in terms of invariant subspaces, and, moreover,
to characterize the stable positive semidefinite solutions using the techniques of
stable invariant subspaces; this analysis was carried out in [39]. Parametrization
of positive semidefinite solutions in terms of certain invariant subspaces was given
in [13, 33, 74, 75]. In [74] the parametrization is given under the assumption of
output-stabilizability.

The controllability of (A, B) implies existence of a hermitian solution X+ such
that A - BB*X+ has all its eigenvalues in the closed left half plane. This solution
is unique, it is positive semidefinite and it is the maximal hermitian solution, i.e.
X+ ~ X for any other hermitian solution X of (3.10). See, e.g., [66], Theorem 2.l.
If, in addition, (G, A) is observable, then there is just one positive semidefinite
solution.

A positive semidefinite solution X of (3.10) is called stably positive semidefin
ite if for every e > 0 there is a <5 > 0 such that II A - AIiI + II B - B1 11 + II G - G1 11 < <5
implies that the algebraic Riccati equation

XB1B~X - XA1 - AiX - G~G1 = 0
has a positive semidefinite solution Xl with IIX - Xlii < e.

The following result was proved in [39].

Theorem 3.19. Assume (A, B) is controllable. Then there exists only one stably
positive semidefinite solution of (3.10), being the maximal one.

Let us turn now to the discrete algebraic Riccati equation

X = A*XA +Q - A*XB(R+ B* XB)-lB* XA, (3.11)

where A is an n x n matrix, Q ~ 0 is also an n x n matrix, R > 0 is an m x m matrix
and B is an n x m matrix. This equation plays a role in the study of LQ-optimal
control for discrete time systems. We would like to have a parametrization of all
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(3.12)
-BR-1B*A*-1]

A*-l .

positive semidefinite solutions X. We shall assume throughout that A is invertible
and that (A, B) is controllable. Introduce

[
A + BR-1B* A* -lQ

T= -A*-lQ

Recall that

J1 = [~I~] and J2 = [~ ~].
Straightforward computation yields that T* J1T = J1, i.e., T is J 1-unitary. Again
by straightforward computation it is checked that

_ * _ [Q+QA-1BR-1B*A*-lQ -QA-1BR-1B*A*-1]_
h T J2T -2 -A-1BR-1B*A*-lQ A-1BR-1B*A*-1-

=2([~ ~]+[~I]A-1BR-1B*A*-1[Q -I])~O.
(3.13)

Thus T* J2T :; h, i.e., T is h-contractive.
We will use <Cin for the set of complex numbers inside the open unit disc and

<Cout for the set of complex numbers outside the closed unit disc. The unit circle
will be denoted by 11'. In the rest of this section V denotes the maximal A invariant
subspace contained in Ker Q. The subspace V contains the subspaces V< = V n
R(A, <Cin ) , V> = V nR(A, Cout ), Vo = V nR(A, 11') and V::; = V n R(A, Cin U 11').
The notation V, etc., has been used for analogous subspaces but no confusion will
arise.

It is known that the algebraic Riccati equation (3.11) has a positive semide
finite solution. In fact, there exists a positive semidefinite solution X+ of (3.11),
the maximal solution, such that X+ ~ X for any other hermitian solution X of
(3.11) (see [66]).

Assume X is a hermitian solution of (3.11). Then it follows that X is pos
itive semidefinite if and only if the corresponding subspace M is maximal h
nonnegative. It also follows that the matrix T has only even partial multiplicities
for its eigenvalues on the unit circle (see [34]). Let No denote the T-invariant sub
space spanned by the vectors that are in the first halves of Jordan chains of T
corresponding to eigenvalues of T on the unit circle. Then No is J 1-neutral and
h-neutral. Theorems 3.20 and 3.22 below were proved in [39].

Theorem 3.20. Assume (A, B) is controllable, A is invertible, R> 0 and Q ~ O.
Then there is a one-one correspondence between the set of all A-invariant subspaces
N contained in V> and the set of all positive semidefinite solutions X of (3.11).
More precisely, let N be such a subspace and let M be given by

(3.14)

Then

M = 1m [i] (3.15)
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(3.16)

for a positive semidefinite solution X of (3.11). Conversely, assume X is a positive
semidefinite solution of (3.11) and let M be as in (3.15). Then MnR(T,Cout ) =
P*N for some A-invariant subspace N contained in V>.

Problem 3.21. Obtain a description of positive semidefinite solutions of (3.11)
analogous to that of Theorem 3.20, in a situation when A is not invertible.

A positive semidefinite solution X o of (3.11) is called stably positive semide
finite iffor every e > 0 there is a 0> 0 such that IIA-Ad +liB-B111 + IIQ-Q111 +
IIR - R1 11 < 0 and Ri = R1, Q1 2: 0 imply that the algebraic Riccati equation

X = AiXA1 + Q1 - AiXB1(R1 + B;XBt}-lBiXA1

has a positive semidefinite solution Xl such that IIXo - Xlii < e.
The following theorem describes stably positive semidefinite solutions.

Theorem 3.22. Assume (A, B) is controllable, A is invertible, Q 2: 0 and R > O.
Then the only stably positive semidefinite solution of (3.11) is the maximal solution.

Problem 3.23. Relax the hypothesis that A is invertible in Theorem 3.22.

Problem 3.24. Describe the degree of stability of the maximal solutions of (3.10)
and of (3.11).

As noted at the beginning of this subsection, the existence of positive semi
definite solutions of (3.10) is guaranteed if (A, B, C) is merely output-stabilizable.
Thus:

Problem 3.25. Characterize stable positive semidefinite solutions of (3.10) and
determine their degrees of stability, assuming only output-stabilizability.

Finally, development of stability results for real positive semidefinite sym
metric solutions of equations (3.10) and (3.11) with real matrix coefficients is an
open problem as well.

3.5. Application to minimal factorization of positive semidefinite
matrix functions

Consider the proper rational m x m matrix function

W(A) = D + C(A - A)-l B,

where A is an n x n matrix, B is an n x m matrix, C is an m x n matrix and finally,
D is an m x m matrix. (All of these are considered as complex matrices here.)
In this section we shall assume throughout that W(A) takes selfadjoint values on
the real line. In particular, this implies that D = W (00) is selfadjoint. When the
realization (6.1) is minimal we can say more about the matrices in the realization
by using the state space isomorphism theorem.

Proposition 3.26. Let W(A) = D + C(A - A)-l B be a realization of a rational
matrix function. If D = D* and there is an invertible hermitian matrix H such
that

HA = A*H, HB = C*,

then W(A) takes hermitian values on the real line.
(3.17)
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Conversely, if the realization (3.16) is minimal and W(OX) takes hermitian
values on the real line then D = D* and there is a unique invertible hermitian
matrix H such that (3.17) holds.

This proposition allows us to use the results and methods of indefinite inner
product spaces to study selfadjoint rational matrix functions.

As a first result let us mention a factorization theorem that was first derived
in [48]. To state the theorem, we introduce the matrix AX = A - BD-IC. Recall
that W(oX)-l = D - C(oX - A x )-1 B.

Theorem 3.27. Let W(OX) = D + C(AIn - A)-lB be a minimal realization of a
rational matrix function having hermitian values on the real line, and assume that
D is positive definite. Let H be the unique invertible hermitian matrix for which
(3.17) holds. Then for any A-invariant maximal H -nonnegative subspace M and
any A x -invariant maximal H -nonpositive subspace M x we have M +M x = en.
Thus to any such pair of subspaces corresponds a minimal factorization of W(oX):

W(oX) = WI (oX)W2 (oX),

where

Wl(oX) = D! + C(oX - A)-lIIBD-!, W 2 (oX) = D! + D-!C(I - II)(oX - A)-l B.

Here II is the projection on M x along M.

Theorem 3.27 illustrates the key role of invariant subspaces in study of min
imal factorizations of rational matrix functions. This approach to minimal fac
torizations originates with [5], and has been extensive used since then; see, in
particular, the books [4, 22].

The case where W 2 (OX) = Wt(oX) is of particular interest. Here, Wt(oX) is the
rational matrix function WI (.~)*. Clearly, if this holds we must have that W(OX)
takes positive semidefinite values on the real line. For this reason we first present
a result concerning the poles and zeros of a rational matrix function having this
property. The proof of this result can be found in [48], see also [23].

Proposition 3.28. Let W(OX) be a rational matrix function having positive semidefi
nite values on the real line. Let W (oX) = D +C( oX - A) -1 B be a minimal realization
ofW(oX). Then for each real pole oXo, i.e. each real eigenvalue oXo of A, the partial
multiplicities of A at oXo (which are the partial pole multiplicities of W(oX) at oXo)
are even, and the sign characteristic of the pair (H, A) consists of +1 's only.

For each real zero oXo, i.e., each real eigenvalue of AX the partial multiplicities
of AX at oXo are even, and the sign characteristic of the pair (H, A X) consists of
-1 's only.

This proposition, combined with Theorem 3.4 tells us that if (3.16) is a
minimal realization of a positive semidefinite rational matrix function, then A
has an invariant subspace M such that H(M) = Ml., and AX has an invariant
subspace M X such that H(M X

) = MXl.. Also Theorem 3.2 describes all such
subspaces.We can employ this to obtain the following theorem.
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Theorem 3.29. Let W (,X) = D +G (,X - A) -1B be a minimal realization of a selfad
joint rational matrix function, and let H be the unique invertible hermitian matrix
such that (3.17) holds. Assume that D is positive definite. Then the following are
equivalent.

(i) W('x) has positive semidefinite values on the real line,
((ii) both A and A x have only even partial multiplicities at their real eigenval

ues,
(iii) there exists an A-invariant subspace M such that H(M) = M1-, and there

exists an A x -invariant subspace M x such that H (M X) = M x 1- .

Let W be a positive semidefinite rational matrix function with a minimal
realization given by

and let

W('x) = 1+ G('x - A)-1 B,

W('x) = L(5-)* L('x)

(3.18)

(3.19)

be a minimal symmetric factorization where L has a minimal realization given
by L('x) = 1+ G1(,X - A1)-IB1. This factorization is called an (unconditionally)
a-stable symmetric factorization if there are positive constants E: and K such that
whenever the triple of matrices (A', B', G') satisfies

and is such that

IIA - A'II + liB - B'II + IIG - G'II < E: (3.20)

W'('x) = 1+ G'(Mn - A,)-1B' (3.21)

is hermitian on JR, then W'('x) has a minimal symmetric factorization

W'('x) = L'(5-)* L'('x) (3.22)

where L'('x) = 1+ q (Mn - AD-1B~ with

IIA1 - A~II + IIB1 - B~II + IIG1 - G~II

::; K· (IIA - A'II + liB - B'II + IIG - G'II)~· (3.23)

Note that it follows that W'('x) is a positive semidefinite rational matrix function.
The factorization (3.19) is called a (conditionally) a-stable symmetric fac

torization if for any positive semidefinite W' as in (3.21) for which (3.20) holds,
we have (3.22) and (3.23). Observe that here we restrict attention to positive
semidefinite perturbations only. It can be seen rather easily that both uncondi
tional and conditional a-stability are independent of the particular minimal real
ization one starts with.

Theorem 3.30. Let W (,X) be positive semidefinite. Then the following holds:
(a) There exists an unconditionally a-stable symmetric factorization for some

a if and only if W has no real poles and zeros. In that case there exists a I-stable
symmetric factorization.

(b) If W has no real poles and zeros then the minimal symmetric factorization
(3.19) is a-stable if and only if
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(i) for each common pole AD of Land L * the geometric multiplicity of AD as a
pole ofW is one, and if k, respectively l, denote the algebraic multiplicities
of AD as a pole of L, respectively as a pole of L*, then "((k, k + l) ~ a,

(ii) for each common zero AD of Land L * the geometric multiplicity of AD as a
zero ofW is one, and if k, respectively l, denote the algebraic multiplicities
of AD as a zero of L, respectively as a zero of L*, then "((k, k + l) ~ a.

