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Abstract

In this thesis we introduce the splitting algebra of a separable and monic polynomial.

Furthermore, we explore the connection between Galois Theory and Representation

Theory through the splitting algebra. In the first chapter we mainly use commutative

algebra to justify why we call A = F [x1, . . . , xn]/〈σ1 − a1, . . . , σn − an〉 the splitting

algebra of a separable and monic polynomial, and we show that the dimension of A

over F is n!. In chapter two we continue to use commutative algebra to show that

the splitting algebra is isomorphic to a product of splitting fields of a separable and

monic polynomial. Finally in chapter three we use the Normal Basis Theorem to

prove that the splitting algebra is isomorphic to the regular representation of Sn.
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Chapter 1

Dimension of the Splitting Algebra

The main purpose of this chapter is to define the splitting algebra of a monic poly-

nomial f(x) ∈ F [x] and compute its dimension as vector space over F . One general

assumption that we will be making is that the field F has infinitely many elements.

We will also introduce the concept of an F -algebra.

1.1 Background

1.1.1 Polynomials

Definition 1.1.1. Let n ≥ 1 and λ = (λ1, . . . , λn) ∈ Zn≥0. A monomial in x1, . . . , xn

is a product of the form xλ = x1
λ1 · x2

λ2 · · ·xnλn .

Definition 1.1.2. A polynomial f in x1, . . . , xn with coefficients in F is a finite

sum

f =
∑
λ

cλx
λ

where each cλ ∈ F , and xλ is a monomial for all λ. The set of all polynomial in

x1, . . . , xn with coefficients in F is denoted F [x1, . . . , xn].

Remark 1.1.3. It is well known that F [x1, . . . , xn] is a ring.

Important examples of polynomials are the elementary symmetric polynomi-

als defined as follows.
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Definition 1.1.4. Suppose x1, . . . , xn are variables over a field F . Then

σ1 = x1 + · · ·+ xn,

σ2 =
∑

1≤i<j≤n

xixj,

...

σk =
∑

1≤i1<···<ik≤n

xi1xi2 · · ·xik ,

...

σn = x1x2 · · ·xn.

The following identity is a very useful property of the elementary symmetric poly-

nomials.

Proposition 1.1.5 ([1, Prop. 2.1.4]). Suppose x1, . . . , xn are variables over F . Then

(x− x1) · · · (x− xn) = xn − σ1x
n−1 + · · ·+ (−1)nσn in F [x1, . . . , xn, x].

Definition 1.1.6. A polynomial g ∈ F [x1, . . . , xn] is called symmetric if

g(xσ(1), . . . , xσ(n)) = g(x1, . . . , xn)

for all permutations σ in the symmetric group Sn.

Remark 1.1.7. It is easy to see that the elementary symmetric polynomials are

symmetric in the sense of Definition 1.1.6.

The last important property of the symmetric polynomials that we will need

is the following theorem known as The Fundamental Theorem of Symmetric

Polynomials.

Theorem 1.1.8 ([1, Thm. 2.2.2]). Any symmetric polynomial in F [x1, . . . , xn] can

be written uniquely as a polynomial in σ1, . . . , σn.

We next define the discriminant.
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Definition 1.1.9. Given F [x1, . . . , xn] such that n ≥ 2, then the discriminant ∆ is

∆ =
∏
i<j

(xi − xj)2.

Remark 1.1.10. It is obvious that the discriminant ∆ is a symmetric polynomial.

Therefore,

∆ = ∆(σ1, . . . , σn) in F [σ1, . . . , σn].

Now we define the discriminant of of a monic polynomial.

Definition 1.1.11. Given a monic polynomial f(x) = xn − a1x
n−1 + · · · + (−1)nan

in F [x], the discriminant of f(x), denoted ∆(f), is

∆(f) = ∆(a1, . . . , ai, . . . , an) ∈ F.

The last important concept that we need to introduce here is the idea of a separable

polynomial.

Definition 1.1.12. A polynomial f(x) ∈ F [x] of degree n > 0 is said to be separable

or separable over F if it has n distinct roots in some extension field of F .

Remark 1.1.13. It is well known that if f(x) ∈ F [x] is monic, then ∆(f) 6= 0 if and

only if f(x) is separable over F . See [1, Ex. 4.2.4].

1.1.2 Ideals

Definition 1.1.14. Suppose f1, . . . , fs are polynomials in F [x1, . . . , xn]. Then we

define the set

〈f1, . . . , fs〉 =
{ s∑

i=1

hifi

∣∣∣ h1, . . . , hs ∈ F [x1, . . . , xn]
}
.

The key property of the set 〈f1, . . . , fs〉 ⊆ F [x1, . . . , xn] is summarized in the

following proposition.

Proposition 1.1.15 ([2, Lem. 3.1.5]). Let f1, . . . , fs be polynomials in F [x1, . . . , xn].

Then 〈f1, . . . , fs〉 is an ideal of F [x1, . . . , xn]. We call 〈f1, . . . , fs〉 the ideal gener-

ated by f1, . . . , fs.
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The next result is a very important theorem known as the Hilbert Basis Theorem.

Theorem 1.1.16 ([2, Thm. 4.2.5]). If I ⊆ F [x1, . . . , xn] is an ideal, then there exist

g1, . . . , gs ∈ I such that I = 〈g1, . . . , gs〉. In other words, every ideal I ⊆ F [x1, . . . , xn]

has a finite generating set.

1.1.3 Gröbner Bases

If we examine in detail the division algorithm in F [x] or the Gaussian elimination

algorithm for a system of linear equations, we see that the notion of ordering terms

of a polynomial is an essential ingredient for both algorithms. Therefore, it should be

no surprise that mathematicians have developed precise definitions to deal with the

ordering of monomials in F [x1, . . . , xn].

Note that there is a one-to-one correspondence between n-tuples λ = (λ1, . . . , λn) ∈

Zn≥0 and monomials xλ = x1
λ1 ·x2

λ2 · · ·xnλn ∈ F [x1, . . . , xn]. Furthermore, any order-

ing we impose on the set Zn≥0 will give us an ordering in the monomials in F [x1, . . . , xn].

Therefore, we will follow the convention that if > is any ordering on the set Zn≥0, then

if α > β in Zn≥0 according to this ordering, then we will also say that xα > xβ. Of

course we will also like to be able to arrange the terms of a polynomial unambiguously

in a descending or ascending order. In order to do this we introduce the following

two definitions.

Definition 1.1.17. An order > on Zn≥0 is said to be total if it satisfies the following

two properties:

(i) For every pair of monomials xα and xβ, exactly one of the following statements

should be true:

xα > xβ, xα < xβ, or xα = xβ.

(ii) The order > is transitive, i.e., if xα > xβ and xβ > xγ, then xα > xγ.

With the previous definition in mind, we make the following definition.

Definition 1.1.18. An order > is said to be a monomial ordering on F [x1, . . . , xn]

if it satisfies the following three properties:
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(i) The order > is a total order on Zn≥0.

(ii) If α > β and γ ∈ Zn≥0, then α + γ > β + γ. Note that this implies that if

xα > xβ, then xα · xγ > xβ · xγ for all xγ.

(iii) The order > is well-ordering on Zn≥0. In other words, if B is a nonempty subset

of Zn≥0, then there exists β ∈ B such that α > β for every α 6= β in B.

An important example of an ordering of n-tuples is the lexicographic order, some-

times denoted lex order for short. In this thesis we will use the terms monomial order

and monomial ordering interchangeably.

Definition 1.1.19 (Lexicographic Order). Suppose α, and β are in Zn≥0. We say

that α >lex β if the rightmost nonzero entry of the vector difference α − β ∈ Zn≥0 is

positive. We write xα >lex x
β if α >lex β.

Proposition 1.1.20 ([2, Prop. 4.2.4]). The lexicographic order on Zn≥0 is a monomial

ordering.

Now that we know the definition of a monomial order, we introduce the following

terminology.

Definition 1.1.21. Suppose f =
∑

λ cλx
λ is a nonzero polynomial in F [x1, . . . , xn]

and > is a monomial order.

(i) The leading term of f is

lt(f) = cαx
α, α = max(λ ∈ Zn≥0 | cλ 6= 0).

(ii) The leading monomial of f is

lm(f) = xα, α = max(λ ∈ Zn≥0 | cλ 6= 0).

It is easy to observe that once we choose a monomial ordering, then each nonzero

f ∈ F [x1, . . . , xn] has a unique leading term. Therefore, for any ideal I ⊆ F [x1, . . . , xn]

different from {0} we define its ideal of leading terms as follows.
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Definition 1.1.22. Suppose I ⊆ F [x1, . . . , xn] is an ideal other than {0}, and fix a

monomial ordering in F [x1, . . . , xn]. Then:

(i) lt(I) = {lt(f) | f ∈ I \ {0}}.

(ii) The ideal of leading terms of I is just the ideal generated by the elements of

lt(I), denoted by 〈lt(I)〉.

