k

Wor

S

>

ujan

. =
s
. m ,
o
&




o~

Lectures
by
GODFREY H. HARDY

on

THE MATHEMAT ICAL WORK OF RAMANUJAN

Fall Term 1936

Notes by Marshall Hall

The Instituts for Advenced Study

BATHEMATICAL
. SBCIENCES
LIBRARY



1.
2,

Se

4.
5.
6o
Te
8.
O
10.
1l.
12,
13.

14.

CONTENTS

Page
The Hardy-Remenujan theorem ittt ittt et 1
Analytic theory of NUMDErS =====———mm=m e e 5

The development and present state of kmowledge of the theory
of the distribution of primes - ——-= - 7
A second approximation to the proof of the prime number theorem —--=--=--=- 10
Remanujan's argument for thé truth of the prime number theorem --=---=----- 12
The Wiener-lkehara proof of the prime number theorem ~-~====-===m-cmecoa-a 17
The right-angled triangle problem end allied problems =-==--~w---mececaaoca 20
The theory of partitions ===-===-mmcmo— s o e 24
The Rogers-Remanujan identities «=--=-=----- S — 28
Asymptotic properties of p(n) ~m=we===~eesa- et D 32
The funetion cq(n) -------------------------- 38
The singular series and representation by squares -—-=—==-c=-ccccmmcaanaa. 41
The elliptic modular functions --= 47

The funetion T(n) e dam e cmmccm e ———————— 53




MATHEWATICAL WORK CF RAMANUJAN

by
Godfrey H. Hardy

The following topies will be considered in Professor Hardy's lectures, in whatever order is found
m3t conveniant:
Analytic Theory of Numbers
The Hardy-Remenujan Theorem
Congruence properties of the partition function p(m)
T (n)
The Rogers-Ramanujen Theorem and Continued Fractions
The Dougall-Remamujan Theorem

Asymptotic properties of p(n)
joox"'{ $O - x D XD T fy - P(-3)
Q

Reciprocal functions Asw ST

The second topic will be given first, as it presupposes the least fa.mi{,i‘i‘.a.rity with the subjects
involved.

1, The Hardy-Ramanujan Theorem

The nmumber 1200 = 24-5~52 is a "round number" in the decimal scale. Renouncing any especial
allegiance to the decimal scale, we may characterize a round number &s one which has a large number of
prime factors in comparison with its size, Thus 2187 = 57 is as "round" as 1200. It is a matter of
common observation that most numbers are not round. It is a matter of interest to decide in what sense

round numbers are rare, We may count the number of prime factors of any number in two ways. Let
e g &

n= Pl P2 cos PV
be the decomposition of any number inmbto prime factors. If we write

{1.1) f(n) = v, F(n) = 8 + 8y * e + A

then f(n) is the number of distinct pfimes dividing n, and F(n) is the number of prime factors of n,

counting multiple factors multiply. It is obvious thet f(n) is largest in comparison with n when

(1.2) n = 2e345ca.0ep
and F(n) is largest when
(1.3) n = 2%,
For (1l.2) £(n) = r., In this cese i
(1.4) logn = Z log p
550,

But in the classical theory of the distribution of primes [see "The Distribution of Prime Numbers" by

A. E. Ingham, No. 30 in the Cembridge Trscts in Mathematies, pages 12-13] 8(x) = z log p and a result

equivalent to the priine number theorem pEx

(1.5) , TIX) ~ X

is 'l"a'x

(1.6) 7 () ~ x -

Hence log m -~ p . Another equivelent form of (1.5) is
(1.7) p,~ rlogr
Hence we have

logn ~r loer



log log o ~ log r + log logr ~ logr
whence, dividing

(1.8) T eas ~ = 2a).

Thus es a universal theorem f£(n) = O('l?é'%)' Similarly from (1.3)

(1.9) F(n) = r = 2063

log 2
. < logn
and universelly F(n) S TE;LE .

But in some sense, f(n) and F(n) are usually much smeller then these values.
£(n) is an erithmetical function, which may be very irregular, ang if

é;'f(n)'v an ¢ (n)

where 50(n) is some simple and regular function, it is natural to say that the

50 (m)e In this sense the average order of our f(n) = v is easily shown to b

e =31

In general if

everage order of £(n) is
e log log n. For

nex pmsx
and sﬁ?xming first for p fixed we obtain !
1
(1.10) > ) =3 [E=x5"Liol7r ().
nex pex P p=x

Here there is an error of at most one in dropping eech bracket and the number of brackets dropped is
T (x). But from Inghem, page 22 :

~1. 1
(1.11) zsx 5 log log x + B + O(m)
Hence P
‘ x
(1.12) nz‘x £{n) = x log log x + Bx + 0(log I)N x log }og x

But we have also

2 log log n ~ x log log x
neXx

The Hardy-Rememmjen Theorem, however, investigates a more sophisticated question. What is the
normel number of prime factors of & number, that is the number for "most" integers?

To give a precise
meaning to "most" we define the concept of "almost ell™ mumbers,

We say that almost sll numbers have a

property P if P(x), the number of numbers less than = which do not have property P, is such that
:‘;‘m’ Fix) = 0. Thus for example we may say that almost all numbers are composite, for the number of
. lim 1, =x _ X .

primes less than x ~ Tos X and ., T Tor = 0. In these terms we mey state:

THE HARDY-RANANUJAN THEOREM: The normel number of prime fectors of an integer n is log log n,

that is for each —f > 0, almost all numbers satisfy the relations
(1-€) log log n< £(n) < (1+¢€) log log n
end (1-€) log log n < F(n) < (1+£) log log n.
There are two proofs of this theorem: we give a sketch of the original Bardy-Remamjan proof
and a more detailed mccount of the elegant but less revealing proof due to Turan,

We-observe first that the order of magnitude of £(n) end F(n) must be the sams,

For
(1.13) Fn) =31
-
Eence Pl

(1.14) T F@ =3 [F’}]

nex Do
From (1.10) and (1,14) we obtain
(1.15) 2_[F@) - @)1 =3" [5"?] +[F] + een
nex P P
Hence
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1 proof

/
g-gw] =S meke ] = x I
= LFe - o] Pl e
mEiX
Hence the everage velue of F(a) - £(n) is % P(r- »)< 1, and as P(n) - £(n) is slways positive or zero,

its normal value mist be even less, More precisely, if X(n) is sny funotion which tends to infinity
with n, for almost all numbers F(n) = £(n) < X(n). Roughly we may say that F(a) - £(n) is almost always
pounded.

THE HARDY-RAMANUJAN PROOF. ir a' {x) is the number of numbers S x which have exactly r dis-~
tinet prime factors

(1.15) . a;(") ~ X M‘

&a' X (~-1) !
[Ssee Lendau "Primzahlen", vol., 1, ppe 208. 211, Landau does not consider Q-r(x) but the number of
pumbers S x for which F(n) = r,)

The derivetion of

, . 2ol
2 (x) ~ xﬁ(f;‘? ﬁ”%‘

from the prime number theorem is quite slementary. For example, consider & (x)

= X %
e = Bl TE T =T

since 71’(—,:) = 0 for | r > I Hemce v 2

®, (x) ~ X = :’{— Y o(/ET(f)J

+ £ X X

Integrating by parts 7 -—} ?&3 ¥ 2 fla& x

Z - = X X) - j{' 1)
where fﬁﬁi y . 57;_ W(R-)P(J.) A f&) T )#

pd) = pix £y = 3

Hence ('!')
z w0 .

— X + [ [_x - X
re% by f m(Z) \/{,z X 2 ax)
Here we need congider only the term of highest order 2 4?1’ x
T (f),u e
X1 X
fl ¢ ~ X f A x (7

and so
B, 00~ x Loy Loy
We have also é«g,x

(1e17) [x] = B6) + B+ - -

since on the right we have counted each 1n‘beger less than x exdctly once., lMoreover we have the identity

(1418) Far o LI E;(:+§+§ p—

where [ = log log x. Observing that (1 16) gives e correspondence between terms of (1.17) and (1.18),
we may reasonably expect that corresponding terms will to & certain extent be of the same order of magni-
tude. This similarity cemnot, of course, be too c¢lose, since the first series terminetes.

The lergest term in (1.18) is that for which r = [ § 1 + 1, Weo write

X = _);45:‘__{1 - x5 {g] +p—1
Loy T TGl Mopx (L5 +p-D!

where S~ Tuns from “s[E]+1t0+ oo By Sterling's formula




[E]+p- 2
I S
([5]+p-0)! JZTE

if/w is sufficiently small in comparison with §  Hence (1,18) mey be compared with

_—_At_l reo =X
_ﬁ_,j?x. L > 2ZF o witn X f e €[ = x
Loy x YarE ‘ YarE

(1.23)

Hence
(1.24)

end-the part of this inbegral for which t is of higher order than JE is negligible. Hence it is matus put th

ral to suppose that practically all of the sum of the @ series comes from the terms in which

H
Ne

/r -£ l lr = log log xf O( 7’? )= O(#log log x). This argument can in fact be made rigorous by

using inequalities for the x) instead of the asymptotic equalities, Actually the 1nequa11tles are | x are

less deep than the asymptotic equall’cles as they do not require the theory of complex variables, and in

this sense the Ferdy-Remarujen proof is strictly elementary. The comolusion is that ir %(x) is any of 5%

X
funetion of x such that —L)-— —% @2 then almost all numbers not exceeding x have between
log log x ‘
1o:r logAx i ) factors. Noreover almost all’ numbers n not exceeding x are in the intervel

X% < n < x and for this renge log log x = log log n + 0(1). Hence formelly:

of %

If (n) is any funetion such thet 1m (n) log log n * ©© then almost all numbers Hardy
Y g

have between log log n * X (n) prime factors, whether miltiple factors are counted multiply or not,.

"
There is an interesting corollary about d(n), the number of divisors of n. It is known that BECe

(1) + d(2) + vee + d{n) Ao n log n, whence the average order of d(n) is log n.  But the Hardy-Remenujen 1)

Theorem may be used to show that this is not the normel order of d(n).

-
If, es before n = Py 8 ... P av. d(n) = 7T (1+a;). Now as a; is a positive integer:
a1+ a, < 2%, Ialtiplying these inequalities for T T
Za Fin)
Y= Tlita) = 2 or 2P Al = 2

But by the Herdy~Remanujen Theorem, both f(n) and F(r) are normelly log log n. Hence d(n) is norme

about 21(jg logn (log n)log 2. log n'69515 which is of a considerably lower order than log n, the

average velue of d(n)., This mesns that the mumbers with en ebnormally laerge number of divisors have

such an exceedingly large mumber of divisors that they dominate the average of d(n)., The irregular
of £(n) end F(n) are not great enough to produce & similar effect,
TURAN'S PROOF OF THE HARDY-RAMANUJAN THEOREM. We use not only

(1.19) M;Ekﬂﬂg ‘Dﬂ/va: ==x%%x+om

previously mentioned, but also

(1.20) ey - el + = 5]

mEX }l"" p=x
For ?*?’
‘ (n = = Z |}

Ll -z, A %-1»’ xR l‘ii ) [”‘}
by swmring first with respect to /" end m. From \1'20) *EA .‘:Ax o Prix
(1.21) 1)

mix {f(«)} » 'r-r—/ * 0[,)
Also % x
(1422)

2 [}
= =) e = L o2 (FZ L
Pex f') Ppex ¥ pex 1‘)

so that

11y (3) st
(4) Th

ities (8) Th

+}_‘ [1(10) a(
(11) Th

(2.1)
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- {og g+ 00 = (L3t )™+ 0025 45) 5

Hence if We write E agein for log log x, we heve, using (1.15), (1,21) and (1.23)

(1'23) %{'ﬁxﬁ

(1.24) {'{(k) 5}

(WY — »
ix Z {f F 252 foo + 513
- xf§+cﬂ9}-qu{§+oag ¥ Efx+ 00}

= 0 (¥x)
put this would be impossible if f£(n) = g woere of order higher then Jg_' for a finite proportion of the
n, Hence (after what was said before) we have the seme result for F(n).

A natural question supplementary to the Herdy-Remenujen theorem is: How meny mmbers less than

v -
_ x are there with exsetly § = [log log x] prime factors? From 2 (x) A X & we may, by use
““‘“ &,
of Stirling's theorem obtain ﬁg(x) < éf—)i—- It seems highly plausible that this is the exsmot order
E
of ﬁ'g (x), but the best that has been proved is _/_‘__Xf < %;_(x)
o~

2, Analytic Theory of Numbers ‘

The follcwing theorems on the anelytic theory of numbers were conteined in letters to Professor

Hardy written by Remamijan early in 1913 while he wes in his own words "e clerk in the Accounts Depart-

ment of the Port Trust Office at Madras on a salery of only £20 per anmm, I am now about 23 years of

agee”
WV o= (% g
S
2 di- gt T f )
(e -"-x) is very small when x lies between O and 3 (its velue is less than & few hundreds when x = 3

and repidly increases when x > 3,)

(2) ) - J/‘x =7 _J_J/”¢}:;425; _.,Li}/nﬂ?iféi. ......
o g X2, ot 3, T

(3) statements about the best way to calculate faa;_ and 77"(x) from (2).

have
1larities

)2

3(2.1)

[} oo
(4) The number of prime rumbers less than e® is a X
} X;(x+()f(x+/) e
 (5) The number of prime mumbers less then n is [5 - {@;_ +’_g__ ﬁﬂ« RN
: 2T " 38, TE (727

. (6) The difference between the number of prime numbers 4n~1 less than x and those 4n+l tends to infinity.

¢)) Corresponding stetements about other arithmetie progression,

(8) The number of numbers 2F33 < n is + log 2n log &n

log 2 log 3

(9) v e number /,«(V) = =1 (odd number of different prire factors)

(2) The number of v S n is I
i

®) = 4 =g

4..2: 1(10) d(1) + eeu + d(m) =n log n + (2y =1)n + £d(n) + eue

(11) The number of numbers between A and x which are either squares or sums of two squares is

X
K| 4t ~ OK) where K = 0,764... and (x) is very small compared with the previous
A Vﬁgl"
integral.,

In Remanmujan's first formule

T(x) ;[K'/—’J— r/o(x)

27,/1"




[
he must have meant to write = [,y(x) since his second formula
I
(242) Moo = [T g (A [T
Tyt TR Zaly 4
certainly implies thet 77 (x) is less than .

. Xt
(2.3) £ x "j:'—";;

This second formmla has, in caleculation, shown a remarkable egreement with tabulations of 7 (x); in fag
the agreement is ‘much too good to be justified theoretieally.,

In the following teble x and 77(x) are given in the first two colums (the number one is not
counted ag a prime). The last three columns give the errors (differences from 77 (x)) for the formulae
(242) of Riemann-Ramamujan, (2,3) of Chebyshev, and that of Legendre

(244) TUX) = X
’Z?x- /.08 Errors
Riemann
X T (X) Remanujan Chebyshev Legendre
100,000 9,692 -5 ‘ } +38 -4
1,000,000 78,498 +30 ¢ +130 +45
2,000,000 148,933 -9 ) 122 +43
3,000,000 216,616 0 155 97
4,000,000 283,146 +33 ’ ’ 206 177
5,000,000 348,513 -64 125 131
6,000,000 412,849 +24 228 272
7,000,000 476,648 -38 ‘ 179 264
8,000,000 539,777 -5 223 351
9,000,000 602,489 -53 187 361
10,000,000 664,579 +88 339 561
100,000,000 5,761,455 754
1,000,000,000 650,847,478 1757
Qszzﬁngﬁ:xi; : Jlefjﬁ{g?E_ x
P 4 i
Formulae /?JX e
Littlewood in 1914 showed thet ‘a (x) agsumes, for large x, wvelues v of order at least
(2.5) . loﬁng log log log x

end of either sigﬁ; Hence '
(248) T(x) — 4 x ,
chenges sign for x beyong all limit, and assumes weluss, of either sign, of an order higher than all the

terms of the series after ths first,
Thess values of x, howsver, seem to be enormous, the most known being that
(247) ‘ TT(X} >aéc',{
for some
34
40

{O

(2.8) : x < /O

It is not surprising that no computations indicate the changes of sign,
The inequality

(2.9) 7o) < 4 x
can be reestablished if we interpret it inm an AVEerage Sense, If the Riemann Hypothesis is true, then

. (2.10)

(and i

(2421)
{the i

(2.12)
Hence
(2.13)

for la
(2.14)
it is :
(2.15)

The ca
plausi’

(2.16)

when

(2.17)

say.,

(2,18)

is twic
(2.19)

- It can

- (2420)

so thei

3+ The

(3.1)

appear:
the ste
better

(3.2)
The ide

. dlverge

expect




t); in faq

18 is not

3 formulae

ay

3, The Development and Present State of Knowledge of the Theory of the Distribution of Primes

an all the |

© better approximetion than ———

20, then

__.[X (7 ~& &) L —> —oe

(2410) X Ay

{and indeed the truth of the Riemamn Hypothesis is necessary and sufficient for this),
It is known that, if we define 1li x by

(2.11) Lox = L 2 £

(the integral being a Cauchy prineipal value when x> 1) then

Hence
(2.13) Lo x™ =y + X — o E (L) g+ O (&
ey 4?7”? G G Ly gl O

for large n. For the convergence of

(2.14) R(x) = /‘(”‘) Zx=
it is necessary and sufficient that Z/"‘("‘) log n be convergent. In fact it is kmown that
»w o
> (n) (’“) = -
(2.15) ba Pl R Z Al g

The convergence even of the first series is as deep as the pi-ixne number theorem; but the results are

Z‘/u__(ﬂ)ﬁxz:m__ Sj(/f- ) -~

(=) = ‘I‘—" —> e =
Z/“-—m T (1+5) , T~ TCres)

‘plausible because

(2.16)

when § — 0,
If we substitute from (2.11) into (2,14) and invert the order of summetion, we obtain

- ) ~ (L)
(2.17) RX) = 1+ ZZ f?t”\x_&_(__ = I+ Z :j%‘,’f(m*w F X

A / P2y
sey. This trensformation is due to Gram.
Remamujan's series (5) : -~
3
S 2 f2 X g ég,x r b [lmx ool
(2,18) G = = Z(Bz e +aB,< ( 7,) 5B, / 2r
is twice the cdd terms in g(x): i.e. (, )
(2.19) G(x) = Fx) = (X
It can be shown that g(-j'?) —> 0 so that g(x), G(x), and R(x) agree with error o(l).

It can also be proved that

= - R&x) + o)
(2.20) s

so that RBmB.nllJ&ﬂ'S integral (whioch was new) agrees to the same extent.

