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1. INTRODUCTION. R. Stanley conjectured in [8] that the number of maximal 
chains in the (weak) Bruhat order of Sn is equal to the number f of Young 
tableaux of "staircase" shape A == ln-1,n-2, ••• ,2,1l. (The weak Bruhat order 
on Sn is defined by letting a~ (J iff (J = a 1'11' 2 ••• 1'k , where each T i 
is a transposition of adjacent increasing elements). Stanley subsequently 
proved his conjecture [9], by algebraic methods, but his proof does not give 
a direct combinatorial correspondence and leaves a number of interesting 
combinatorial questions unanswered. The purpose of this note is to describe 
three bijections, which prove Stanley's conjecture and contain a wealth of 
information relating tableaux to chains in the weak Bruhat order. In the 
course of this work we were led to introduce and study a new class of 
tableaux (equinumerous with standard Young tableaux), called balanced 
tableaux. These tableaux have a rich structure, which has only begun to be 
explored. In what follows, we give a sketch of the main ideas, with an 
indication of the major results obtained to date. Complete proofs and other 
details will be published elsewhere [1]. 

2. BALANCED TABLEAUX. Let A= IA 1 ~A 2 ~ ••• ~Ami be a partition of n, 
* * * with conjugate partition A = lA 1 ~ ••• ~Am I . A tableau of shape A is a 

doubly indexed array T of integers tij, 1 ~ i ~ m, 1 ~ j ~A i • For each 
cell (i,j) define the hook Hij to be the multiset I tiki k>ju ltkjl k>i. 
A tableaux T is said to be balanced if (1) its entries are-a permutation of 
1,2, ••• ,n and £2) each tij is the r1jth largest element of its hook Hij' 
where rij = A j - i + 1. For example, 
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156 EDELMAN-GREENE 

5 7 4 8 9 
6 10 
2 1 
3 

is a balanced tableau of shape A= j5,2,2,1l. 
Our first result is that maximal chains in the weak Bruhat order of Sn 

correspond bijectively to balanced tableaux of shape I n-1,n-2, ••• ,q. The 
proof is not difficult. 

THEOREM 1. Let r denote a maximal chain in the weak Bruhat order of Sn. 
Let Br denote the tableau of shape jn-1,n-2, ••• ,2,1l defined by setting 
b(n+1-i)j = kif the kth step in r transposes i > j. Then Br is a 
balanced tableau, and the correspondence r ~ Br between maximal chains 
and balanced tableaux is bijective. 

EXAMPLE 1. If r is the chain in s4 whose successive elements are 
(1234), (1324), (3124), (3142), (3412), (4312), (4321), then the 
corresponding balanced tableau Br is 

4 3 5 
2 1 
6 

Let A be an arbitrary partition, and let bA denote the number of 
balanced tableaux of shape A . Then Stanley's conjecture is equivalent to 
proving that bA =fA when A is of staircase type, that is A= jn-1,n-2, ••• ,q 
for some n. Our principal result is the following: 

THEOREM 2. bA = fA for any partition A • 

The proof is nontrivial. One might hope to show, for example, that bA 
obeys the well-known recursion 

(1) 

summed over all partitions A- obtained by removing a cell from the Ferrers 
diagram of A. This recursion is elementary, and underlies many basic 
properties of the fA's. We can show that formula (1) holds for bA, but only 
as a consequence Theorem 2, not as a step in its proof. 

While the original motivation for this work was to prove Stanley's 
conjecture by generalizing it to non-staircase shapes, the proof of Theorem 2 
is ultimately based on an explicit bijection for staircase tableaux. The 
ideas rest heavily on an elegant theory of tableau transformations developed 
by M.P. SchUtzenberger ([5],[6],[7]), and on a new variant of the Robinson-
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BALANCED TABLEAUX 157 

Schensted-Knuth insertion algorithm (see [4] for details). We describe these 
ideas briefly in the next section. 

