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 ? Applied Probability Trust 2006

 LETTER TO THE EDITOR

 Dear Editor,
 Three-handed gambler's ruin

 Three gamblers play a fair game as follows: at each step one player is selected at random to
 give up a chip (i.e. one unit of wealth), and one of the other two players is selected at random to
 receive it. After some time one of the three players is the first to lose all of his chips. Here we
 use martingales to find an expression for the variance of this time very simply. This expression
 was first obtained by Bruss et al. [1], using a different method.

 1. Preliminaries

 The three gamblers initially possess integer fortunes of sizes a, b, and c, respectively. They
 play a sequence of fair games such that in each independent round one player is selected
 uniformly at random to give up a chip, and another is selected uniformly at random to receive

 it. Let the respective fortunes of the players after n rounds be Xn, Yn, and Zn (of course,

 (Xo, Yo, Zo) = (a, b, c)).
 Denote by S the random number of rounds played until the first instance at which any one

 of the players has no chips. A natural question is then to ask what are the distribution, mean,
 and variance of S. The fact that

 E() 3abc E(S) = a+b+ (1)

 was first established by Engel [2], who conjectured the form of the solution from computer
 simulations and then verified that it satisfied the appropriate difference equation and boundary
 condition. Later Bruss et al. [1] found the distribution of S and used it to show that

 va(S) = 3abc Fab+bc+ca-I _ 3abc (2)
 a +b +c L 2 a+b+cJ(2

 They did this by evaluating the sum E(S2) = Er>O P(S = r)r2 using an ingenious application
 of Cauchy's theorem for functions of a complex variable. Here we shall use martingales to
 obtain (2) much more easily, by means of the optional stopping theorem.

 2. The martingales

 First recall the familiar fact that Mn = Xn Yn Zn + 1 n (a + b + c) is a martingale with respect

 to (Xn, Yn, Zn). To see this we use the fact that rounds are independent and simply evaluate

 E(Mn+l I Xn = X, Yn = Y, Zn = Z)

 = {(X + 1)(y- )Z + (x- 1)(y + )Z + (X + 1)y(z- 1) + (x- )y(z + 1)
 +x(y+ l)(z-1)+x(y-l)(z+ 1)1+ l(n+ l)(a+b+c)

 = {6xyz-2(x+y+z)}+ 4n(a+b+c)+ l(a+b+c)
 =Mn
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 where the final equality follows from x + y + z = X,n + Yn + Zn = a + b + c. This martingale
 is unifonnly bounded and S is a stopping time; therefore, by the optional stopping theorem,

 abc = E(Mo) = E(MS) = 0 + 1 E(S)(a + b + c),

 which is (1).
 Next we note that

 V, = Xn2Y,ZZ + Xn2YnZ2 + XYn2Z2 + 4nXnYnZn + 2tn2 + 1tn,

 where t = a + b + c, is also a martingale with respect to (Xn, Yn, Zn). This is verified in the
 usual way: use the fact that rounds are independent and evaluate

 E(Vn+l I Xn = X, Yn = Y, Zn = Z)

 {(x + 1)2(y -1)2Z + (X - 1)2(y + 1)2Z + (x + 1)2y2(z - 1)

 + (X _ 1)2y2(z + 1) + X2(y - 1)2(Z + 1) + x2(y + 1)2(Z -1)

 + (x + 1)2(y-1)Z2 + (X- 1)2(y + 1)z2 + (X + 1)2y(z _ 1)2

 + (x - 1)2y(z + 1)2 + x2(y + 1)(Z - 1)2 + X2(y - 1)(z + 1)2

 + (x + 1)(y- 1)2Z2 + (X- 1)(y + 1)2Z2 + (X _ I)y2(z + 1)2

 + (x + I)y2(z _ 1)2 + x(y + 1)2(Z _ 1)2 + X(y - 1)2(Z + 1)2)

 + 4(n + 1) {(x + l)(y - 1)z + (x - l)(y + 1)z + x(y + 1)(z -1)
 + x(y- 1)(z + 1) + (X + l)y(z- 1) + (x-l)y(z + 1)}

 + 2-t(n + 1)2 + lt(n + 1)
 = 6{6x2y2z + 4zx2 + 4zy2 - 4yx2 - 4xy2 - 8xyz + 2z

 + 6x2yz2 + 4yx2 + 4z2y - 4x2z -4xz2 - 8xyz + 2y

 + 6xy2z2 + 4xy2 + 4z2x - 4y2z - 4yz2 - 8xyz + 2x}

 + 2(n+ 1){6xyz-2(x+y+z))+ 2t(n+ 1)2+ 1t(n+ 1)
 = X2y2z + x2yz2 + xy2z2+4nxyz+ 4(a+b+c)

 -4n(a +b +c)- 4 (a +b +c) + 2tn2 +4,tn +23t+ lnt + 't
 = Vn.

 This martingale is not uniformly bounded, but it is easy to see that E(S2) < oo. Therefore,
 applying the appropriate form of the optional stopping theorem yields

 abc(ab + bc + ca) = E(Vo) = E(Vs)
 = 2 t E(S2) + 4 t E(S)

 = 2 tE(S2)+abc, by(1). (3)
 Hence,

 E(S2) = - (ab + bc + ca- 1), Ft
 which immediately gives (2).

This content downloaded from 
������������128.6.45.205 on Wed, 13 Sep 2023 15:43:50 +00:00������������ 

All use subject to https://about.jstor.org/terms



 286 D. STIRZAKER

 As an alternative to using the optional stopping theorem, we may proceed directly by noting

 that VnAS, where n A S is the smaller of n and S, is a martingale. Then E(Vo) = E(VnAS).
 Now, as n -+ oo,

 VnAS -* 2tS2 + 1 tS almost surely.

 It is easy to see that E(VnAS) is uniformly bounded; hence, by dominated convergence we
 obtain (3), as before.
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 Yours sincerely,

 DAVID STIRZAKER

 St. John's College,
 University of Oxford,

 Oxford OX1 3JP,
 UK.

 Email address: david.stirzaker@sj c.ox.ac.uk
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