Now we are ready to define the main definition of this subsection.

Definition 1.1.23. Fix a monomial order on the polynomial ring F [x1, . . . , xn].

Given a nonzero ideal I ⊆ F [x1, . . . , xn], a finite subset S = {g1, . . . , gs} of I\{0}

is said to be a Gröbner basis of I if

〈lt(g1), . . . , lt(gs)〉 = 〈lt(I)〉.

Following the convention that 〈∅〉 = {0}, we define ∅ to be the Gröbner basis of the

zero ideal.

Remark 1.1.24. It is well known that any Gröbner basis {g1, . . . , gs} for an ideal

I ⊆ F [x1, . . . , xn] is a basis for I, i.e., I = 〈g1, . . . , gs〉. (See [2, Cor. 6.2.5]).

1.1.4 Algebras

Definition 1.1.25. Let F be a field. An F -algebra consists of a set B together

with addition x, y ∈ B 7→ x + y ∈ B, multiplication x, y ∈ B 7→ xy ∈ B, and scalar

multiplication x ∈ B, a ∈ F 7→ ax ∈ B such that:

(i) B is a ring under addition and multiplication.

(ii) B is vector space over F under addition and scalar multiplication.

(iii) a(xy) = (ax)y = x(ay) for all a ∈ F , x, y ∈ B

(iv) B has a multiplicative identity 1 ∈ B such that 1 6= 0.

Remark 1.1.26. In this thesis all F -algebras are commutative unless stated other-

wise. Lastly, an F -algebra is also called an algebra over F .
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Remark 1.1.27. Observe that by letting x = 1B and a ∈ F the map 7→ ax implies

that B contains a copy of F .

Example 1.1.28. The polynomial ring F [x1, . . . , xn] is an algebra over F .

Example 1.1.29. Suppose F ⊆ L is a field extension. Then L is an algebra over F .

Example 1.1.30. If F is a field, then the set Mn×n(F ) consisting of all n×n matrices

with entries in F is an F -algebra. When n > 2, Mn×n(F ) is an example of a non-

commutative F -algebra.

Remark 1.1.31. It can be shown that in general if B is a commutative ring and F

is a field, then B is an F -algebra if and only if B contains an isomorphic copy of F

with 1B ∈ F .

Given how important is the concept of homomorphism for rings and groups, and

how important is the concept of linear maps for vector spaces it should be of no

surprise that we have a analogous concept for F -algebras.

Definition 1.1.32. Given F -algebras C and B, an F -algebra homomorphism is a

F -linear map φ : C → B such that φ(xy) = φ(x)φ(y) for all x, y ∈ C, and φ(1) = 1.

Remark 1.1.33. Observe that an F -algebra homomorphism φ : C → B maps the

copy of F in C to the copy of F in B as the identity map.

Remark 1.1.34. The composition of F -algebra homomorphisms is an F -algebra

homomorphism. This is due to the fact that the composition of ring homomorphisms

is a ring homomorphism, and the composition of linear maps is a linear map.

Example 1.1.35. Let B be an F -algebra and β1, . . . , βn ∈ B. Then the evaluation

map φ : F [x1, . . . , xn] → B defined by φ(p(x1, . . . , xn)) = p(β1, . . . , βn) is an F -

algebra homomorphism. For a nearly complete proof see [1, (2.2)].
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1.2 General Facts about F-algebras

Next we prove a few facts about F -algebra homomorphisms that will become neces-

sary later.

Proposition 1.2.1. Suppose B, C are F -algebras.

(i) Let J ⊆ B be proper ideal. Then J is a subspace of B and the quotient B/J is

an F -algebra where scalar multiplication is defined by

a(u+ J) = au+ J for all a ∈ F and u+ J ∈ B/J.

(ii) If J ⊆ B is a proper ideal, then there exists an F -algebra homomorphism

π : B → B/J such that π(b) = b+ J for all b ∈ B.

(iii) Suppose Φ : B → C is a F -algebra homomorphism. Assume that J ⊆ Ker(Φ).

Then φ(u+ J) = Φ(u) is a well defined F -algebra homomorphism

φ : B/J → C

such that Φ = π ◦ φ.

Proof. (i) First we will show that J is subspace of B. If J ⊆ B is proper ideal, then

0 ∈ J . Therefore J 6= ∅. If u, v ∈ J , then u + v ∈ J since J is a ideal. Now if c ∈ F

and u ∈ J , then cu = c(1Bu) = (c1B)u ∈ J because J is an ideal of B. Now to see

that B/J is an F -algebra under the scalar multiplication defined in the proposition,

observe that our first axiom of Definition 1.1.25 holds because B/J is a ring. We omit

the verification that B/J is a vector space over F . To see that scalar multiplication

is compatible with multiplication, observe that

c((x+J)(y+J)) = c(xy+J) = c(xy)+J = x(cy)+J = (x+J)(cy+J) = (x+J)(c(y+J))

for all c ∈ F and x+ J, y + J ∈ B/J . Therefore, B/J is an F -algebra.

(ii) We know that π is ring homomorphism. Hence, it suffices to show that π is

a F -linear map. Given, a ∈ F and u ∈ B. Observe, π(au) = au + J and since B/J

8



is an F -algebra, then au+ J = a(u+ J) = aπ(u). Therefore π is linear. Thus π is a

F -algebra homomorphism.

(iii) By a standard result in abstract algebra, we know that φ is a well defined ring

homomorphism such that Φ = π ◦ φ. Therefore we have the following commutative

diagram:

B Φ //

π

��

C

B/J

φ

EE

Hence, in order to show that φ is an F -algebra it suffices to show that φ is linear.

Given a ∈ F and u+ J ∈ B. Observe that φ(a(u+ J)) = φ(au+ J) = Φ(au). Since

Φ is an F -algebra homomorphism it follow that Φ(au) = aΦ(u) = aφ(u+ J). Hence

φ(a(u+ J)) = aφ(u+ J).

Therefore φ is linear and thus is an F -algebra homomorphism. Q.E.D.

Proposition 1.2.2. Suppose I ⊆ J ⊆ B where B is an F -algebra, and I, J are ideals

of B. Then φ(a+ I) = a+J gives a well defined surjective F -algebra homomorphism

φ : B/I → B/J.

Proof. Assume that a1 + I = a2 + I. By the criterion for equality of cosets, we have

a1 − a2 ∈ I. Since I ⊆ J , then a1 − a2 ∈ J . Hence a1 + J = a2 + J . Thus φ is well

defined. Now we will check that φ is linear. Given a1 +I, a2 +I ∈ B/I and c1, c2 ∈ F ,

observe that

φ(c1(a1+I)+c2(a2+I)) = φ((c1a1+I)+(c2a2+I)) = φ(c1a1+c2a2+I) = c1a1+c2a2+J.

Since c1a1 +c2a2 +J = (c1a1 +J)+(c2a2 +J) = c1(a1 +J)+c2(a2 +J). It follows that

φ(c1(a1 + I) + c2(a2 + I)) = c1(φ(a1 + I)) + c2(φ(a2 + I))= c1φ(a1 + I) + c2φ(a2 + I).

Therefore φ is linear. The rest follows from the known fact that φ is a surjective ring

homomorphism. Q.E.D.
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1.3 The Splitting Algebra

1.3.1 Introducing the Splitting Algebra

The following definitions introduce one of the central objects of this thesis.

Definition 1.3.1. Let B be an F -algebra. Then a polynomial f(x) ∈ F [x] is said

to split completely in B if f(x) can be written as product of linear terms in B[x].

In other words, f(x) on B if f(x) = c(x − α1) · (x − α2) · · · (x − αn) ∈ B[x], where

α1, . . . , αn ∈ B and c ∈ F\{0}.

Definition 1.3.2. Suppose f(x) = xn − a1x
n−1 + · · · + (−1)nan ∈ F [x]. Then set

I = 〈σ1 − a1, . . . , σn − an〉 ⊆ F [x1, . . . , xn]. The quotient algebra

A = F [x1, . . . , xn]/I

is called the splitting algebra of f(x) over F .

The next proposition is meant to justify why we call F [x1, . . . , xn]/I the splitting

algebra of f(x) = xn − a1x
n−1 + · · ·+ (−1)nan in F [x].

Proposition 1.3.3. Let f(x) = xn − a1x
n−1 + · · · + (−1)nan ∈ F [x], and A =

F [x1, . . . , xn]/I where I = 〈σ1 − a1, . . . , σn − an〉. Then:

(i) f(x) splits completely in A.

(ii) For any F -algebra B, f(x) splits completely in B if and only if there exists a

F -algebra homomorphism from A to B.

Proof. Let αi = xi + I ∈ A for 1 ≤ i ≤ n. By Proposition 1.1.5 we know that

(x− x1) · (x− x2) · · · (x− xn) = xn − σ1x
n−1 + · · ·+ (−1)nσn (1.3.1)

in F [x1, . . . , xn][x].