3. SCHUTZENBERGER OPERATORS. For purposes of this discussion, define a 
standard tableau to be a tableau to be a tableau whose entries form a 
permutation of k+l,k+2, ••• ,k+n, with rows and columns strictly increasing. 
When k=O, we call T a standard Young tableau. If T is standard, define a 
transformation T ---7 T~ (called "promotion*") as follows: if the largest 
entry in T occurs in position (i,j), i.e. tij = k+n , define 

ti~ =max lt(i-l)j, ti(j-l)l (2) 

with the convention that tiO = t 0j = 0 for all i ,j > 0. If t(i-l)j?! ti (j-1) 
replace i by i-1 (otherwise replace j by j-1), and iterate (2) in this manner 
until i = j = 1. Finally define tf1 = k. This process results in a new 
tableau T~ with entries k,k+1, ••• ,k+n-1 whose rows and columns stri"ctly 
increase. let T[i] denote the result of applying ~i to T. Thus T[1] = T~ and 
T[O] = T. Now define operators P and S on standard tableaux T as follows*: 

(a) TP = T[n] + n. In other words, Tp is the result of promoting T n 
times, then adding n to each entry. 

(b) T5 is the tableau of shape A obtained by letting t~j = q if 
t~j] ~ k but t~r 1 ] > k • In other words. T5 records the times at 
which cells in T receive "new" labels, as ~ is iterated. 

EXAMPLE 2. As an illustration of the operators ~, P, and S, consider 
the standard Young tableau 

Then 
0 1 4 

T~ = 2 3 
5 

1 3 4 
T = 2 6 

5 

1 2 5 
3 6 
4 

1 3 6 
T5 = 2 4 

5 

A remarkable result of SchUtzenberger states that the map T ---7 T5 is an 
involution on standard tableaux: indeed an analogous result can be shown to 
hold more generally, when T is replaced by an arbitrary partially ordered set 
with a monotone labelling [7]. The situation with P is is more complicated. 

* Our notation differs slightly from the definitions of ~ found in [5], [6], 
and [7], and from that of S found in [4]. 
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158 EDELMAN-GREENE 

When T has rectangular shape one can deduce from results in [6] and [7] that 
TP = T, although the derivation is not obvious. The following theorem, 
proved in [3], is somewhat more difficult. It underlies several of our major 
results, although it is not used explicitly in the proofs. 

THEOREM 3. If T is a standard tableau of staircase shape, then TP is 
the transpose ofT. Thus the map T--) TP is an involution on standard 
tableaux of staircase shape. 

4. THE STAIRCASE BIJECTION. Our second explicit bijection is obtained by 
studying in detail how the promotion operator o acts on staircase tableaux. 
LetT be a standard Young tableau of shape A= jn-1,n-2, ••. ,2,1l , with 
entries 1,2, .•• ,(~). Let n = jx1,x2, ••• ,Xn_11 be an alphabet of n-1 letters. 
Associate with T a word 

wT = w1w2 ••• w(~) 
with letters inn as fo~lows: fori= 0,1, ••• ,(~)-1 define W;+1 = Xj if 
the largest entry in T[l] occurs in cell (n-j,j). Thus the letters Xj record 
the columns from which the largest entries in T "exit" as o is iterated. 
For example, if T is defined as in Example 2, then WT = x2x1x3x2x1x3• 

THEOREM 4. Let T be a standard Young tableau of (staircase) shape A 
ln-1,n-2, ••. ,2,1l, and let WT be defined as above. Then WT represents a 
maximal chain in the weak Bruhat order of Sn• if X; is identified with the 
transposition (i,i+1). Moreover the map T ~WT defines a bijection 
between standard Young tableaux (of shape A ) and maximal chains in Sn 

For example, if T is the tableau defined in Example 2, then WT 
represents the chain r defined in Example 1. 

It is not obvious that the correspondence defined by Theorem 4 is 
one-to-one, onto, or even well-defined for all staircase tableaux. To show 
the latter, one must prove that the adjacent elements transposed are always 
increasing. The proof of this fact relies on "Jeu-de-Taquin" arguments 
(see [6]), and leads to many other results concerning actions of tableaux 
and skew tableaux on permutations. 

Combining Theorems 4 and 1, we obtain a bijection 

T~WT ~BW (3) 
T 

from standard Young tableaux to balanced tableaux of the same shape. This 
bijection is valid for all staircase shapes, and provides a proof of 
Theorem 2 in this special case. 
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BALANCED TABLEAUX 