Concerning conditional a-stability we can only state a partial result in the
(generic) case where the geometric pole and zero multiplicities of W at real poles
and zeros, respectively, is one.

Theorem 3.31. Let W(A) be positive semidefinite, and assume for every real pole
and zero of W the geometric multiplicity is one. Let AI, ... ,Ar be the real poles of
Wand let /-Ll, ... , /-Ls be the real zeros of W with algebraic multiplicities ml ... , m r

and nl, ... ,n s , respectively. Let

aD = max(2,ml -1, ... ,mr -l,nl -1, ... ,ns -1),

or aD = 1 if W does not have real poles or zeros. Then there exists a conditionally
aD-stable symmetric factorization of Wand no symmetric minimal factorization
is a-stable with a < aD.

The factorization (3.19) is aD-stable if and only if

(i) for each common non-real pole AD of Land L* the geometric multiplicity
of AD as a pole of W is one, and if k, respectively l, denote the algebraic
multiplicities ofAD as a pole of L, respectively as a pole of L*, then "((k, k+
l) ~ aD,

(ii) for each common non-real zero AD of Land L* the geometric multiplicity
of AD as a zero of W is one, and if k, respectively l, denote the algebraic
multiplicities ofAD as a zero of L, respectively as a zero of L *, then "((k, k+
l) ~ aD.

Proofs of Theorems 3.30 and 3.31. As these results are new, we outline the proofs.
First one observes that the factorization (3.19) is (conditionally, resp., uncondi
tionally) a-stable if and only if the corresponding A-invariant subspace M and
the corresponding AX-invariant subspace M X are (conditionally, resp., uncondi
tionally) neutrally a-stable. Compare, e.g., the proof of Theorem 2.5 in [53], where
this argument is exposed in detail. Using this observation Theorems 3.30 and 3.31
are proved in essentially the same way as Theorems 3.12 and 3.14 (see [57], Lemma
6.8 and the proofs of Theorems 3.27 and 3.30). 0

Problem 3.32. Characterize conditional a-stability of factorizations (3.19) in the
non-generic case (i.e., not covered in Theorem 3.31).

3.6. Application to transport theory

In this section we consider the following boundary value problem on [0,(0):

(T'lj;)'(x) = -A'lj;(x)

lim P+ 'lj;(x) = ¢+; 11'lj;(x) II bounded as x --+ 00.
x!O

(3.24)

(3.25)
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Here T is an n x n selfadjoint matrix with Ker T = 0, A is an n x n positive
semidefinite hermitian matrix, and finally, P+ is the spectral projection of T cor
responding to its positive eigenvalues, and <P+ is a given vector in 1mP+.

Solutions of (3.24), (3.25) are important in astrophysics and in the theory
of transport of neutrons, in these cases, however, it is the infinite dimensional
analogue of (3.24), (3.25) which plays a role (see [43, 29]). The finite dimensional
problem is relevant in the case where the scattering of particles is restricted to a
finite number of directions (see, e.g., [76]). It was considered from several points
of view in [61, 19].

Here we consider the question of what happens to bounded solutions if A
and T are subject to perturbations. The infinite dimensional case was treated
in [58], there only perturbations of A were allowed. Because of the technicalities
involved in the infinite dimensional case we restrict our attention here to the finite
dimensional situation (which, by the way, was also treated in [58]).

In treating this problem obviously the matrix T- 1A plays an essential role.
We shall denote by Po the spectral projection of T- 1A with respect to {O}, by Pp

its spectral projection with respect to (0,00), and by Pm its spectral projection
corresponding to (-00,0). The images of these projections will be denoted by Ho,
Hp and Hm , respectively. We shall also denote by P_ the spectral projection of
T corresponding to its negative eigenvalues and we denote 1m P_ = H _,1m P+ =
H+.

As T- 1A is nonnegative in the indefinite inner product given by T (in short,
T-nonnegative), we first list some consequences of this fact; these follow easily by
considering the canonical form (3.1), (3.2):

(i) all eigenvalues of T- 1A are real,
(ii) the partial multiplicities of T- 1A corresponding to non-zero eigenvalues
are all one, and if >. > 0 (resp., >. < 0, is an eigenvalue of T-1 A, then
(Tx, x) > 0 (resp., < 0) for all x E Ker (T- 1A - >.),

(iii) the partial multiplicities of T- 1A with respect to the zero eigenvalue (if
any) of T- 1A are either 1 or 2, and the signs in the sign characteristic of
the pair (T- 1A, T) corresponding to Jordan blocks of order two (if any)
are all +1.

Let us denote, as before, the spectral subspace ofT- 1A corresponding to its
negative, zero, and positive eigenvalues, respectively, by H m , Ho and Hp, respec
tively. We shall say that the pair (T- 1A, T) satisfies the positive sign condition
(resp. negative sign condition) if KerT- 1A is T-nonnegative (resp., T-nonpositive).
So, if (T- 1A, T) satisfies either the positive or the negative sign condition then
it certainly satisfies the sign condition. It can be shown that the pair (T- 1A, T)
satisfies the positive sign condition if and only if

n . -1·C = Hp+Ker T A+H_. (3.26)

In turn, this is equivalent to Hp+Ker T- 1A being the unique T- 1A-invariant
maximal T-nonnegative subspace. Likewise, (T- 1A, T) satisfies the negative sign
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condition if and only if

en = Hm+Ker T- 1A+H+,

which, in turn, is equivalent to en = Hm+Ker T- 1A being the unique T- 1A
invariant maximal T -nonpositive subspace.

Returning to equation (3.24) with boundary conditions (3.25), let us first
describe the bounded solutions. These are given by

-xT-1A
'IjJ(x) = e cPP + cPo, 0 < x < 00, (3.27)

where cPP E Hp, cPo E Ker A and P+(cPp + cPo) = cP+. We have the following result
(see [58], Corollary 3.2.2).

Proposition 3.33. Given cP+ E H + there exists a unique bounded solution of (3.24),
(3.25) if and only if the pair (T- 1A, T) satisfies the positive sign condition, or
equivalently, if (Tx, x) 2: 0 for all x E Ker A.

Our main result concerns stability of the unique bounded solution under
perturbations of T and A in case the positive sign condition holds; the statement
is as follows:

Theorem 3.34. Let T = T* be an invertible n x n matrix, and let A 2: 0 be an
n x n matrix. Assume that (Tx, x) 2: 0 for all x E Ker A, i.e., that the pair
(T-l A, T) satisfies the positive sign condition. Let Tk = Ti: and A k 2: 0 be such
that Tk is invertible, A k --+ A, Tk --+ T. Then for every bounded solution 'IjJ(x)
of (3.24), (3.25) and for every sequence cPk,+ E 1m Pk+, k = 0,1,2, ... , such that
limk--->oo IIcPk,+ - cP+11 = 0, there is a bounded solution 'ljJk(X) of

(Tk'IjJ)'(X) = -Ak'IjJ(x), ~mPk+'IjJ(X) = cPk,+,

such that limk--->oo sUPo<x:SXQ II'ljJk(X) - 'IjJ(x) II = 0 for every Xo > O.

Problem 3.35. Is the converse true, i.e, if the positive sign condition is not satisfied,
then no bounded solution is stable?

Problem 3.36. Find degrees of stability of bounded solutions 'IjJ(x) of (3.24), (3.25),
under the hypotheses of Theorem 3.34.

The proof of Theorem 3.34 is based on the observations preceding it, together
with the fact that, according to Theorem 3.2, under assumption of the positive sign
condition the unique T- 1A-invariant maximal T-nonnegative subspace is stable
under perturbations of T and A.

The infinite dimensional version of this theorem justifies a numerical proce
dure for calculating the solution of (3.24), (3.25) that is in use in astrophysics. In
that case A = I - B with B a compact operator. The numerical procedure involves
replacing B by a finite rank operator B k , while keeping T fixed. The result in [581
(analogous to Theorem 3.34) then applies and tells us that the solution computed
using this procedure will converge to the actual solution of the problem uniformly
on compact intervals when Bk --+ B.
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In [46] robustness of solutions of the boundary value problem (3.24), (3.25)
is studied for the physically interesting case when A is a matrix (or, in the infinite
dimensional case, a compact perturbation of the identity operator) whose real part
Re A is positive semidefinite and the condition Ker Re A = Ker A is satisfied.

4. Matrix decompositions

In this section, we study robustness properties of several matrix decompositions.
First, we consider variants of the well-known polar decomposition. We do so in
the case where the inner product space we work in is a finite dimensional Hilbert
space, as well as for the case where the inner product is genuinly indefinite. Next,
we discuss the Cholesky factorization of a positive semidefinite matrix. Finally, we
consider the absolute value of a matrix and its singular value decomposition.

4.1. Polar decompositions

4.1.1. THE DEFINITE CASE It is well known that every n x n matrix X over F
(where F = C or F = JR.) admits a decomposition X = UA, where U is unitary
(orthogonal if F = JR.) and A is positive definite (and symmetric if F = JR.).

We shall consider a more general situation. Let H be an invertible selfadjoint
and positive definite n x n matrix over F. An H -polar decomposition of a matrix
X E F nxn is, by definition, a factorization of the form

X=UA, (4.1)

where U is H-unitary (i.e., U* HU = H) and A is H-selfadjoint (i.e., H A = A* H).
This definition is more general than the standard definition in that we allow A
to be H-selfadjoint (not just H-positive semidefinite) and the scalar product need
not be the standard one.

It is a standard result that an H -polar decomposition always exists. Moreover,
in this case one can take A having nonnegative spectrum; an H -polar decompo
sition of the form X = UA with this property of A will be called a nonnegative
H-polar decomposition. The factor A in a nonnegative H-polar decomposition
is unique and coincides with l{/XHX. The factor U in a nonnegative H-polar
decomposition is unique if and only if X is nonsingular.

We note the following perturbation bounds on the factors of the nonnegative
polar decomposition for invertible matrices, assuming H = I. Let X and Y be
invertible matrices with the nonnegative polar decompositions X = U A and Y =
VB. Then

2
IIU - VII :::; /IX-111-l + IIY-111-I IIX - YII; (4.2)

IIA - BII :::; (1 + IIX-lll-~/I:IIY-l/l-l ) jjX - YII· (4.3)

Formula (4.2) is well known (see [41]; also [6], Theorem VII.5.1). As shown in [41],
(4.2) is the best possible in the sense that the bound can be achieved. Formula
(4.3) is an easy consequence of (4.2).
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Next, we consider stability of polar decompositions X = UA, which are not
necessarily nonnegative.

The polar decomposition (4.1) is called stable if for every € > 0 there is
J > 0 such that every pair of matrices (Y, G), where Y E Fnxn and G E Fnxn is
Hermitian, admits a G-polar decomposition Y = VB with IIU - VII + IIA - BII < €,
as soon as IIY -XII+IIH -Gil < J. Restricting this definition to perturbations ofY
only, in other words, assuming G = H, we obtain the definition ofH -stability of the
polar decomposition. The polar decomposition is called Lipschitz stable (resp. H
Lipschitz stable) if there exist positive constants J and K such that every Y E F nxn

admits a G- (resp. H-) polar decomposition Y = VB with IIU - VII + IIA - BII ::;
K (IIX - YII + IIG - HI!) (resp. IIU - VII + IIA - BII ::; KIIX - YII) as soon as
IIX - YII + IIG - HII ::; J (resp. IIX - YII ::; J). Clearly, stability implies H
stability, Lipschitz stability implies stability and H-Lipschitz stability, and H
Lipschitz stability implies H-stability. The following result, proved in [44], shows
in particular that these a priori distinct notions of stability are in fact equivalent.

Theorem 4.1. (a) F = C. There exist H -stable H -polar decompositions of X if
and only if X is nonsingular. In this case, the following statements are equivalent
for an H -polar decomposition X = UA:

(i) The decomposition is H-stable.
(ii) The decomposition is Lipschitz stable.
(iii) The H-selfadjoint matrices A and -A have no common eigenvalues.