Now observe that ai + I ∈ A for 1 ≤ i ≤ n because ai is a constant polynomial

in F [x1, . . . , xn] for 1 ≤ i ≤ n. Therefore, regarding f(x) as a polynomial in x with

coefficients A we can write

f(x) = xn − (a1 + I)xn−1 + · · ·+ (−1)n(an + I) in A[x].
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Note that the F -algebra homomorphism π : F [x1, . . . , xn] → A defined by p 7→

p + I extends to an F -algebra homomorphism π : F [x1, . . . , xn][x] → A[x]. Then

(1.3.1) implies that

(x− α1) · (x− α2) · · · (x− αn) = xn − (σ1 + I)xn−1 + · · ·+ (−1)n(σn + I)

in A[x]. But since σi − ai ∈ I for 1 ≤ i ≤ n, then by the criterion for equality of

cosets we have that σi + I = ai + I for 1 ≤ i ≤ n. Thus

f(x) = (x− α1) · (x− α2) · · · (x− αn) in A[x].

Now we will proceed to prove the second part of the proposition. (⇐) Suppose B

is an F -algebra and there exists a homomorphism φ : A → B. By part (i) we know

that

f(x) = (x− α1) · (x− α2) · · · (x− αn) in A[x].

Also as in part (i) φ can be extended to be an F -algebra homomorphism from A[x]

to B[x]. Therefore

φ(f(x)) = (x− φ(α1))(x− φ(α2)) · · · (x− φ(αn)) in B[x].

Since F -linear maps fix the elements of F , we have φ(f) = f . Therefore,

f(x) = (x− φ(α1))(x− φ(α2)) · · · (x− φ(αn)) in B[x].

Hence f(x) splits completely in B.

(⇒) Now suppose f(x) splits completely in B. Assume

f = (x− β1) · (x− β2) · · · (x− βn) in B[x], β1, . . . , βn in B.

From Example 1.1.35, we known that the evaluation map

Φ : F [x1, . . . , xn]→ B defined by φ(p(x1, . . . , xn)) = p(β1, . . . , βn)

is an F -algebra homomorphism. Observe that Φ(σi − ai) = 0 because Φ(σi) =

σi(β1 . . . βn) = ai. Therefore, I ⊆ Ker(Φ), and since I is a proper ideal of F [x1, . . . , xn],

then by the second part of Proposition 1.2.1 we know that

φ : A→ B defined by φ(p(x1, . . . , xn) + I) = φ(p(x1, . . . , xn)) = p(β1, . . . , βn)

is an F -algebra homomorphism. Q.E.D.

11



1.3.2 Computing the Dimension of the Splitting Algebra

In this section we will prove that the dimension of the splitting algebra of f(x) over

F is n!, where n is the degree of F . In order to do this we first need to introduce

some notation.

Given variables x1, . . . , xs, let

hj(x1, . . . , xs) =
∑
|λ|=j

xλ.

In other words, hj(x1, . . . , xs) is the sum of all monomials of total degree j in

x1, . . . , xs. Now we proceed to prove the main result of this chapter.

Theorem 1.3.4. Fix >lex order on the polynomial ring F [x1, . . . , xn] with

xn >lex xn−1 >lex · · · >lex x1.

Then:

(i) For 1 ≤ j ≤ n, the polynomials

gj = hn−j+1(x1, . . . , xj) +

n−j+1∑
i=1

(−1)iaihn−j+1−i(x1, . . . , xj)

form a Gröbner basis for I = 〈σ1 − a1, . . . , σn − an〉.

(ii) dimF (A) = n! where A = F [x1, . . . , xn]/〈σ1 − a1, . . . , σn − an〉.

Proof. The first thing we need to establish is that 〈g1, . . . , gn〉 is a basis of I. In order

to do this observe that from [2, Ex. 11.7.1], we have the identity

0 = hn−j+1(x1, . . . , xj) +

n−j+1∑
i=1

(−1)iσihn−j+1−i(x1, . . . , xj). (1.3.2)

Subtracting identity (1.3.2) from the definition of gj gives us

gj =

n−j+1∑
i=1

(−1)i(ai − σi)hn−j+1−i(x1, . . . , xj),
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which can be rewritten as

gj =

n−j+1∑
i=1

(−1)i+1(σi − ai)hn−j+1−i(x1, . . . , xj). (1.3.3)

Therefore the gj’s are in the ideal I = 〈σ1 − a1, . . . , σn − an〉. Hence 〈g1, . . . , gn〉 ⊆ I.

If we write out the above formula for gj without the summation, we get

gj = (σ1 − a1)hn−j(x1, . . . , xj)− (σ2 − a2)hn−j−1(x1, . . . , xj)

+ · · ·+ (−1)n−j(σn−j+1 − an−j+1)h0(x1, . . . , xj).

Since h0 = 1 (there is only one monomial of total degree zero), this becomes

gj = (σ1 − a1)hn−j(x1, . . . , xj) + · · ·+ (−1)n−j(σn−j+1 − an−j+1).

We will proceed to show that σi − ai ∈ 〈g1, . . . , gn〉 for 1 ≤ i ≤ n by induction on

i. Our base case comes easily since when j = n we have gn = σ1 − a1 in 〈g1, . . . , gn〉.

Now assume that

σi − ai ∈ 〈g1, . . . , gn〉 for 1 ≤ i ≤ k.

Then,

gn−k = (σ1−a1)hk(x1, . . . , xn−k)−(σ2−a2)hk−1(x1, . . . , xn−k)+· · ·+(−1)k(σk+1−ak+1).

Hence, (−1)k(σk+1 − ak+1) is equal to

gn−k − ((σ1 − a1)hk(x1, . . . , xn−k) + · · ·+ (−1)k−1(σk − ak)h1(x1, . . . , xn−k)).

This proves that σk+1 − ak+1 ∈ 〈g1, . . . , gn〉. Therefore I ⊆ 〈g1, . . . , gn〉. Hence

{g1, . . . , gn} is a basis of I.

It remains to prove that {g1, . . . , gn} is a Gröbner basis. Recall

gj = hn−j+1(x1, . . . , xj) +

n−j+1∑
i=1

(−1)iaihn−j+1−i(x1, . . . , xj)

and that our >lex order is

xn >lex xn−1 >lex · · · >lex x1.

13



Since hn−j+1(x1, . . . , xj) is the sum of all monomials of total degree n − j + 1 in

x1, . . . , xj, then

lt(hn−j+1(x1, . . . , xj)) = xn−j+1
j .

Now observe that by definition every term in
∑n−j+1

i=1 (−1)iaihn−j+1−i(x1, . . . , xj) will

have a degree less than or equal to n− j. Therefore, it is clear that lt(gj) = xn−j+1
j .

Hence if i 6= j, then the leading monomials lm(gi), lm(gj) are relatively prime. By

[2, Ex. 4.2.9] it follow that the set

{g1, . . . , gn} (1.3.4)

is a Gröbner basis of I = 〈g1, . . . , gn〉 = 〈σ1 − a1, . . . , σn − an〉.

Now we prove that (ii) is true. Since (1.3.4) is Gröbner basis, then by definition

〈lt(g1), . . . , lt(gn)〉 = 〈xn1 , . . . , xn〉 = 〈lt(I)〉.

We know that A ∼= S as vector space over F , where S = Span(xλ | xλ /∈ 〈lt(I)〉).

See [1, Prop. 4.5.3]. Since (1.3.4) is Gröbner basis it follows that

{xλ | xλ /∈ 〈lt(I)〉} = {xλ | xλ not divisible by xn1 , . . . , xn}

= {xλ11 · xλ22 · · ·xλnn | 0 ≤ λ1 ≤ n− 1, 0 ≤ λ2 ≤ n− 2, . . . , 0 ≤ λn ≤ 0},

where the last equality follows from

xλ not divisible by xn1 implies that 0 ≤ λ1 ≤ n− 1

xλ not divisible by xn−1
2 implies that 0 ≤ λ2 ≤ n− 2

...

xλ not divisible by xn implies that 0 ≤ λn ≤ 0.

Therefore it is clear that dimF (S ) = dimF (A) = n!. Q.E.D.
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Chapter 2

The Structure of the Splitting
Algebra

In this chapter we will show that when f = xn − a1x
n−1 + · · · + (−1)nan ∈ F [x] is

separable, the ideal I = 〈σ1 − a1, . . . , σn − an〉 ⊆ F [x1, . . . , xn] is a radical ideal, and

the splitting algebra A = F [x1, . . . , xn]/I is equal to a product of fields, each of which

is a splitting field of f(x) over F .

2.1 Background

Like in the previous chapter we first establish some background and notation.

Definition 2.1.1. The extension F ⊆ L is said to be a finite extension of F if L is

a finite-dimensional vector space over F . The degree of L over F , denoted [L : F ], is

defined as follows: [L : F ] = dimF L if L is a finite extension; otherwise [L : F ] =∞.