The "prime number theorem"

(3 o)~ g

appears as & conjecture in legendre and Geuss, but neither was explicit as to the exactitude implied by

the statement. Gauss even mentibned 1i x, tut without indiceting whether or not he considered this a

1og x °
Equivalent to the prime number theorem is

(3.2) p,~ nlogn

3

1 The identity 77 {/\;—_—%) = 2 - s >( mekes it naetural to suppose that Tr(, _,_Bandz_
3

© and = -~ is & convergent series, we may

diverge similarly. As the difference between > _ log ,-._, 7

expect that = - ~ log (> -—’/:_) ~ log log x, and this suggests P, ~ 1 log n since

r=X ?4’ mEX



o

Agein the identity

(343) x !

PTG

gives log xb = = log p {[—;—] + [—’—i— + } end using Stirling's Theorem
X : 2 ‘

xlogx=x LC%P. +0( 2Z_ log p). If weo assume the weak statement T (x) = o(x), then
Fex zSX

X bk~ x 2 Loy X~ =
Fax ==
and here again we are led to expect Py~ 1 log n.

The first definite progress was made when Chebyshev proved in 1848 that

(3.4) Ax. < T < r‘]f(_,

%JX
It is more convenient to consider, instead of TT (x)

(345) 66y = > Loy 4 : Y = f.-fﬁx&?]&

and An 1ogn<pn<£m10g n.

?5)(
These forms are really more natural arithmetically since they are concerned with the multiplication of
primes rather than their enumeratiom, and l//(x) presents itself naturally snalyticelly. These two func
tions are comnected by the relation

) ' 1 e ’
(3.6) Px) = G+ &R+ F(=7) + ..
In terms of the § fumetion '
L
(37) ‘ T() = T:"g;:?,
: v ' ]
(3.8) log § (8) = = 1log 1—‘ -y = ms
M
¥ 7 m (i
(349) -5y - > = A ()
6_ (5> ‘4_._ %‘ Z_ ——————ms
where N (n) = logp forn=p™
=0 otherwise,
6
Hence ‘P (x) = ZMC logp= 2. A(n). Chebyshev proved that Ax < @ < Aix, and showed that the
<X MELX
prime mumber theorem is equivalent to OB ~x or ‘Umx". Even more, he showed that, considering the
three ratios _.lf_,([.’i)_, -—eé—x) —é—(x—)- » if any one tends to a limit, then all do and the limit must be unity

logix
[See the first chapter of Ingham for proofs.]
The function esymptotic +o 1# x which arises most neturally in the theory is not W (x), but a
function which Inghem denotes by [] (x).

(8:10) | Moy = 2 -
’ 2&_"“_4_)‘ o
This arises from the identity
{
3.11) — _— —_ P ”
( / 1 n zej/ §(5> Z o 7&4145
where a = forn =p
n m
= 0 otherwise
and hence TT{x) = Do

MHEX
We do have however

(3.12) M) = 7ix) + 3 T « L(d) ..

The netural associations in the snalytic theory are
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2 two func-
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x), but a

(,D (x) with x
T (x) with 11 x = flx #'(’—%,

47 (x) with the Riemsnn=-Ramanujan series Z/“__)’f:‘ L X
The modern methods that have been epplied to the theory of distribution of primes are "transcend=

L
an

ental® in that they involve the representation of (/ (x) by Cauchy's theorem, end estimations are made by

g~ 81 oropriate change of the contour of integration.

/ .
As in (3.9) %% = 5 AY."S Let s = o+ 1t and let £(s) be e function repre-
S
sented by & Dirichlet series
_ -5
(3413) £() = Z .~
absolutely convergent for U > 1; and let s
* L s X
(3.14) A*(xy = 5= f%( > X ds
Then '
‘ L
(3.15) AY(xy = Z =
MEX

where the * means that if x is integral a_ is to be taken with the coefficient %. This yields the normal
value at a discontimuity £(x) = FH{£(x+0) + £(x=0)]. Now ‘ O
, s
(316) ‘/I/(X) = 5 Ay = [0 X7 45
mEX LT C(s) s

where the contour of integration is talken upwards slong & straight line parallel to the imaginary axis to

the right of 0 = 1. The funotion g(s) has a simple pole ;E—l- at 8 = 1 end no other/singularity in the
finite part of the plane. T (s) bas "trivial zeros" for s = -2, ~4, ... o+ [Hence %—:—;— has poles

1 1.1 | S . . ) <
=T "5 s_Pwhere the p gre the "pon-trivial zeros" end are all located in the strip 0 R ((o) S |

end are symetric about the line ¢ = 3. The "Riemann Hypothesis" (still unproved or disproved) is that
211 have W (p) = %

To get a first epproximation to the proof of the prime number theorem let us assume that the
Riemsnn Hypothesis is true. It is natursl to suppose that we may move the contour of integretion across
0~ = 1, and allowing for the pole at s = 1, (3.16) becomes

(3.17) Y = x+ 557 g,’(’g)._;jls

where the contour is now a line parasllel to the imeginary axis passing between ¢ = Land =1, Ve
move the contour as far to the left as possible withoﬁt orossing any singularities of the integrand, on
the Riemann Hypothesis to ¢ = ﬁ where f is any real nmumber greater than 1, end it may be expected
that the integral is O(x#). If this is so ‘ ,
(3.18) Y@ < x+o(xf) any 6 > %
This argument is not velid as it stands since the integral is not absolutelyéconvergent.' We shall see
later how this difficulty may be avoided by the use of "Tauberian Theorens”. '

If we have proved {3,18), then it is easy to obtain the corresponding estimates of T (x) and

T (x). In fact
(3.19) T = > 4 = A (»
Hence : Fﬂﬁ”‘ lt?,&

» [V

(3420) (X = fx d g _ @) - iM. At
Agein o 2 j?f ,é}x 2 &£ 'l?f)z

. AT
(3.21) e x =v£x apt T 2 4—fx___€__ .
and subtracting (3.21) from (3,20), jd? X > M?’t)
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(3.22) T —Lex = i) - x 4[ Y~ g - Ox”)

and
(407)

(g X
The MBbius inversion formula states that if £(y) and F(y) are two functions such that
(3.23) Fly) = £(y).+ £(2y) + £(3y) + ...
then
(3.24) £(y) = F(y) - F(2y) = F(3y) - oe.

_ = Z/(n)F(ny).
Lpplying this to (3,12) we obtain

(3.25) T T@-376 - 2% - ..
A )

whence, from (3.22),

(3.26) M) = 14 x + o(z”).

It is in fact knmown that Su(x) - x cannot be of smaller order them +/x. The difference be-
twoen ]T(x) end T (x) is not of higher order tha.n 7T(x2), or than T ngx' Hence, so far as formulae of
this type are concerned, the terms -% 1i (xa) - 3- 11 (x¥) ... ocannot play an important réle and we may

ignore them,

{ .
Without the use of the umproved Riemann Hypothesis, the best that could be proved until recently
is ' ’
~AvLegx
(3.27) V) = w+ O(x e )

Littlewood and Vinogradoff have gone just a little further, but their enalysis is very difficult,
There is another way in which we may treat the integral in (3.16). We might deform the comtour
to - oo and obtain the explicit formla

(3.28) Vo = x-zZxf 5@ Ly~
r T
Here l,U o(x) is the same as % (x) except that it has standard discontinuities:

W) = 3 P (x0) + Y (x-0)]

This identity is substantially equivalent to one for T (x) found without a rigorous proof by Riemann,

4. A Second Approximetion to the Proof of the Prime Number Theorem

Let £(s) be & function represented by & Dirichlet series
(4.1) £(s) = Z.a n-

where f(s) has certain generel characteristics kmown to be possessed by the specific functions of interest
in the theory of distribution of primes, videlicet:

(441) is en absolutely convergent series for U > 1; - £(s) is regular for 7" Z 1 except for a pole =3 .
Let us now suppose that the coefficients & are real and bounded negatively, e > =K,and also

that £(0-+ 1 t) = 0(|t]%) 0< K <1,

Write
(4.2) ' Alz) = Z{_; ®n
where Z meens that if x is integral e, is to be taken with =& coefflc:.ent Then let
(4.3) Al(x) =[A(u)du
Since
. 1 %S
(4.4) A(x) = m/;f(S)? ds
it follows that
s 1
(4.5) A () = — ff(s) -
S(Sﬂ)
In this way we algo obtain
(¢.6)

X+ 00 =/§(s)_>é_sds
C

(4.8)

where

equat
(4. 9)
But t
(4410
It is
numbe
integ
theor

Taube
tion

we m
is A

(a)
In bo
for (

(2,11

Then

But ¢

(4412

and t

ig an
there
we co

end h
theor

(4.3
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and also

3‘(4.13)

11

and 0y = [ G
(47) F " fc S (5+ 1) S

Subtracting (4.7) from (4.5)

@8) ae) -m2- [

=

s=1 .
x 2y 2 it log x
' (£~ g")s =17 98 * 0(x“) ij(t)e dt

‘oo
where lF(t)ld‘t is convergent.
-0
Now by the Riemann~lebesgue theorem for trigonometrie integrals, the right-hend side of this

equation is 0(:2). Hence we have

2
(4.9) Al(x) nJ %x
put this is not gquite our goal, as whet we wish to prove is
(4,10) Alx) ~ x

It is at this stage of the argument that the Teuberiam element enters. Every known proof of the prime
pumber theorem involves two essentially distinet parts, one function-theoretical, involving either contour
integration or Fourier transforms, and the other e Tauberian theorem. In general the weaker the function
theorétical part of the argument, the stronger the Tauberian theorem must be,and dghversely. Here the
Teuberian element is simple. The theorem which we require is: /

THEOREM 4.,)l. Suppose that f(x) ~ %sz and that £'(x) + Kx is, for some K an increasing func-
tion of X Then i"(x) ~ Cx,

To prove the theorem we may suppose C = 0, that is we replace f(x) by f(x) = %sz. In short,
we must prove that if f(x) = o_(xz) and if £'(x) + Kx is inereasing, then £'(x) = o(x). In our case f(x)
is Al(x) end £*(x) is A(x) and K = O.

Agsume the theorem false. Then either )
(a) £'>§ x, for x; beyond ell limit; or ) fr<=§ x, for x; beyond ell limit.
In both cases we are led to a comtradiction. The proof is similar for both cases and we shall give that
for (a). Assume

£ (xi) > § x, x; beyond all limit
(4.11)
£t'(x) + Ex increases

Then for x. <x< .+ 28;]{':1"
£1(x) + KxZ £'(x ) + Kx,
fr{x) =2 er - K(x-xr) > %er
But this contradiets the assumption £(x) = o(xz) for
X, +5_ : .
(4412) f(xr +%xr) -f(x) = j;,‘)b 'z—'?xaf'(i)dx> %er § =Z§-x12_
and the difference between two wvelues of a function which is o(xz) must be o(xz).
It would be very easy to deduce the prime mummber theorem from false Tasuberian theorems. There

is an Abelian theorem that if s =& + &, + ses +. & ~~ An, then f(s) = Z 2 ~ —Au-as s —>1, If
n 1 2 n - 18 s=1

there were a Tauberian theorem which stated that £(a) ~ s_ftT as 8 —> 1 implies s, An if &, 2 0, then

: ’
we could easily prove the prime number theorem in the following way: pal /\én) = - g_ E:% /\Jﬁ as s 21
n

and hence SU(n) = 8, ~ n, vhich is the prime mumber theorem. But it may be teken as axiomatic that any
thecrem which proves the prime number theorem easily must be felse. In this case &, =nforn= 2",

8, = O otherwise, is an example showing the falsity of the supposed Tauberian theorem.

In our epplications

{£6) = ~506L
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and we have to kmow that « j%fconseq
(4.14) E_lﬁ‘_r_i‘:f_)} = 0]x&l {(5.5)
* T (o+at) .
for @ Z 1, Obviously this implies im particular that g j;RePlac
- .
(4415) TCi+ed) $0 (5.6)
This lest proposition is essential in &ll proofs of the prime number theorem. '
There is & deep Tauberien theorem which may be used to prdve the prime number theorem: Subtra
THEOREM 4.2, If 7 a.ne-nyrv ¢ as y = 0 end & >0, then A(x) ~ Cx,
For we need only take e, = Af(aj. BHere we can replace (4,14) by (5.7)
(4.16) e waw)| = oty |
for some A, Wiemer's work shows that in fact no such O condition is necessery, and so emables us to sim- B4t o1
plify the function theoretic part of the proof & grest deal (maturelly at the expense of the Teuberien
par‘b) )
There is & proof of the prime mmber theorem intermediete betwsen the Hademard (6€)
proof and Wiener's (Hardy and Littlewood, Acte Mathematioce 1916). In this it is shown Pirst that
(4.17) Z Ay jé? , , i
and the prime number theorem then follows by the Tauberian Theorem 4.2.
: ’ (c)
5, Rememujan's Argument for the Truth of the Prime Number Theorem Let us
Remanujen's ergument has been altered in the following in order tq meke it conform as much &s (D)
-possible to the true state of effairs. It mist be remembered, however, that he wag not looking for an For th
asymptotic formule for TT(K) but for an exact formula or at least one with & bounded error term. sumab.
Write (E)
27 here
(541) ( Z by P TR - )"
. gly) = ZLZ 2 Z_ ra £ ly) ﬂ[fJ‘To e
Now consider end th
®
¢ )~ P l2g) +PCyp) ~ plhy) -
%’*}) Q) = Py +PCy) ~ P end th
= 5 AGNae 7 orem,
) (30 =2 l?ff“ Z - ()
.e?“ T+ A+
()
oy
% (g/> %2 Z ‘2 = .ﬁ—% Hig ae
2
Vis ?.,./ e F—1 mey ha
23, ~34 + abmd ©.9)
®) M:,,%,,ﬁ LgR e ps s P
To verify formule (B) note that ergume:
(541) {(7,) =g (7/) PRy) + @ Gyy = e (5.10)
Now write " then
(542) Yle) = 5 A= /\m[ Z _ (5.11)
7( -2 m?, 5 £ Z Q’”\ <.
2o | Neglec
Here ({)l(y) differs from @1 (y) only by & sign in the denominator,
(5.12)
5.3 = 7 Aw) = ‘
(543) = Mor e MZ[M A It we
Hence if m = T[ p® a (5.12)
- = = 4y m .
(5ot e, = = f— a (&
o) 5 Z. b i i F
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consequently co -
(5.5) L}/‘ ('2/\ = ;1 ,&?//m 2 "?
p Replecing y by 2y in this formule , N -2 2 2y
-2 - - 4’9’_ 2 T —
(5.6) S AL 5 hp et Tl 2 T = =y o Ry
Se - e

subtrecoting twice this from (//l(y) we obtain

~amg 2
—F -z g2t )
| gy - 2R Gy = Zlgme T —a (L g2 7/%7%:—?

(5.7)

4 = }'@?,I —,a"’@?,; +z”3%3.... Co o+ w#

to sig. But on the other hand ; / e
ien W -2 Yy = > /\(«)f{”‘a‘ _ 2> AL o F _ NG [, Sy )
s | —e " ! — o™ | ~ 2 "2=g
£ - - -
o S AQLeTE L] Ay
_ 5( y |~ pg~2m4 - o+ e T
= 2 b

Hence, combining (A) and (B) we have

(C) é(‘ﬁ = /@-?fo}l '4—2?&-}; e

let us assume (end it is in fact true) that

hes (D) R —liit ae g4 0

r en For the series log 1 = log 2 + log 3 ... is summable (011). Our essumption is that this series is Abel
surmable, and every series which is summgble (Cll) is also Abel summeble., We rewrite (D) as
(E) Py - Pl2y) SR ZEPY -fﬂ(lféb\,-. — 7 2™
were P = o, — o, @ = Z Axye™ P = g Z 27e " F

(})— fﬂ"' [?J To this point Rememujen's work is correct, But here he asserts that (E) implies that sﬂ(y)——? limit,
cand this is in fact not true. A correct form of what Remenujen wishes to use is

®)  QPp vy e g o

end this relation is true, As remarked sbove, (F) plus e Tauberian theorem yields the prime number the-
orem, But Ramenujen deduces (F) from two false propositions

(©) SD = ?01 — 501 = o (?—S (false)

(®) ), ~ -5’:- (felse)
Hig mctual statement is the wilder form of (G) im which o{u;';) is replaced by 0(1). In the case of (B) he

may have reasaned by e false analcgy bebween series end integrals for

(5.9) L3 2 fowz X 2 "2‘3‘”144 = 4

The inference from (E) to (G) is invelid, es we show later. However, let us pursue Ramenujen's

argument to its conclusion. If we now suppose, as is true

(5.10) Ly ~

then 60 g/ g/
) (5.1 > KL -5 -3 :
y(5a20) . STy (27 Er ) dwg) = Z ATt

Neglecting the terms e 2 Y4 ... we have

(5.12) 'fmjﬂ?}.z’ég’l'ﬂ_(}) N_?_l;

If we treat 17 (z) as & differentiable function, then

o (5413) d —n"(«» = X(}> o{ .
F | WZ
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[This seems crude, but the essential errors do not lie here. ]

Now from

= —9?’ 1 o
(5.14) f X ()2 70y Y ey 7

he infers that X(z)-— 1. This inference would not be correct in eny case, even by the use of the Hardé

Littlewood Teuberian theorem. It would, however, follow (using the integral analogue of that theorem)t

(5.15) JA?/Z[A) A A 2/
and the completion of the proof would then be easy.

2
Actually Remenujen goes further. He mekes use of the extra terms ¢ - 9 ,.. and infers that
= L LR L.TF VI A
(5.16) Xb) = [~k =55 > .. _éz’fé?; ) TEY -5
| 7

whence by integration he obteins the Riemenn-Remsrmjen formula
(5.17) T = 2 gl
It is not worth while, in view of previous mistakes, to exsmine this part of the argument in detail.
Can one say that epart from the necessary rigor this contaiﬁs the essentials of the Hardy-Litt
wood-proof? No, because of Ramsnujan's howler on the function 902 y). His statement that
(5.18) 50;(%) ~ ?

is felse as may be shown by directly considering its properties.

If it were true that ™
P s
(5.19) > 2" ~5
then it would follow, by Theorem 4.2 that

%% X
This is obviously false, since the functiom practically doubles its value when x passes through a value 2

It is instructive to exsmine (y) more closely. Now
2\Y ¥

e s
(6421) LY = L g S sy s

where the integration is upwards on a straight line to the right of ‘r= 1, Hence

Rsad

-2 . ~s)
(5. 2) 1 e - 27T A 2 —5/ (5>ﬂ(5
end summing over m % s

= - ‘l

(5.23) ¢)\(7'> 27:‘ f } /‘(5) p[\g
We now move the contour of integration across the line = 1 and calculate the appropriaste residues,
For 8 = 1 we obtam ; . a2 (’1)7» ¥ 2 (—f
(6424) 3/’ o ?L, T~ 2 5
The other residuss on ¢ = 1 are for s = ?—-]{—-TrTl and these yield the corrections to be added

—f - .,1 A
/7 A& TL 2

(T )y 7
Hence ?Z(y) = % + rapidly convergent series. When y —> O the series for k ¥ 0 are bounded multiples ¢

-k -
%since the /[ functiom introduces factors which are less then .« Z;ZT which is in turn less thsn e .