(b) F = lR. There exist H -stable H -polar decompositions of X if and only if
dim K erX ::; 1. In this case, the following statements are equivalent for an H -polar
decomposition X = UA:

(iv) The decomposition is H-stable.
(v) The decomposition is Lipschitz stable.
(vi) The H -selfadjoint matrices A and - A have no common nonzero eigenval

ues.

4.1.2. THE INDEFINITE CASE Now let H be invertible and selfadjoint. We shall
assume that H is genuinely indefinite, i.e., H has at least one positive and one
negative eigenvalue. As before, consider the (now indefinite) scalar product [x, y] =
(Hx,y). Recall (see Section 3) that A is called H-selfadjoint if HA = A*Hand U is
H-unitary if U* HU = H. As in the definite case, a decomposition X = UA, where
A is H-selfadjoint and U is H-unitary, will be called an H-polar decomposition of
X. In contrast to the definite case such decompositions need not exist for an
arbitrary n x n matrix over F. Necessary and sufficient conditions for existence of
an H -polar decomposition are given in [8].

Essentially, to prove the existence of and to actually construct an H -polar
decomposition of a given n x n matrix X, one needs to find an H -selfadjoint matrix
A such that

X H X=A2

KerX = KerA,
(4.4)
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(4.5)

that a(A) n

where Ker B stands for the null space of a matrix B [10, 8]. Once A is known, the
map Au I--t Xu is an H-isometry from the range ImA of A onto the range ImX of
X, which can be extended to an H-unitary matrix U as a result of Witt's theorem
[1,9].

It turns out (see [45]) that, for the case F = te, there exist stable H-polar
decompositions of X if and only if a(XHX) n (-00, OJ = 0. In the real case,
this condition is only sufficient but not necessary (d. Theorem 4.1). Nevertheless,
for F = JR we give necessary and sufficient conditions for the existence of stable
H-polar decompositions of X. The results below are proved in [45].

The strategy in proving the first stability result of this section is to construct
an H -selfadjoint matrix A satisfying (4.4) that depends continuously on X, if
possible. The result is as follows

Theorem 4.2. Let X be an n x n matrix over F such that a(XHX) n (-00,0] = 0.
Then there exist an H -selfadjoint matrix A satisfying (4.4), an H -unitary matrix
U satisfying X = UA and constants 0, M > 0, depending on X, A, H, and U
only, such that for any pair of n x n matrices (Y, G) over F with G nonsingular
selfadjoint and IIX - YII + IIG - HII < 0 there exists a G-polar decomposition
Y = VB of X satisfying

IIA - BII + IIU - VII::; M [IIX - YII + IIH - GIIJ .
Moreover, such an A can be chosen with the additional property
(-00,0] = 0.

Conversely, let X be an n x n matrix over F having an H -polar decomposition
and such that one of the following three conditions are satisfied:

(a) X HX has negative eigenvalues;
(f3) a(XHX) n (-00,0] = {O} and Ker X HX 1= Ker (X Hx)n;
(--y) a(XHX) n (-00,0] = {O} and Ker (X Hx)n = Ker X HX 1= Ker X.

Then in every neighborhood of X there is an n x n matrix Y over F such that Y
does not have an H-polar decomposition. Moreover, Y can be chosen so that yHy
does not have a G-selfadjoint square root for any invertible selfadjoint matrix G.

The case which is left out of the above theorem, namely, when a(XHX) n
(-00,0] = {O} and the subspace KerXHX = Ker(XHX)n = KerX, will be
considered next. In contrast with the above theorem, in this case perturbations
of X that do not admit H-polar decompositions may not exist. Nevertheless, in
many cases there are no stable H-polar decompositions.

An H-polar decomposition X = U A is called H-stable if for every £ > °
there is 0 >°such that every matrix Y E F nxn admits an H-polar decomposition
Y = VB with IIU - VII + IIA - BII < £, as soon as IIY - XII < O. Note that this is
a weaker condition than (4.5).

Theorem 4.3. Assume that X E F nxn admits an H -polar decomposition, and
assume furthermore that dim Ker X :2: 1 in the complex case or dim Ker X :2: 2 in
the real case. Then no H -polar decomposition of X is H -stable.
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The results of the preceding two theorems show that no H-polar decomposi
tion X = UA is H-stable as soon as X H X has negative or zero eigenvalues, with
the possible exception of the situation when F = JR, a(XH X)n(-00,0] = {O}, the
dimension of the kernel of X is one, and Ker X H X = Ker (X H x)n = Ker X. This
exceptional situation requires special consideration. By analogy with the Hilbert
space (see [44]) we expect here H-stability of H-polar decompositions, and this
turns out to be the case indeed.

Theorem 4.4. Let F = JR. Assume that X admits H -polar decomposition and
Ker X H X = Ker (XH x)n = Ker X is one-dimensional. Then there exists an H
stable H -polar decomposition X = UA. Moreover, every such H -polar decomposi
tion is Lipschitz H -stable, i. e., every Y sufficiently close to X admits an H -polar
decomposition Y = VB with IIU - VII + IIA - BII ::; GIIX - YII, where the positive
constant G is independent of Y.

4.2. Cholesky decompositions

It is well known that every positive semidefinite n x n matrix A with entries in F
(F = <C or F = JR) admits a factorization

A = R*R, (4.6)

where R is an upper triangular n x n matrix with entries in F and such that the
diagonal entries of R are all real nonnegative. Such factorizations will be called
Cholesky decompositions. Note that a Cholesky decomposition of a given positive
semidefinite matrix is unique if A is positive definite, but in general it is not unique.

A criterion for uniqueness of Cholesky decompositions will be given. For a
positive semidefinite n x n matrix A let oj(A) be the rank of the j x j upper left
block of Ai j = 1, ... ,n. The inequalities

are evident.

j=1,···,n-1 (4.7)

Theorem 4.5. A Cholesky decomposition (4.6) of A is unique if and only if either
A is invertible or

ajo(A) = ajo+1(A) = ... = an(A),

where jo is the smallest index such that ajo(A) < jo.

Proof. We may assume that A is singular to start with. If jo = 1, then the top left
entry of A is zero, and unless A is the zero matrix, a Cholesky decomposition of
A is not unique:

[~ ~] - [~i ~2] [~ g~].
Here B is the lower right (n - 1) x (n - 1) block of A, and Gl , G2 are any matrices
of appropriate sizes such that G2 is upper triangular and B = GiGl + G2G2.
Clearly, unless B = 0, the choice of Gl and G2 subject to the above conditions is
not unique. This proves the theorem in the case jo = 1.
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Assume now jo > 1. Write
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A = [~; ~~], (4.8)

where Al is the (invertible by the definition of jo) (jo - 1) x (jo - 1) upper left
block of A. A consideration of the Schur complement of AI, namely the formula

o ] [AI A2] [ I
I A2 A3 0 ] = [ ~I ],

(4.9)
shows that we can replace A by

[~I A3 _ A~AllA2 ]

without loss of generality. Since Al is invertible, it is easy to see that every Cholesky
factorization of

must be of the form

[~I A3 _ A~AllA2 ] = [~r ~2] [~I ~2]
for some upper triangular matrices RI and R2 , with RI having the size (jo -1) x
(jo - 1). As the jo x jo upper left block of A is singular, the top left entry of
A3 - A2A1I A2 is zero. We have reduced the proof to the already considered case
when jo = 1 (as applied to the matrix A3 - A2A1I A2). D

A Cholesky decomposition (4.6) is called robust if for every € > 0 there is a
b > 0 such that IIA - BII < band B positive semidefinite with entries in F implies
the existence of a Cholesky decomposition B = 8*8 such that 118-RII < c:; (4.6) is
called a-robust if there is a positive constant K such that every positive semidefinite
B (with entries in F) sufficiently close to A admits a Cholesky decomposition
B = 8*8 in which 118 - RII < KIIB - All ~. In the case of I-robustness, we simply
say that the Cholesky decomposition is Lipschitz robust.

Theorem 4.6.

(i) A Cholesky decomposition of A is Lipschitz robust if and only if A is
positive definite.

(ii) A Cholesky decomposition of A is 2-robust if and only if it is unique, i.e.,
the conditions of Theorem 4.5 are satisfied;

(iii) In all other cases, no Cholesky decomposition of A is robust.

Proof. Assume first that A is positive definite. Using induction on the size n x
n of A, we may assume that the Cholesky decomposition Al = RrRI of the
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(n - 1) x (n - 1) upper left block Al of A is Lipschitz robust. Now let B be a
positive definite matrix sufficiently close to A. Partition

B = [~~ ~~],
where B I is (n - 1) x (n - 1) and B3 is a scalar. Then B has the Cholesky
decomposition

o
~~] [ Q~-lB 2 ]

JB3 - B2B l I B2 '

(4.10)
and using the Lipschitz robustness of the Cholesky decomposition of AI, this
property of the Cholesky decomposition of A easily follows from (4.10).

Assume now that A is not invertible but the conditions of Theorem 4.5 are
satisfied. If A = 0, then IIRII = IIBII! for any Cholesky decomposition B = R*R of
a positive semidefinite matrix B, hence the 2-robustness of the Cholesky decom
position of the zero matrix follows. If A -I- 0, then using the Schur complement, as
in the proof of Theorem 4.5, we may assume without loss of generality that

A = [AI 0]o 0 '

(4.11)

where Al is invertible of size p x p, 1 ::; p < n. Now all Cholesky decompositions
of any positive semidefinite matrix

B = [~~ ~~]
(here B I is p x p) sufficiently close to A are given by the formula

[
BI* B 2 ] [Qi 0] [QI Q~-lB 2 ]
B2 B3 B2QI Q3 0 Q3 '

where B3 - B2B l i B 2 = Q3Q3 is a Cholesky decomposition of the positive semi
definite matrix B3 - B2B l i B2 . Since this matrix is close to the zero matrix,
2-robustness of the Cholesky decomposition of A follows from the already proved
2-robustness of the Cholesky decomposition of the zero matrix, and from the Lip
schitz robustness of the Cholesky decomposition of AI.

Finally, assume that A = R*R = R* R are two Cholesky decompositions of

A with R -I- R. For c > 0 let A(c) = (R + cI) * (R + cI) .Then this is the unique
Cholesky decomposition of A(c), but R+ cI does not converge to R when c -+ O.
Therefore, A = R*R cannot be robust. 0

It is easy to see from the proof of Theorem 4.6 that in case a Cholesky
decomposition of A is unique but A is not invertible, the decomposition is not
a-robust for any a < 2.
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4.3. Absolute values ofmatrices and singular value decompositions

For a (real or complex) n x n matrix A the absolute value IAI is defined as the
unique positive semidefinite square root of A* A. It is well known that IAI is a
Lipschitz function of A; more precisely, the inequality

(4.12)

holds for every two n x n matrices A and B, where II . 112 indicates the Frobenius
norm (see, e.g., formula (VII.39) in [6]).

Lemma 4.7. If IAI has n distinct eigenvalues, then every orthonormal eigenbasis
of IAI is Lipschitz stable with respect to Ai in other words, if h, ... , fn is an
orthonormal basis of F n (F = lR or F = C) consisting of eigenvectors of IAI,
then there exists a constant K > 0 such that for every B sufficiently close to
A there exists an orthonormal basis gl,' .. ,gn of eigenvectors of IBI such that
IIIi - gill s:; KIIA - BII·

If IAI has less than n distinct eigenvalues, then no orthonormal eigenbasis of
IAI is stable with respect to A.