Here dimF L is the dimension of L as vector space over F .

Another important idea that we need to introduce is the notion of a splitting field.

Definition 2.1.2. Let f(x) ∈ F [x] have degree n > 0. Then a field extension F ⊆ L

is a splitting field of f(x) over F if

(i) f(x) = c(x− α1) · · · (x− αn), where c ∈ F \ {0} and αi ∈ L, and

(ii) L = F (α1, . . . , αn).
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Theorem 2.1.3 ([1, Thm. 3.1.4]). Every nonconstant polynomial f(x) ∈ F [x] has a

splitting field.

One nice property of a splitting field L of f(x) ∈ F [x] is that it is unique in some

sense. That is to say that it is unique up to field isomorphisms.

Theorem 2.1.4 ([1, Cor. 5.1.7]). If L1, L2 are splitting fields of f ∈ F [x], then there

is an isomorphism L1
∼= L2 that is the identity on F .

Definition 2.1.5. Let L be an extension field of F , and let α ∈ L. Then α ∈ F is

algebraic over F if there is a exists a nonconstant polynomial f ∈ F [x] such that

f(α) = 0.

Definition 2.1.6. A field L is algebraically closed if every nonconstant polynomial

in L[x] contains a root in L.

Definition 2.1.7. An algebraic closure of a field F is an extension F ⊆ F such

that F is algebraically closed and F is algebraic over F .

Theorem 2.1.8 ([3, Thm. 6.2]). Let F be a field. Then there exists an extension F

of F such that F is an algebraic closure of F .

2.1.1 More on the Polynomial Ring

Radical ideals of rings are rarely introduced in a regular abstract algebra course.

Therefore we next define what it means for an ideal in F [x1, . . . , xn] to be radical.

Definition 2.1.9. An ideal I ⊆ F [x1, . . . , xn] is radical if whenever gm ∈ I for some

m ≥ 1, then g ∈ I.

We define the variety of an ideal I ⊆ F [x1, . . . , xn], denoted V(I), for reasons that

will become obvious in the future.

Definition 2.1.10. Given an ideal I ⊆ F [x1, . . . , xn] we define the variety of I to

be the set

V(I) = {α ∈ F n | g(α) = 0 for all g ∈ I}.
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We next explain how to move an ideal in a ring to a larger ring.

Definition 2.1.11. Given an ideal I ⊆ R and an inclusion of rings R ⊆ S, we define

IS = {s1a1 + · · ·+ skak | a1, . . . , ak ∈ I, s1, . . . , sk ∈ S, k ∈ Z>0}.

We omit the straightforward proof of the following result.

Proposition 2.1.12. In the situation of Definition 2.1.11, IS is an ideal of S. Fur-

thermore, if I = 〈a1 . . . , as〉 ⊆ R, then IS = 〈a1 . . . , as〉 ⊆ S.

2.2 I is Radical

2.2.1 General Results

In order to show that I = 〈σ1 − a1, . . . , σn − an〉 is radical we first need to establish

the some general results.

Theorem 2.2.1. Let I be an ideal of F [x1, . . . , xn] and F ⊆ F be an algebraic closure

of F . Then the ideal J = IF [x1, . . . , xn] has the property that J ∩ F [x1, . . . , xn] = I.

Proof. Given f ∈ J ∩ F [x1, . . . , xn], then f ∈ J and f ∈ F [x1, . . . , xn]. Write f =∑i=N
i=1 hifi such that fi ∈ I and hi ∈ F [x1, . . . , xn] for all 1 ≤ i ≤ N . Define

L = F (l1, . . . , lr) ⊆ F , where l1, . . . , lr are the coefficients of all the hi. Observe

that by definition all the coefficients of each hi are algebraic over F and, since there

is a finite number of hi, there is a finite number of coefficients. Therefore, by [1,

Thm. 4.4.3] it follows that [L : F ] < ∞. Observe that hi ∈ L[x1, . . . , xn] for all

1 ≤ i ≤ N . For a fixed i, we can write hi =
∑Ki

p=1 aλipx
λip such that each aλip ∈ L

and the sum is over a finite number of n-tuples of the form λ = (λ1, . . . , λn) ∈ Zn≥0.

Since [L : F ] <∞, let

{α1 = 1F , . . . , αm}

be a basis of L over F . Then each aλip = cλip1α1 + · · · + cλipmαm where cλipj ∈ F for
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1 ≤ j ≤ m and 1 ≤ p ≤ Ki. Therefore,

aλi1 = cλi11α1 + cλi12α2 + · · ·+ cλi1mαm

aλi2 = cλi21α1 + cλi22α2 + · · ·+ cλi2mαm
...

...
...

...

aλit = cλit1α1 + cλit2α2 + · · ·+ cλitmαm,

where t = Ki. Then define the polynomials

hij = cλi1jx
λi1 + cλi2jx

λi2 + · · ·+ cλitjx
λit ∈ F [x1, . . . , xn]

for all 1 ≤ j ≤ m. It follows that hi =
∑j=m

j=1 αjhij. Hence,

N∑
i=1

hifi =
m∑
j=1

αj

(
N∑
i=1

hijfi

)
= f. (2.2.1)

Observe that gj =
∑i=N

i=1 hijfi belongs to I for all 1 ≤ j ≤ m because every fi ∈ I

and I is an ideal of F [x1, . . . , xn]. By (2.2.1), we have f = α1g1 + · · ·+ αmgm where

gj ∈ F [x1, . . . , xn] for all j such that 1 ≤ j ≤ m. Given β = (β1, . . . , βn) ∈ F n and

recalling that α1 = 1, then by evaluating f = α1g1 + · · ·+ αmgm at β we have

α1f(β) = α1g1(β) + α2g2(β) + · · ·+ αmgm(β).

Therefore α1(g1(β) − f(β)) + α2g2(β) + · · · + αmgm(β) = 0. Since gj(β), f(β) ∈ F

for all j such that 1 ≤ j ≤ m, and the set {α1 = 1F , . . . , αm} is linearly independent

over F , it follows that the constants in F that are multiplying the αi must be zero.

Therefore g2(β), . . . , gm(β) = 0 and f(β)−g1(β) = 0. Since every β ∈ F n is a solution

for g2, . . . , gm, f−g1, and our field has infinitely many elements, then g2, . . . , gm, f−g1

are the zero polynomial (see [2, Prop. 1.1.5]). Therefore, f = g1 =
∑i=N

i=1 hi1fi ∈ I.

Hence J ∩ F [x1, . . . , xn] ⊆ I.

Now suppose f ∈ I, then by definition f ∈ F [x1, . . . , xn], then f = fg where

g is just the constant polynomial 1F ∈ F [x1, . . . , xn]. Therefore, f ∈ J . Hence

I ⊆ J ∩ F [x1, . . . , xn]. We conclude that J ∩ F [x1, . . . , xn] = I. Q.E.D.
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Another result we will need prior to establishing that I is radical is the following.

Proposition 2.2.2. If J ⊆ F [x1, . . . , xn] is radical, then I = J ∩ F [x1, . . . , xn] is

radical.

Proof. Given f ∈ F [x1, . . . , xn] such that fm ∈ I, then fm ∈ J since I ⊆ J . Now

since J is radical, then f ∈ J , and since J ∩ F [x1, . . . , xn] = I it follows that f ∈ I.

Thus I is radical. Q.E.D.

2.2.2 Proof that I is Radical

We are finally ready to prove that I = 〈σ1−a1, . . . , σn−an〉 ⊆ F [x1, . . . , xn] is radical.

Theorem 2.2.3. If f(x) = xn − a1x
n−1 + · · ·+ (−1)nan ∈ F [x] is separable, then

I = 〈σ1 − a1, . . . , σn − an〉 ⊆ F [x1, . . . , xn]

is radical.

Proof. Let A = F [x1, . . . , xn]/I and F be a algebraic closure of F . By part (ii)

of Theorem 1.3.4 we know that dimF (A) = n!. Let V = V(J) ⊆ F
n

where J =

IF [x1, . . . , xn], and define

Ā = F [x1, . . . , xn]/J.

Since I = 〈σ1 − a1, . . . , σn − an〉 ⊆ F [x1, . . . , xn], Proposition 2.1.12 implies that

J = IF [x1, . . . , xn] = 〈σ1 − a1, . . . , σn − an〉 ⊆ F [x1, . . . , xn]. If we apply Theorem

1.3.4 to f ∈ F [x], we see that

dimF A = dimF F [x1, . . . , xn]/J = dimF F [x1, . . . , xn]/〈σ1 − a1, . . . , σn − an〉 = n!.

Since F is algebraically closed and f(x) ∈ F [x] is separable we have

f(x) = xn − a1x
n−1 + · · ·+ (−1)nan = (x− α1) · · · (x− αn) ∈ F [x],

such that α1, . . . , αn ∈ F are distinct. Now observe that (β1, . . . , βn) ∈ V(J) if and

only if

σ1(β1, . . . , βn) = a1, . . . , σn(β1, . . . , βn) = an, (2.2.2)

19



which in turn is equivalent to

xn − a1x
n−1 + · · ·+ (−1)nan = xn − σ1(β1, . . . , βn)xn−1 + · · ·+ (−1)nσn(β1, . . . , βn).

