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 Suppose that g(a, b, c) is another solution. Consider h(a, b, c) = f(a, b, c) -
 g(a, b, c). Then

 h(a,b,c) = 6 h(x,y,z) (4)
 6

 over all neighbors of (a, b, c).
 The function h is defined for finitely many points. At some of these points h

 assumes its maximum M. Because of (4) h(x, y, z) = M for all six neighbors of
 (a, b, c). And their neighbors have also the same h-value M, and so on, until we
 reach the boundary, at which h has value 0. Thus h(a, b, c) < 0 everywhere.
 Similarly we can show that -h < 0. Thus h = 0, and f(a, b, c) = g(a, b, c) every-
 where. So f is unique.

 Lecturing in Norway, Rade mentioned that the TTP has recently been solved by
 me. A listener asked about the expected duration g(a, b, c) of the following
 modification of the TTP: Start with three towers. As soon as one tower is empty
 continue playing with two players until just one is left. At the lecture it was agreed
 that this would be a harder problem to solve. R?ade challenged me to find
 g(a, b, c). He added that he also would like to know the probability Pa that the
 a-tower first becomes empty.

 With my PC I started to work empirically on g(a, b, c). Instead of 15 minutes it
 took me several hours of hard work. The trouble was that I was looking for a more
 complicated formula. At the end I found the much simpler correct formula

 g(a,b,c) = ab + bc + ca. (5)

 It is easy to show that (2) is satisfied when a, b, c > 0. The new boundary
 conditions are

 g(a, b, 0) = ab, g(a, 0, c) = ac, g(O, b, c) = bc. (6)

 (6) is the expected duration for the Two Tower Problem. This is a classic result,
 which is equivalent to the Gamblers Ruin Problem. See [4]. Had I looked at (6)
 first, they would have immediately suggested (5).

 By analogy I was able to write down the solution of the modified n-Tower-Prob-
 lem:

 g(XI, . . . = n XiXk. (7)
 i<k

 It was also easy to guess the following version of R'ade's second problem: The ith
 tower is the winner (in the game which continues until one pile is left) with
 probability

 xi
 P. = - - - (8)

 Both formulas (7) and (8) satisfy the appropriate recurrencies and boundary
 conditions. The proof of (7) involves induction on n. The boundary conditions for a
 given value of n are determined by the solution of the problem for n - 1.
 Uniqueness is proved as in the case of the Three-Tower-Problem.

 A related result could also be found with my PC searching for several hours:
 Players 1, 2, 3 start with a, b, c chips, respectively. In one round each player stakes
 one chip. Then a 3-sided symmetric die labeled 1, 2, 3 is rolled and the winner gets all
 the chips staked. If a player is broke the game continues with two players until one
 player has accumulated all the chips. The expected number of rounds is

 2abc

 h(a, b, c) = ab + bc + ca - a + b + c -2 (9)
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 If the game stops as soon as one tower is empty the expected duration is

 abc

 h(a, b, c) = a + b + c - 2 (10)

 This result was communicated to me by a former IMO contestant Michael Stoll. It
 was found ten years ago during a summer academy for gifted high school students.
 Despite huge efforts they were unable to handle four players.

 The original Four Tower Problem is still unsolved. I experimented extensively
 for many hours, but all my guesses turned out to be wrong. f(a, b, c, d) seems to
 be a very complicated function, as can be seen from the exact value f(3, 2,2,2) =
 350612/69969. No simple formula can give such a complicated result for so small
 values of a, b, c, d. The only thing I could do was to guess a good approximation

 6abcd

 f (a, b, c, dd) ab + ac + ad + bc + bd + cd (11)

 It is easy to see that f(a, b, c, d) has the form p(a, b, c, d)/q(a, b, c, d) with
 polynomials which are symmetric in a, b, c, d. In addition q seems to be constant,
 depending only on a + b + c + d. The use of Mathematica may bring more
 success. I worked numerically with Turbo Pascal as in [3].
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 A Linear Algebra Approach to Cyclic
 Extensions in Galois Theory

 Evan G. Houston

 A beginning course in Galois theory often includes a discussion of cyclic exten-
 sions, that is, Galois extensions whose Galois groups are cyclic. The usual ap-
 proach (see, e.g., [1] and [2]) is to derive the results on cyclic extensions as
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