Proof. The first statement of the lemma can be easily derived from well-known re
sults on perturbations of eigenspaces of hermitian matrices (for example, the sin e
theorem [15], see also Section VII.3 in [6]), combined with (4.12). The constant K
turns out to be proportional to

(rnin{Aj - .Aj-l : 2 s:; j s:; n})-l,

where .An > .An-I> ... > .AI are the eigenvalues of IAI.
For the second statement, we shall assume (without essential loss of general

ity) that n = 2, and we may also assume that IAI = h (if A = 0, a slight modifi
cation of the subsequent reasoning is required). Take any orthonormal eigenbasis,
then we may assume, changing the basis in C2 if necessary, that it is the standard
basis. In other words, it suffices to prove that the standard orthonormal basis is not
stable with respect to A as an eigenbasis of IAI. For this, consider perturbations
A(c) = A [1 ~ c ~], where c > 0; then jA(c)1 = [1 ~ c ~]. Letting c ~ 0 we
see that the only orthonormal eigenbasis of IAI that might be stable is the stan
dard one (modulo, of course, multiplications of the vectors by complex numbers

of modulus one). Now consider perturbation B(c) of A such that IB(c)1 = [~ ~],

which has orthonormal eigenbasis y,}- [n, 1 [~1] (again, modulo multiplica
tions of the vectors by complex numbers of modulus one). Letting c ~ 0 we see
that none of these orthonormal eigenbases will converge to the standard basis. So,
no orthonormal eigenbasis of IAI is stable with respect to A. D

Recall that a decomposition A = U DV is called a singular value decomposi
tion of an n x n matrix A if U and V are unitary (resp., real orthogonal in the
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real case) and D is a positive semidefinite diagonal matrix with the diagonal en
tries ordered in the non-increasing order. Obviously, such a decomposition is not
unique: the columns of U and of V* form orthonormal bases of eigenvectors of
IA*I and IAI, respectively, which allows for considerable freedom. Note also that
the singular values s1(A) ::::: ... ::::: sn(A) of A, i.e., the eigenvalues of IAI, are always
well behaved with respect to perturbations:

max{lsj(A) - sj(B)1 : 1 ::; j ::; n} ::; IIA - BII. (4.13)

(This fact is well known, see, e.g., [20] or p.78 in [6].) Lemma 4.7 leads therefore
to the following result:

Theorem 4.8. Let A = UDV be a singular value decomposition of an n x n matrix
A. If A has n distinct singular values, then there exist a constant K > 0 such that
every matrix B admits a singular value decomposition B = U'D'V' for which

IIU - U'II + liD - D'II + IIV - V'II ::; K· IIA - BII· (4.14)

If not all singular values of A are distinct, then there exist c > 0 and a sequence
of matrices {Bm}~=1 converging to A such that

IIU - U'II + liD - D'II + IIV - V'II > c
for every singular value decomposition Bm = U:nD~V~ of Bm , and for every
m= 1,2,···.

Proof. Assume that A has distinct singular values. It follows from Lemma 4.7 and
the discussion preceding the theorem that there exists co > 0 such that (4.14)
holds for all B satisfying IIA - BII < co. However, for B satisfying IIA - BII ::::: co
the inequality (4.14) clearly holds, with K replaced by max{K, 4c01} + 1.

If not all singular values of A are distinct, then the statement of Theorem
4.8 follows from the proof of Lemma 4.7. D
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Dual Discrete Canonical Systems and
Dual Orthogonal Polynomials

L. Sakhnovich

To Harry Dym, with whom I began working on the notion of duality,
with attachment and friendship

The string equation

_ d
2
cp(x, A) = \ 2( ) ( \)dx2 /\p X cp x, /\ ,

can be written in the form

p(x) > 0,

_ d
2
cp(x, A) = AdM ( A)
dx2 dx cp x, , (0.1)

where
x

M(x) = Jp2(t) dt.

o
The equation

_ d
2
if(M, A) = A dx -(M A) (0.2)
dM2 dMcp,

is said to be dual to equation (0.1). The notion of a dual string was investigated
by I.S. Kac and M.G. Krein [1]. Kac and Krein obtained the dual string equation
from the original by interchanging the variables x and M (x). Let us add conditions

(0.3)

(0.4)

cp'(O, A) = 0,

if' (0, A) = 1

cp(O, A) = 1,

if(O, A) = 0,
to equations (0.1) and (0.2).

Then as it was shown in the work [1] there are spectral functions r(A) and
T(A) of problems (0.1), (0.3) and (0.2), (0.4) such that

A

rCA) = T(A) = 0, A < 0; T(A) = J/-ldr(/-l), A> 0 (0.5)

o
We cannot transfer duality notion on the string matrix equations and on the
canonical differential systems by changing variables. This problem was solved by H.
Dym and the author in the joint work [2] due to the special form of the presentation
of the original and dual systems. Let us note that relations (0.5) are preserved in
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the general situation as well. In this article we introduce the duality notion for the
canonical discrete systems

W(k, z) - W(k - 1, z) = izIy(k)W(k - 1, z), k ~ 1, (0.6)

(0.7)W(O,z) = hm'1m ]o '

where W(k, z), ,(k), J are (2m) x (2m) matrices and

J= [ 0
1m

The well-known recurrent relations

bk<P(k + 1, z) + ak<P(k, z) + bk- I <p(k - 1, z) = z<p(k, z), k ~ 0,

<p( -1,0) = 0,
(0.8)

in which bk, ak, <p(k, z) are m x m matrices can be reduced to the canonical
systems of the form (0.6), (0.7). The matrix polynomials <p(k, z) are orthogonal
with respect to the corresponding spectral matrix function T('\), i.e.

(0.9)

00J<p(k, '\)[dT('\)]<p* (l,'\) = Okl1m,

o

where Okl is the Kronecker symbol. In this article we present a method of con
structing the system

bktjJ(k + 1, z) + aktjJ(k, z) + bk- I tjJ(k - 1, z) = ztjJ(k, z) (0.10)

which is dual to the original system (0.8). The dual system tjJ(k, z) is orthogonal
with respect to the corresponding spectral matrix function i('\), i.e.

(0.11)

00JtjJ(k, >')[di('\)]tjJ*(l, >.) = okl1m.

o

The description of all the spectral matrix functions T('\) and i('\) satisfying re
lations (0.5) is given in this paper. The obtained results are new even for the
scalar case (m = 1). In conclusion the results of the article are illustrated by a
number of classic examples (Laguerre polynomials, Jacobi polynomials, Chebyshev
polynomials) .

1. Operator identities

The method of operator identities [3], [4] plays a significant role in this article.
We shall write here the fundamental operator identities referring to the problem
under consideration.

We denote by l;"(N) the space of vector columns

f = col [fo, iI,···, iN-I]
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with the norm
N-I

~ 2 "II! II = L.J !~!k,
k=O

where!k are m x 1 column vectors. In the space l;"(N) we introduce the operators
Band C:

k-I

(B!)k = qk LPj!j,
j=O

1 :S k :S N - 1, (1.1)

(B[)O = 0, (1.2)

(1.4)O:Sk:SN-1.

k

(C!)k = -P'k LqiJi, O:S k:S N -1. (1.3)
j=O

Here Pk and qk are m x m matrices. It follows from (1.1)-(1.3) that

N-I

[(B* - C)i]k = P'k L qi!j,
j=O

Equality (1.4) can be written in the form

B* - C = IhIIi, (1.5)

where

(IIIgh = qkg, (II2g)k = P'kg, g E 0, O:S k :S N - 1 (1.6)

(0 is a space of the m x 1 vectors). From identity (1.5) we deduce the relations

CB - B*C* = B*IIIII; - II2IIiB,

BC - C*B* = IIIII;B* - BII2IIi.

We introduce the operators

(1.7)

(1.8)

A = BC, ~I = -iII I , ~2 = BII2·

Using notations (1.9) and (1.10) we can write relations (1. 7)
following form

A=CB, <PI = B*III , (1.9)

(1.10)

and (1.8) in the

A - A* = i (<PI <P; + <P2<Pi),
A - A* = i (~I~; + <I>2<I>i).

From (1.1) and (1.2) we have

(1.11)

(1.12)

k j-I

(A!)k = -p'kLqiqj LPtfl'
j=1 1=0

k 2': 1, (1.13)

(1.14)
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Formula (1.13) can be rewritten in the form

k-I k

(Ai)k = -pte L) L qiqj)pt!l,
l=O j=l+1

Setting

k~1. (1.15)

k

L(k) = L qiqj, k ~ 1, L(O) = 0,
j=1

we represent (1.15) in the form

(1.16)

k-I

(Ai) k = -pte L [L(k) - L(j))pjiJ,
j=O

k~1. (1.17)

Using (1.6) and (1.9) we obtain

(iI>2g)k=iPteg, 05,k5,N-l, (1.18)

(iI>lg)k= pte [L(N -1) - L(k))g, 05, k 5, N -1. (1.19)

According to (1.1) and (1.2) the equality

k-I

(Ai)k = -qk L[M(k -1) - M(j -1))qifj (1.20)
j=O

is true. Here
k

M(k) = LPjPj, k ~ 0, M(-I) = 0.
j=O

From (1.6) and (1.10) we deduce that

«hg)k = -iqkg, 05, k 5, N -1,

(~29)k = qkM(k -1)g, 05, k 5, N - 1.

Let orthogonal projectors Pk be defined by the equality

Pkh = hk, 1 5, k 5, N, Poh = 0,

where

(1.21)

(1.22)

(1.23)

h = col [hI, h2, ... , hmN],

hk = col [hI, h2, ... , hmk' 0, 0, ... ,0].

It is obvious that the following relations

A*Pk = PkA*Pk, (Pk - Pk-I)A(Pk - Pk-I) = 0, (1.24)

A*Pk = PkA*Pk, (Pk - Pk-I)A(Pk - Pk-l) = ° (1.25)

are true.
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2. Canonical systems (discrete case)

In this section the following systems of difference equations are considered.

W(k, z) - W(k - 1, z) = izJ,(k)W(k - 1, z), k ~ 1 (2.1)

and
W(k, z) - W(k - 1, z) = izFHk)W(k - 1, z), k ~ 1, (2.2)

where W(k, z), W(k, z), ,(k) and ;Y(k) are (2m) x (2m) matrices, k = 0,1,2, ... ,

[
0 f m ] -J = f
m

0 ' W(O,z) = W(O,z) = hm·

The matrices ,(k) and ;Y(k) are defined by the relations

,(k) = a(k) - a(k -1),

where

;Y(k) = a-(k) - a-(k - 1), (2.4)

ak = II*PkII,
Here we use the notations

1 :S k :S N. (2.5)

II = [<.I>l,<.I>2]' rr=[(h,(h]. (2.6)

In view of formulas (1.18), (1.19) and (1.21), (1.22) the following equalities

[

{L(N - 1) - L(k - l)}Pk-l ]
,(k) = . [PZ-l {L(N - 1) - L(k - I)}, iPZ-l]'

-ZPk-l
(2.7)

[

iqk-l ]
;Y(k) = * [-iqk-l, qk-lM(k - 2)]

M(k - 2)qk-l
(k ~ 1), are valid. It is obvious that

,(k) ~ 0, ;Y(k) ~ 0,

,(k)J,(k) = ;Y(k)J;Y(k) = O.

We shall call the system (2.2) to be dual to the system (2.1).

(2.8)

(2.9)

(2.10)

3. Spectral theory

Let us recall the main notions of the spectral theory [3] of systems (2.1). We
suppose that

rank q(k) = rank p(k) = m, O:Sk:SN-1. (3.1)

With canonical systems (2.1) and (2.2) we associate the matrix functions

v(z) = i[a(z)R(z) + b(z)Q(z)] [c(z)R(z) + d(z)Q(z)r 1 (3.2)

and
ii(z) = i[a(z)R(z) + b(z)Q(z)] [c(z)R(z) + d(z)Q(z)r 1

. (3.3)
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The coefficient matrices of the linear-fractional transformations (3.2) and (3.3)
have the forms

and

W*(l z) = [a(z) b(Z)]
, c(z) d(z) (3.4)

(3.5)W*(l -) = [a(z) ~(z)]
,z c(z) d(z) .