The terms in k are of the form

(5.25) 7—; (4 m[%%?l;— L}?} + B@«L{;‘;z ,42;.})

and hence

(5.26) . (y) = = + wobbly function of order - .
¢2 ¥ 2

But even without the use of the M¥ellin integral and the theory of contour integraticn it may be
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geen that Ramenujen's essertion is falsa, Let

o e
(5427) £ly) = Z_ 2%
Then '
(5428) £(y) - 26(2y) = 26”2
Write, furthermore, , s (“).\ - 02,,\4-(
(5422) Fp = TR v S A
Here tlso
(5420) 5(y) - 2¢(2y) = 20~
Hence if
(5631) h(y) = £(y) - gly) where h(y) # constent
then .
(5032) hiy) - 2n(2y) = o
Put
(5423) hiy) = %H(los v
and then
(5.34) 7 ﬂ(log y) = H(log y + leg 2) o

Hence H is perlodic and does not tend to & limit as y—» O and consequently h(%r) ie not asymptetic to a
1
7 — nd ¥ > £ = ; as ]
constant nultiple of ¥ But g(y) v m as y —7 O, and hence f£(y) =3 is not asymptotic to a
constant multiple of 7
1t is possible to use the seme methods by whlch we showed that Remenujan's assertion (H) on
sz(y) is false in order to prove that the sorres pond:mg assertion (5,1G) on fﬂl(y, is true. From this

we may derive a proof of the prime number theorem. ie begin with the lellin formuls

25) @‘”‘7’:‘2/74 j;%—sm—s 7(s) As

where the contour of integration is upwerds on a straipht line with & > 1. From (5.75) we obtain

(5.36) Dlp = 7 A 2T ’gmf g Sg‘éj/()s) As
(s

Bub using this representation it cen be shown (Hardy end Littlewood, Acte liathematice, vol, 41 (1917}
ppe 115-196, that '

{
(5.87) brly)
But this relation, taken with the Tauberisn Theorem 4,2, enatbles us to conclude
28
(5.38) YO = 22 Ay ~ X
o & X

which a5 we know is equivalent to the prime number ‘theorem.

It may seem curiocus that although, a8 we Lave shown,

(5.39) - ""’/’Z] 2
ﬂ@ - 2T
nevertheless in

(5440) i(y/) - p}_(;é - ﬂ(‘lys + ﬂé?‘) = A ﬁl (from (A))

Ry_ |
£
the wobtles disappesr. But this is understendable when we form the lellin integral for é 2(y). Thig

' 1
S5 = w~ + wobbly terms of order =
F J ¥

may be done by replacing y ° in (5,35) by y o - (29)7% & (39)7° ..., and we obtainu

(5.41) 5(?5 - L fr(s)? 22 -a FITSLs = pho [Ty s ds

Here ‘the dominent term comes from the pole & = 1, wi u.la the poles corresponding to the complex zeros of

1 - pls have dropped out completely. Hence
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(5.42) jl’;( ¥~ £z

Remanujan inferred from .
(5.43) ]C(y) - Xy + X(3y) eee —> linit

that

(5424) X (y) = 1imit.

Ag we have just seen, such inferences are invelid, even though there are Tauberian theorems of the Lambert

SRS

type which bear some resemblance to such an inferenmce. That the falsity of Remanujen's essertion is due

to the complex zeros of 1 = 21_s is well illustrated by the following exemple. It is possible that

(5.45) Ay = X(ey) + X(sy) eee 20
with X,(y) a wobbly furction of order -;— « For teke X(y) = y-l-m'. Then the left side of (5¢45) be-

comes .
~l-2i ~l-gi i
-l-ai ., _ ,-l-ei + 3 cee) = ¥ Z(1 +ei)(1 - 2%

(5446) y Q-2 2k T

and this is identically zero whemever ai is one of the complex zeros of 1 = 2-5, say a = Tog 2 ° Bence

-

we may sey thet the failure of Remanujen's attempt to prove }'Dl(y)/v %isvdue to his ignoring the cam=
plex zeros of 1 - 278,

It is an interesting question to ask whether Ramenujen thought out this method entirely by him-
self, and in particular to inquire if he ever had seen the Riemenn series spproximating 7 (x). From
what aveilsble evidence there is, it seems highly probable thet this work is entirely original and that
Remenujen had never seen the Riemann series., These questions depend upon whet books there were in the
librery of the University of Medras dealing with the subject and whether Rememujan sctually saw any of
them. There were five books, all probably at Madras, which would have been particularly valuable to
Remenujen: Whitteker's "lodern Analysis", Bromwich's "Infinite Series™, Cayley's and Greemhill's "Ellip-
tic Functions”, and Mathews's "Theopy of Numbers". It is quite clear that there were some of these books
which Reamenujen had not seen. In particular he could not have seen Whitteker, because he did not know
Cauchy's Theorem, end it seems extremely improbable thet he could have seen Bromwich (since he knew noth- |
ing of the ordinary theories of divergent series).

On the other hand he must have read some book on elliptic functions. He never uses lenguage
which suggests that he regarded emy of the stendard theorems of elliptic functions as his own, but treats
thete-functions, modular equations, and so. forth, as common knowledge. And both his knowledge and his
ignorance of tThe subject of Elliptic Functions fit in with a femilierity with Cayley and Greenhill. These
two books scarcely consider the functicn=theoretic aspects of elliptie functions, but devote a greet deal
of space to the formal operations. Greenhill in fact adopts & somewhat eccentric approsch which is clear
1y mirrored in Reménujen.

Now if‘;vﬁamanujan haed seen Mathews's book, he would certainly have devoured it, But neither his
knowledge nor ignorance of the Theory of Numbers ares explicable if he had seen this book. He had, for
exemple, no knowledge of the theory of guadratic forms, although Mathews devotes a greet desl of space to
it. In particular we must now ask whether or not he saw the chapter on the distribution of primes, which

ineludes & copy of Riemann's paper. Here is given Riemamn's formmle

(5087) TW = Zubd gox™ 4+ (p Tos)
end the complex zeros of 5 (s) are clearly recogni’:‘ed. Yet we see that the failure of Ramanujen's meth-
od is due essentially to the ignoring of complex zeros.

It is quite inconceiveble that a mathemeticisn of Ramerujan's caliber could have seen Riemann's
formila in tlds form and then could attempt a proof which completely ignores complex zeros.

It is perheps worth while to give the broad outlines of Riemenn's ergument. From
(5.48) Ty =z -~
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he observes that

(5.49) ffﬂ”/x) x Ty 2

i

N S

This he inverts by using e Fourier double integrel formula. Putting s = ¢ + it it becomes

(5450) J;”T(x) 2 uré}’u’{ = g 5O
s

and en application of Fourier's theorem gives )
€t Mo
‘L 1S
(5.51) 6 =z J . %E9 s
I

i 7/,

Thus we see that as )D(x) corresponds to 5 (5 so 7 (x) corresponds to log & (s). We can do the
(s

same thing in a more modern way using Mellin's inversion formulae

%(ss = L7k o Ax
Y i L
FOO = 7 X %(5)15

Riemann now substitutes for f (s) its canonicel product expression a.nd'favalue.tes the integral

(5.52)

by term=by-term integration. The most serious gap in his argument lies just here, since the product ex-
pression for g (s) waas only proved rigorously by Hademerd, end depends on his theory of integrel func-
tions.

Riemarn's way would heve seemed more naturel to Remamujen then the classical methods of proof
of the prime number theorem and we are forced to the conclusion that Remanujen would not have attempted
his proof had he known of this method of Riemarm'se

6. The Wiener-Ikehara proof of the prime number theorem
THEOREM 6.1. Let us suppose:
(1) du(5)z o

no
(2) %(5>= ‘f .e'sg‘ldfg) is absolutely convergent for ¢ > 1,

(3) f(s) = S—ET is regular for ¢ 2> 1 and It] S T.
Then we may conclude that OL(§> o~ _gg

We note first of all that thers is no assumption as‘ to the rate of growth of f£(s) and the be-
hevior of f(s) at infinity is in no memner specified.

Next, before proceeding to the proof, we note that the theorem may be formally translated so as

to include the prime number theorem. Put _cg.e.x ; ® (;) = IBC)‘) Then
(6-1) f(j) =jl<ﬂx~$a('ﬁ(‘)
end the conclusion is that A (x) ~ x. In particuler, if B(x) = ¥(x), we have
(6-2) f{s) —~ (% _~s
= X
fl d Y

which is the series '
(6.3) fo= gk . -3

?LMS ;(5)
and the condition that f(s) - -s-%-r be regular for ¢ = 1 is that
(644) T +1it) #o

which is an essential to all known proofs of the prime number theorem.

To prove the theorem we observe that if we put

(6.5) 4(5)= e -

the conclusion is equivalent to
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{648}

i

S

We medre use of tle Fejer lurrel

(€.7)

exnd write

(643) %(%T) =f°” Kn(5-7) }(7>”Z7

It is true ilhat for a rensral ;ix)

(5.5) &y — C p6E) e Ao i oror
and we may regerd j’l(g) 35 a ¥iad of sverace of g{§), %
. 2
We prove the theorss Ly showiag (a) that “ (T)—=> Owher & — o= ior every & , and (b) that § (6

from this g{§ ) —> © [ollows. The second sbep is the "Teuberian® part of the pronf.

- N [P ; . p . ‘ N ~ I
Ve Toke (W) Lirste  Assume it proved that o llé‘ })—> 0 for every A . Suppose that

Ere e
We must show thet L S O e Q. suppose Tirst, on the contrary, that L> O. Then o((”;’) 2 a((§'>

for Y 2"? whance

£
A\
v

(6.10) el (e(7 )41) 2 ef (g(£)+1)
and
(6.11) sy )2 e i 7 p(E) + 657 1.

Suppose «(£ ) Z L for a seguence of values x of § tending 1o oo,  Then theve exishs a § such bhat
{6.12) Z,(fy) > -7'7 L

for 7 in & series of § intervals (x. x+§ | with fixed §

end x tending to inf'inity, On the other hand

(642!
(6413) (n) = af
. 3 (%) 77) -1 >-B .

O Tulkine § = x4 3§

[\
X

since d « (&) Sine«

(6421

et f F-i§
(6.14) ) = ""*_ug;w (7) & > % L Y andE ) Ly B [T
PO [TSRER p ) ey L[ [F el sty [T

is e:

the ;
But for fixed §

(6.15) {f”“ SACD gy o [TH I (6.2
J ¥

- . -z 0
) i whert
when A —> oo | Fepoe i A is large enongl nt
: inte,
(6.15) g (5) > [ .
N fixe
for & surpassiag all limdi and tiis contradisks €2 {(£) = ¢ for A fixed as R Similarly we (6.2
" " {
may eliminate t‘nemssmn_wﬂ:ior‘, £ < ¢, ' . '
) 3 i is m
Tt rewmains to vrove that (1Y « A(§> exists and (2} g P (&)= 0 for any fixed A . ‘irite
5 =1+ § + it )S::»O.-:,nd also
(6.17) ‘ £ () f 2(5) "¢ "tﬁr,(g (6.2
This is the Fourisr transform of \)2 mg iz for £ >0 aad Ofor £ <0 4p
ol
Then
; ’ . oo 3 -5&
(6413) O (;(r) = L&) :f (c((é') ~-2 )‘ L L2 () f a( [é') e 5%
‘—)o © -5 I (605(
Moreover, as § o0, hg (6 = n{t) wirormiy in [t £ 7. On the other hend

(6419) K,(® = 1,\’s‘ - / (1 - /t/) o

which is the Fourier trensfora of tlie Punction




(b) that

)

. that

her hand

FELS e
, +£;'

.

o

rly we

ite

N,
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22 (1—2'-%‘-) for |t[ < 22
.20)
(8 0 for [t Z 22

We now appeal to Farseval's theorem which states that if F and G are the Fourier transforms of the (real)

sunctions £ and g, then

oo Fo3
(6.21) fgdx = | Fadx
provided that £ and g belong to Lz. The Fourier tramsform is of course given by
‘ 1 f o ~xit
£ = F(t dat
(6+22) (x) =/ (t)e
If we replace x by x~y in this equation we have
tar
(6.22) £(x-y) = %r- ‘Z‘; F(t)eyite-XItdt

whence f(x-y) is the Fourier transform of F(x)e’ =, We apply Perseval's Theorem to f = K;L(x-y) whose
Fourier transform by (6.19), (‘6.20) end (6,23) is

conste (1 - El::;_{)eyix - for x| < 22
(6424)
. 0 for Jx{ 7 2A
end to »
g = g(x)em‘;x for x> 0
=0 for x< 0

whose Fourier trensform by (6.17) is h (x). Substituting in (6.21) we have

o0 . +2A .
(6425) fK,\ (x=y)g(x)e § %3 = const / (1- 2'3:1- )eylxhg (x)dx
o ‘ o
Sirce £ 5 (x~y) 2 0, and is integrable and g;(x)e-gx is bounded below, the integral
- -3
(6426) jK 3 (x=y)g(x)ax
[~

is either (1) absolutely éonvergent or (2) diverges to + c0. The second hypothesis is impossible because
the right-hand side of (6+25) tends to a finite limit. Hence

53(3) = f:aK)(x-y)g(x)dx
const f?(t)eyitd‘h

where the integrals are absolutely convergent. But the Riemann~Lebesgue theorem statss that the second

(8.27)

integral must under these circumstances tend to zero as y —» o= . Hence gA(y) —> 0&as Yy for A
fixed and the proof of our theorem
(6428) g(§) — 0 as k3 _, oo
is now complete.
We cen prove (6425) without any appeal to Parseval's theorem. 1In fact we are given that

f:-(l+ S)xd a(x) € oo or

(6.29) xa'e-(li-a' )xdd (x) < &

A fortiori e-(l+5 )x'(o( (x') =~ o((O))°< A, «(x) = O(e(l+ s )x)' g(x) = 0(e Sx) for every § > 0. Now
+24 . a0 . - 23
f (1 - e / g(£)e” S? “xfag - fo g(§)" dgf_u(l - -ziil'-)e(y-g)ixdx

(6.30) ¥ ~2M - _
= const fogme Sk, - B

(by "absolute and uniform" convergence ) .
Before leaving the subject of the distributiom of primes, it is well to consider Remanujan's
other pssertions on this subject. His assertion (1) that T (x) < 1ix end his assertion (6) that
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sl

1T4n+5(x) - 7T4_n+1(x) —> oo were shomn to be false by Littlewood (Acta Mathematice, Vol, 41). It waf
supposed by meny mathematiciemns that . 1 %
S 2
(6.31) T (x) = 1lix - £1ix® + wobbly terms of order y Tor T
end if these wobbly terms were either o( ) or O( ) where the constent in the O relation is not

log x :
too large, then Remamujen's assertion would be true. But Littlewood showed thet these wobbly terms are
1

no smaller then

)
X zlog log log x for at least some sequence of x's tending to infinity. Littlewood

elso gave & similar result disproving Reamenujen's assertion (6). These assertions ere howsver true in |
(¢, 1) everege providing that the Riemsmn Hypothesis (or its generalization for the other Dirichlet seri
used in the theory) is true. These modified mssertions stend or fall with the Riemsun Hypothesis and i

generalizations,

7. The right-sngled triangle problem and allied problems

Let us turn to Ramanujen's eighth assertion: +that if N(x) is the number of mumbers less than %
of the form
(7.1)- 2¥sT
then approximately :

- 1 log 2x log 3x
(7.2) ¥(x) = % Yoo Toas
This is an elegently disguised form of the assertion
. {
N X} = -+
(7.8) N(x) .17:227 *5:%— ERAEE
where
(7.4) v = log x, W= log 2, = log 3.
The first three terms are correct, but if the use of any constent term is justified it is not 1 but
a b-N ’
(7.5) O+ @' ¢ Bw g
1 Law %
o

The assertions (7.2) or (7.3) are particular cases of the problem of lattice points within e right-angled
triengle. Let M(-q) N(x) be the number of positive pairs of integers (u, v) satisfying

(7.6) LRSI PR a7}
It has been proved (Wardy-Littlewood P.L.M.S. vol, 20) that
=
. = - + o
(7.7) M@) P R i 7)

for all irrational % . The error term may be improved to Of Vi "Yo< o <1 forall algebraic irra-
tional .Q— and mproved still further to 0(log Y] ) when the quotients in the continued frection for
Wiy ere bounded hence in paertioular for quedratic irretionalities. It is simple to show that if .
= W’  is rational, then the wobbles in the value of M(%) ere 0(%).
We may prove

(7.8) = = 4 O for all O
MO = =, + 00
very easily. Geometrically this meens that the mumber of lattice points in & triangle is the area of &
triangle with an error whose order is not greaster than that of the circumference. For
f - - A S
M) = 5., = Z, ¥ =2 s - 00
(1.9) worr ey 06) 0¢
9 ([FH+«1)« 00) =
& [ -5 fﬁﬂ*’ <O L VO
But nothing further then this is trlv:.al.

Let us investigate more carefully Remenujan's speciel case (7.4)., TFere

- log 3
(7.10) 0 - o3

is irrational and also transcendentel, for

(7-
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(7.
whe:
(7.

whe:
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(7.
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g

(7.11) 2 =3

and if 8 were raticnal we should have a power of 3 equal to a power of 2. It must alsc be transcend-
o

entel since 2 , where o is -n irretional algebraic number, must be transcendental and hence in particu=-

ler is not the number 3.  Suppose that

7
(7.12) v = zpzq = epé)-pqw = g A
Then
—5 (1w + ca’)
-A5 -5 3 F |
= 7___ ¥ = 2 = _ .
(7.13) % 2 2 % TR
From this and the Perron formula N
3
o 14 = . - _X . !
e 5= A7) S ey 40
Z:A.,A, Yy & X

We mey calculate this formally using Ceuchy's formula, As there is a triple pole at the ori-

gin, the calculus of residues yields as approximetion
2
(7'15) /\(!(,7) = 0(’7 +/57 +Yy

i computin ol 2
and comp g )ﬂ)y - +w1_f_w/4,3cuw’ +5

(7.186) M) = 57”5% + 7[5?/7 Ze’ EPP

where S consists of terms derived from the complex zeros of 1 = 2°° and 1 ~ 375, Explicitly

o0 ’
(1.17) S = - e (T, k)
' 7 k= AN Pl

where the * means to add similar terms obtained by interchanging <’ and e’ This series is convergent
only in some very Pickwickian sense. I¥ is not too hopelessly divergent wher & is algebraic.
There is another interesting arithmetic quegtion which depends upon the mumber g = i—g-g«g- of

(7.10). S. S. Pillai, one of the best of the Indian mathematicisns, has proved that

(7.18) [2% - 57| < 2x(1=4)
for sny given § and x> X(§ ). Stated otherwise
(7.19) |25 - 1] > g2 i =
for every § and some K = K(§)e This becomes
(7.20) }exw-yw'-ll>Ke-{xor ]xw -yw')>Kequ
whencs
(7.21) }x - yQ) > Ke-g x
Licurille proved for algebraic numbers o thet
(7.22) [x - ya ;I-E— B
where A depends on o ., This gives a limit to the rate of growth of = , the n~th quotient to & , of
the form '
(7.23) a . = 0(e” ®1%2°" %)

n+l
but this still permits an enormously rapid inereasze.