By Proposition 1.1.5,

xn − σ1(β1, . . . , βn)xn−1 + · · ·+ (−1)nσn(β1, . . . , βn) = (x− β1) · · · (x− βn).

Combining the above equations, we see that

(β1, . . . , βn) ∈ V(J) ⇐⇒ (x− β1) · · · (x− βn) = (x− α1) · · · (x− αn),

But the factorization of

f(x) = (x− α1) · · · (x− αn)

is unique up to reordering since F [x1, . . . , xn] is a unique factorization domain. It

follows that the solutions of (2.2.2) are just the reorderings of (α1, . . . , αn). Therefore,

|V(J)| = n! since α1, . . . , αn are distinct. We have established that

Ā = F [x1, . . . , xn]/J.

has the property dim(Ā) = n! = |V(J)| over the algebraically closed field F . In this

situation, it is known that this implies that J is radical (see [2, Ex. 5.3.12]).

Finally, since J = IF [x1, · · · , xn], Theorem 2.2.1 implies

J ∩ F [x1, . . . , xn] = I.

Thus, Proposition 2.2.2 implies that I is radical. Q.E.D.

2.2.3 The Splitting Algebra is a Product

Proposition 2.2.4. If R is an F -algebra and P ⊆ R is a proper prime ideal such

that dimF R/P is finite, then P is maximal.

Proof. Take u ∈ R/P such that u 6= P . Note that since P is prime, then R/P is an

integral domain by [4, Cor. 6.17]. Define

φu : R/P → R/P by φu(v) = uv ∀ v ∈ R/P.
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Suppose that v1, v2 ∈ R/P satisfy φu(v1) = φu(v2). Then uv1 = uv2. Therefore,

u(v1 − v2) = 0. Since R/P is an integral domain and u 6= 0, we have v1 − v2 = 0.

Therefore, v1 = v2. Hence, φu : R/P → R/P is injective. Now to see that φu is

linear, assume that v1, v2 ∈ R/P and a, b ∈ F . Observe that

φu(av1 + bv2) = u(av1 + bv2) = u(av1) +u(bv2) = a(uv1) + b(uv2) = aφu(v1) + bφu(v2).

Therefore φu is linear. Hence, φu linear and injective.

Now since dimF R/P is finite and φu is linear, it follows that

φu : R/P → R/P

is injective if and only if it is onto. Therefore, there exists v ∈ R/P such that

φu(v) = uv = 1R/P . Hence u is invertible. Since u is an arbitrary nonzero of element

of R/P , we have shown that all the nonzero elements of R/P are invertible. Hence,

R/P is a field. Thus P is maximal by a standard fact in abstract algebra. Q.E.D.

Proposition 2.2.5. Let J = M1 ∩ · · · ∩Ms ⊆ F [x1, . . . , xn] be an ideal where the Mi

are distinct maximal ideals of F [x1, . . . , xn], and Li = F [x1, . . . , xn]/Mi for 1 ≤ i ≤ s.

Define

φ : F [x1, . . . , xn]/J → L1 × · · · × Ls by

φ(u+ J) = (u+M1, . . . , u+Ms) for all u+ J ∈ F [x1, . . . , xn]/J.

Then:

(i) φ : F [x1, . . . , xn]/J → L1× · · ·×Ls is a well-defined F -algebra homomorphism.

(ii) φ : F [x1, . . . , xn]/J → L1 × · · · × Ls injective.

(iii) φ : F [x1, . . . , xn]/J → L1 × · · · × Ls is surjective.

Proof. (i) First we need to show that φ is well defined. Assume u1 + J = u2 + J .

Then by the criterion for equality of cosets, u1 − u2 ∈ J = M1 ∩ · · · ∩Ms. Therefore,

u1 − u2 ∈Mi for 1 ≤ i ≤ s.
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It follows that u1 +Mi = u2 +Mi for 1 ≤ i ≤ s. Hence,

(u1 +M1, . . . , u2 +Ms) = (u1 +M1, . . . , u2 +Ms).

Hence φ is well defined.

To see that φ is an F -algebra homomorphism observe that we know that φ is a

ring homomorphism (see [5, Ex. 3.60(iii)]). Therefore it suffices to show that φ is

linear. Given u1, u2 ∈ A, a, b ∈ F . Observe that

φ(a(u1 + J) + b(u2 + J)) = φ(au1 + bu2 + J) = (au1 + bu2 +M1, . . . , au1 + bu2 +Ms).

Furthermore,

(au1+bu2+M1, . . . , au1+bu2+Ms) = (au1+M1, . . . , au1+Ms)+(bu1+M1, . . . , bu2+Ms).

Since

(au1 +M1, . . . , au1 +Ms) = (a(u1 +M1), . . . , a(u1 +Ms)) = a(u1 +M1, . . . , u1 +Ms),

and similarly for (bu1 +M1, . . . , bu1 +Ms). It follows that

φ(a(u1 + J) + b(u2 + J)) = aφ(u1 + J) + bφ(u2 + J).

Therefore, φ is linear. Hence φ is an F -algebra homomorphism.

(ii) Now we will show that φ is injective. Given u1, u2 ∈ F [x1, . . . , xn]/J such that

φ(u1 + J) = φ(u2 + J),

then

(u1 +M1, . . . , u1 +Ms) = (u2 +M1, . . . , u2 +Ms).

It follows that

u1 +Mi = u2 +Mi for all 1 ≤ i ≤ s.

Hence by the criterion for equality of cosets it follows that u1−u2 ∈Mi for 1 ≤ i ≤ n.

Therefore, u1 − u2 ∈ M1 ∩ · · · ∩Ms = J , so that that u1 + J = u2 + J . Thus φ is

injective.
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(iii) To prove that φ : F [x1, . . . , xn]/J → L1 × · · · × Ls is surjective, define

Φ : F [x1, . . . , xn]→ L1 × · · · × Ls

by

Φ(r) = (r +M1, . . . , r +Ms) for all r ∈ F [x1, . . . , xn].

Given i 6= j, it is a a standard fact in abstract algebra that Mi + Mj is an ideal,

and it is obvious that Mi ⊆ Mi + Mj, and Mj ⊆ Mi + Mj. Hence Mi + Mj must

equal F [x1, . . . , xn], because it contains two distinct maximal ideals. Therefore Φ is

surjective by [5, Ex. 3.60(iii)]. From part (i), we have the following commutative

diagram.

F [x1, . . . , xn] Φ //

π

&&

L1 × · · · × Ls

F [x1, . . . , xn]/J

φ
88

where π(r) = r + J . Since Φ is surjective, it follow that φ is surjective. Q.E.D.

Theorem 2.2.6. Let I = 〈σ1 − a1, . . . , σn − an〉 and A = F [x1, . . . , xn]/I. Suppose

f(x) = xn − a1x
n−1 + · · · + (−1)nan ∈ F [x] is separable. Then there is an F -algebra

isomorphism

A ∼=
s∏
i=1

Li,

where Li is a splitting field of f(x) for 1 ≤ i ≤ s.

Proof. By Theorem 2.2.3 we know that I is radical. Therefore, I =
⋂s
i=1 Mi, where

each Mi is a prime ideal of F [x1, . . . , xn] (see [2, Cor. 10.4.8]). We know that I ⊆Mi

for 1 ≤ i ≤ s. Therefore by Proposition 1.2.2 we know that there exists a surjective

F -algebra homomorphism

Ψi : A→ F [x1, . . . , xn]/Mi for 1 ≤ i ≤ s.

It follows that

dimF (F [x1, . . . , xn]/Mi) ≤ dimF (A) = n!.
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Hence by Proposition 2.2.4, Mi is maximal for 1 ≤ i ≤ s. Let

Li = F [x1, . . . , xn]/Mi for 1 ≤ i ≤ s.

Therefore, by Proposition 2.2.5 the map

φ : A→ L1 × · · · × Ls,

defined by φ(u + I) = (u + M1, . . . , u + Ms) for all u + I ∈ A is an F -algebra

isomorphism

A ∼=
s∏
i=1

Li.

To see that each Li is a splitting field, observe that since Ψi is a homomorphism

from A to Li, then Proposition 1.3.3 implies that f(x) splits completely over Li for

1 ≤ i ≤ s. Furthermore the splitting of f(x) over Li is

f(x) = xn − a1x
n−1 + · · ·+ (−1)nan = (x− β1) · · · (x− βn) ∈ Li[x],

where βi = Ψi(xi + I) = xi + Mi. Then Ψi can be interpreted as the surjective

F -algebra homomorphism such that

p(x1, . . . , xn) + I 7→ p(x1, . . . , xn) +Mi = p(x1 +Mi, . . . , xn +Mi) = p(β1, . . . , βn).