Meromorphic m x m matrix functions R(z) and Q(z) satisfy the relations

det [R*(z)R(z) + Q*(z)Q(z)] =I 0, 1m z > 0, (3.6)

R*(z)Q(z) + Q*(z)R(z) ~ 0, 1m z > O. (3.7)

The matrix functions v(z) and v(z) belong to the Nevanlinna class and admit the
representations

and

00

v(z)=,Bz+a+ J(A~Z -1:A2 )dT(A)
-00

00

v(z)=,6z+a+ J(A~Z -1:A2 )di(A),
-00

(3.8)

(3.9)

where a = a*, a = a*, ,B ~ 0, ,6 ~ 0, T(A) and i(A) are monotonically increasing
m x m matrix functions. We shall show that T(A) and i(A) are spectral matrix
functions of canonical systems (2.1) and (2.2) respectively. Let us consider now
the canonical system

Y(k, z) - Y(k - 1, z) = izJ"f(k)Y(k - 1, z), 1 ~ k ~ N, (3.10)

where
Y(k, z) = col[Y1(k, z), Y2 (k, z)],

Y1 (k, z), Y2 (k, z) are vector functions of the m x 1 order. We add the following
boundary condition

D2Y1 (0, z) + D 1Y2 (0, z) = O. (3.11)

Here D 1 and D 2 in (3.11) are matrices of the m x m order. We shall suppose that

DID~ + D2D~ = 0, DID~ + D2D~ = 1m . (3.12)

We denote by l:r, ("f, N) the space of the vectors

9 = col [g(O), g(I), ... ,g(N - 1)],

where g(k) are vector columns of the order 2m. The norm in l:r, ("f, N) is defined
by the equality

N-l

11911; = L g*(kh(k + l)g(k).
k=O
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We associate with system (3.10) and conditions (3.11) the operator

N-l

VN9 = L [Db D2]W*(k, u)-y(k + 1)g(k),
k=O

that maps vectors from l~ ('Y, N) into vectors f (u) (-00 < u < 00) of the order m.

Definition 3.1. A monotonically increasing matrix function T(u) (-00 < u < 00)
of the m x m order is called a spectral matrix function of system (3.10), (3.11) if
the corresponding operator VN maps l~ ('Y, N) isometrically into l~ (T).

The inner product in l~(T) is defined by formula
00

(ft(u),!2(u)) = Jf;(u)[dT(u)]ft(u).
-00

Without loss of generality (see [3]) we can suppose that

D1 =0,

i.e. the boundary condition has the form

(3.14)

(3.17)

Let us consider the system

Y(k,z)-Y(k-1,z)=izJi(k)Y(k-1,z), 1~k~N (3.15)

and the boundary condition

Y1(0, z) = O. (3.16)

We denote by 7'(u) the spectral matrix function of system (3.15), (3.16). The
following theorem follows directly from results of the book ([3], Ch. 8).

Theorem 3.1. Let operators A and A be defined by formulas (1.17) and (1.20),
respectively, and let the following conditions be fulfilled:

rank Pk = rank qk = m.

Then the following assertions are true.

1. Let v(z) and v(z) admit representations (3.2) and (3.3), respectively. Then
parameters (3 and /3 from (3.8) and (3.9) are equal to zero. The matrix func
tions T(U) and 7'(u) from (3.8) and (3.9) are spectral matrix functions of
systems (2.1) and (2.2), respectively.

2. Let T(U) and 7'(u) be spectral m x m matrix functions of systems (2.1) and
(2.2). Then there exist a and a such that corresponding

00

v(z) = a + J(_1_ --1u 2)dT(U)
u-z +u

-00
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and

ii(z) = a+ /00 (_1 _~)dT(U)
u-z l+u

-00
can be represented in forms (3.2) and (3.3), respectively.

4. Classic systems

In this section we shall show how systems (2.1) and (2.2) can be reduced to the
classic form

bkip(k + 1, z) + akip(k, z) + bk_1 ip(k - 1, z) = zip(k, z), O:S: k :s: N - 1,
(4.1)

ip(-l,z) = 0,

where ak, bk are m x m matrices and ak = ak, det bk =I- O. Let us represent the
solution W(k, z) of system (2.1) in the block form

W(k,z) = {wij(k,z)}~,j=I'

where all the blocks wij(k, z) are of m x m order.
We consider the m x m matrix functions

ipl (k, z) = r~ (k )Wll (k, z) + r; (k )W2I (k, z),

ip2(k, z) = r~(k)wI2(k, z) + r;(k)w22(k, z),

o:s: k :s: N - 1,

o:s: k :s: N - 1,

(4.2)

(4.3)

where
rl(k) = [L(N - 1) - L(k)]Pk, r2(k) = -iPk' (4.4)

It follows from (2.1) that

wI,s(k, z) - wI,s(k - 1, z) = izr2(k - l)ips(k - 1, z), (4.5)

w2,s(k, z) - w2,s(k - 1, z) = izrl(k - l)ips(k - 1, z) (4.6)

(s = 1,2).

From (4.3) we obtain

r;-I(k)ip2(k, z) = r;-I(k)r~(k)wI2(k, z) + W22(k, z),

Using the notation

O:S: k:S: N -1. (4.7)

(4.10)

ip2(0, z) = r;(O) = ip~.

In view of (4.4), (4.5) and (4.8) the following relation

b.[r;-I(k)ip2(k, z)] = (b.[r;-I(k)r~(k)])wI2(k, z)

b.ip(k) = ip(k) - ip(k - 1)
we deduce from (4.7) the relation

b.[r;-I(k)ip2(k,z)] = b.[r;-I(k)r~(k)wI2(k,z)] +b.w22(k,z), 1:S: k:S: N -1,
(4.8)
(4.9)



Dual Discrete Canonical Systems and Dual Orthogonal Polynomials 393

holds. We have taken into account that

r~(k - l)r2(k - 1) + r;(k - l)r1(k - 1) = O.

It follows from (1.16) and (4.4) that

~[r;-l(k)r~(k)]= iq'kqk, 1:::; k :::; N - 1.

According to (4.9), (4.10) and (4.12) we have

_~{qk1q~-1~[p~-l<p(k, z)]} = ZPk-1<P(k - 1, z), 2:::; k :::; N -1,

<p(0, z) = P~, <p(I, z) = p;'(1- Zq;'q1POP~),

where

(4.11)

(4.12)

(4.13)

(4.14)

<p(k, z) = -i<p2(k, z). (4.15)

The equation (4.13) is an analogue of the matrix string equation. The equation
(4.13) can be rewritten in the classic form (4.1), where

-1( -1 *-1 -1 *-1) *-1 1 (416)as = Ps qs+1 qs+1 + qs qs Ps ' s 2: , .

-1 -1 *-1 *-1 (4 )ao = Po q1 q1 Po , .17

b -1 -1 *-1 *-1 0 (4 18)
s = -Ps qs+1 qs+1Ps+1' S 2: . .

We note that the second boundary condition in (4.14) can be omitted, it follows
from formulas (4.1) and (4.17). In terms of equation (4.1) formula (3.13) takes the
form

where

N-1

F(u) = vi= L <p*(k,u)fk'
k=O

(4.19)

fk = r~(k)gl(k) + r;(k)g2(k).

According to Definition 3.1 the spectral matrix function r(u) of system (4.1) can
be characterized by the relation

00 N-1JF*(u)[dr(u)]F(u) = L fith,
-00 k=O

as the following relation

N-1 N-1

L g*(k){(k + l)g(k) = L fith
~o ~o

holds. Now we shall consider the dual system (2.2) and introduce the matrix
function

(4.20)

where
(4.21)
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As in the case of system (2.1) we obtain the relations

-~ {p~=ip;;~l~ [q;;lep(k, z)]} = zq'k_1CP(k -1, z), 2:::; k:::; N -1, (4.22)

ep(O, z) = 0, ep(l, z) = PoPo, (4.23)

where
(4.24)

It follows from ( 4.22) that

z'I/J(k, z) = bk'I/J(k + 1, z) + o'k+l'I/J(k, z) +bk- 1'I/J(k - 1, z),

'I/J(O, z) = PoPo·
Here we use the following notations

0:::; k :::; N - 2, (4.25)

(4.26)

N-2

F(u)=V!= L'I/J*(k,u)fk'
k=O

where

'I/J(k, z) = ep(k - 1, z), 0:::; k :::; N - 2, (4.27)

-b *-1 *-1 -1 -1 k > 0 (428)k = -qk+1 Pk+l Pk+l qk+2' - .
- *-1 ( *-1 -1 *-1 -1) -1 k > 0 (429)ak = qk+1 Pk+l Pk+l + Pk Pk qk+l' -' .

According to Definition 3.1 the spectral matrix f(>') of system (4.25), (4.26) can
be defined by the relation
00 N-2JF*(u)[df(u)]F(u) = L fkfk,

-00 k=O

5. On the connection between T(u) and 7'(u)

Now we shall consider the following interpolation problem.

Problem 5.1. Let the operator identities (1.11), (1.12) be fulfilled. It is necessary
to find monotonically increasing m x m matrix functions T(u) and f(u) such that
representations

00

IH = J(IH - AU)-1q,2 [dT(U)]q,; (E - A*U)-l (5.1)

-00

00

IH = J(IH - Au)-1~2[df(u)1~;(IH - A*U)-l

-00

(5.2)

are true and
u

T(U) = f(u) = 0, u < 0; f(u) = JSdT(S), U > O. (5.3)

o

(Here H = 1;"(N), IH is identity operator in the space H.)

Definition 5.1. We shall say that the pair {P(z),Q(z)} ofm x m matrix functions
are Stieltjes if P(z) and Q(z) are meromorphic in C \ lR.+ and if the following
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three inequalities are fulfilled at every point z E C \ lR+ at which P(z) and Q(z)
are holomorphic:

(5.5)

(5.4)

2.

3.

1. P*(z)P(z) + Q*(z)Q(z) > 0,
P*(z)Q(z) + Q*(z)P(z) > 0

i(z-z) - ,

ZP*(z)Q(z) + Q*(z)zP(z) > O.
i(z-z) -

Let us associate the (2m) x (2m) matrix function

Q(z) = {hm + z [ ~i~* ] (I - B*G*Z)-l [Il2,GIll]} r

with operator identity (1.5). Here

r = [10 IlJ~I].

We represent 8(z) in the block form
2

8(z) = {8ij (z)h,j=1 '
where all the blocks 8 ij (z) are of the m x m order.

From the results of article [4] we directly deduce the following assertions.

Theorem 5.1. Let operators B, G and III, Il2 be defined by formulas (1.1)-(1.3)
and (1.6), the following condition being fulfilled

det Pk =I- 0, det qk =I- 0, k:2 0 (5.6)

The matrix functions r(>.) and i(>.) are solutions of interpolation Problem 5.1 if
and only if the matrix function

00

s(z) = Jdr(>.)
>.-z

o

(5.7)

can be represented in the form

s(z) = [8 n (z)R(z) + 8 12 (Z)Q(z)] [8 21 (Z)R(z) + 8 22 (Z)Q(Z)]-1 (5.8)

where R(z), Q(z) are a Stieltjes pair.

Theorem 5.2. Let the conditions of Theorem 5.1 be fulfilled. Matrix functions r(>.)
and i(>.) satisfying relations (5.3) are spectral matrix functions of corresponding
systems (4.14), (4.15) and (4.25), (4.26) if and only if the matrix function s(z)
defined by formula (5.7) can be represented in form (5.8).

It follows from Theorems 5.1 and 5.2 that the set of the solutions of interpo
lation Problem 5.1 coincides with the set of the solutions of the spectral problem
for the corresponding systems.
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Remark 5.1. Let the conditions of Theorem 5.1 be fulfilled. Then the following
assertions are valid.

1. If r(>..) is a spectral m x m matrix function of system (4.14), (4.15) such that
r(>..) = 0 when>" < 0, then

A

i(>..) = Jsdr(s)
o

(5.9)

is a spectral matrix function of system (4.25), (4.26).

2. If i(>..) is a spectral m x m matrix function of system (4.25), (4.26) such that
i(>..) = 0 when>" < 0, then there exists a spectral matrix function of system
(4.14), (4.15) connected with i(>..) by relation (5.9).