The faect that
(7.24) 2 -3V =k
has only a finite mumbsr of solubione (x, y) for every k is an immediate corollary of the Thue-Siegel

Theorem. For if we reduce x and y modulo 3 in (7.24) we obtain mine equations of the type

(7.25) au’ - b = k w=2% v=37

end each of these has only a finite number of solutions. From this we deduce et once

(7.26) 25‘-53’{—?% 88 x —> o0
but Pillai's result (7.18) is much stronger than this,.
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Formally stated, his thecrem is
THEOREM 7.l.
for any f>o0

logm

Suppose thet m, n, &, b are given integers and that Tos o

(7.27) e - bo¥| > 2780
provided that x> X(§ ).
Proof:
Lerme 1. If ¥ is eny alpebraic number of degree r = 3, there exists & ¥ = K(§ )
- 2 X
(7.28) /§ ol ETvE
This is the Thue-Siegel Theorem.
Lerms 2., If &, b, and r are given, then there exists a K(a, b, r) such that
(7.29) [ - o] > m27TT (r> 3).
To prove this we assume ad’ -~ v > Oe [For < 0 simply interchange a, b; u, v.)
bv' < L au’, (7.29) is certainly setisfied for K = 4. Hence we may assume
(7.30) 1 an’ < vvF < au’
B au® ~bv = P.
Here if we write Ar =y , wrEX e W have
(7.31) w o~ = %
whence
(7.32) w-v< or a -7 <
r-1 r-1
or brv brv’
v P
(7.23) )oc - ﬂ< —
bruv
but from Lemme. 1, since o is algebreic of degree r
— K(/P«)
(7.34) [°< “ ‘ z eIz
whence from (7.23)
(7.35) > Er)
o buv® 1 u2 VT
. r-1
(7.36) p> BT ()BT
If in
(X" = am = bn'
(7.37) i * t
we write
X =rg+h th,/‘(r
(7.38)
y=rt +.4L w=n®, v=n
we have
(7.29) N = amhur - mZVF
and by Lemms 2
g - Iy
(7.40) [¥] > 2V T

where K depends on &, b, m, n, r, h, and ¢ .
1f we choose the least K we have the relatiom (7.40) where ¥ depends on e, b, my 1, end r,
in (7.37),

5 IRV
(7.41) Jem™ - bnjil >yt oV for = > X(r)
where u' = @' ° = mx-h > K(r)n*. Hence

gl o x{ie 2
(7.42) lewt® = ¥ | > xipie®E 57 )

Here we need only choose r tc meke J—_%—} < § end the theorem is proved.

is irrational.

Then

such that

Now if

For a fixed r there are only 2 finite number of h and #

Substituting

it .
(7.
end
thai
(7t

Vorc
orde

Vorc

(7.5
Thex

appl
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Remenujen's formulae (9) contain statements greatly differing in depth. Let ¥ be & number
for which /u(v) = -1 snd A be & number for which /u(/l) = +l. Then the set of 211 y's and \'s con-

sists of all square-free numbers q. Let us first prove (b) which is elementary. It is well known that

(7.43) z?=—§§—jj;:z:—‘f+z—'z md Zoal) Lo
e F A Z ot e T - TIT(WFT S_(})But S&= 7 g‘(%):%%
Hence [ a = o -%_— - ?‘/__l) = '9F On the other hend (a) involves & problem of great depth.
Let Q(x) =3 | N(x) = Z / Lx) =/\Z:;. Hence Q(x) = W(x) + L(x). Moreover
g<x £x

M(x) = /u. (n) = Zl- Z 1=1(x) - N(x). Hence to prove N(x) = L@Q(x) - H(zx)) ~o ix—z it is suffi-
n<x A€x  ¥=x T

xient to prove

(7e44) Qx) = — + o(x) end
M(x) = o(x).
It is-elementary to prove that 3
(7.45) Q(x) = + 0( =)
[Landau, "Primzahlen", vol. 2, p. 581] but tlre proof of
(7.46) M(x) = o(x)
is equivalent to <the prime number theorem
z
TN s

and is a problem of much greater depth than the result for Q(x)

If we interpret Reamanujan's tenth stetement

(7.47) d(1) + d(2) + ess +d(n) =n logn + @y - 1)n + 3d(a)
to mean that

(7.48) A1) + d(2) + ees + d(n) = n log n + (2 Y - 1l)a + 0(d(n))
it is certeinly false for

(7.49) d{n) = O(n'f ) for eny £ > o

and the error term in this formula is greater them this. Dirichlet has given an ingenious proof showing
that in d(1) + eve + d(n) = 1 logn+ (2 - 1)n + 0(?) the error is 0(vr). Now

(7.80) > d(m) = Zl > 1+ >T1- > 1=+ Zz'le=ZZl'le

m<n lexysn lxyen ldxyen 1ex<ym
lexsfn 1l4y4ym’  leyeym

by reasons of symmetry. Moreover

(7.51) Z——l = Z[%] nx‘z{:-Jr 0(Yy3m) = n(3 logn + Y + 0o( ln)) + 0({¥ym).

Hence 2 Zl =nlogn + 2yn and le F] (o + O(l))2 +0(¥n) =n +0(ymn)., Finally

(7.52) Z d(m) = 2 Zl le =n logn + n(2 Yy - 1) + o(vVn)

mén
<
Voroni hes obtained 0(n? ) by a refinement of Dirichlet's method.  Suppose that & is the best possible

order of error that is the error is O(n‘9"£ ) for every £ > 0. Dirichlet's argument gives © < .
<8 ® 2715,
T112* 106”° 82 46

A problem of equal depth is Gauss's cirele problem. Let r(n) denote the number of solutions o
(7.53) .wz + 9% = n
Then r(1) + «uo + r{n) = 7o + 0(2). Gauss showed 0(v 1), as might be expected. Every method so far

Voronoi € < i % landau and Fardy 6> 1L 7> ven der Corput and others ¢

&pplled to one of these problems has been epplicable to the other and the same restrictions have been
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found on the order of the error term.

Remapujan's eleventh assertion is ) X
2 2 . d ’
(7.54) V=u" + v B(x) = Z 1= C/—;T-la-avmx),
Vix ( °e Y

where R(x) is smell in comperison with the integral, i.e.

(7.55) R(x) = o (o)

if this is all thet is meant, the integral is no improvement on
_ Cx X
(7.56) B(I) = -qﬁ + 0 (m:x?) ‘
Teken literally this stetement is true, bub his use of the integral should certainly imply the stronger
reletion ‘ o oyx .
= - eee + 0 Tror %75
(7.57) B(x) SETT3E + oz 1)3(3;'- . ( Tor % )

and this is false, as has been shown by G. K. Stenley in the third velume of the Jourmel of the Londom

Mathemetical Society.

8+ The theory of partitions

A partition of n is & division of m inte any number of positive integral parts: thus
(8,1) 5 =4+1=3+2=3+1+1=2+2+1=2+1+1+1=21+1+1+1=+1

hes 7 pertitions. Order is irrelevant, so that we may think of the parts, if we please, as arranged in

-

decreasing order. We denote the number of partitions of m by p(n). Thus p(1) = 1 and p(5) = 7. . &

partition may be represented by am array of dots, or "nodes”, such as

L *® o @ L] - &

e s @ e '
(8.2) & ® -

« & %

-
& row corresponding to & part: thus (8.2) represents the partition 7+ 4 + 3 + 3 + 1 of 18.. A graph
such as (8,2) may also be reed vertically, here as 5 + 4 + 4+ 2 + 1 + 1 + 1, and two par’titior;s of n so
related are called conjugate. R
There are meny theorems about partitioms which mey be proved by strictly elementary reasoning
based upon this graphicel representation. Thus a greph with m rows represents, when read horizontally,
a partition into m parts, while read vertically it represents a partition inte perts the largest of which
is m. It follows that the number of partitions of n into m perts (or at most m partAs) is 2lso the num-
ber of pertiticms into parts of which the lergest is m (or into parts which do not exceed m). But when
we attack more difficult problems, we find very quickly that we require algebraic or enelytic weapons.

In the theory of primes the mmltiplicative property of Dirichlet series

(8.3) % = (mm)”®
mekes them the eppropriaste amalytic tocl. Bubt in additive problems of arithmetic, the relation
(8.4) gleg? = g

mekes power-series the natural weepon.
The slgebraic theory was founded by Euler, and rests on & generating power series
(8.5) Fla) = > £(@)q"
said to enumerste f(n). . '
<% It is easy to find the generating function of p_(n). This is the function

(8.6) Pla) = >
(1-0) (1=0°) (1-0%) o

(2 function fundamental in the theory of elliptiec fumctions). In fact, expanding each factor of F(a),

we heve

pa
(8

wh

pr
&%
be

co

ar

< (s

TY

Yr

of

(¢
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(8.7) Flg) = (Leararare..) e (raagtegbea i) (a®ea®ea i) inin,
and & moment's ccasideraticn shows that every parbtition of n contributes just 1 to the coefficient of qn.
Hence
(3.8) Fla) =3 p(a)d .

+1It is equally easy to find the generating functions which emumerate partitioms of n into parts

regbricted in various manners. Thus
- 1

(5,9)
(1) (1~°) (1-9°) o

pnumerabtes partitions into odd parts;

2 '3
(8,10) (1+q) (1+97) (1+g) o
pertitions into unequal parts; and

3 5
(8.11) (1+q) (149°) (1407 ) e u e’

pertitions into parts both odd and unequal.

Similarly (these are examples which will be used later)
) 1

(1-q) (1=G") o0 o (1-g®)

enumerates partitions into partsvnot exceeding m, or (what we have seen to be equivalent) into at most m

(8.12)

parts; ¥
(8013)

q
(1-0%) (1-q%) e v u (1-g"D)

enumerates the partitions of n=N into even parts; and
1

4 6 9
(1=q) (1~¢7) (1-¢7) (1=q7) wes
where the indices of q are the numbers Sm+l and 5m+4, enumerates the partitions of n into parts each of

which is of one of these forms.

»:Ramanujan,was the first mathematician (and, it seems, up to now ths only one) to discover any
pr0perly arithmetical property of the function p(n). His theorems were discovered, in the first instance,
experimentally, i.,e. by observation, MacMahon had calculated, for other purposes Yo which reference will
be made later, a table of p(n) for the first 200 values of n, and Remanujen observed that the table indi-
cated certain simple “"congruence properties™ of p(an).

4 In perticular, the number of partitions of numbers Sm+é, 7m+5, and 1llm+6 are divisible by 5, 7,

end 11 respectively: ieees

- (8,15) () p(5m+d) = © (mod 5) (b) p(Tm+5) = O (mod 7) (e) p(1im+6) = O (mod 11)

Thus 4 = 3+1 = 242 = 2+1+1 = 1+141+1 has 5 partitions,.
Remanujan found proofs of (a) and (b) so short that they will be given here; but they depend

upén classieal identities from the theory of alli?tie functions. We start from e famous formula

[r=] ‘oo 2
2 =) 2 2=l =2 k 2k X
(8.16) TT (-7 (1= 12 (1-*F127%) =5 (-1
k=1 ~50

of Gauss and Jacobi.

Suppose that
2k=1 2

mo
2k=~1 =2
(8.17) gD(z) = T]  (=g®2%) (1-¢"7"27%)
k=1
Then we can verify at once that
2, 2 2n+1
(8.18) @ (az) (az"+a™) = @O(2) (1+a™"2).
(n the other hand
- 2. =2 4 =4 2n, -2n
(8.}9) qp(z) B, + al(z ¥z ) + az(z 42 ) + ees * an(z 4z )
where the a's are polynomials in g and "o
(8.20) a = q1+5+...+2n—1= & .

n
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Substituting from (8,19) inmto (8.18) end equating the coefficients of z'2k+2, we obtain

: - -2k+2
(8.21) ‘ o =8 o (mgTRERE L La
k-1
2n+2k -
1-q (8.3
From (8.20) and (8.21) we can calculate &, ; and we find boor
2y 2 | 83
(8.22) 8 = 3 (1-q"%) (1-g"")
2 4 2ny 2n=-2k+2 2n+2k+2
(1-9) (1-q%) .00 (19" 27 i .
which tends %o kZ wher
(8423) i cien
(1-9%) (1-q%)... (5.3
when n —2? oo . This gives (8.18) though a little care is neoessary in justifying the passage to the ’
limit., See Tannery and Molk "Fonctions 'elllpthues", T.2, ppe 10-12% is
If in (8.16) we replace q, z by q x q"‘ respectively, we obtain 8.3
) 515 4 (8.
3k-1 B2 = 3
(8424) TT-a%) -4 (19 _5_ (-1)%q or .
jzRet
2
(8.25) (l-q)(l—q ) (1-¢° ) aes —1-q-q+q+q- ves
the indices on the right-hend side being g- kz F k.  This formula, of which a good meny proofs are Eule
known, wes found first by Eulsr. There is & particularly simple combinatorial proof due to Franklin
which will be given later. to a
Ramanujen used (8.25) and another formula of Jacobi, wviz. (8.7
2 3 3 3 6
(8426) {1-0) e 1% . =1 - 3g 4 5% - 7. then
where the exponents ere the triangular numbers % 5 k(k+l). To prove this we replace g, z in (8.16) by (8.4
qz q?" end make £-» 0. One factor on the left is for
~5-2&
(8.27) 1-g°2% o~ 28 1l0gq ,
and the product bshaves like A=
oD 3
(3 (844
(8.28) 2 € 1og g JT (1-4%) TT<1 7Y =26 108 q {IT(l-q >} : i
18 ¥
The series on the rlght becoms g
2 4
bs +2%k k k+1
(8.29) Z( —1)legE BRHEEE 4\;( D5 oy 6 t0g q .. (81
The term independent of € vanishes, the terms for which k = p and k = ~r~1 canceling, snd the term in : and
€ is - 8 me
(8.430) 2 & log q Z (~1)E(2re1 ) g (k+L) . (8.2
which proves Jacobi's formla (8.26). _ : . whic
Ramanujan now ergues as follows. We have
2 4 2 2 3 2, 5 7 3 6
(8.31) q{(l-qﬂl"q )} = q(1~g) (1~q)... «gl-q)(l-q )} = a(1~g-g"+q’+q ... ) (1-3g+5¢°-745. . ) led
by (8.25) and (8.26). We write this as prot
2 4 Vv Lag p (3 +1)4+4 v (V41
(8.32) af(1-9) (1~q Jeard = Z Z(-l) (2v +1)q!*5 (31043 v (¥ 1) (844
both x and Vv ruming from - o© %0 oo snd we cons:.der in what circumstances the 1ndex of g is divisible R
| an
by 5. This demsnds that (&,
‘I
(8.33) 2(w+1)% + (2v41)2 = 8{1+—§—/-(3/~+1) + 3v(v +12} - 10kt 8
shell also be a multiple of 5, Now ’
(8034) (2v+1) 20,1, or 4 (mod 5) and 2(/».+1)2 0, 2, or 3 (mod 5) end
end henoe if (8¢33) is a multiple of 5, the coefficient (2v +1) in (8.32) is also s multiple of 5, and 5
therefore the coefficient of q5m+5 in "
2 4
a{(1-0)(-a%)...} o
is & multiple of 5. of |
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¥ext, in the binomial expansion of L , all coefficients are divisible by 5 except
5 10 (1-q)
1, 9 5 9 4 ess, which have residue 1 (mod 5), That is to say
1 = 1
(8435) —2 T == (umod 5)
(1-9)" 1-q
or 5
(8436) g =21 (mod 5)
(1-q)
where such congruences are taken to mean that =1l coefficients are congruent (mod 5). Hence the coeffi-
. S5m+3
cient of q in

5y (110
(8.37 oli2 )(1-q2 L e o g {1-a) (1" } (L‘_ﬂﬁ_j!—-——-
(1-a)(1~q") ... {(,_%)(,_7;) ) }

is a multiple of 5, and so therefore is that in

(8.38) —_—
(l'Q) (1"1 ) ees
and this coefficient is p(Smt+d).
We can prove (8,15b) similarly, using the square of Jecobi's identity instead of the product of
Fuler's and Jacobi's, but there seems to be no such simple proof (8,15c¢). -
Ramanujan went a good deal further; he proved congruences with moduli 52, 72, 112, and was led

to a general conjecture: If § = 5a7b11o and

(8.39) : 240 21 (mod § )
then
(8440) pmd +A) =0 (mod §)

for every me

(%]

It has however been shown recently by Gupta that the conjecture is false when § = 7. Here
A= 243 and
(8.41) p(243) = 133978259344838
is not divisible by 73.
On the other hand Krezmer has proved the conjecturs for § = 53, viz.
(8442) p(125m + 99) = O (mod 55)
and Lehmer has found some evidence of its truth for § = 113. In this cagse A= 721, end Lehmer, using
a method which will be refserred to later, finds
(8.43) 161061755750279477635534762
which is divisibls by 115, as the value of p(721).
There is anobher proof of (8,15) which is much more diffioult than the one here given, but which
led Remenujan much deeper into the theory of elliptic modular fumotioms. In the same paper in which he

proved (8.15), Remanujen stated without proof the two remarkebls identities

5 10 5
5 - 1 ave
(8.44) p()+p(Ta + p(l#)qz + ese = O_{(l 9 ( 'z'q ) 5
f(l-q)(l-q ) eeenee
and
| Ty 1t L 14 7
(8445) p(5) + p(12)q + p(18)a® + wve = 7f1-q )(12'1 ) "'}4 290 {1-a") (- 2 D o
{(1-9)(1-0%) <eeuul} f1-0) 1= .een.
These make (8.15a) and (8.15b) evident, and also provide proofs of the congruences to moduli 5
and 7°. Thus if we assume (8.44), we have
2 5 ig
. 4 9 V- - T
(6.15) BB 1P+ 0 | a (-g7(1-¢") - (s )

5 lO 4 3 = —j———~—
s{1-"0-0") ¥ () (-0 eon Jlmp - Y [{ETYTErs pa
Hence (after what we have proved already) the coefficients of q‘r”’“’b- on the left-hend side is a multiple

of 5; and from this it follows that
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(8.47) p(25m + 24) = 0 (mod 52)

Similerly (8.45) leads to
(8.48) p(49m + 47) = 0 (mod 7°)

Remanujen never published a complete proof of (8.4%4) or (8.45); but proofs have been found by

Darling and Mordell. Mordell's proof is tolerably short, but demands much mors lmowledge of the general

theory of the moduler functions then Remanujan ever possessed.

fe The Rogers~Remamujan ideutities

There are two theorems, the 'Rogers-Remenujen identities®, in which Ramarmjan had been antici=-
pated by & much less famous mathematician, but which are certainly two of the most remarkable formulse
which even he ever wrote down.