Therefore it is clear that Li = F (β1, . . . , βn). Thus Li is a splitting field of f(x) for

1 ≤ i ≤ s. Q.E.D.

Remark 2.2.7. We sometimes will refer to Theorem 2.2.6 as the Structure Theo-

rem.
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Chapter 3

The Splitting Algebra and
Representation Theory

In this chapter we will show that the splitting algebra A = F [x1, . . . , xn]/I is isomor-

phic to the regular regular representation of Sn.

3.1 Background

3.1.1 Representation Theory

The first thing we need to do is define what is a representation.

Definition 3.1.1. A representation (ρ, V ) of a group G on a vector space V over

a field F is a group homomorphism

ρ : G→ GL(V, F ).

Next we define what it means for two representations to be isomorphic.

Definition 3.1.2. Two representations (ρ1, V1), (ρ2, V2) of G are isomorphic if there

exists an invertible linear map T : V1 → V2 that satisfies

ρ2(g) ◦ T = T ◦ ρ1(g) for all g ∈ G.

The following definitions concerns an important representation.
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Definition 3.1.3. Let RG be the vector space on F with basis {eg | g ∈ G}, and for

g ∈ G, let φ(g) be the unique element of GL(RG, F ) that satisfies φ(g)(eh) = egh.

Then

φ : G→ GL(RG, F )

is the regular representation of G.

Remark 3.1.4. The regular representation is a representation. In particular, we

have the regular representation of Sn

φ : Sn → GL(RSn , F ).

The following lemma gives a useful way to identify the regular representation.

Lemma 3.1.5. Suppose ρ : G→ GL(V, F ) is a representation such that |G| = n and

V is a vector space of dimension n over F . Then ρ : G→ GL(V, F ) is isomorphic to

the regular representation of G if and only if there exists v ∈ V such that the set

{ρ(g)(v) | g ∈ G}

is a basis for V .

Proof. (⇒) Suppose that ρ : G→ GL(V, F ) is isomorphic to the regular representa-

tion

φ : G :→ GL(RG, F ).

By our hypothesis there exists a vector space isomorpshism τ : RG → V such that

ρ(g) ◦ τ = τ ◦ φ(g) for all g ∈ G.

Let τ(e1) = v and observe that

ρ(g)(v) = ρ(g)(τ(e1)) = (ρ(g) ◦ τ)(e1) = (τ ◦ φ(g))(e1) = τ(φ(g)(e1)) = τ(eg).

Therefore, {ρ(g)(v) | g ∈ G} = {τ(eg) | g ∈ G}. Since {eg | g ∈ G} is a basis of RG

and τ is an isomorphism, it maps bases to bases.
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(⇐) Now suppose there exists v ∈ V such that {ρ(h)(v) | h ∈ G} is basis for V .

Define τ : V → RG by τ(ρ(h)(v)) = eh. We want to show that

τ ◦ ρ(g) = φ(g) ◦ τ for all g ∈ G.

Observe that given g ∈ G

(τ ◦ ρ(g))(ρ(h)(v)) = τ(ρ(g)(ρ(h)(v))) = τ((ρ(g) ◦ ρ(h))(v)) = τ(ρ(gh)(v)) = egh,

and

(φ(g) ◦ τ)(ρ(h)(v)) = φ(g)(τ(ρ(h)(v))) = φ(g)(eh) = egh.

Thus τ ◦ ρ(g) and φ(g) ◦ τ agree on the basis {ρ(h)(v) | h ∈ G} of V , it follows that

τ ◦ ρ(g) = φ(g) ◦ τ for all g ∈ G.

Clearly τ is an isomorphism since it maps a basis to a basis. Q.E.D.

Now we move to introduce one of the most beautiful mathematical objects.

3.1.2 The Galois group.

Definition 3.1.6. Let F ⊆ L be a finite extension. Define

Gal(L/F ) = {σ : L→ L | σ is an isomorphism and σ(a) = a ∀ a ∈ F}.

Remark 3.1.7 ([1, Prop. 6.1.2]). Gal(L/F ) is a group under composition, known as

the Galois group of L over F .

Proposition 3.1.8 ([1, Prop. 6.1.4]). If σ ∈ Gal(L/F ) and L = F (α1, . . . , αn), then:

(i) Suppose f ∈ F [x] is a nonconstant polynomial with α ∈ F as a root. Then if

σ ∈ Gal(L/F ), then σ(α) ∈ L is also a root of f.

(ii) If L = F (α1, . . . , αn), then σ is uniquely determined by its values on α1, . . . , αn.

Definition 3.1.9. A finite extension F ⊆ L is said to be a Galois extension if L

is the splitting field of a separable polynomial f(x) ∈ F [x].
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The following theorem give us an additional way to identify a Galois extension.

Theorem 3.1.10 ([1, Thm. 7.1.5]). A finite extension F ⊆ L is Galois if and only if

|Gal(L/F )| = [L : F ].

The next theorem encapsulates one nice property of Galois extensions.

Theorem 3.1.11 ([1, Thm. 5.4.1]). Suppose F ⊆ L is a Galois extension. Then

there exists α ∈ L such that F (α) = L.

3.2 The Normal Basis Theorem

In this section we will prove the Normal Basis Theorem.

Theorem 3.2.1. Assume that F is a field with infinitely many elements. Suppose

F ⊆ L is a finite Galois extension with Galois group G. If |G| = n, then there exists

an element α in L such that the set

S = {σ(α) | σ ∈ G}

is a basis for L over F .

Proof. Let G = {σ1, . . . , σn}. We want to show that there exists an α ∈ L such that

the set S is a basis for L over F . Suppose α ∈ L such that λ1σ1(α)+· · ·+λnσn(α) = 0

where every λi ∈ F . We claim that in order to show that S is linearly independent, it

suffices to show that there exists an α ∈ L that guarantees that the following matrix

is invertible:

A =


σ−1

1 (σ1(α)) σ−1
1 (σ2(α)) σ−1

1 (σ3(α)) . . . σ−1
1 (σn(α))

σ−1
2 (σ1(α)) σ−1

2 (σ2(α)) σ−1
2 (σ3(α)) . . . σ−1

2 (σn(α))
...

...
...

. . .
...

σ−1
n (σ1(α)) σ−1

n (σ2(α)) σ−1
n (σ3(α)) . . . σ−1

n (σn(α))

 . (3.2.1)

This follows because if λ1σ1(α)+· · ·+λnσn(α) = 0, then setting ~x = (λ1, λ2, . . . , λn)

gives

A~x =


σ−1

1 (λ1σ1(α) + · · ·+ λnσn(α))
σ−1

2 (λ1σ1(α) + · · ·+ λnσn(α))
...

σ−1
n (λ1σ1(α) + · · ·+ λnσn(α))

 =


σ−1

1 (0)
σ−1

2 (0)
...

σ−1
n (0)

 =


0
0
...
0

 = ~0.
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So if A is invertible then we know that its kernel is trivial. Therefore ~x = ~0 proves

λ1 = λ2 = · · · = λn = 0.

To find such an α we note that by Theorem 3.1.11 there exists β in L such that

L = F (β). Then define f(x) =
∏

σ∈G(x− σ(β)), and for each σ ∈ G, define

gσ(x) =
f(x)

x− σ(β)
∈ L[x].

Observe that gσ(β) = 0 if σ 6= 1, and gσ(β) 6= 0 if σ = 1. Then the matrix

B(x) =



f(x)

x− σ−1
1 (σ1(β))

f(x)

x− σ−1
1 (σ2(β))

f(x)

x− σ−1
1 (σ3(β))

. . .
f(x)

x− σ−1
1 (σn(β))

f(x)

x− σ−1
2 (σ1(β))

f(x)

x− σ−1
2 (σ2(β))

f(x)

x− σ−1
1 (σ2(β))

. . .
f(x)

x− σ−1
2 (σn(β))

...
...

...
. . .

...
f(x)

x− σ−1
n (σ1(β))

f(x)

x− σ−1
n (σ2(β))

f(x)

x− σ−1
n (σn(β))

. . .
f(x)

x− σ−1
n (σn(β))


in Mn×n(L) is invertible since

B(β) =



f(β)

β − σ−1
1 (σ1(β))

0 0 . . . 0

0
f(β)

β − σ−1
2 (σ2(β))

0 . . . 0

...
...

...
. . .

...