6. On roots of matrix orthogonal polynomials

As it is known [5] the spectral m x m matrix function r(>..) and the sequence of the
matrix polynomials 'Pn(z) (n = 0,1,2, ... ) correspond to difference system (4.1).
The matrix polynomials 'Pn(z) are such that 'Po(z) = 1m and

where ak = a'k, det bk =F O. The polynomials form an orthogonal system, i.e.

(3

J'Pj(>")[dr(>")]'Pk(>") = bjkIm,
a

(6.1)

(6.2)

where -00 ::::: a, j3 ::::: 00, 0 ::::: j, k < 00.

Theorem 6.1. The roots of the polynomials det 'Pn(z) are real and are located in
the interval (a,j3).

Proof. Let Zo be a root of det 'Pn(z). Then for some constant m x 1 vector h
(h =F 0) the equality

is fulfilled.
Let us also note that in view of (6.2) the relation

(3

J'Pn(>")[dr(>..)]W(>..) = 0,

(6.3)

(6.4)
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where 'l/J1(Z) is a m x m matrix of degree land l < n, is valid. It follows from
relations (6.3) and (6.4) that

13

h* J IPn(A)[dT(A)] IP~(A) h = O. (6.5)
A - Zo

We shall write relations (6.5) in the form

13 13

zoh* J IPn(~ [dT(A)] IP~(A) h = h* J A IPn(~) [dT(A)] IP~(A) h = O. (6.6)
A-~ A-~ A-~ A-~

From formula (6.2) we deduce the following representation

n-l

h*IPn(A)/(A - zo) = L CkIPk(A),
k=O

where Ck are m x 1 vectors. Hence the inequality

13 n-l

h* J IPn(~ [dT(A)] IP~(A) h = '" CkCk > 0
A - Zo A - Zo LJ

a k=O

is true. Thus formula (6.6) signifies that Zo is the centre of gravity of the mass
distribution on the segment [a,,B]. Thus the estimation a:::: Zo :::: ,13 holds. Let us
show that Zo i= a. We shall suppose that Zo = a. Then we have

13

h* J(A - a) IPn(A) [dT(A)] IP~(A) h = O. (6.9)
A-a A-a

If ,13 < 00 then the inequality
13 13

J (A - a) ~n~~ [dT(U)] ~~A2 h 2: J IPn(A) [dT(A)] IP~(A) > 0 (6.10)

is valid. As relations (6.9) and (6.10) contradict one another, then Zo i= a. It is
proved in the same way that Zo i= ,B. If ,13 = 00 then for some finite j3 relation
(6.10) is fulfilled, Le. Zo i= a in this case too. The theorem is proved. 0

Further we shall consider the case when the spectrum of system (6.1) is
nonnegative, Le. a 2: O. From Theorem 6.1 we deduce the following assertions.

Corollary 6.1. If the spectrum of system (6.1) is nonnegative then all the roots of
the polynomial det IPn (z) are positive.

Corollary 6.2. If the spectrum of system (6.1) is nonnegative then all the m x m
matrices IPn (0) are invertible.
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7. Recurrent formula
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In the scalar case (m = 1) the recurrent formula for the orthogonal polynomials is
written in the following form (see [6])

q>n+l(Z) = (Anz + Bn)q>n(z) - Cnq>n-l(Z), (7.1)

where
(7.2)

Setting
00

hn = Jlq>n(A)1 2 dT(A),
-00

we shall introduce the normalized polynomials

'Pn(z) = q>n(z)/A.

If follows from formula (7.1) that

z'Pn(z) = bn'Pn+l(z) + an'Pn(z) + bn-1'Pn-l(Z),

where

(7.3)

(7.4)

b = Jhn+l /An h
n

n, (7.5)

Example 7.1. Laguerre polynomials. In the case of Laguerre polynomials Li,(z) we
have ([7], Ch. 10):

a = 0, (3 = 00, T'(A) = e->'xr (A> 0), 'Y> -1, (7.6)

An = -1/(n + 1), Bn = -(2n + 'Y + 1)/(n + 1), Cn = (n + 'Y)/(n + 1), (7.7)

hn = rb + n + 1)/n!, L~(O) = rb + n + 1)/[n! r('Y + 1)]. (7.8)

Using formulas (7.5) and (7.7), (7.8) we obtain

an = 2n + 'Y + 1, bn = -J(n + 1)(n + 'Y + 1). (7.9)

8. Method of calculating parameters Pk and qk of system

In Section 4 we have shown how system (2.1) can be reduced to the classical
system (4.1). Here the coefficients ak and bk are expressed by the parameters Pk

and qk (see (4.17)-(4.19)). In this section we find a simple connection between the
parameters Pk> qk of system (4.1) and the values of the matrix polynomials 'Pn (z)
in the point Z = O. We shall need the following assertion.

Lemma 8.1. If the spectrum of system (4.1) is nonnegative, then

(8.1)
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Proof. It follows from relation (6.1) that

bk<Pk+1 (0) + ak'Pk(O) + bk- I'Pk-I (0) = 0,
i.e. 'Pk(O)ak'Pk(O) = -(Tk + T;_I)'

We shall use the relation
00

ak =J'\'Pk('\) [dT('\)] 'Pk('\)'
o

(8.2)

(8.3)

(8.4)

00

bk =J'\'Pk('\) [dT('\)] 'Pk+1 (,\), (8.5)

o
which follow directly from (6.1) and from the fact that the system of the matrix
polynomials 'Pn(z) is orthogonal and normalized. Similarly to the deduction (6.10)
we deduce

ak > 0, k::::: 0
from formula (8.4). As

To = -'Pk(O) ak 'Pk(O) = To < 0,
it follows from (8.3) that

Tk = T;, k::::: O.
Now we shall consider the auxiliary matrix function

Tv('\) = (1 - V)TO('\) + VT('\), 0 ~ V ~ 1,

where

(8.6)

(8.7)

(8.8)

{
0, ,\ < 0

TO('\) = _e-A1
m
, ,\::::: 0 .

Laguerre polynomials L~('\)lm correspond to the matrix TO('\)' The matrices Tk(V)
correspond to the spectral matrix T v ('\). In view of (7.8) and (7.9) we obtain

Tk(O) < O. (8.9)

It follows from relation (8.8) that
00J¢n('\)[dTv('\)]¢~('\) > 0, 0 ~ v ~ 1, (8.10)

o
where ¢n(z) is an arbitrary matrix polynomial of the degree n (n = 0, 1, ... ) with
the leading coefficient equal to 1m . As it is known (see [5]) this fact implies the
existence of the orthogonal and normalized system of the polynomials 'Pn (A, v)
continuously dependent on the parameter v. It means that the matrices Tk(v) are
also continuous. From Corollary 6.2 and inequality (8.6) we obtain that

det Tk(V) -=J 0, (8.11)

Relations (8.7), (8.9), (8.11) and continuity of Tk(V) imply that Tk(V) < O. The
lemma is proved. 0
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(9.1)

In view of (8.1) and (8.2) the following assertion holds.

Theorem 8.1. If the spectrum of system (4.1) is nonnegative then the coefficients
ak and bk can be represented in form (4.17)-(4.19), where

Pk = tpk(O), qk+l = Uk( -Tk)-1/2 (8.12)

and Uk are arbitrary unitary m x m matrices.

9. Laguerre polynomials

We deduce from formulas (7.8), (7.9) and (8.12) that the following equalities

= L"I(O)/ Ih = !rb + n + 1) 1
Pn n V It

n V n! rb + 1)'

(9.2)

are true for Laguerre polynomials L~(z). Let us consider the dual problem corre
sponding to the case of Laguerre polynomials. In view of (4.28), (4.29) and (9.1),
(9.2) the equalities

an = 2n + l' + 2, bn= - Jb + n + 2) (n + 1) (9.3)

are valid. Comparing formulas (7.9) and (9.3) we deduce the following assertion.

Proposition 9.1. The dual system of Laguerre polynomials L~+l(z) corresponds to
the original system of Laguerre polynomials L~ (z).

10. Jacobi polynomials

In the case of Jacobi polynomials <p~<>,m(z) we have (see [7]' Ch. 10)

a = -1, b= 1, 7'('\) = (1 - ,\)<>(1 + ,\),13, (10.1)

(10.2)

where 0: > -1, (3 > -1. In order to have a system with a nonnegative spectrum
we shall shift z, i.e. we shall consider the polynomial system <p~<>',I3)(z -1). For this
new system formulas (10.1) have the form

a=O, b=2, 7'('\)=(2_'\)<>'\,8.

Similarly to Proposition 9.1 the following assertion can be proved.

Proposition 10.1. The dual system of the polynomials <p~,,8+l(z - 1) corresponds

to the original system of Jacobi polynomials <p~<>,,I3)(z - 1).
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n~Oan = 1,
1

bo = J2'

In conclusion we shall write parameters of some special cases of Jacobi polynomials.

1
I: Let a = (3 = - 2' i.e. we shall consider Chebyshev polynomials. In this case

we shall obtain
1

bn = 2' n ~ 1;

Pn = (_I)n~, n ~ 1; Po = In' qn = y7r(_I)n, n ~ O.
II: Let a = (3 = 0, i.e. we shall consider Legendre polynomials. We shall obtain

bn = n + 1 ,an = 1, n ~ 0;
J(2n + 1)(2n + 3)

Pn=(-I)nvn+~, qn=(-ltVn:l' n~O.
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Non-Selfadjoint Sturm-Liouville Operators
with Multiple Spectra

Vadim Tkachenko

We consider Sturm-Liouville operators

d2

H = - dx2 + q(x), q(x) E £2[0,71"],

with one of the following boundary conditions

D) y(O) = 0, N) y(O) = 0, P) y(O) = Y(7I"), AP) y(O) = -Y(7I"),
Y(7I") = 0; y'(7I") = 0; y'(O) = y'(7I"); y'(O) = -Y'(7I").

Spectrum of each problem is discrete and behaves asymptotically as the spectrum
of the corresponding operator with q(x) == O. Namely,

An(D) = (n + ~ + fn~D)r' Q E C;

An(N) = (n - ~ + ~ + fn~)r' Un(.)}~=l E £2;

\~:(P) = (2n + ~ ± fn~P) + gn~;)) 2 , {gn(.)}~=l E £2 j (2)

A±(AP) = (2n + 1 + _Q_ ± fn(AP) + 9n(AP))2
n 2n + 1 n n 2

Our aim is to find additional conditions, if any, which guarantee that a given
sequence satisfying one of equations (2) is the spectrum of the corresponding
boundary problem. In particular, we would like to know whether some points
of the spectra may be multiple and whether there are some restrictions on their
multiplicities, i.e., on dimensions of corresponding root subspaces.

Given a complex-valued function f(A, x) of A E C and x E [0,71"], we denote
by f'(A,X) its partial derivative with respect to the spacial variable x. Let U(A,X)
be the fundamental matrix of operator H :

(
y(A,X) ) = U(A x) ( Yo ) U(A x) = ( C(A,X) S(A,X) )
y'(A,X) , Yl' , C'(A,X) S'(A,X) ,

where Y(A, x) is the solution of the Cauchy problem

_y"(X) + q(x)y(x) = A2y(X), 0 < X < 71", (3)

Y(A,O) = Yo, y'(A,O) = Yl,
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c(>.,x) and s(>., x) are solutions of (3) satisfying c(>',O) = s'(>.,O) = l,c'(>.,O) =
s(>.,O) = 0, and let U(>.) = U(>.,1r) be the monodromy matrix of H. Using entries
of the monodromy matrix, the above spectra are

>'n(D)
>'n(N)
>'~(P)

>'~(AP)

s(vn(D),1r) = 0,
s'(vn(N),1r) = 0,
u+(v;=(P)) = 1,
u+(v;=(AP)) = -1,

where u+(>.) = (c(>',1r) + s'(>., 1r))/2 is the Hill determinant of H. It is known [1]
that the multiplicity of J-L as a point of some of above spectra coincides with its
multiplicity as a zero of s(.jIi, 1r), S' (.jIi, 1r), u+ (.jIi) or u_ (.jIi), respectively.