The Rogers=-Ramamujan identities are

2
4 m
q 1
91 1 + -—-+ + ene + + eee =
(o) (1-q) (1-q2> (1-a) (1=9%) o+« (1-0™) (1-q) (1-a%)... (1-%) (1-0%)...
and 2 6 n(m+1)
(92)1+T%—+ 4 Z= % ees * qz — aes = 5 = L 3 5 .
1 (1-3)(1~¢%) (1=q) (1=q%) sss (1=g") (1-g") (1= ) s e e (1=g")(1~q") v s

The exponents in the denominators on the right form in esch case two arithmetical progressions with the
difference 5. This is the surprise of the formulas; +the 'basic series' or the left are of a compara-
tively femiliar type. The formulse have a very curious History; They were found first, so long ago as
1854, by Rogers [L. J. Rogers, P.L.M.S. (1), 1894], a mathematician of great talent but comparatively it~
tle reputetion, and one of whom very few peopls, had it not been for Remanujan, might ever have heard.
Rogers was a fine enalyst, who anticipated'HBlder's inequality' though without recognizing its importence
or stating it in what is now its classieal form. See Hardy, Littlewood, and Polya, Imequalities, PPe
21-26. His gifts were, on a smaller scals, not unlike Ramanuaan's own; but no ome paid much attention
to his work, end this particulsr paper was quite neglected,

Remanujan rediscovered the formulae some time before 1913, and stated them in the first of his
letters to Hardy. He had then no proof (and lmew that he had none); end neither Hardy nor MasMahon nor
Perron oould find one. They are therefore stated without proof in the second volume of MacMahon's Com~
binatory Analysis, published in 1918,

The mystery was solved, trebly, inm 1917, In that year Ramanujan found a proof which will be
given later. A little later he came accidentally across Rogers' paper and the more elaborate proof giv-
en there. Remanujen was guite surprised by this find, and expressed the greatest sdmiration for Rogers!
work. His rsdlscovery led incidentally to a belated recognition of Rogers' talemt, and in partlcular to
his sleetion to the Royel Society. Finally I, Schur, who was then cut off from England by the war, re-
discovered the identities again. Schur published two proofs [Berlimer Sitzungsberichte, 1917,pp.301=-321,
one of which is 'combinatorial' and quite unlike any other proof known. There are now seven published
proofs, three by Rogers [ons in the peper already referred to, one in Proc.Camb .Phil.See,, 19, PPe.211=218,
end one in P.L.M.S. (2), vels 16-(1917), ppo 315-336, one by Rememujen, two by Schur, end a later proof
based on quite different ideas, by Watson [J.L.M.S., vole & (1929), ppe 4=9, and five at any rate
of these proofs differ fundamentally., None of them is both simple and straightforward, and preobably it

»

would be unreasonable to hope for & proof which is. The simplest proofs are essentially verifications,
There are two well known identities of Buler which have & strong superficial resemblance to

(9e1) and (9.2), viz. 2
m

(9.3) 1 + - sve * 9 - F oese T (l+q)(l+q3>(l+q5)--.
_9._2. (1-q )(1-914) ' (1-0%) (1-0*)+ .0 (2-¢7%)

and

thus
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2 g qm(m&l)

2 4
(3.4) 1+ 5+ zq Tt ees * 5 7 ——— = (1+q") (1+g ) (149%) ..,
1~q (1~q") (1=¢") (1=g") {1mg ") o0 (1=0°%)

(the difference being thet only even powsrs of g ccour in the denominetors). These are easily proved,

glgebraically or arithmeticslly, whersas the Fogers-Remanujan formilae lie much deeper (as is indieated,
of course, by the way in which they involve the number 5). It will, however, help us to understend the
formulae if we begin by considering one of the simpler formulae, say (9.3).

We have seen that the right hand side of (9.3) enumerates partitions into odd and unequsl paris:
thus 15 = 11 + 3+ 1 = 9 +5+1=74+54 3 has 4 such partitions, Let us take, for example, the parti-

tion 11 + 3 + 1, and represent it graphically as in (A), the points on one broken lins sorresponding to a
part of the partivion:

U e

-————
- v @
——

(A) (8) : «©)
We can also read the graph (considered as an array of points) ss in (B) 35 (¢), along a series
of horizontal or vertiéal lines. The grephs (B) and (C) differ only in crientation, and each of them
corresponds to another partition of 15, vize: 6 + 3 + 3 + 1 + 1 + 1, A& pertition like this, symmetricel
sbout the scuth=easterly direction, is ealled by Maclishon a self—conguuate partition, and the graphs es-
tablish a (1-1) correspondence bebwoen self~conjupate partitions and paertitions into odd and unequal parts,
The right-hend side of (9,3) enumerates odd and wequal partitions, and therefore the identity will be
proved if we can show that its left-hend side emmmerabes self~conjugate partitions.,
Now our array of points may be reed in a fourth way, viz. ss in (D):
Here we have a square of 32 points, and twe ttails!, sach representing a
AL B partition of {15 - 3 ) = 3 inte 3 parts at most (and in this particular
case all l's). Generally, a self-conjugate partition of n can be reed as
. 8 square of 0’ points, end two tails representing partitions of i(n = mz)
. into m parts at mogt. Given the (self-comjugate) partition,m, and the
UD) rgading of the partition is fixed; conversely, given n and given any square
m” not ezceeding n, there is & group of self~conjugats partitions of n based
upon & square of m2 points.
Now the functions 2
N 1 - ' 1 q
-5 ) (1-0) (1-a%) e oo (1-q™) ) (l~q2)(1-q4>...(;°q2m) ' ) (1-6°) (1) oo (10"

enumerate (a) partitions of n into at most m parts, (b) nartitions of n into at most m even parts {(or of

@ into at most m parts of any kind), end (e) partitions of d@rﬁn ) into at most m parbs; and each of the
last partitions corresponds, &s we have seen, to a self=conjugate partition of ., Hence the loPt-hand
side of (9,3) which is obtained by summing (c) with regpect to m emumerates the self-~conjugate partitions
of n, and thus proves (9.3).

Franklin's proof of Euler's identity (8.25), referred to above, iz enother good example of this
kind of reasoning.

Suppose that
(345) (1-q) (1-4%) (19%) o0 = 570 a®
4 partition of n into//& unequal parts comtributes (=1)% to the coefficient e, so that
(9.7) ©, = pp(n) = p,(n)
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where pz(n) end pl(n) are the numbers of partitions into an even and en odd number of upegqual parts., We (9.1
try to establish a (1, 1) correspondence between partitions of the two types. The correspondence cannot
be exact, since ¢ is not always O. and
Wo take & graph E representing a partition of n into eny number of unequal parts, in descending may |
e v e e e s order. We call the lowest line AB the 'base'! g of the graph.
D ) From C, the extreme north-east node, we draw the 123ngest south=wester 1+
s E 1y line possible in the graph; it might of course contain one node
L_: only. This Jine CDE we call the "slope! o of the graph. We write
A B 8 < ¢ when (as in graph E) there are more nodes in ¢ than in g
(E) ' and use & similar notation in other cases. Then there are three
possibilities:
(2) B < @ . Wemove § intoa position parallel to and outside o &s shown in graph (F)., This
e T Y gives e new partition into decreasing unequal parts, and into e number
R 3/. of such perts whose parity is opposite to that of the mumber in (E). ‘ .
' - oE We call this operation 0, and the converse operation (removing ¢ eand (9.1)
(F) placing it below ﬁ ) 1. It is plain that L is not possitle 2is
when £ < ¢  without violating the conditions of the greph. of e
) B = In this case O is possible (as in graph G) unless A meets o~ (as in graph H), when it | 14141
is impossible. {1 is not possible in either case.
(e) p> In this case O is always impossible. L is possible in graph (K) unless F msets o sider
end f = @+ 1 (as in graph L). ' (9.3)
knowr

./; . N ..../ la, v

— o’ LS

(&) (H) () (L) | IECRE
and t
into
{1 is impossible in the last case because it would lead to a partition with two equel perts. (9.14
To sum up, there is & (1, 1) correspondence between the two types of partitions except in the where
cases exemplified by (M) and (L). In the first of these exceptional cases n is of the form

o+ (vl) + (k42) + eee + (2k=1) = %(Skz-k) (9415

end in this case therq_“is sn excess of one even or one odd partition according as k is even or odd. Inm
the second case n is of the form : ticat

(k1) + (k42) + cue + 2k = %(5k2+k)

(9.16

and the excess is the same. Hemce ¢ is 0 unless n = $(3k"% k), when e, = (-l)k. This is Bulert's the-

oreme
The algebraic proof of (9.3) is lsss prolix than the combinetorial proof, but alsc less 11lumin-
sting. It depends upen Bulert's device of the introduction of & second paremeter. We write

(9.8 £a) = (14-aq)(l+e.q3)(1+e.q5) eese = 1 + o8+ c,az + e a3 + e

1 2 3
where the coefficients are funchtions of q. Then
(9.9) £(s) = (1+aq)f(eq’)
end so, by equating coefficients
2 3 4 _ 2m=1 2m
(gllo) c.l =q + clq H 02 = clq + 029_ s swey °m = cm-lq + cmq. ) esee
2

14545+ 00 o+ (2m=1) i}
(9.11) Cn . P 4 A 2 4 7y
(1=g")(1=q%)ee e (1-¢"7)  (1=g")(1-g ). ee(l=q™)
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z 2 4
(5.12) (Lraq) (1420°) (1vag®)ure = 14 2y — 28
1-g”  (1-q")(1-g")
end (943) and (9,4) are the special cases & = 1 and & = 75 Any number of examples of similar reasoning

mey be found in keckahon's took or in Bailey's trect.

We return now to the first of the Rogers~Nemenujen formulse. We can exhibit a square mz as
1+3+5+ ¢.u+ (2m-1) or in the mammer shown by the black dots of (X). If we now bake any
partition of n-m  into m perts at most, with the perts in
descending order, and add it %o the greph as shown by the
RTINS circles of (M) where m = 4 and n = 4% + 11 = 27 we obtein
& partition of n (here 27 = 11 + & + 6 + 2) into parts with-

out repetitions or sequences or parts whose minimel differ=-

(M) ence is 2. The left-hand side of (9.1) snumerstes this
type of partition of n.
On the other hend the right-hand side enumerates partitions into numbers 5m+l and Sm+d. Hence

{(9.1) may be resteted as & 'combinatorial! theorem: the number cf partitions of n with minimel difference

2 is equal to the mumber of partitions into parts 5m+l and Sm+4, Thus, when n =‘ﬁ9‘“}there are & partitions

of each type 9, 8+1, T+2, 6+%, 5+3+1 of the first kind, and 9, 6+1+1+1, 4+4+1, 4+i+1+1+1+1,

1+1+1+1+142+141+1 of the second. There is & similer combinatorial interpretation of (9.2).

These forms of the theorems are Maclahon's (or Sehur's); mneither Rogers nor Remenujan ever con-
sidered their combinatoriel aspect. It is natural to ask for s proof in which, as in our first proof of
(9+3), we set up a direct (1, 1) correspondence between the two sets of partitions, but no such proof is
known, Schur's ‘combinatorial! proof is based not on (9.1) itself, but on a transformation of the forma=
la, with each side multiplied by (l~q) (l-qz)(l—qs) e»o and is more like Franklin's proof of (9.3).

Remenujan's proof is es follows. We can write the right-hend side of (9,1) &s

(9.13) ' 1 _ T {6 (1-¢"*2) (153}

TT{(l_q5m+1) (1_q5m+4)} (l_qm) .
end the numerator on the right can be transformed, by Jacobi's formula (8416) replacing g, z by ¢~ ,‘q‘# .
into
(9.14) » 1 - q_z - qs + q9 + qll aee
where the indices are the mumbers ;15(5:12‘ ¥.n). Ve have therefore to prove that
(9415) 1+ ﬁa + ——-——-—-T' q4 + eee = 1_q2_q3+(219+q11'r"

(1-¢) (1-¢%) (1-9)(1-97) (1-g")...

We now introduce snother variable, as in our second proof of (9¢3), but in & much more sophis-

ticated way. We write
a a2 4 as 9
(9.16) Fla) = 1 + 2% 4 et + 3 + oaee
. 1=g 2 2 3
: (1-q)(1-¢")  (1=g)(1-q")(1-g")

and

4 9 4
(9.17) G(a) = 1 - azqz(l-aqz)i—i— + 29 (1-eq")(1-aq)

(1-) (1-¢%)

+ eee

»

2 2 n=
on % (5n“~n) 2 - ~680 )eee)l=
N (_l)na?nqg(on ) (1-aq n)(l ac;{)(l aq % )3 a.qn
(1-9) (1-97)e.u (1-q")
The cholce of F(a) is matural enough, but that of G(a) is, of course, dictated by our knowledge of what

+ eus

we went to prove,

It may now be verified that G(a) satisfies
(9.18) ¢(a) = (1-2q)6(aq) + aq(1-eq) (1-aq”)6(aq”)
so that
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(9.19) Aa) = tle) .
(1~aq) (1=6g" ) o e
setisfies
(9.20) H(a) = B(aq) + agH(aq’).
Also
(9.21) F(e) - F(ag) = &%I(Q;QJ " & 9 (1"‘31 ) $ oeee = aqF(aqz)

2
(1=g) (i~q")
- 2
Fla) = F(aq) + agB(eg”).
Since P(a) end H(a) are power series, and their first few terms are the sems, it follows that

(9.22) F(a) = Ha) = e i(®) \
‘ {1=0g) (1=ag")ess
snd this reduces to (9.1) when a = 1. Similarly (9.2) follows from{9.22) when a = q.
This proof may be called a 'simple' proof: it is short, snd cean be followed by any mathemsticel
student with feir teehnical skill; but it is very wnillumineting.

The formulas which have been written down have further remarkeble consequences. From

(9.25) 7(a) = F(aq) + agF(ag’)
we deduce «
2 : 2 3
Fla) _ eqf(eq™) ., . &g - aq aq &g
(8.2¢) Cey i vy o 5 ) M b e A
; Flag™)
In particular n ’
- 2 4 9 7,13
(9.25) 1+ N - F(1) . (l-q)(%—qs) eee (1-07) (1-a") ous _ Lmgmgiag gt L.
° I+ 1+ I+ "°°  F 7 .3 g 2z
¢ (1-0%) (1~q") eue (1=a%)(1=g")r  2egT=g rq®sq™. L.
is a quotient of elliptic thete functions. This formule is the key to Remamujen's evaluecion of the con~

tinued fraction for special values of ¢ and in partiocular to the extreordinary formilase

-

a2 =4 T
(9.26) 1 e e* 5+ ~l€+1 oE
ses/ ¥ 1+

and
o~2 Y5 ot T ™ 4
(9.27) 1 i = V5 \/_"'1 o
=~ T: i+ 1+ °°°

1 +(Q 5%7(' Sy .

- which he sent to Professor Hardy in 1513,

10. Asymptotic Propertiss of p{n).

In §§ 8 and 9 we have considered arithmetic emnd combinatorial properiies of partitions. We
now turn our attention.to a question of a very different type from these previously discussed. We ask
"How big is p(n) for ié{gg_zg‘ Herdy and Ramenujen were the first to study this question. Tt wes of
perticular interest, first because it wes & really new type of problem, and second because their solution
wes 50 surprisingly successful.

There is one obvious method of attack on any such problem (if no strictly elementary method

sugzests itself). If & is positive, and the power series
. n
n
(10.1) F(x) > & X

hes a redius of convergence 1, then there is & gemeral correspondence between the order of magnituds of
of e s for large n, and that of F{x), for x near 1. The first sbep, therefors, is to determine the order
of magnitude of Euler's functiom
- y l
(10.2) F(x) = - . S
(L -x)(2 = x)(1 =  )esvacoss
when x —3 1. (We use the letter x now instead of g, q being wanted for other purposes.) This is quite
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gimple, if we are content with a rough spproximetion, since

hitia§ m
) i — s—
(10.3) log Fix) 2= log e STOE = _/;:? e
o 1l = % N m m{l - =)
gnd
hiid —
Gy T _ o1z L L e
M e ———
m(l = x) 1~-x ™ 6(1 - x)

1%t follows that the order of megnitude of F(x) is, te a first spproximation, that of
2,
{10.5) QXp e
6{1 = =)
We went %o know the order of s corresponding to this order for Fx) = 2 & x"
if B, n” , where &> =], and x = ™Y s0 that y—> 0 as x—> 1, then

(10.6) F{x) = 2% < =5 %W o [tue"ty dt
Vo
NECES), [ (et +1)
d o+ 1
¥ o 4] (1 = x)

On the other ha-d4, if an Were as large as e M Por some positive ) , then the series would diverge
before x reaches l. It is plain that 5 must be smaller than +this, but larger than any power of n., It

is matural to conjecturs that the right order is about

Bnb

@
for some b between O© end 1 cnd some Be.

The ordsr of

(16.7) a(x) = Z@B mﬁ' = = = er]jﬂ‘lfu =y
may be calculated roughly from that of its maximum term. This occurs when B D mb -t ¥, approxi=
mately; and the maximum term is then about
(10.8) exp {C(l-x) T—T%‘}
where
1 b
(10.9) c=831-5 b I=F (1-b)
This agrees with (10.5) if b = 3 and 5% = _z_g_r_* end we conclude that the order of p(n) should be
ebout
{10,10) AVE

where A = 5 %—
We can put these inferences in order if we do not ask for too precise & result. We can prove,

by arguments of the so=called 'Tauberian' kind, that

(10.11) pln) = exp [{.A; + o(1)} ﬁ]

or thadb

(10.12) log p{n) ~ a+n ‘

an asymptotic formula, in the ordinery semse, for log p(n). This however is & very crude answer to our
question with which we caimot possibly be content.

We went, at the lesst, an asymptotic formmla for p(n) itself. Actually

1 mn

e

4nﬁ

(10.13) pln) ~v
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but we canmot hope to get so fer as this by arguments of so elementary snd general & kind. They are
naturally effective, so far as they go, over a wide range of problems. Thus we can prove (assuming

the prime number theorem) that the number of partitions of n into primes is i

o {27 [ 3
(10.24) Ap[ﬁ— log n }

with the seme degree of accuracy as (10.11).

Our natural resource is Cauchy's theorem, This tells us that

(10.15) p(n) = —Lf if_i{—z—mdx
C

2Ti %

where C is a contour around the origin, We must move ¢ inmto the most advantageous position &nd study
the integrel directly. There is of course mothing in the least novel im this idea, which is that which
dominates the whole analytic theory of numbers, and in particular the theory of primes; but the setting

is different and it is instructive to compare the two problems.