0 0 0 . . .
f(β)

β − σ−1
n (σn(β))


and the determinant of B(β) is nonzero since it is the product of nonzero elements in

the field L. Therefore, if det(B(x)) is the determinant B(x), then det(B(x)) cannot

be equal to the zero polynomial since we know that det(B(β)) is not zero. By our

hypothesis F is a field with infinitely many elements, and since det(B(x)) is a nonzero

polynomial of finite degree then it cannot have infinitely many roots. Therefore, there

exists γ ∈ F such that det(B(γ)) 6= 0. Observe that

f(γ)

γ − σ−1
i (σj(β))

= σ−1
i

(
σj

( f(γ)

γ − β

))
for any i, j ∈ Z+ because the elements of the Galois group are field automorphisms
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of L that are the identity over F . Therefore,

B(γ) =



σ−1
1

(
σ1

( f(γ)

γ − β

))
σ−1

1

(
σ2

( f(γ)

γ − β

))
σ−1

1

(
σ3

( f(γ)

γ − β

))
. . . σ−1

1

(
σn

( f(γ)

γ − β

))
σ−1

2

(
σ1

( f(γ)

γ − β

))
σ−1

2

(
σ2

( f(γ)

γ − β

))
σ−1

2

(
σ3

( f(γ)

γ − β

))
. . . σ−1

2

(
σn

( f(γ)

γ − β

))
...

...
...

. . .
...

σ−1
n

(
σ1

( f(γ)

γ − β

))
σ−1
n

(
σ2

( f(γ)

γ − β

))
σ−1
n

(
σ3

( f(γ)

γ − β

))
. . . σ−1

n

(
σn

( f(γ)

γ − β

))


.

Since det(B(γ)) 6= 0 then by letting α =
f(γ)

γ − β
and A = B(γ) we have shown that

the set S is linearly independent. Now recall that F ⊆ L is a finite Galois extension

then we know that |L : F | = |G| = n. Therefore, the dimension of L over F is equal

to n. Thus

S = {σ1(α), σ2(α), . . . , σn(α)}

is a basis for L over F since it is linearly independent and it has n elements. Q.E.D.

3.3 End Game

In this section we will finally show that the splitting algebra A = F [x1, . . . , xn]/I is

isomorphic to the regular representation of Sn.

First we will need to prove the following proposition.

Proposition 3.3.1. Suppose σ ∈ Sn. Then σ∗ : A→ A defined by

σ∗(p(x1, . . . , xn) + I) = p(xσ(1), . . . , xσ(n)) + I for all p(x1, . . . , xn) + I ∈ A

is a well-defined F -algebra isomophism.

Proof. Suppose p1 + I = p2 + I. By the criterion for equality of cosets we know that

p1 − p2 ∈ I. Recall that I = 〈σ1 − a1, . . . , σn − an〉. Observe that I is generated by

symmetric polynomials. Write

p1 − p2 =
n∑
i=1

hi(σi − ai),
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where hi ∈ F [x1, . . . , xn] for 1 ≤ i ≤ n. Define the evaluation map

σ∗t : F [x1, . . . , xn]→ F [x1, . . . , xn]

by σ∗t (p(x1, . . . , xn)) = p(xσ(1), . . . , xσ(n)) for all p(x1, . . . , xn) ∈ F [x1, . . . , xn]. Since

σ∗t is the identity on the symmetric polynomials it follows that

σ∗t (p1)− σ∗t (p2) = σ∗t (p1 − p2) =
n∑
i=1

σ∗t (hi)(σi − ai) ∈ 〈σ1 − a1, . . . , σn − an〉 = I.

Therefore, σ∗t (p1) + I = σ∗t (p2) + I. Observe that σ∗t (p1) + I = σ∗(p1 + I) and

σ∗t (p2) + I = σ∗(p2 + I). Therefore, σ∗(p1 + I) = σ∗(p2 + I). Thus σ∗ : A → A is

well-defined.

We omit the verification that σ∗ is an F -algebra homomorphism. To see that σ∗

is an F -algebra isomorphism simply observe that

(σ∗ ◦ (σ−1)∗)(p(x1, . . . , xn)) + I = ((σ−1)∗ ◦ σ∗)(p(x1, . . . , xn)) + I = p(x1, . . . , xn) + I

for all p(x1, . . . , xn) + I ∈ A. Hence (σ−1)∗ is the inverse of σ∗. Therefore, σ∗ is an

F -algebra isomorphism. Q.E.D.

To establish our next theorem we will abuse notation in the following way. Let

A =
∏s

i=1 Li be the splitting algebra of f(x) ∈ F [x]. We will identify Li with the

subset

{0} × · · · × {0} × Li × {0} × · · · × {0} ⊆ A.

Remark 3.3.2. Let v = (v1, . . . , vi, . . . , vs) ∈ A and w = (0, . . . , wi, . . . , 0) ∈ Li.

Then

vw = (0, . . . , 0, viwi, 0, . . . , 0) = (0, . . . , 0, wivi, 0, . . . , 0) = wv ∈ Li.

Since Li is clearly nonempty and closed under addition, it follows that Li is an ideal

of A.

Proposition 3.3.3. Let A =
∏s

i=1 Li be the splitting algebra of a separable polynomial

f(x) ∈ F [x] of degree n. If σ ∈ Sn, then for every i ∈ {1, . . . , s}, there exists

j ∈ {1, . . . , s} such that

σ∗(Li) = Lj ⊆ A =
s∏
i=1

Li.
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Proof. Given σ ∈ Sn, take i ∈ {1, . . . , s} and assume σ∗(Li) ⊆ Lj for some j ∈

{1, . . . , s}. Since Li, Lj are splitting fields of f(x) they are isomorphic as extension

fields of f(x). Therefore, dimF (Li) = dimF (Lj), and since σ∗ is a linear map it follows

that σ∗(Li) = Lj.

Now suppose σ∗(Li) is not a subset of Lm for any 1 ≤ m ≤ s. Since σ∗(Li) is

not a subset of Lm, there exists u ∈ σ(Li) such that u = (u1, . . . , us) has a nonzero

coordinate uk with k 6= m, because if it does not exist, then every element in σ(Li)

would have a zero coordinate everywhere except on the mth coordinate which would

imply that σ∗(Li) is contained in Lm. If σ∗(Li) is also not contain in Lk, then by

the same logic there exists v = (v1, . . . , vs) such that v = (v1, . . . , vs) has a nonzero

coordinate vt with t 6= k. Define er = (0, . . . , 0, 1, 0, . . . , 0) for 1 ≤ r ≤ s. Since

Li is an ideal by Remark 3.3.2, it follows that σ∗(Li) is an ideal because σ∗ is an

F -algebra isomorphism, so it maps ideals to ideals. Hence, etv = vtet, ekvu = ukek

are in σ∗(Li). The product of the previous nonzero elements of σ∗(Li) will be zero,

making them zero divisors, which violates the fact that fields map to fields under an

F -algebra isomorphism. Thus σ∗(Li) = Lj for some j between 1 and s. Q.E.D.

Remark 3.3.4. Proposition 3.3.3 implies that

σ · Li = σ∗(Li)

is an action of Sn on the set of fields {L1, . . . , Ls} that appear on the splitting algebra

A =
s∏
i=1

Li.

We will also need the following proposition prior to showing that A is isomorphic

to the regular representation.

Proposition 3.3.5. Let f(x) ∈ F [x] be a separable polynomial of degree n ≥ 1 with

splitting algebra A. By the Structure Theorem,

A =
s∏
i=1

Li,

where each Li is a splitting field of f(x) over F . Then:
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(i) Given Li, Lj, there exists σ∗ ∈ Sn such that σ∗(Li) = Lj.

(ii) The set

Gi = {σ ∈ Sn | σ∗(Li) = Li}

is a subgroup of Sn isomorphic to Gal(Li/F ).

Proof. Fix, 1 ≤ i ≤ s and let Li = F (β1, . . . , βn) where βj = xj + Mi for 1 ≤ j ≤ n.

Now define the map

τ : Gi → Gal(Li/F )

by τ(σ) = σ∗|Li
for all σ in Gi. It is easy to see that τ is a well-defined group

homomorphism, and therefore the proof is omitted. To see that τ is injective, let

σ1, σ2 ∈ Gi. If σ∗1|Li
= σ∗2|Li

, then σ∗1(βj) = σ∗2(βj) for 1 ≤ j ≤ n. Therefore,

βσ1(j) = βσ2(j) for 1 ≤ j ≤ n. It follows that, σ1(j) = σ2(j) for 1 ≤ j ≤ n, and hence

σ1 = σ2.

Now we want to show that τ is onto. Observe that since every Li for 1 ≤ i ≤ n

is a splitting field of f(x) over F , then Li ∼= Lj. Therefore all the splitting fields

will have the same dimension over F . From part (ii) of Theorem 1.3.4 we know that

dimF (A) = n!. Let r = [Li : F ] for 1 ≤ i ≤ s, and recall from the Structure Theorem

that A =
∏s

i=1 Li. It follows that, dim(A) = n! = s · r. Letting Sn act on the set

{L1, . . . , Ls} as in Remark 3.3.4, by the Orbit-Stabilizer Theorem we have that

n! = |Gi||Sn · Li|.

Since {Sn · Li} ⊆ {L1, . . . , Ls}, it follows that

|Sn · Li| ≤ s.