In the self-adjoint case, i.e., 'Sq(x) = 0, all above spectra are real and their
complete description is well known (d., [2]-[7]). In particular, for such potentials
q(x) the spectra of problems D and N are simple, Le., all eigenspaces are of
dimension 1, there are not associated root functions, and the interlacing conditions

are satisfied. The spectra of problems P and AP are at most of multiplicity 2, i.e.,
eigenspaces may be of dimensions either 1 or 2, there are no root functions, and
the interlacing conditions

< >';;(P) ::; >'2n(D) ::; >.;t(P) < ...

are fulfilled.
If a spectral gap collapses, then the multiplicity of either >'~(P) or >'~(AP)

is equal to 2.
Representations (2) show that, for large n, the multiplicities of spectral points

of non-selfadjoint operator (1) are just the same as in the self-adjoint case. It is
commonly accepted (d., [3]) that an operator with complex-valued potential may
have a finite number of spectral points of arbitrary multiplicities. Such points
create difficulties in investigating dynamical flows generated by the operator (d.,
[4]), but their possible presence must be taken into account in some important
characterization problems, (d., [5]). In [6], Ch.2, a class of Schrodinger operators
in £2 [0,00) was constructed with continuous spectrum coinciding with [0,00) and
eigenvalue>' = °of arbitrary order n > 0. Nevertheless, to the best of our knowl
edge, there is no single explicit example of operator (1) on a finite interval with
the multiple Dirichlet or Neumann spectra.

The main aim of the present paper is to show that there is no restrictions ei
ther on a (finite) number of multiple points or their multiplicities in non-selfadjoint
case, Le., for potentials q(x) taking on non-real values. Namely, the following state
ments are true:
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Proposition 1. For every finite set V = {AI, ... , An} of pairwise distinct points in
C and every set M (V) = {ml, ... ,m n} of positive integers there exists a Sturm
Liouville operator (1) for which {.Xl, ... ,An} are points of the Dirichlet spectrum
with multiplicities equal to respective numbers from M(V).

Proposition 2. For every finite set P = {At, ... , A;t} of pairwise distinct points in
C and every set M(P) = {mI, ... ,mn} of positive integers there exists a Sturm
Liouville operator (1) for which {At, ... , A;t} are points of the periodic spectrum
with multiplicities equal to respective numbers from M(P).

The similar statement is valid for anti-periodic spectrum.

Before stating the next proposition let us clarify possible relations between
multiplicities of a point in the Dirichlet and periodic spectra of the same Sturm
Liouville operator. Namely, let Ak be a point of the Dirichlet spectra of multiplicity
m> 2 and a point of the periodic spectra of multiplicity p < m. If V±k = ±..JXk,
then U+(A) - 1 = ak(A - vk)P(l + 0(1)), ak =1= O. On the other hand,

U+(A) _ 1 = C(A,7r) + S'(A, 7r) _ 1
2

_~ ((\ ) _1_) _ C'(A, 7r)S(A, 7r)
- 2 c /\,7r + c(>., 7r) 1+ C(A,7r)

= ~ (1 + Cl(A - Vk) + ... + 1 )_1+ _C'-,-(A-,,_7r.:...)S-,-(_A',---7r--,-)
2 l+Cl(A-Vk)··· C(A,7r)

= ~ ((Cl (A - Vk) + ... )2 - (Cl (A - Vk) + ... )3 + ... )
2

+Sm(A - Vk)m(1 + 0(1)).

Hence

ak(A - vk)P(l + 0(1)) = C~(A - Vk)2q (1 + 0(1)) + Sm(A - vk)m(l + 0(1)),

with some cq =1= 0, and we arrive at the necessary condition stating that p is an
even number.

Proposition 3. Let S = {AI, ... , An} be a set of pairwise distinct points in C and let
M(V) = {ml, ... ,mn } and M(P) = {PI, ... ,Pn} be two sets of positive integers
such that either Pk is an even number and Pk < mk for all k = 1, ... ,n, or
Pk > mk for all k = 1, ... ,n. Assume that if Ak = Xj then mk = mj,Pk = mj.
Then there exists a Sturm-Liouville operator (1) such that every number Aj E S
for j = 1, ... ,n is a point of its Dirichlet spectrum of multiplicity mj E M(V) and
a point of its periodic spectrum of multiplicity Pj E M(P).

To construct Sturm-Liouville operators with above properties we will prove
the following statement which solves an inverse problem using Dirichlet and Neu
mann spectra.

Theorem 1. Two sequences {.Xn}~=l and {t'/'n}~=o of complex numbers are the
Dirichlet and Neumann spectra of some operator (1) if and only if the following
conditions are fulfilled:
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i) An i= J.Lk for all nand k, and representations

An=(n+~+;r; J.Ln=(n-~+~+~r;
are valid with Q E C, {fn}~=l E £2, {gn}~=l E £2;

ii) if

n ~ 1, (4)

00 An _ A2

S(A) = 71" II 2'n
n=l

00 J.Ln _ A2

C(A) = 11 (n - 1/2)2' (5)

and

F(x,t) = L {reSS(Vn)=O (:;~;) sin zx sin zt) - ~ sinnx sin nt}
n

with residii over all distinct points l/n, then the homogeneous Gelfand-Levitan
equation

x

h(t) +JF(t, s)h(s)ds = 0, 0:::; t :::; x, (6)

o
has only the trivial solution h(s) E L 2 (0,x) for every x E [0,71"].

For real-valued potential q(x) all numbers An, J.Ln, Q, fn, gn are real, the se
quences {>.n}~=l and {J.Ln}~=o are interlacing, and (6) is reduced to the form

x 2

~ c(J:X,J J . 1\
~ JXk"'(JXk") h(s)smyAksds =0.
k=l AkS Ak 0

Here and in what follows S(A) means the derivative of S(A). Interlacing conditions
imply

Hence

c(JXk") 0
JXk"s( JXk") > , k = 1,2, ....

xJh(s) sin~ sds = 0, k = 1,2, ...
o

and h(s) = O. In other words, in the self-adjoint case, i.e., for real q(x), interlacing
conditions and representations (4) imply ii) and Theorem 1 coincides with classical
results of B. Levitan and V. Marchenko [1960-1964].

Proof of Theorem 1. For complex-valued potentials all above parameters may be
nonreal and properties i) and ii) are independent one from another. The necessity
of condition i) for such potentials is well known [6], and necessity of ii) was proved
in [8].

To prove that conditions i) and ii) are sufficient for the existence of potential
q(x) we will use a parametrization theorem from [8].
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In what follows we denote by PW11" the Paley-Wiener class of all entire func
tions of exponential type 1r which are square integrable on the real line.

Given two sequences {An}~=l and {JLn}~=o satisfying (4) we first conclude,
similar to [9], that the functions SeA) and C(A) defined by (5) may be represented
in the form

(
A) = sin 1rA _ 1rQ cos 1rA h(A)

S A A2 + A2 ' (7)

and

( ') ,1rQ sin 1rA g(A) (8)
C A = COS1rA + A +T'

Here Q is the same constant as in (4) and h(A), g(A) E PW11"' For the sake of
simplicity we assume that An =I 0 for all n and set V±n = ±~, T±n = ±~.
According to i) we have Tn =I Vk for all n, k, and c(vn ) =I 0 for all n.

Suppose that an operator (1) corresponding to S(A) and C(A) does exist and
Vn is a zero of SeA) of multiplicity mn. According to the Liouville identity we have
C(A,1r)S'(A,1r) - C'(A,1r)S(A,1r) == 1 and whence

(') = C(A,1r) +S'(A,1r) = ~ ((' ) _1_) 0((' _ )mn )
U+A 2 2 CA,1r+ C(A,1r) + A Vn .

Having in mind the latter relation we define the even meromorphic function

<p(A) = ~A2 (C(A) + C(~)) - A2cos 1rA- A1rQ sin 1rA+ ~1r2Q2 COS1rA.

Using (7) and (4) we find

n

C(Vn) = COS1r (vn - !{) + (1 - cos 1r
Q

) cos 1rVn - (sin 1rQ _ 1r
Q

) sin 1rVnVn Vn Vn Vn

+ g(vn) = (_l)n + g(vn) + a;
Vn Vn n

for all sufficiently big In\ with some bounded sequence {an}. Hence

(c(vn))-l = (_l)n _ g(vn) _ an + lin, '" II\;n I < 00.
Vn n2 n2 L.J

Similarly

v; cos 1rVn + Vn1rQ sin 1rVn - ~1r2Q2 cos 1rVn = (_l)n + ~; , l:IXn\ < 00,
n

and hence {<p(vn)}~=_oo E £1.
Representation (7) shows that AS(A) is a sine-type entire function [10] and

therefore there exists the unique even entire function f(A) E PW11" satisfying

f(O) = <p(0) = ~1r2Q2; f(k) (vn) = <p(k) (vn), k = 0,1, ... ,mn - 1, n = ±1, ±2, ...

Using the subharmonic properties of If(A)1 we obtain
{f(n)}~=-ooEel.
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7rQ . 7r2Q2 f(>.)
u+(>.) = COS7r>' + T Slll7r>' - 2>.2 COS7r>'+~. (9)

It is evident that u+(>.) is an even entire function of exponential type 7r. Since
f(>.) - '1'(>') = 0((>' - vn)mn ) for every n = ±1, ±2, ... , we have

u+ (>') = ;2 (>.2cos 7r>. + >.7rQ sin 7r>. - ~Q27r2cos 7r>. + f (>') )

= ~ (C(>.) + C(~)) + 0((>' - vn)mn
) (10)

If now

1/;(>') = ~ (c(>.) - c(~)) ,

then (8) implies {1/;(vn)}~=_oo E £2, and there exists the odd entire function
v(>.) E PW11' such that

v(O) = 0; v(k) (vn) = 1/;(k) (vn), k = 0,1, ... ,mn - 1, n = ±1, ±2, ...
The function u_ (>') = >.-1v(>') is an even entire function from PW11' and for every
n = ±1,±2, ... , we have

u_(>.) = ~(1/;(>') + 0((>' - vn)mn
)) = ~ (C(>.) - C(~)) + 0((>' - vn)mn

). (11)

Therefore u~(>.) - 1 - u~ (>') = 0((>' - vn)mn ) which means that (u~(>.) - 1 
u~(>'))S(>.)-1 is an entire function. Representations (10) and (11) show that the
entire function u+ (>') + u_ (>') - c(>') vanishes at every point Vn, n = ± 1, ±2, ... ,
with all its derivatives up to the order mn -1, and hence w(>.) == (u+(>.) +u_(>.)
c(>'))S(>.)-1 is also an entire function. It follows from (7)-(9) and the definition of
u_(>.) that w(>.) vanishes as 1>'1 ----t 00 outside of some strip {>' : 18'>'1 ~ C}, which
implies that c(>') = u+(>.) + u_(>.).

We conclude that the triple {s(>'),u+(>.),u_(>.)} satisfies all conditions of
Theorem 1 from [8] and therefore there exists the unique operator (1) whose
Dirichlet and Neumann spectra are {An}~=1 and {JLn}~=o, respectively.

The following proposition describes some class of sequences which may be
Dirichlet spectra of Sturm-Liouville operators with complex-valued potentials.

Theorem 2. Let {>'n}~=1 be a sequence of complex numbers symmetric with respect
to the real axis 1 and representable in the form

>'n = (n + ~ + ; r; n 2: 1, (12)

with some Q E R and Un}~=1 E £2. Then there exists a Sturm-Liouville operator
H = -d2 jdx2 + q(x) with q(x) E .c2[0,7r] for which {An}~=1 coincides with the
Dirichlet spectrum.

lwhich means, in particular, that nonreal numbers An and ~n have the same multiplicity
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Proof. Given a sequence {An}~l>we again define the function SeA) by (5) and find
that it is real on the real line and representation (7) is valid with f(A) E PW11"'

We will construct a function C(A) which together with SeA) satisfies all conditions
of Theorem 1.