In the theory of primes our gemerating functions were Dirichlet's series = & n"® , and

the proof of-the Prire lfumber Theorem depended upon the integral

Ctape
s

(10.16) (‘j (x) = - L T is
‘ 2Ti et oo S (s)
We moved the contour of integration to the left, across the pole at s = 1, and inferred that ‘70 (=)

s

and y/(x differed from the residue x at the pole by an error of smaller order than x,

The conclusion was correct, but the argument was difficult to Justify because T (s) behaves
in & very compliceted way at infinity. In particular the location of its zeros is still highly mysteri~
ous. On the other hand, there is no difficulty at all about the critical singularity which yields the
dominent term, a pole at s = 1 of the simplest possible charscter.,

The singularities of the F(x) of our present problem ere very much more compliceted, They
cover the unit circle Ix| = 1. The circle is & 'barrier' for the function, which does not exist out-
side it, end there cau be no question of 'moving C across the sinpularities." All that we can hope to
do is to move C ¢lose to the singularities and sbudy each part of it in detail.

For all this, however, there are strong consolations. The function F(x) is one of a well-
known elass, the elliptic modular functions, whose properties have been studied intensively and are
very exaotly lmown; These functions 2ll have the seme peculiarities as FP(x), and exist only inside the
cirele; but they satisfy remerksble functional equaticns which enable us to determins their behaviour

near any point of the cirele, very precisely. In partieular, F(x) setisfies the equation

= 1/24 . o
(10,17} F(x) = j~ m . ewp { K } F(x)
2n

6 log (1/x)
where
Z
{10.18) log 1/x log l/x' = 47>, x' = exp{ AT }
log (1/x)
Ir

s for example, x is posrtlve and near tol) the x' is extravegently small and F(x') is practically 1;
so that (10.17) expresses F(x) effectively, in terms of elementary functions. There are similar for-

mulee associated with other points of the cirele, such as
2mi -21ri/5

. 271
-1, e 3, =) s, 1, ~i, e 71/5’

(generally, with all roots of unity); but (1C.17) alone is enous gh to enable us to make great progress.
In particular, if we teke C in (10.15) to te s circle with Jjust the right redivs, which turns |

out to be 1 - 1/n , we cen substitute from (10.17) into (10.15) and meglect F(x'), with en error whiech
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turns out to be of order
Hyn
e
where
E<a=m2/3 .
There are then only elementery functions in the integrel, and we can calculate it very precisely.

The result is the formula

A
(10.19) plm) = 2o L[S
212 an\ A

) + O(eH{E)
where

(10.20) A= '{n -1/24 A< A

Thisz includes (10.13) and is very much more precises The form of the domirent term is-at first sight
rather mysterious but it arises meturally from the analysis. In particular the '-1/24' in ;Lx.arises

neturally from the index 1/24 in (10.17).
The formula (1C.19) was found independently by Uspensky, Bulletin de l'icademie des Sciences

de 1'U. §. S. R., series 6, vol. 14 (1920), pp. 199-213. Uspensky's paper was published a little after
the Hardy-Remenujan peper, which developed the formula further, so that his proof;’ in some ways rather
simplér than that Hardy end Remanujen, has been less noticed than it deserves.

The formula (10.19) is by no means the end of the matter. The formulae (10.17) and (10.18)
are those appropriate for the study of F(x) mear x = 1. There are, as has been remarked above, similar

formulae associated with other t'rgtional points!?

(10.21) - ¢ 22Ti/g

XP: q

on the unit circle., Ome may say (naturally very roughly) that these !retional singularities' are the

heaviest singularities of F(x), that F(x) is bigger near them than near other points of the circle,

and that their contributions to the integral (10.,15) may be expected to outweigh those of other points,
Further, these rational singularities diminish in weight as q increases. When x—)1 along e

redius, F(x) behaves roughly like

2

exp ——T
6(1-x)
while when x - xp’ 9’ it beheves more like
.n.l
6 a® (1-x|)
It is reasonable to expect that
(10.22) pln) = Pl(n) + P, (n) + ...+ PQ(n) + R(n)

where Pl(n) is ths dominent term in (10.19), Pz(n), Ps(n), cee PQ(n) are similar in form, but with

£/
smaller numbers Az, A f AQ in the place of A, and R(n) is an error of lower order than e % .

gr oee
The proof of sll this can be put through without mich additional difficulty. The form of Pq(n) is

10.23 P ) =1L
(10.28) MV NCI N I CY
where /

AN /g
(10.24) ¢(Sn) = Yo ‘i_(i__Q

22 dn A,

—-a ;

where O < p B q (p,a) =1 and I®) is a certain 24g-th root of umity. Altérnative expressioms

Py
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for tyqere by Hardy and Ramsmijan, Preceedings of the London Methemetiegl Society, series 2, vol. 17,
7

{1918), pp. 75 - 115, end Rademacher {(to be published in the near future). Thus

{(10.25) L (n) =1 ¢,(n) =P, (n) , Ay T aA
and )
Y
(10.286) R(n) = 0(e * )
where
0.7 " < = A /0
{10.27) ,( i AQ, )

{so that Hy => 0 when Q—?e0). We can thus find p{n) with error 0O(e 5&:) and &n arbitrerily small
positive § .

4t this point Herdy and Ramenujen might have ‘stopped had it not been for Major Mecmahon's love
of caleculation. lEemahon was & practised and enthusiastic computer, and mede & table of p(n) up to
n = 200, In particuler he found that
{10.28) p(200) = 3972999029388
snd Hard& and Ramanunjen naturally took this value as & test for their asymptotic formuls.. They ex-
pseted a good result, with an error of perhaps one or two figures, but had never dared to hope for such

& result &s they found. Actually 8 terms of their formulee gave p(200) with an srror of .004, They

3

re inevitably led to esk whebher the formula could not be used to calculdte p(n) exectly for any large
n.

It is plain that, if this is possible, it will be necessary to use a 'large' number of terms
of the series, that is to say to meke Q a Pfunctiom of n. The final result is as follows. There are
constants o K such that

(10,29) pln) = 27 P (a) + R(n) ,
Z_('(v’; kS

where

(10,30) [R@)] < x n “1/%

end, since p(n) is an integer, (10.29) will give its value exactly for sufficiently large n, This for-
mule seems to be one of the rare formales which are both esymptotic mnd exmet; it tells us 2ll we want

to know about the order and spproximate form of p(n), and appears also to be adapted for exmct calculation.
It was, in faet, from this formuls that Lelmer calculated the value of p(721).

But at thisrpoint it wes necessary, until very recently, to malke & curious reservation. The
values of p(200) angf?(Zéﬁ) were known, because they had been oaloulated directly by Macliahon and Gupts,
but celeulations based upon (10.29) wers not decisive. We ocarmot use the formule +o prove that p(721)
hes a particular value until we have found numerieel values for ® eu.d Ky Berdy end Remanujen had merely
proved their existence. It was necessary to go over all their enelysis, give numerical values to all
their ‘constents', and replece all their 'ot terms by terms with numerical bounds. 1In the meentime
Lehmer's calculations, which used 21 terms of the series, led to the value
(10.31) 1610617557502 794 77635534762 ,0041
gave a very'strong presumption about the value of p(721) but were not conclusive,

The gep has now been filled by Rademacher, who; in =n attempt to simplify the Hardy-Ramanujen

enalysis, was led to make a very fortunate formal chenge. Hardy and Ramenujan worked, not exectly with

the function . 9
(10.32 (@) = —2_ & —LL)
) Sb' - dn < A,

but with the 'nearly equivalent' function

i
H
|
1
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17, (10.33) 1 ( cosh &\, =1 >
usF Ao
(afterwards discarding the less importent parts of the function). Rademacher worked with
(10.34) Y@ = - 1 g_( s:mhAX.K)
TY2 dn A,

which is also 'mearly equivalent'; end this apparently slight change has a very importamt effect, since
it leads to en identity for p(nm).

The function

(10.35) %(n) . Je 4 ( sinh (4 A,./q) )
TY2 an A
behaves for fixed n and large q, like a multiple of ql/z. q-s q-5/2 , end /Lq(n)! E q, so that
Love (10.36) > L, (@) Yszn) '
is convergent., The convergence of ZLq(n) ¢7_(n) gtill remains in doubt.* Rademscher proves that
(10.37) p(n) = % L) Y4 0)
. and. thet the remainder after Q terms is less than o
such (10.38) —-————.44.”3' Q-l/z + 11{_2: (_C.z.._>i sinh 17—\/5//5 J_;__.
; jzi V3 75 \n-l Q
large This is of order n when Q is of order =n, as in the older work,
It is now possible to justify the results of Lelmer's calculatioms:
e T P_(721)
} _ q
1 161061755750279601828302117.84821
2 ~ 124192062781.96844
3 - T706763.61926
4 2169,16829
5 0.00000
Tor- 6 14.20704
mt 7 6.07827
lation. 8 0.18926
9 0.04914
'he (10.39) 10 0.00000
pte, ' 1 0.08814
'1) 12 - 0.03525
rely 13 0.03247
1 14 ~ 0,00687
15 0.00000
16 - 0,01133
\ 17 0400000
\ 18 - 0.00553
jan 19 0.00859
rith 20 0,00000
21 - 0.00524 * D,H,Lelmer has recently shown

that this series does not con-
verge. His result is to be
published in the Proc.L.M.S.

p(721) = 161061755750279477635534762,0041
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In this case n = 721, Q = 21, There is a small addition to the possible error (10.38) becsuse Lermer

works with %(n) instead of %(n), but it is easy to obtain the upper bound 0,37819. iny bound less
then 121 = 11”7 would suffice since

(10.40) p(721}) = 0 (mod 112)
and the error, if any, is a multiple of 121,

1l. The function ¢ (n).
—_——

Ramenujen was greatly interested in *wo fumctions, o (n) and T (n), which arocse from his
studies on the arithmetical theory of elliptic functioms, esPecn.ally in their aepplication to the problem
of representing numbers as sums of squares,

Remenujan defined

(11.1) o (n) = 2_ @ Ti/y
q O<1a'$
(TJE)
If in this sum we combine the terms for p and q-p we obtain
(11.2) - cq(n) =2 cos 2np Tr/q

whence it is evident that cq(u) is real, Moreover
(11.3) o (m) ==_ p*
q £

where p ranges over the primitive q#h roots of unity, lLaundsu (Primzahlem 1T P. 572) and Jensen (Proc. 3
Skend. Kongress pp. 145 = 147) had comsidered the function e (n) for n = 1, but Remanujen was the first
to introduce the parameter n,

Aside from the three essentially equivalent forms of cq(n) in (11.1, 2, 3) we shall prove that
{11.4) c (n) =2 (‘z:’—)
‘”(%f")

and in particular

0 (1) = () ,
where the o is the familiar MSbius funetion., From (11.4) we see at once that cq(n) is bounded if
either of q or n is bounded.

Remenujan's proof of (11.4) is very simple. Let

- ) o
(11.5) wh(n) - ﬁ o-2nsTi/g - {q if q|=n

‘i 0if qfn
Then

aLe) M) - % ¢; ()

since every g~ root of unity is a primitive §th root of unity where § is an appropriate divisor of

g, &nd conversely. He now appeals to the MSbius inversion formula

(11.7) e(a) uf":%f(d) = £ = %g(dy&j

If we teke ¢_ as £, the i and
q N n-»zk s g

(11.8) oq(n) = %’_%/‘(%) 75()

But from (11,5) 'r}s(n) is zero unless §)=n when '77:(’1) is § . Hence in (11.8) we mey replace 775(11)
by § if wo sum § only over divisors of m, Hence

(11.9) ¢ (n) =
e %”q (3§

whic

(11,

when
(11.
and

(lia

form
(11,
Then
(11.
when
(11.
end |

(11.

whic!

(11,

noth:
(11.:
then

(11.:

or
(11.¢

If we
(11.:
then
(11.f
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15 which proves (11.4). We note that if o (n) is the sum of the divisors of n, we have
(11.10) e =2 §
5
whence, comparing with (11.9), we have
(11.11) |cq(n)l < g (n)
end it is again evident that
(LLe12) cq(n) = 0(1) when @ —> w0
Before passiag on to the applications of cq(n), it is well to exemine the Mdbius inversion
L
o formula (11.7) more closely, It is an srithmetical peraphrase of an analytic identity. Let
o a0
(12.13) F(s) =Z_f_(ﬁ G(s) = Z. o)
x=l S M=l 8
n n
Then
= £
(11.14) re) 5 ) = X AW > L
m m!
whence from g(n) = % £(a) we have
. 28 "
(11.15) F(s) T (s) = G(s)
and so ]
(11.16) ps) = S8l oz e 5 aln)
3. 3 [26)] ~ mtS
3t which is parsphrased as »
(1a7) po) = 2 o (23§D
P4 Al
‘ But this analytic proof is unnecessarily advanced, and moreover, the velidity of (11.7) hes
nothing to do with the comvergence of F(s) or G(s). We may prove (J1.7) directly., If
a a
I R "
(11.18) n = p, Py cess Dy
then as /l/(m) = 0 if m has any squared factor
(11.19) %’_/L(d) =l + &Z/A(’h) + Ey/u(%”&% .
= X k
‘1'1‘*(2}' (3)
=1 ifn=1 ‘
= (-1)F=0irn>1
or > 1 if n=1 -
(11.20) p(a) = {
£ Al 0 if =a>1
If we now assume
(11.21) gln) = > £(q)
then Ajn ’
(11.22) ;/u(d) gm/a) = Zop@) > 2(e)
(e I cl%
after substitutions. We now rewrite
(12.23) 2o MO tle) = 2 pa) £(e)
dlm Q_‘M edfae
X
= > 1(e) Z= pa)
But the second sum is zero unless n/c = 1, whence the entire sum reduces to f(n)}v(l) = f(n).
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Heuce
(11.24) %—:/u(d) gln/d) = £(n)

proving balf of (11.7). A4s every step of this argument is reversible (11.21) must be deducible from
(11e24). This completes & direct proof of (11.7).
There is enother interesting proof of (11.8), in which we prove first that cq(n) is a

multiplicative function 22 g9, that is

(11.25) Oqq ) T oglm) o, (m)if (q.91) =1
and we need calculate c (n) only when g is & powsr of a prime. To prove (11.25) we write
(11.26) cq(n) o (a) -3 e 2opwifg Z 2np'ri/qt

oS GZPT i/ag’

where P = pq' + p'qs Now &s p runs over & complete set of residues prime to ¢ end p! over a complete
gset of residues prime to gq', it is easy to show that P runs over & complete set of residuss mod gq'.
For P takes on ?(q) §D(q') = ?(qq-‘) values and they are all distinct and relatively prime to qq'.
Hence

(11,27) cqq'(n) = Z ez‘nprri/qm . cq(n) cq'(n).

Similarly if Cq(n) = J‘/’@ then ¢ (n) is a multiplicative funmction of q. For
J [
(11,28) Cq(n) Cyr n) = Z;l y (%) T 5 [g/)
Now &s (g, q') = 1, & fortiori (i )_‘?_) =1 and /u-(%’ [.g:_) _/L(.gr_?,j Thus
(11.29) Cq(n) Cq,(n) “m%% g'{r'f //“[ys’)

(HE)

f

=_
D, DIH_
n)
q. 'd

Henos to prove (11.8) we need now show only thet cq(n) = -Cq(n) when g is = powsr of a prime, s&y

qQ = =g « Now

(11.30) O gk (n) = 2 ean‘n‘i/a_.k
4 7‘ S E}Jk-’
where * =ﬁ—&"3" + P ?,_ JUARENER 2oV 7=

Hence ©nu(n) = 92:_ GZZ'nT:./m- + 2npt Tifate

F

= ) =

where the sum over z is zero except when iﬁ"fm when the sum over z is & . Heuce

coh(m) = {0 if =k ‘
D Cgyten ,(f) A% @ [

Similerly °o_(a) = -1 (Z ¥m)
: =® -1 (&~

Henne gemerally
(11.51) cgkln) = 0 VA

= —Q—A" Q’k‘-' 'M g'k)(m

= whlim) %/‘/M
Moreover )
(11.32) Cgaln) = Z—

wh §/ =Y

Let %“ be the highest power of @ dividing n, for which we shall use the notation

(11.7
Then
Hence
(11.:
If a
(112
If =
(11,1
and 1

(1.

and 1

12.

(124
W S
We m
(12,

wher
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(12.
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(11.533) &% [ .
Then in (11.32) S$=1,a, - . 2 ifagkl, J=1,% ... ® if 83 k.
Hence if &< k = 2
(11,34) Copbt(n) = 0 since every is 0
If & = k=1 all u's vanish except for § = @4 where /—(95 s =1 and
bl
(11435) Cghln) = - =
Ife>k we l'nzw'e/u.[ﬁa%= =1, /L(l) = 1 whence
(11.36) Cohln) = —mh! . 2k _ ek (=-1)
and we see that for q = gk, wo have
11.37 c_ (n) = C_n
(11.57) e = o @
and hence we have proved (11.8).
312. The singular series and representation by squares. If we form the Dirichlet series
a0 ¢ 'C (n)
(12,1) > ;
?:r q E}J,.
we see that it is absolubely convergent for ¢ > 1, since ¢ (n) is real end is bounded as g —P e
We meke use of the multiplicative property of e_(n) in order to express the series es a product
=52 T,
(12.2) —
?:[ qs o X@'
where
(12.3) Ko =1+ Cgld + Cor(
= K]
Now suppose thut
o
(12.4) 2 |
According to the wvalue of a we have
-5
(12.5) &=0 Ag=1- 8
a-t o
el BEOL L BT(D B
=zl Xop= 2+ Bt st T =0
' Cat1) (1-3)
-2 (Lo =ed )
i=5
AV S
Hence, substituting in (12.2)
[ (n) @rQ(1~3)
- [ — &
(12.6) > -2 =T @~ /] -
q° = o\ | = 2
1 nl«-s
= g =
(S) l=s Il) ————tc rS"’l(n)
& TG
where U‘;(n) denotes the sum of the kth powers of the divisors of n. In particular, if we set s = 2,
os 5 (2) = 7/6 , we obbain the extremely illuminating formulas
n :
, - w
(12.7) @) = 1/6 (Trln)( 14 ( %) . 2 coszzn /3 . 2cos nw7/2
: 2 3 2
R 4
2 cos 2nw/5 4+ 2 cos 4n 175 )
5
The series (12.6) is the singular series which is the key to the Hardy-Ramenujan work on the representa-
tion of numbers as sums of squarese.
When s = 1, the series and product sre no longer absolutely convergent, snd the proof is mnot
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valid without further justificetion. But we have

(22.5) P A

s

q gts)

- % dl‘sz ﬁs@l
n

and it is kmown from the theory of primes that

(12.9) >
n

Now the formasl product of two Dirichlet seriss is convergent if one of them (here 7 4°

-

which is a
finite series) is absolutely convergent and the other is convergent. This yields

(12.10) > °q(n)

= 0
Also we may show that
¢ _(n)
(12.11) " log g = d(n)
q
where d(n) = T (n) = 1

(S

In the theory of the representstion of nwibers by sums of squares, the number 2 is exceptional
in two ways, first according as the number +to be represented is odd or even, second according to the
power of 2 which divides the number of squares used.