Since Li is a splitting field of the separable polynomial f(x) ∈ F [x], it is a Galois

extension of F . Then Theorem 3.1.11 implies that |Gal(Li/F )| = [Li : F ], and since

τ : Gi → Gal(Li/F ) is injective, we have

|Gi| ≤ |Gal(Li/F )| = [Li : F ] = r.

33



Then n! = r · s = |Gi||Sn · Li| implies that |Gi| = r = |Gal(Li/F )| and |Sn · Li| =

s = |{L1, . . . , Ls}|. Therefore, τ is an isomophism of groups, and since s = |Sn · Li|,

it follows that, given Li, Lj there exist σ ∈ Sn such that σ∗(Li) = Lj. We conclude

that Gi
∼= Gal(Li/F ) and Sn acts transitively on {L1, . . . , Ls}. Q.E.D.

Now we are ready to prove the main theorem of this chapter.

Theorem 3.3.6. Let A =
∏s

j=1 Li be the splitting algebra of a separable polynomial

f(x) ∈ F [x] of degree n. There exists α in A where

{σ∗(α) | α ∈ Sn}

is a basis for A over F .

Proof. Since G1 = {σ ∈ Sn | σ∗(L1) = L1} ∼= Gal(L1/F ), we will treat this subgroup

as being equal to Gal(L1/F ). By the Normal Basis Theorem we know there exists

α ∈ L1 such that

{σ∗(α) | σ ∈ G1}

is a basis of L1 over F . Now by Proposition 3.3.5 we know that Sn acts transitively

on {L1, . . . , Ls}. Hence we can find σ1, . . . , σs ∈ Sn such that σ∗i (L1) = Li for

i ∈ {1, . . . , s}. We claim that Sn = σ1G1∪σ2G1∪ · · ·∪σsG1. To see that this is true,

observe that if σiG1 = σjG1 for i 6= j, then by the criterion for equality of cosets

we have that σ−1
i σj ∈ Gi. Therefore σ∗i (L1) = Li = σ∗j (L1) = Li which implies that

i = j, contradicting our assumption that i 6= j. Therefore all the cosets in the union

σ1G1 ∪ σ2G1 ∪ · · · ∪ σsG1 are distinct. Since |G1| = r and there are s cosets we have

that |σ1G1 ∪ σ2G1 ∪ · · · ∪ σsG1| = n!. Therefore,

Sn = σ1G1 ∪ σ2G1 ∪ · · · ∪ σsG1.

Let G1 = {τ1, . . . , τr}, then {τ ∗1 (α), . . . , τ ∗r (α)} is a basis of L1 over F . Observe∑s
i

∑r
j aijσ

∗
i τ
∗
j (α) is equal to

σ∗1(a11τ
∗
1 (α) + · · ·+ a1rτ

∗
r (α)︸ ︷︷ ︸

L1

) + · · ·+ σ∗s(as1τ
∗
1 (α) + · · ·+ asrτ

∗
r (α)︸ ︷︷ ︸

L1

).
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Writing A =
∏s

j=1 Li with zero element (0, . . . , 0), suppose

σ∗1(a11τ
∗
1 (α) + · · ·+ a1rτ

∗
r (α)) + · · ·+ σ∗s(as1τ

∗
1 (α) + · · ·+ asrτ

∗
r (α)) = (0, . . . , 0).

Choose i ∈ {1, . . . , s}, recall that σ∗i maps

L1 × {0} × · · · × {0} to {0} × · · · × {0} × Li × {0} × · · · × {0}.

Therefore, σ∗i (ai1τ1(α) + · · · + airτr(α)) = 0. Now since σ∗i is injective we have that

ai1τ
∗
1 (α) + · · · + airτ

∗
r (α) = 0. Since {τ ∗1 (α), . . . , τ ∗r (α)} is a basis of L1 over F , it

follows ai1 = ai2 = · · · = air = 0. Since this holds for every 1 ≤ i ≤ s, we have that

S = {σ∗i τ ∗j (α) | 1 ≤ i ≤ s and 1 ≤ j ≤ r} is linearly independent, and since |S| = n!,

it follows that S is a basis for A. Q.E.D.

Remark 3.3.7. Define ρ : Sn → GL(A,F ) by ρ(σ) = σ∗ for all σ ∈ Sn. Given

σ1, σ2 ∈ Sn, we have

ρ(σ1σ2) = (σ1σ2)∗ = σ∗1 ◦ σ∗2 = ρ(σ1) ◦ ρ(σ2).

It follows that ρ is a representation of Sn. We call ρ : Sn → GL(A,F ) the splitting

algebra representation.

Corollary 3.3.8. The splitting algebra representation ρ : Sn → GL(A,F ) and the

regular representation φ : Sn → GL(RSn , F ) are isomorphic.

Proof. From Theorem 3.3.6 we know that

S = {σ∗i τ ∗j (α) | 1 ≤ i ≤ and 1 ≤ j ≤ r} = {ρ(σ)(α) | σ ∈ Sn}

is basis for A. Therefore by Lemma 3.1.5, ρ : Sn → GL(A,F ) is isomorphic to the

regular representation φ : Sn → GL(RSn , F ). Q.E.D.
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Corrections

When originally submitted, this honors thesis contained some errors which have been

corrected in the current version. Here is a list of the errors that were corrected.

Various Places in the Thesis

Approximately 117 spelling errors were corrected, 40 commas were added or deleted,

and approximately 26 spacing and sizing changes were made to mathematical for-

mulæ.

Other Changes

• p. 4, l. -7: The second xα > xβ was changed to xα < xβ.

• p. 5, l. -9: The leading term was changed from cλx
α was changed to cαx

α.

• p. 5, l. -7: The leading monomial was changed from max(α ∈ Zn≥0 | cλ 6= 0) to

max(λ ∈ Zn≥0 | cλ 6= 0).

• p. 6, l. 8: Set brackets were removed from {∅}.

• p. 7, l. 15: The condition that φ(1) = 1 was added to Definition 1.1.31.

• p. 10, l. 8: On Proposition 1.2.2 F [x1, . . . , xn] was changed to F [x].

• p. 10, l. -6: (⇒) was changed to (⇐).

• p. 11, l. 4: (⇐) was changed to (⇒).

• p. 15, l. 5: I = 〈σ1 − a1, . . . , σn − an〉F [x1, . . . , xn] was changed to I = 〈σ1 −

a1, . . . , σn − an〉 ⊆ F [x1, . . . , xn].
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• p. 15, l. 6: The ⊆ was deleted.

• p. 17, l. 14: The subscript on Zn was changed from 0 ≥ to ≥ 0.

• p. 17, l. -2: ∈ F [x1, . . . , xn] was deleted.

• p. 19, l. 2: J = IF
n
[x1, . . . , xn] was changed to J = IF [x1, . . . , xn].

• p. 20, l. 1:Absolute value bars were placed around V(J).

• p. 20, l. -6: u1a, u2a ∈ A was replaced by u1, u2 ∈ F [x1, . . . , xn].

• p. 23, l. -5: Li was replaced by Li[x].

• p. 29, l. -5: ∀p(x1, . . . , xn) was replaced by for all p(x1, . . . , xn) + I ∈ A.

Substantial Changes

The following portions of the corrected thesis differ substantially from the version

originally submitted.

• A theorem concerning the existence of a splitting field for nonconstant polyno-

mials in F [x] was added. It is labeled Theorem 2.1.3 in the final version.

• A definition of an algebraic closure for a field F was added, and a theorem

concerning the existence of a algebraic closure for a field F was added. They

are labeled Definition 2.1.7 and Theorem 2.1.8 respectively, in the final version

of this thesis.

• Proposition 2.1.12 of the final version was added.

• A definition of a representation of a group was added. It is labeled Definition

3.1.1 in the final version of this thesis.

• A definition of two representations being isomorphic was added. It is labeled

Definition 3.1.2 in the final version of this thesis.
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• A definition of the regular representation of a group G was added. It is labeled

Definition 3.1.3 in the final version of this thesis.

• Remark 3.1.4 of the final version of this thesis was added.

• The definition of a miniminal polynomial of α over a field F , labeled Definition

3.1.7 in the original version, was deleted.

• A definition of a Galois extension was added. It is labeled Definition 3.1.9 in

the final version of this thesis.

• A theorem that allowed us to identify Galois extensions was added. It is labeled

Theorem 3.1.10 in the final version of this thesis.

• The proof of Proposition 3.3.1 was completed. In order to do this a new Propo-

sition 3.3.1 and Remark 3.3.2 were added to the final version of this thesis.

• The proof of Proposition 3.3.2 was completed. In order to do this Remark 3.3.1

was added to the final version of this thesis.

• The proof of Theorem 3.3.3 was completed.

• A remark defining the splitting algebra representation of Sn was added. It is

Remark 3.3.7 in the final version.

• A corollary showing that the splitting algebra representation of Sn is isomorphic

to the regular representation of Sn was added. It is Corollary 3.3.8 in the final

version of this thesis.
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