Without loss of generality we assume that An #- °for all n and that all real
numbers from the sequence {An};::'=l are positive and set ZJ±n = ±~. Since the
sequence {An};::'=l is symmetric with respect to the real axis and satisfies (12), we
can fix N sufficiently big such that all ZJn with Inl 2: N are real simple zeros of
SeA). Let us set

Inl2: N, (13)

where all numbers an = a_n are real, positive and such that

L n2a~ < 00.
n?N

For every entire n is such that Inl < N and for the zero ZJn of SeA) of multi
plicity m n ~ 1, we fix real numbers

Cn,o = 1, Cn,l, Cn,2,···, Cn,mn-l, (14)

(15)k = 0,1, .. . ,mn - 1,

the same both for ZJn and Vn if the latter numbers are not real. Using (13) and
(14) we introduce the interpolation data

- k (k)( )gn,k - VnCn,k + Cn,k-l - <p Vn ,

where <peA) = Acos 1TA + 1TQ sin 1T A. From (7) and (13) we obtain, for sufficiently
big Inl,

cn,o = (_1)n + Kn, <p(vn) = (_1)n vn + Xn, L (InKn 1
2 + IXnI 2 ) < 00.

Inl?N

Therefore

L /gn,oI2 < 00.
Jnl?N

Denote by g(A) the entire function from class PW11" interpolating (15), i.e., satis
fying conditions

k =O,I, ... ,mn - 1,

and such that g(O) = 0, and define the function C(A) by (8). It is evident that C(A)
is an entire function of exponential type 1T. According to interpolation conditions
(15) we have

vnc(k) (vn) + kc(k-l) (vn) = VnCn,k + kCn,k-l, k = 0,1, ... ,m n - 1,

and hence c(k) (vn) = Cn,k, k = 0,1, ... ,mn - 1. Since ~c(vn) #- °for all n =
±1, ±2, ... , the zero sets of SeA) and C(A) do not intersect, and since g(A) E PW11",
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it follows from (8) that zeros Tn of c(,x) form a sequence such that

Tn = -T-n = n - ! + Q + gn, {gn}~=1 E £2.
2 n n

Finitely, the sequence J.ln = T;, n = 0, ±1, ±2, ... is of the form (4).
If h(s) E £2 [0, xl is a solution of the homogeneous Gelfand-Levitan equation

(6), then

~ "",(,.)"0 { zC;t;)Ih(s) sin zs <is sin xt } ~ 0, 0 ,; t ,; x,

and

Lress(vn)=o {:;~;) ] h(s) sinzs ds ] h(s) sin zs dS} = O. (16)
n 0 0

According to assumptions of Theorem 2 and relations (14) the partial sum

L ress(vn)=o {:;~;)] h(s) sin zs ds ] h(s)sinzs dS} (17)
Inl<N 0 0

is real. Separating the imaginary parts in equation (16) we obtain
x 2

L (Tn Jh(s)sinl/nsds =0, (18)
Inl~N 0

and since (Tn are positive for all n, Inl :::: N, it follows
x

Jh(s) sin I/nSds = 0, Inl :::: N.
o

Therefore the homogeneous Gelfand-Levitan equation is reduced to the form

L reSs(vn)=o{zc;~;)] h(S)SinZSdssinzt} =0, O::;t::;x,
Inl<N 0

and we obtain
xJskh(s)sinl/nsds=O,
o

The system

k = 0, ... ,m n - 1, Inl <N.

{
. . m -1' }OOsIn I/nS, SsIn I/nS, ... ,S n sIn I/n S n=I

is complete in £2[0, x] for every x E [0,7f] and therefore h(s) = 0 for S E [0, xl. As
a result the sequences {An};:"=1 and {J.ln}~=o with J.ln = T; satisfy all conditions
of Theorem 2 and according to its statement they are the Dirichlet and Neumann
spectra, respectively, of some Sturm-Liouville operator.
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Proof of Proposition 1. Let a finite set V = {A1' ... , An} of pairwise distinct points
in C and a set M(V) = {m1"" ,mn } of positive integers be given. If for Aj E V
there exists no Ak E V such that Xk = Aj, then we join Xj to the set V with
multiplicity mj; otherwise instead of mj and mk we include in M(V) the number
M = max{mj,mk}' The resulting set V* is symmetric with respect to the real
axis and we extend it to a sequence {An }:::"=l satisfying the conditions of Theorem
2. According to this theorem there exists an operator (1) with Dirichlet spectrum
{An} :::"=1' Some points Aj E V* may have an excessive multiplicity M > mj' If it
occurs, we replace SeA) by a function S*(A) for which every such Aj is a zero of
multiplicity mj and another number Aj is an additional zero of multiplicity M -mj'
If all such Ai'S are sufficiently close to Aj, then the norm Ils(A) - s*(A)llpw" is
sufficiently small, and by Theorem 2 from [8] the functions s*(>.) and C(A) generate
operator (1) with the required properties.

Proof of Proposition 2. is based on the following description [11] of Hill determi
nants of operators (1).

Theorem 3. For a function U+(A) to be Hill's determinant of some Sturm-Liouville
operator (1) it is necessary and sufficient that it be an even entire function of
exponential type 7f which may be represented in the form (9) where Q is a complex
number, and f E PW1r is an entire function of exponential type not exceeding 7f
and satisfying condition

+00

L If(n)1 < 00.
n=-oo

Given a set P = {At, ... ,A;t} of pairwise distinct points in C and a set
M(P) = {ml, ... ,mn } of positive integers, we define polynomials

n

Q(A) = (A2
- a2

) II (A2
- >.;)mk

,

k=l

N+l

R(>') = II (A2
- 4k2

),

k=l

and the function
Q(A)

u+(>') = R(>') (cos An -1) + 1.
With a proper choice of a complex number a E C, u+(>') is an entire function of
the form U+(A) = COSA7f+ f(>.)/>.4 where f(A) is bounded on the real line. The set
of points where u+(>') = 1 contains P with multiplicities from M(P). According
to [11] there exists some Sturm-Liouville operator for which U+(A) is the Hill
determinant and hence P is a part of the periodic spectrum with multiplicities
from M(P).

Proof of Proposition 3. For the sake of simplicity we assume that n = 1, S = {A1},
M(V) = {m} and M(P) = {pl. Suppose first that m > 2 andp = 2q < m. Denote
by {An}~l an arbitrary sequence of complex numbers symmetric with respect to
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the real axis, satisfying (12) and containing the point Al of multiplicity m. As
before we set lI±n = ±~, define a function S(A) by (5) and construct C(A) using
interpolation data (13)-(14) with

{

I j=O
C-l,j = Cl,j = C-l,j = Cl,j = q!cq =I- 0 ~:: q _ .'

o J - 0, ... ,m 1, J =I- 0, q.

As shown above in the proof of Theorem 2, there exists operator (1) for which

C(A,1r) = C(A) = 1 + Cq(A - IIl)q + O((A - III)m).

If we substitute the expansion S'(A, 1r) = 1 + Sl(A -III) + ... + Sm-l(A -lIl)m-l +
O((A - IIl)m) into identity C(A, 1r)S'(A, 1r) = 1 + O((A - III)m), we obtain

S'(A,1r) = 1 - Cq(A - III)q + C~(A - IIl)2q+ O((A - IIl)2q+l).

Finally,

U+(A) -1 = C(A,1r) ~ S'(A,1r) -1 = ~ C~(A -1II)2q(1 + 0(1)),

which shows that Al = IIf is a point of the periodic spectrum of multiplicity 2q.
Let now p and m be two integers, p ~ m ~ 1, and let a complex number

Al =I- "Xl be given. Following the proof of Proposition 2 we find

( \) _ \ ( \ _ 1) (A2 - Al)P(A2 - X1 )P(A2 - a) - R(A)
u+ /\ -cos/\1r+ cOS/\1r R(A)

with
2p+l

R(A) = II (A2 - 4k2)
k=l

is an even entire function of exponential type 1r, taking on real values on the real
line. It is evident that U+(A) = 1 + Cp(A - ~)P + O((A - ~)P) with cp =I- O. If

2p+l

a = 4 L k2
- 2P~Al,

k=l

then U+(A) may be represented in the form

W(A)
U+(A) = COSA7f + 7 (19)

where W(A) is an entire function bounded on the real line. In particular it means
that (9) is valid with Q = O.

We set 110 = 0, Ilk = -II-k = ~, IIk+m = -lI-k-m = ~, k = 1, ... ,m.
It follows from the definition of the function U+(A) that there exists an integer N >
I~I such that all its critical points {J.ln} outside of the disk {A: IAI s:; N +1/2} are
real and simple and are located in a small neighborhood of integers. If a critical
point J.ln, lJ.lnl > N + 1/2 is such that u~(J.ln) < 1, we set lin = J.ln; otherwise
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U~ (/-In) ~ 1 and we choose Vn to be the solution to the equation u~ (A) -1 = -n-4,
the most close to /-In' It follows from (19) that

Vn = n + 0 (~2 ), ut(vn ) - 1 = 0 (~4) .
If necessary, we define pairwise distinct real numbers Vn = -V-n for 2m < n <
N +1/2 in such a way that the inequality u~ (vn ) -1 < 0 is valid for all n, Inl > 2m.

With the sequence {vn};:"=_oo being fixed we set

00 A _ A2

So (A) = 71'A IT n 2 .
n

n=l

The function So (A) is an odd entire function of exponential type 71', bounded on
the real line. The S. Bernstein theorem on the derivatives of such functions [10]
shows that so(n) = so(n) - so(vn) = O(vn - n) = O(n-2 ) and hence

( \) _ . \ 1 L( )nnso(n) sin A71'
So /\ - sm/\7I' + \ -1 A .

71'/\ - nn#O

We conclude that SO(A) = sinA7I' + A-1g(A), g(O) = 0, g(A) E PW" and the
function SeA) = A-1So(A) has the form (8) with Q = O.

The function SO(A) is a sine-type function and we can define the function
V(A) E PW" by the interpolation data

v(O) = 0, v(±vd = V(±Vl) = ... = v(m-l)(±Vl) = v(m-l)(±vr) = 0,

v(Vn) = i . sign {S(vn)}vn\/1 - u~ (vn), Inl > 2m,

and set U_(A) = A-1V(A). According to such definition we have

{

O((A - (±Vl)m) A --? ±Vl
Ut(A) - 1 - U:"(A) = O((A - (±Vlr) A --? ±Vl

O(A - vn ) A --? Vn , Inl > 2m,

which means that (U~(A) - 1 - U:"(A))S-l(A) is an entire function.
Let us consider the Gelfand-Levitan equation (6) with c(A) = U+ (A) +u_ (A).

Since U+(A) = 1 + O((A - (±vd)P), U_(A) = O((A - (±vd)m), and U+(A) =
1 + O((A - (±vd)P), U_(A) = O((A - (±vd)m) as A --? ±Vl and A --? ±Vl,
respectively, we have C(A) = 1+O((A - (±Vl)r) and C(A) = 1+O((A - (±Vl))m).
It implies that the sum

L ress(vn)=o{:;~;)] h(S)SinzSdS] h(S)SinzSdS}
Inl::;m 0 0



414 Vadim Tkachenko

is real. On the other hand, <Sc(vn )

Inl > m. Similar to (18) we obtain
2x

~ sign{s(vn )}.jl_ 2 ( ) J ()LJ .() u+ Vn h s sinvnsds = 0,
s VnInl>m, 0

which yields h(s) = 0, °::; s ::; x ::; 7r. Therefore the triple {seA), u+(A), u_(A)}
satisfies all conditions of Theorem 1 from [8] and there exists an operator (1) for
which Al is a point of the Dirichlet and periodic spectra of prescribed multiplicities
which completes the proof.

In particular, we proved that a complex number may be simultaneously a point
of the Dirichlet spectrum of multiplicity m and a point of the periodic spectrum
of multiplicity p of some Sturm-Liouville operator if and only if either m ::; p or
m > p and p is an even number.
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