We shall consider the bheory of representing numbers by an even number of squares, 2s, and to
simplify expressions involving certain roots of unity, we shall assume thet s = 0 (4)s In particular
we shall go through the details of the theory for representation by 8 squares or 24 squares.

First we consider the series

(12.12) $=1%c(n) +2% ¢ () + 3%, (m) + 475 o_(n) + ...
1 4 3 8
= = A ¢ (n

where °‘q =g 8 for g =1, 3 (4)

=0 =2 (4)

= 25 78 =9 (4)
Our first problem is to sum this series. Suppose that
(12,14) ‘ q=2° T p™ n=2° T p‘-a s p's odd primes
Then “% =277 i 7T P~
and
(12,15) 8=

Z”?_ 2 fe=ps ~=5

i -IT/F’ Qa,g(fh.) Trcr} (’”’)
X.TX,

The evaluation of X?’is the same es it was for (12,2)

0 £ ()
°© “?L/—:

The evaluation of Xa_ is straightforward, but troublesome., Now

(12.17) 3(L= 1+0+ 2O 2(1=F)s cpa (n)
F=2
where all Cos (n) are C if n is odd,
Hence x.z: 1 if n is odd and
- (as ) (1-5)

(12.18) s= T (1% (',;—35*.—;-—)

P2 -

s (n) #

= IS S e )
-2 5 @) ' (& 0da)

3 . -
R T
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When n is even as Zb”n, we consider first b = 1, i.e. n = 2(4)., Here c4(n) = =2 and the rest of the
c's are O, amdxz =1-2"% TForbv> 1, we have

(12.19) s1s2m2 w27 25,2% 4, 4 2(17P)s pPl | gbe oD
=1 4 ol=F 9228 R ab(l-s:) _ 2.21:(1-5)
which incidentally gives the right values even for b = 1. Hence
(12,20) S= (1+ al=s . .. 2‘0(1-5) - z.zb(l-s) ) T-[- 1-"5) (1 (a+1)(1-s))
1ﬂ.>l l_pl-s
(a+l s-l)
1 even = (1 + ol=s ., zb(l"S) - 2'2b(1-s)) ____1________‘”‘ l-s)'n”g -3

175 + 37% 4 ., Pl

= — 'Xz'(ff)hsﬁ.f’(m)

l-s+58+5 + eee

where U5 (n) is the sum of the (s-l) ' powers of the odd divisors of m, But
(12.21) Tm) = (1425 e 2PNy ey
b(s=1) b(1-s) o

nal : = Z ( Xl+ 2.2 ) ‘75—,,(11)

whence

b -1

(12.22) (s-1) X, ,\n = i@~ o ()
to where U:_f (n) is the sum of ths (s-j-l) st powers of the even divisors of n, Substituting in (12.<0)
r

we obtain finelly
l"S o
(22 @) - o 2 @)

=S

(12.23) g =

n even

1 +3 "+ 5 + a0 e

We -mey combine (12.18) end (12,23) into

o .(n) n odd
- - - - x - n odd
(12.24) (1S+ss+5s+...)n515=a‘s_l(n)={sl

T () 0,5 @  neven
and we have thus eveluated the series.

Before proceeding further it is interesting to note an identity involving divisor functions
conjectured by Ramanujan and proved by B. M. Wilson.,

The identity of Ramenujan's which Inghem used to prove that & (1 f—/t') #0 is

(12.25) e T ) Ty ) - S T T (sh) & (smary)
, T (25-a-b)

If we write .
5= T

we have 7(%=1+% (B‘) 0‘(%) .

s (uwv) (H 4 + ® 23(/1—%“ F2) (1r 2% e, o2+

‘: 1 wa“’ = 13(_7’_’_') .,_fb"ﬁ(ﬁ_}:_ﬁ (-1
m{-l—

(- ) (%~ 2

L4
o

#
-

= 1 2 (& “He__%— ) o
wwwﬁn TEE e -
=__L__Eﬁ£f i, o o
&ra_l)(ﬁb_l) l*%‘ﬂ'b—‘s‘ (l -%—“"’) ,_%(r—b + }—%_
1 - Ezre:+b-2s.

(1 -)(1 -x )1 -~ 2*7) (1 -2 +E)
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Now remembering that

= T )Xo
7(% -l -

1-®"°

where

we see at once that this expression has the wvalue

& (s) & (s-8) S (s-b) & (s-a-b)
Z (2s=a~b)

a5 was to be shown. Note that if we put 2 = b = 0, we obtain

> (@) - S

;(218)
From the identity (12.25), 4. E. Inghem hes deduced an ingenious proof that & (s) hes no zeros on the
line ¢ = 1. For suppose that
(12.286) CQ+id) =0
(whence also S -ia) =0).
Then in (12.25) set & = ia, b= ~io , yielding
(12.27) CT%s) T (smia) & (s+in)
Z (2s)

FWow 0,(n) Z . (n) must be real and positive for every n. By a theorem of lendeu's such a series must

- 20 e e

heve & singularity on its line of convergence. On the left hand side of (12.27) the denominator, & (2s),
has no zeros or poles for 0 > 4. T (s) has a simple pole for s = 1, but this in gz(s) is canceled

by the zeros of § (s—<«) amd g(s +.« ) for s = 1, C(s =<'« ) has & simple pole for s = 1 + i«
which is canceled by the zero of T (s) for this velue. Similarly the pole of £ (s + i « ) at s = 1 =<«
is canceled by the zeroc of g (s). Hence the numerstor is reguler for &ll finite s. Consequently, the
series on the right of (12.27) must coﬁverge for &ll ¢ > %. Now in this series the constant term is

1 and all other coefficients are positive., Hence it is alweys numerically greater than 1 for any real

8 greater than £. That is, simce T (s + i) and T(s - i x) ere conjugate for real s

(12.28) () ]5‘(o—+u)_f> (
or S(= "')

12,29 - A
(2.29) S Tl el >5GD

But &s s = i is the cnly finite singulerity of J(s), G (3 end $(3+ i %) are finite and (12.29)
implies that as o' »L-through real values that Gxs) remains bounded. But £(s) has & simple pole for
8 = 1, and this camnot be the case, Hence our assumption (12.26) must be false, and we conclude that
C(s) has no zeros on the line o =1,

The singuler series ﬂ the problem ggﬁ_ squares,

The series (12.12) end its evaluation (12.24) pley an important role in the theory of re-

presenting numbers by sums of squares. Anelytically we write
(12.30) (1 + 2x + 2x* + ves )zs = 1+ Zrzs(n) =

as & function which enumeretes the number rzs(n) of representations of n as a sum of 2s squares. Note

that in these representetions we count both order snd sign. Thus
(12.31) 5= (1% + 522 = (12)% 4 (+ 1)

bes eight representations &s & sum of two squares. It has been known since the time of Jacobi thet
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= S = s
(12.32) rzs(n) zs(n) for 2s = 2, 4, 6, 8
where st(n) is 2 divisor function. Thus
(12.33) rg() = 16 o (n)
where o has the same meaning &s in (12,.24). In gemeral it is true that
(12.34) r, (@) = 3 @+ 2, (@)

 where gzs(n) is & divisor function and -625(n) is a function of order considergbly lower than that of

st(n). (In Remanujen's papers the motation is slightly changed so that his d and e are half of those
used here.) We shall prove that when s =0 (4) we have
s
T
(12.35) § ) = T @)

M(s) 7% +3% 5%+ ..0)
When s ¥ O (4) there are slight formal veristions depending on the residue of s (mod 4). We note that

the first fector in s may be calculated from the velues of the Bermouilli numbers. Moreover it is true
that

(12.36) ezs(n) =0 2s =2, 4,6, 8
and we shell prove this for 28 = 8, As en example of higher values of 2s we shall’consider 2s = 24 emd

prove

(12.37) 891 o (m) = (-1)* 259 T (n) =~ 512 T (%)
128 2%

where

(12.38) > T & = =x {(1—x)(1-x2) ’} 24

In (12.37) we teke T (3n) to be zero if n is odde Now 524(n) is of order n'' end T (n) is (as we
shall show la.ter)of order not exceeding n..7 .

The series on the left of (12.30) is of course one of the familier 19-I‘unotions. We shall
draw freely upon the kmown properties of ¥ -functions as given in T&nnery and Molk, and shall follow

their notation. We write

2s 25
(12.39) £lx) = (1+2x + 227 + ... )28 = 193 (%) =
- .
where x = eﬂu . This function has the unit circle a&s & natural boundery, but elthough every'point of

the unit circle is a singulaerity, the 'rationmal points®

(12.40) x. = JFoTi/a
P, q . 5 rri/
stand out among them. We study the behaviour of f(x) as x — %, q along a redius, x = r e % 9 &g
’

r T 1. YNow

2 .
(12.41) =1z zr LT/
=1 +2 LZ o(2a + 3)? o2lla + 3% pamify
?-_a €= 2 Fnad . 2
=142 3 swi/fa &g + 3)
Here |
(12.42) Z > g+ 3) VT (10g 1/e)"1/2
- zq
o~ T Qa - r)'l/Z’
2q
as r T 1. Hence
(12.42) 9 TR 8 (Qog 1/e)? s AL

q
where
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=t ,.2
(12.44) —-— z 23 PTi/e
ir Sp a = 0, wo interpret (12.43) es -\9 =0 (log 1/2)" 1/% @t r+ 1. We now make & heuristic con-
struction of a function which shall mimic \9 near a&ll the points xP q being guided by (12.43). We
write 5 25 /
w [ ~2pmwi/q
12.45 f X) T —— L G F(xe
(12.5) e (Eq q) K )
where
(12.46) (x) = Z 257
In faect
(12.47) Fs(x) - [ (s) (log l/x) -8
is reguler near x = 1, We now construct
= - n
(12.48) Gz) =1+ > £, ¢ by [g;(n) x
summing ever ell q snd ell p € ¢ =2nd prime to g@. Here
12.49 (a) = Z ¢ |
( ) Fzs( ) #-;8— /3"/%—)»\.
where o s-1 28
(12.50) Cpgm =2— [ S, g o-2mPTi/a
wh .
fnoe -
(12,51) @@= 2 s>
2s q
() 7
where

-25 2z ~Znpwifq
2.52\ { = .
(1 ) A = a > (s, q) e

We ©all FZ {(n) the singuler series, We must now do two things: (1) sum the singular series, and

(%) prove thst ectually @“ = 79 whence ﬁ,(ﬁ)-rzs(n) @s for 25 = 8 or thet @, =3 +R,,

where R, (z) = Zgj(n) = is snother function of x to be determined. The singular series for

Fzs(n) turns out to be
For the SP q of (12,52) we use the known results on Geussisn sums

except for & simple factor, the series (12.12),

2.5 = . whi ,qt) = 1. qa ,
(12.,53) SP: ag’ Sp, g SP: gt ere (q, q') = 1 For g & powsr of 2, we have
'(12.54) 8 =1, S, =0, S,, o = 271 + iP)

pt 1/4 pri

SP zd./un = 2

For q & power of 'an odd prime @

(12.55) . 5g.= (%‘X J’T(g ‘)
S = >
sgmn = @ Sg

If we observe that (1 + i) 2s 2°

when s = 0 (4), we have

(12.56) sz;gq = ¢ irqg=1, 3 (4)
= 0 =2 (4)
= 25g° g=0 (4)

Meking these substitutionms in (12.52)

e o8 -2np7 1/q
Aq q '73’ @Z}F(e

when s = 0 (4), and that all roots of unity involved become one

(12.57)
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where qu 1 ifq=1, 3 (4)
= 0 qg=2 (4)
28 qQ=0 (4)
-5,
Hence Aq = g 7q cq(n) and

s _s=1
(12.58) r(n)=£——n——-—(lsc(n)+25c(n)+ssc(n)+... )
2a 1 4 3
r(s) s s-1
8o that when s = 0 (4) fz (n) is the series of (12.12) apart from the factor T_r,:x_1___ » When s %0 (4),
(s)

we evidently must mske some more slight changes because of the factors appearing in (12, 54) and (12.55)
Combining (12.58) and (12.24) we have s

™ x
(12.59) Fzs(n) = o

S =s s~1

M(s) W% +8%+ ...

the desired eveluation of the singular series.

()

13.. The elliptic modular functions.

In the preceding section we outlined the method for constructing a funetion @ which should
mimic \9 a5 closely as possible near the singularities of \9 and @ led us to the singular series
f’z (n) of (12.58) and eveluated in (12. 58). We wish to be able to prove that fzs (n) is either equal
or neerly equal to Toq (n). 8o far our procedure hass been in a large measure formal.

We now turn to the main enalytic problem, that of determining to whet extent @a,sa.pproxlmates
d 25. This leads us into the domain of the elliptic modular functioms. We shall give here a brief
sketoh of the fundemental ideas of this subject so far as they are required here,

The homogeneous modular group | , cénsists of all substitutions of the form
(13.1) ©'=a w +bw,

cd,f Scw, +duw,
where a, b, ¢, d are rational integers and ad - be = 1, If 4, and <), are half-periods of an elliptic
function, we write '

(13.2) T = Y & @) >0

The relation @9(!:)> 0 will be preserved by transformations of the modular group and hence we may restrict
our attention to the part of the complex plane above the real axis.

The best short account of the theory of modular functions is contained in two papers by
Hurwitz in volumes 18 and 52 of the Mathematische Ammalen. For a detailed account, there is the book
of Klein and Fricke.

Using (13.2) we may comsider the group in & non~homogeneous form. In this form the group is
generated by the two transformatlons
(13.3) t/= ¢ 4 amd | T =a-1lf .

Every point in the upper half plens may be transformed by & substitution of the moduler group
into one and only one point within the fundemental domein D defined by

(15.4) R<BAD 4L Jir0, 1T, RID20 cn;rlflﬂ
This is a curvilinear triangle of angles 'lT ’ TF and 0., Writing x = eTr as before, we define
(13.5) A(w,) W) (2"!")'1. 1',7'(, e A4
+ 1 xz 28 x4 53 xs
g2:1/125(w){1+24o( F+iz . i x +)}
2 1-x l=-x 1-x
¢ ,
g5 = 1/216(I) gl - 504(15 =2, 25 o 4 8 a6 )
“ - 4 6
1-x 1-x 1-x

(when A = g,° - 27 gsz)
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523
J(T) = A
The most fundemental reletion of all is
(13.6) J(T) = J(®)
where T’ is eny tremsform of T by & substitution of the modular group. Moreover J(T) takes on every
velue expotly once within D, and hence defines e conformal mepping of D on to the whole plame, Thu.
J(T) plays the role for modular functions which e” plays for simply periodic functions and f (z) fer
doubly periodic functioms, end z itself for one-valued functions in genmeral. Every function inveriant
under the modular group is a single velued function of J(T). We shall use for our investigation of ®15
the following principle:

If & modular invariant is bounded in D it is a constant. This is true since a modular in=-

variant bounded in D must be bounded over the entire J plene,
We make use, not of the entire modular group, but of a subgroup G of index 3, namely the

a b . .
group of elements (c d) satisfying

(13.7) 4 (a b): (1 O) or (O l) (mod 2).
¢ d/ \o 1 10 :

This group is generated by
(13.8) T =T4+2 end T'=-1/g

For F,' the fundamental domain is D3 defined by
(13.9) ISR <+ S >0, x>
end there is an invariant Jg fundemental for [; . Now an invariant of /; is a one-valued funmction of
JS’ but in general a three-valued function of Je. As before
4 function invariant under I; » Which is bounded ;1295 must be a constant. We shall provs
(1) ____("3_:_@5) is invarient under r;
(13.10) V(=)
(2) ——-_L.-g g(x) is bounded in D,.
(=) '

Knowing these facts, it is easy to calculate that —QL{EL = l. More generally, we shall prove

(=)

(1) O, is invariant under I and
=
Ii are appropriate
(2) ®2§ + Z I3 is bounded in D; where = PPTOP
39 : .&as 19

invarients under l'; .
We begin by proving the necessary invariemce. From table 42, volume 2 of Tannéry and Molk,
we have for s = 0 (4)
a$ 25
(13.11) Jit+1) \% €]
25 s
St/ = N

15
Hence \9 is inveriant under [ and & fortiori under |, . Now

3
(13.12) ®23 =1+ 3 £, q(x)
where z"lf ~2pmri/a
(13.13) £ (x) = T 2 Fslxe )

psa I(s) o°
end if x = o 3

oo -2
(13.14) F (x) = Z_ns_l o Y = <§_)s Z ne W
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)s - (1/4 cosech y/z)
NTT —— . X
=f — = S «\8
(d,} poy (y+2n1Ti)2 (y+2nmi)
g Here since y = - Wi¥T
(15.15) P (x) = r(i) z L -
or ™ (Zn- 'E)
nt and
@,, (13.16) F_(x T/ . L) Z 1
. ™ (2n - 2 + 2p/q)®
n- whénce
’ !
13.17 f x) = ———
( ) P q( ) 7} ; (a0 )5
g —-TZ,
end
(13.,18) @u =1+ > 7y
Mo~ (s -5
Here matters are somewhat complicated by the renge over which the indices of sumnation run.
¥ q = l, 2, 3y ees
0<p<g (psq) = 1
~oC < n< +00
Here we may replace ng + p by p if we replace 0 < p < q (p.a) = 1 by the condition (p,q) =
of Hence, remembering the values of 7%from (12.57)
S
(18.19) Q=1+ 2 ,(_'__,_ﬁs + > 2
‘ =153, - —9 T
e fron e (2 - = (2 - g0)
= i
1 7 o+ , '
;:l 3. - Z_-c) ‘7*_\75
=24, -2
=1+ Z F=22 oy
: ® - qr)
where in the last sum we require only (p,q) = 1. Now multiply by ‘V)( s).=17% 4+ 3%+ 57% 4 .,
(13.20) (5) @)= (o) + > —t—
(ARES S A PSS
ate where now p runs over all values of opposite parity to gq, and q = 0 is excluded. We may write (13.20) in
two ways:
i
(13.21) 7] () @ls(x) A
(p - a7 .
k, p,q opposite parity
or
(15.22) 76 @ = e e 32Tt
ot (o - a0°
p,q opposite parity
From (13.21) @is invariant under the substitution T-> T +2. (note tha‘;")(s) is independent of T ).
From (13.22) replacing T by -1/ we obtain
(13.23) AC1k) =76y + g Py A —
(pr'f q)®
5
= q(s)’cs lrsz = T ?((T)
(pt‘r q)®
4
where 2. means omitting p = O. Hence compafing with (13.1 ) @.15 is invariant in [; .
1s