5. THE INVERSE MAPPING. The inverse to (3) is based on a variant of the 
Robinson-Schensted-Knuth insertion algorithm, and has a surprisingly simple 
form. Let x1 denote the transposition (i,i+1), and let 

c = c1c2 ..• c(~) 
be a word in letters x1,x2, ••• ,Xn_1 which represents a maximal chain in 
the weak Bruhat order of Sn. We regard the alphabet x1,x2, ••• ,Xn_ 1 as 
linearly ordered in the obvious way, and define a tableau Kc of shape 
jn-1,n-2, ••. ,2,1l by successively inserting the letters c1,c2,c3, ... 
according to the Robinson-Schensted-Knuth scheme (see [4] for definitions), 
with one exception: if the letter X; bumps X;+1 from a row in which X; is 
already present, the result is ••. X;X;+1 ••. rather than ••• X;X;··· • This 
variation on the rules is derived from the standard algorithm by replacing 
certain of the so-called "elementary Knuth equivalence relations" (see [5]) 
by the "Coxeter relations X;+lXiXi+1 = X;X;+1X; which hold for adjacent 
transpositions in sn. 

159 

As in the Robinson-Schensted-Knuth case, one can define a second tableau 
Lc, which records the order in which new cells appear in Kc. The construction 
of Kc and Lc is illustrated by the next example. 

EXAMPLE 3. If c is the word x2x1x3x2x1x3 then 

K = c 
1 2 3 1 3 6 
2 3 
3 

Lc = 2 4 
5 

THEOREM 5. If C represents a maximal chain in SR, then Kc is row and 
column strict of (staircase) shape ln-1,n-2, ••• ,1l, and always has the form 

1 2 3 n 
2 3 n 

n-1 n 
n 

THEOREM 6. The map C ----7 Lc is a bijection from chains in the weak 
Bruhat order of Sn to standard Young tableaux of staircase shape. 

Although Theorem 6 defines a bijection, the actual inverse of (3) is 
obtained by applying the operator S to Lc· For example, the reader can check 
that the tableaux appearing in Examples 2 and 3 satisfy the relations 

LS- T c -
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Thus the maps 

EDELMAN-GREENE 

s B -----7 CB -----7 L C 
B 

(4) 

are inverses. Here, CB denotes the maximal chain (or word) associated with 
balanced staircase tableau B under the bijection given by Theorem 1. 

6. BALANCED TABLEAUX OF ARBITRARY SHAPE. Finally, we sketch the proof of 
Theorem 2 for tableaux of arbitrary shape. A bijection from standard 
tableaux to balanced tableaux is obtained as follows: given a standard 
tableau T of arbitrary shape, first imbed T in a staircase tableau T in a 
canonical fashion (to be described later). Then apply the staircase bijection 
(4) toT, obtaining a balanced staircase tableau B. Finally, delete the 
extra cells from~. obtaining a balanced tableau B of the original shape. 
The details are best explained by example. 

EXAMPLE 4. Consider the Young tableau 

1 3 5 
T = 2 

4 
6 

of shape 12,1,1,11. First imbed T in a staircase tableau T of shape j4,3,2,1l 
by adding the missing entries 7,8,9,10 from left to right in the first row, 
then the second row, then the third, and so forth. Thus 

1 3 5 7 
T = 2 8 9 

4 10 
6 

Next apply the staircase bijection, which associates with T the chain 
Wr = x2x3x2x4x1x3x2x3x1x4, and the balanced tableau 

~ = Bw.,. 
T 

4 7 5 2 
6 9 8 
3 10 
1 

Now delete the entries 10,9,8,7 in this order, each time interchanging the 
columns directly above and to the right of the element deleted. It is easily 
seen that deleting elements in this way preserves the property of being 
balanced. The resulting tableau is 
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BALANCED TABLEAUX 

4 2 5 

B = 6 

3 

1 

which (by definition) is the balanced tableau associated with T. 

THEOREM 7. The correspondence described above is a bijection from 
standard Young tableaux to balanced tableaux of the same shape. 

7. CONCLUDING REMARKS. We have not succeeded in finding a proof of 
Theorem 2 which is independent of (4), nor have we found any natural 
algebraic or geometric interpretation of balanced tableaux when the shape is 
not a staircase. 

The bijections defined by Theorems 1, 4, and 6 contain enough 
information to count the number c(u) of maximal chains in Sn with top 
element equal to a fixed permutation u . Stanley conjectured that c(u) = 
L f ). • where the sum is over a certain mu 1 ti set M( u ) of shapes. His 

proof [9] gives this sum but does not preclude the possibility of negative 
coefficients. Our correspondence describes the multi set M( u) in a natural 
way, and shows that only positive coefficients occur. For further details, 
see [1]. 
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