N —
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The invariance of the guotient % under r; has now been proved in general, but in general
this quotient is not bounded. But we sha 11 prove that :;@,i‘; is bounded. We mey prove that 3 (x)
no zeres for {x} <1, i.e. for J@> 0 by using the product expsnsion (8.16) with ¢ = x, z = i.
Morsover we need not worry ebout finite values of IX| < | and T , commected byx=e " iw because of
the convergence of the series for @5 and @ + The only infinite value for T in DZ is 102 and

ye However in D3 there are two

has

to this corresponds x = 0 for which the series both converge to unit

values for which\?(f\l= 0 and jx| =1, namely T = -1, +1, of which we need consider only +1, since
we exclude the left boundary of DS'
Write ‘
(13.24) T=1 —:‘I—: X= e’nT
Hence =&s T -? 1 from the interior of DS' T ~> +.lac , 8and X—> 0. Now
3 ) - = 4 7
(13.25) G0, 1 -2) =7 (191(7,7-)) 7 ;
=t (aX*+2 X )
= 256 T4(x2+ ceo )
Hence if we can show
{13.26) @i(l —-‘?) =art xz + ean
then we shall have proved that @5 is bounded for T = + 1, completing the proof of its boundeduness.,
We have
&)= )+ 375 —2 (<)
(13.27) &) () = i —_ = X -
4
K 7 (p ~ qr)
where ' ‘ P
1 1
13.28 (8) = + ‘e = IC
( ) "’) ) lq- -5-4- + 76
Hence . , ‘
* L 4
(13.29) 1=-1/1)=_"T_ 41T S
(X /! 7 2 /Z: Z (ﬁT./.z)
* 4 1
= T 431D Z_—'_—I
¢ 4 (@ + PT)

where we require @ % O and P odd, We incorporate the series '17 (8) into the sum, replacing the terms
for Q = O, Thus

(13.30) Y@ -1 = gt >y =

(@ +Pm)t . -
T A Q.
summed over all Q end all odd P. if we put PT = a, and g =@ = XP, (13.30) becomes

(13.51) EOSCERY IR

7* TR (ea)®
=S54/ L \R f
2UENZ oy
=Zl/6(—j—a-)l1r" cosec? &
) 2 RaTL
=2_-1/6 (d_~ #_ij_)

2 o ]
=2 -2 T3 (d—) I T
< de

- B‘IT"(/S Z (13 eZaJr:. - 23 e4a1r1 . 33 eSs.ni fas)
oo

2
=smls 5= AT,
‘P
where we sum over P odd. Thus the least exponent of X is 2., Hence

(13.32) 7}(8) @ = Xa-214 = o @®+...)
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and we have proved that % is bounded in DS' Hence % is o constant and we easily calculate that

this constant is ome.
We have already made uss of a few formulas for 19 ~functions. We shall have occasion to use

several more, and we give here the essential formulae, as copied from Tannéry and Molk.
(13.33) g=e™"
1/12 2 4

M2 (1% (14 ..
n(t+t ) = §1 n@

a(-%) = F ()

2 ja

h (“-‘“) Y1 n(® -;9 (5 T)

24:(0,-:) Zqi‘ +_2q4+
\95(0,1:) =1+2g+2q" + ..

3

h{T) = q

il

(O.t) =l‘zq‘|‘2q4+ sew

4
4 2(0, T+1) = J: 3‘1 (o, T)
% 3(C) JTH) = "3,, (0,0

9 40, = Y5000

§ 0, &) = %34(0,1)
J00, -%) _ﬁiﬁ 40,0
34(0v _-‘-'E) ‘r—‘ ‘3 (o, T’)

All these are formulae for linear tra.nufomatlon, except those for h (T*") (quadratic trensformation. )

i

We now consider the case 2s = 24 , The proof of the inveriasnce of @:u/ under ’—3_ is included

in the general proof of the inveriance of @ﬁ_ We prove - 929
79 .
24 33152 65536 2
(13.3) - ®¥- £(~x) - £(x") -
" 891 691
h
where ) a4 I
(13.35) 2(x) = x [0l ]
- v
=% T(n) <
which is parsphrased into !
(13.38) rpa(@) = & L) + ey, (n)
where
(13.37) o, (n) = 28 ()" 259 v(a) - s12T (n/2)
. 24
€91
taking T (n\/25= 0 when n is odd, and
(13.38) §,,00) = 2 oM )
691
Here 824(11) is of the exact order n . There is a fairly simple proof of Ramenujan's that
(13.59) T(@n) * o(a").
A more complica.%ed proof of Hardy's shows that
(13.40) Tn) = O(ns)
and it seems highly probable that ,
(13.41) T) = o/ %+ ey,

In order to prove (13.34) we shall show that f(‘)‘) and @) are invariant under ,—3 , end
794. ﬂ9.1;(
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kA
@, + af0 B LD
that 2 \9'3* 7
When this is done, the calculation of o and /3 is quite elementary though somewhat tedious. Comparing

(13.35) with (13.33) we see that

(13.42) £(s7) = h24(T)

and again from (13.33)

(15.43) v (T ) = b4
hz«;(__t_) - e

and as ﬁ? = -93(0,1?) it follows that i(_’% is imvariant not only under f: but under [ .
Agein from (13.23) and (13.35) .

(13.44) £(-x) = BH(TLL) = - (n(x))12 (Y, (e, 0))

whence (x) 1s invarient under ‘L/; . Having found eppropriate functioms, f(xz) and £(-x), whose

quotient with '\9 is invariant under [5 , we have overcome the pr:l.nclpal difficulty in evaluating '\/Q

0+ is bounded in D3 when

o and # are appropristely chosen. As was the case p}eviously, this function is immediately seen to

and now proceed to the more direct problem of proving thatb @,

be bounded everywhere in D, except possibly near the points T = -1, +1 of which we need consider only

3
T = +1. Putbing © =1 - l/I as before, we let T-diw . Using the appropriate formulae from (13.33):

“(15.45) £(=%) = 1% (2)
= 0241 ~1/1) = v (-1/n)
- 2 24 () = 2 (2 {1 - )%, })
(13.46) £(=x) = -hlz(‘c)‘y? (0, 1-L)
= w0 - QR (01— F)
= ¥ (am 3, (¢ —)
() () 4 )
T

-
A
12

7
xQa- X) . (2X4+2X'74--‘.)12

Now we srgue on @413 we did on @ and we reach

(13.47) 7_‘ 1 (dk /° 1
(Q+a) n (Q+a)
%2
- (2n) ( 111 2P o1l 2P )
111
Hence
1212
(13.48) L= m (xz e S )
'7(12) 111
where
! 1
(15.49) " ’)’](12) = -]Tiz'l':?z-‘*' see
Also e
(18.50) S0 1-4) -2 F waxd ...
=T12 8 (A+BX2+ ees )

Now the series for @“begins with Xz, that for f(x } with Xz, that for £(=x) with X4, and that for

‘\91?‘ with X6. Hence we may choose « and B so that in @A% +nki‘(xz) +ﬁ’ f(~x) the terms in Xz
end X4 drop out and hence as & series beginning with X~ its quotient by \9” will be bounded near X =

This completes the proof and evelumtion of constants leads us to the desired equation (13.34).

is bounded in DS if O~ and /9 are appropriately chosen congtants.
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Ramsnujan stated ["Certain Arithmetical Functions", Tremsactions of the Cambridge Philo-
sophical Society, Vol. 22, No. 9 (1916) pp. 159 - 184_] and kKordell proved corrsct [Quarterly
Jourmel of Mathematics, Vol. 48 (1917) pp. 93 - 104] a method of writing down invariants like the
f(xz) and f(-x) for @, which will enable us to evaluate any I though it will not necessarily give
the heppiest forms,

It wes lmown to Liouville and proved by Glaisher that

(13.51) rlo(n) = + e

108 10®)

where elO( ) is a function of the complex divisors of n, i.e. the decomposition of n in the field X(i).

Similar but more complicated formulae were proved by Glaisher end Mordell for 2s = 17, 19, 16, and 18.

14. The function <T(n).
As we have shown that
(14.1) rzé(n) =8 ,,m 624(11)
where 524(n) depends on (n) and 924(11) depends on T (n), it is worth while %o consider the order

of magnltude of these functions. Now [rll (n) is exactly of order nll, that is there exist constants
A and B such that

(14.2) antt< O‘li(n) < g 't
for all values of n.
By definition ‘
= n 2 2#
(14.3) Z xS =t = x [ -D) .. ]
. AT
and using the Jacobi formula
(14.4) £(x) = x [1 - 3x + 5%° = 720 + ]
The majorant of the function in the brackets is of the form
(14.5) x 72 n ’xoLn
If we put x = eV this becomes
2
-2
(14.6) S ne YE
end this is comparable with the integral
2
(14.7) jt XY g o~ &
y
es y—>» O. This means that £(x) is majorised by
(14.8) -
1 -x)
as x—> 1. From this it follows at once thet
(24.9) T@) = o@®),
[For any function f£(x) = 0 1 ) we calculate its coefficient & by Cauchy's Theorem
' -|xl
(14.10) 8 = —1- =) dx .
. ) Tt
2T x
1 n+1 i R
Integrating on the circle C, x} =1 -= , as |x| = 1-= ~ e, ’f(x) | = o(n), we
n n

obtein a = O(ns) . But &n elemen’cary proof of Remanujen's enables us to prove
(14.11) ) = O(n ) .
He uses merely the majorent of a sectiom of the seriss for £(x)

8
(14.12) }_Er(n) = /Z (2n+1) xn(n;l)J

"‘M(M-ﬂ).(.y
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where the symbol meens "is majorized by". Here in the sum on the right
(2n+l)2 < 8V + 1

(2n+1)% < ov
Consequently o
(14.13) Z"L‘(n) 4 .< x (rs—,,-)s {1 +x+ £+ 2%+ ... )8
But here the sum raised to the eighth power enumerates the number of representations of & number &s &
sum of eight triangular numbers and thls, like r (n) is known to be of order ns. Hence for n g‘-)
(14.14) T@ < (ew)¥*an®
whence T (n) = O(n7). Hardy by fumction theory proved
(14.15) t(n) = o@®
(Proceedings of the Cambridge Philosophical Society, Vol. 23 (1927) pp. 675 ~ 684), Remanujen con-
jectured that

+ &
(14.16) T () = 0@l * £
or more precisely that

- 11/2
(14.17) [t@} < n d(n),

end it is known from other considerstions that d(n) = 0(n® )o It may be that Hardy's result (14,15)
could be sharpened by maklng use of ‘Kloosterman's refinements on the number of representation of numbers
by axz + byz + cz.2 + d'b (Acta Lathemat:.ca, Vol 49, (1926) pp. 407 = 464 ) . The point of Hardy's
method lies in studying f(x) = [(l-x) (l-x )(l-x ) eee ]l neer the unit cirele. f(x)—> 0
exponentially, as x—>1, and also as x—> e P71 q but less rapidly for larger gq. Bubt on the whole
£(x) is large near the unit circles If we should make & graph of | f(x)( along the cirecle {x| = r
where x = r ele for 0<% 6 < 27 , we should find that the greph was practically level (though high)
except for sharp trenches towgrd O at rationsal values of —;‘i;: .

Hardy shows that )

(14.18) £(x) = Of 2t .
(1 -lxl )

uniformly. Using Cauchy's Theorem (14.10), we obtain T(n) = O(ns).

Remenujen conjectured, but was not able to prove that T (n) is multiplicative, i.e.
(14.19) Tmn')= T) T () if (m,n') = 1.
This conjecture has been proved correct by Mordell by use of the modular functioms. We prove the
identity

= n 11 57
(14.20) Zr (en) £ =TE)Z T & - p I T
1]
which is 1nterest1ng in :Ltsel}. The func‘b:.on
S
(14.21) ALY = (BZ)"7 < [a=Pa-h j
is inveriant under the homogenmeous modular group, generated by
(14.22) Af 0 s W+ end B w, = -,
w," = Wy
corresponding o the non-homogeneous generators
(14.23) T’ =2 T+ and - = —{—C—

The function

(14.24) }U(‘U,) w) = A(pw; ©) + E A (w, +K£U2_Jf)1wx)
k=0
is also invariant under the homogeneous modular group. A(? U&Ls invarient under the substitution &,

while the terms of the remeining sum are merely permuted by A. If we write

(12.25) Yilw, w) = A(pe, ) A (w,, pes) + i Alw i+ xw,) pa,)

end perform the substibution B upon V .
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= Afw, pwz) CERAN (pwl, wz). Here A\ (wl + KWy, sz)

-——)A(-wz + le, pwl) = L (QUQ;) where Ql = W, + le, ﬂf pW . As (p, ¥) = 1, there
exist solutions of Dp + CK = 1, and hence

14
(14.26) L =00, -x0,

O_: = CQ_I + DD—;
is a substitution of the modular group. Performing this upon A(ﬂuf)})we obtain
(14.27) A (-fw.r2 + Kw. , pwi) = (-pw2 + ple - Xpw, , =Cw, + Ckw, + Dpwl)
= A (-pwz, L sz) .
= A (w, = ow,, pw,)

Now a8 CK = 1 (mod p) as K/ranges from 1 to p-1 (med p), ~C must also renge over the same values (mod p)

in same order. Hence - A(wl + Kw,, pwz) is invariant under substitution B, and comsequently
V(w , .wz) is inveriant under the homog}eneous modular group.

Now from
(14.28) A Gy wy) - (—Z—“f)lzr(n) 20

12 00
A (pwy , w,) = (ﬂ)t—c(n) 2P .
! el 2w \Ad S° ¢ )Xa_;: % 732_‘5
; - é ) T 2
é;o_d(wl + KWy, pw,) 7”‘,;) T A=
it follows that M is a function of —- %, elone, as x = e—’ut , and hence must be inwvariant
’\P"(w , W3) b :

1 . .
under the non-homogeneous modular group [~ . In proving this quotient bounded in D, we find the point
at infinity the only debatable point. (Note that D does not reach the real axis, although D:5 does.)

Let us, in the last formula of (14.28), sum first with respeect to X, and note that

(14.29) E‘ JRTIEA L o e phun
B = p ifpln=gpm
’ Hence - 2 1 o "
(14.30) g&(wl + Kw,, pwz) = (%Z) ;I? e P A;_:_’ T (pm) x“®
o .
A8 T4, x—70, and in both series begin with terms in zz and hence the quotient must be bounded

- end consequently a constant. We mey now write:

©(14.31) o} Z.o‘c(n) x2n = p-ll i T (pn) x?.n + iT(n) prn
'

’

h P
' We now rewrite, replacing =2 by x.
‘ 22 n = n 11 = n
. (14.32) Zt(pn) x = ‘c(p)Z;C (@) =0 = p T T@ &
1 I A=l !
If we now equate coefficients of =P we obtain
(14.53) T )= Th) T ) -z ™).

Here the term T (s p*~*) will not ocour unless s p*~® is integral. Let us suppose that (s, p) =1

and that X = 1. This yields

 (14.34) T(sp) = T() T(s)
For A =2
(14.35) T(sp?) = T@®) =(sp) -~ prt = (s)
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(14.5) (Y = TR Tlsp) - 2 T(s)
- TEE TR - T
- {re? - M T
But for s = 1 Te?) = TE? - pt
and hence
(14.36) r(spz) = ‘C(pz) T (s)
Similarly, by induction
(14.37) T(sp) = TEY T (s) it (s, p) =1
gnd hence generally ’
{14.28) T(mn) = Tm) T (@) if (m, n) = 1

proving the multiplicative property of T (a).
From the multiplicative property of Tz‘n) it follows that the Dirichlet series

0o
(14.39) £(s) = %__‘ —?—iﬂ

may be factored into

(14.40) pe) = T @+ ZBL . L)
* ) h
Using (14.33) as a scele of relation
2 3
T{p) T . T
(14.41) 1+ — + ey 4 —-r;—g E
P @) ")
- 1
- 1=2
1~ T(E) p S ap s
and hence o
(14.42) o) = IR - T 1 -
Mm={ p ?”’ 1 - 'L'(P)P +p
If we write
(14.43) cos 9?’ %p-ll/z T (p)
then 2 6
1/2 si
(14.44) &Y = pt /2 sin(A+1)0p
sin 6;
if we appeal to the well lmown identity
(14.45) 2 r sin6 > = 2rsinb +2r1°sin26 + ...
1-2rcesf +r
and hence if n = TTPJL
(14,46) T (n) = /nll/z 2( M-
TN sin 97‘
It is extremely probsble that é%P<is always real, i.e.
. 11/2
(14.47) lt(p)‘ < 2p /

but this hes never been proved. The truth of (14.47) implies the truth of (14,17), of which it is the
special case when n is & prime. If 6?‘ is real, and n = p>L )‘r:(n) = nll/z &n_(_ﬁl__i)_f?,. Wo can

gin &
choose l so thet X 61,_ is as near as we please to & multiple of 77 , and then /‘E(n), > const nll’l2

On the other hend if 6} is camplex, then [T ()| = )p1/2 2 cos & | > pil/2
Hence in sny cese ,‘C (n)] > const. 21172 for infinitely msny n, and 11/2 is & 'best possible’
index.

Herdy, using function theoreticel methods, has proved a mumber of properties of T (n) end
£(s). There exist absolute constants, A and B such that
(12.48) Can? < [(EOF s (@) s (v@)? ] < B2
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whence the average order of T (n) is nll/z. This also shows that (14.16), if true, is a best possible
result.

The function f(s) hes many properties similar to those of & (s), and almost every problem on
g (s) hes an enalogue for f£{s). The series (14.,39) is absolutely convergent for & > 13/2 and de-
fines, by analytic continuation en entire fumction., There is a fumctional equation setisfied by £(s)

even simpler them that for & (s). It is

(14.48) @)™ [ (s) £(s) = (2w)5™ 2 [ (12-5) £(12-s)
From (14.39) and (14.49) we may determine f£(s) for & < 11/2 or for @ > 13/2, but as in the case

of C(s) there is a critical strip in which its behaviowr is mysterious. To prove (14,49) we observe
that

(14.50) (s) £(s) = fmys'l F(e V) ay
where °
(14.51) Flo™) = ¢V (1 - &) (1 . g72NBE |

Now (14.50) is valid for large s, hence for all s, emd so £{s) is an entire function. Noreover
- 12, - .
(14.52) Fe ¥y = [ET\* 5™t 7Yy

and this we substitute into (14350), replace 4 ‘n'%y by z giving
oo
(14.53) Mo 266 = ™ )2 [T 5 e o
end this with (14.50) leads immediately to the functional equation (14.49).
Thers is & Rilemamn-Hypothesis for f(s), nemely that all its zeros are on O = 6, TFor f(s),
J. R. Wilson bhas proved the theorem which Hardy proved for g(s), that there are infinitely many
zeros on the line where we hope they all ere. The amalogue of the prime mumber theorem for f(s) is

2
(14.54) }_; T(p) logp = o(nlz/)
Tt
end this is probably equivalent to £(13/2 + ti) == 0.




