accident but is a genuine theorem. This can be seen by teking J =k -1
in the proof of Theorem 3. Since the degree of theé right side of (15) |
must be <2k - 2, the B must be zero in (16). This forces Yl and YU
to be equal and leads at on’ceh to a solution of (17) in the form described |

ebove.

REFERENCES

1 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers,

t

Oxford 1938.

2 L. E. Dickson, History of the Theory of Numbers, V. 2, Washington 1923

L

&

- 74 -

AN QUTCROPPING OF COMBINATORICS IN
NUMBER THEORY

Emma I.ehmer
Berkeley,Calif,

ABSTRACP, This Paper exhibits an unexpected

connection between problems in the theory of
numbers having to do with factorization of
integers in the rational and cyclotomic
fields and combinatoriagl DProblems involving

ordinary and Supplementary difference sets,

-

C. 5TH S~E CONF. COMBINATORICS, GRAPH

REORY, AND COMPUTING, pp. 75-92.




systems and therefore with block designs, Hadamard matrices and differ—
fence sets, while the problem of splitting a prime in cyclotomi_c fields
can actually lead to new results in supplementary difference sets and
therefore in block designs. It 1s with these two problems that this pa~
per is concerned.

AN OUTCROPPING OF COMBINATORICS IN NUMBER THEORY

1. A Factorization Method. The next issue of Mathematics of Com-

“

Emma Lehmer E fputation [8] will contain a joint paper with D.H. Lehmer which describes

-

& rethod of factorization of an integer N = pq = r (mod 24) , where

(r,24) =1 and p, q are primes, which uses binary quadratic forms

Introduction. It will come as no surprise to anybody to say that of squarefree determinants *D , where D divides 24 .

number theory and combinatorics have many interests in common and that Briefly, the method consists in finding three suitable forms for

they depend on each other for ideas and tools and methods of proof. j each value of r such that at least one of these forms represents N ,

Many theorems in combinatorics begin with the words "let p be a T or & small multiple of N , in two distinct weys. From these represen-

ftations the factors of N can be deduced by the simple greatest common

prime," where this condition is sometimes inherent to the problem and

at other times only to the method of proof.,

However, the notion of pri- J divisior process.

mality and the companion topic of factorization is an undisputed prob- For example, if N= 1 (mod 8) , so that r =1 or 17 , then N

lem in the realm of the theory of numbers. is representable is a sum of two squeres, (D = -1) , if and only if

1N .=, = . i1i ntation we
It may therefore come as a surprise that a problem of factoring [p=q =1 (mod k) Hence, failing to ¢btain such a represe i

i =g = . umber N= 1
numbers in a rational field can be linked with the problem of Steiner tow that in this case p=q =3 (mod }) Now, every nunbe

 (nod 8) is also represented by a square plus or minus twice a square,
or N = x2 + 2y2 , according as its factors are of the form 8n + 1
and 3, or 8n+1 and T . Since we already know that the factors
are congruent to 3 modulo 4 , +they must be both congruent to 3, or

both congruent to 7 modulo 8 , and therefore N must be represented

by either one or the other of the two forms with D = #2 ,
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selection of the three forms for every r . In [8] we proved that in fifference set 1,2,4, of quadratic residues modulo seven in which

every case one of these three forms must yield the factors of N = pq . =1 or -1 according as (1) mey represent AN for i =r and

i,j
What interests us more here is the fact that. any two rows have exactly  - ¥'=D . The inclusion of r =1 and D=1 might provide a justifice-
one r in common and every pair of r's appears-in some row so that Jion for the usual bordering of the designs to produce Hademard matrices.

the seven values of r #1 form a Steiner triple system with respect

to the seven blocks of three r's characterized by the deter;nina.nts ro.1 19 11 7 17 > 23 13
which are the square free divisors of 24 » excluding 1. 1 " 1 1 1 1 1 1
It is interesting to note that a pictorial representation of these 1 -1 1 -1 -1 -1
1 -1 1 1 -1 1 -1 -1
remeinders has appeared on p. 202 of Shanks [9], as in Figure 1, while
1 -1 -1 1 -1 1 -1
a similar picture of the Fano plane on p. 187 of Berman and Fryer [3] 1 -1 -1 -1 1 ol 1
refers to a weekly schedule of seven firemen as in Figure 2. 1 1 -1 -1 =1 . -1
1 -1 1 -1 -1 -1 1 1
1 1 -1 1 -1 -1 -1
Sunday Fl F2 Fh , - .
Mondey F F F - -
2 3 > Thus our remainders r ¥ 1 , as well as the firemen represent a
Tuesday F Fl& F6 .
3 fslanced incomplete block design BIBD based on & finite projective
Wednesday Fh F_ F i
> T * Reometry of seven points and seven lines with three points on each line
Thursday F F6 F ! : .
> 1 gnd three lines through each point in which every pair of points lies in
Friday F6 F, F ;
T 72 some line. Another example of such a configuration is provided by a
Saturday +F, F, F .
T 173 furely graph-theory problem of Paul Erdds [5] who considered a complete

These pictures establish visually a one-to-one correspondence be-
) ) pey roads in such a way that any two given towns could be reached di-

tween the remeinders r and the firemen Fi on the one hand and between

the determinants and the deys of the week on the other, Rearranging our
We can name the seven towns by the days of the week from 1 to T
remainders and determinants accordingly and including this time both r :
’ (where Sunday is the seventh day) and make each fireman live
=1 and D=1, for which solutions may exist for every r , we ob-

. in the town indicated by his subscript. Then, if we draw arrows from
tain the usual Hadamard matrix of order eight based on the perfect

¥

8ch town in the direction of the domiciles of the three firemen working
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on that day and awey from the other three we will get the desired arrangs | 1 o 1 2 34 5 6 T 8 9 10 11 12 13 1k

ment because each pair of firemen work together on some day of the week.. b1 11 13 17 19 23 29 83 53 43 7T 31 71 61 73

8 8 59 37 113 91 k47 101 107 77 67 103 79 119 109 97
In [8] we generalized the problem of factoring N = pg by quadrat-

ic forms to that of factoring N = PiPy - P by selecting 2" L

n
possible forms from a total of 2n+l - 1 forms corresponding to the

+
ot 1 divisors (not equal to one) of the

and

product of the first n primes as determinants. Hence this problem
D, -10-30 30 -15 6 -5 -6 10 I5 -3 2 5 3 -1 -2

also leads to the Steiner system (2). J

For n =3, for example, we can use the 15 square free divisors

we obtain from table It of [8] the usual Hademard matrix of order 16 and
(different from one), of 120 for #D and a BIBD design based on the

the usual BIBD design based on (3).
Singer difference set (15,7,3) which has also been obtained from a

For n =4 , the Singer set (31,15,7) is [1]
different point of view by Whiteman [1], namely

() 5,: {1,2,3,4,6,8,12,15,16,17,23,24,27,29,30} .
(3) 85: 10,1,2,4,5,8,10}

This set was also obtained by Hall [7] and is composed of cubic residues
Under the permutations

together with the class of sextic non-residues containing 3 .

For n =5 the Steiner set (63,31,15) is [1] .

: {0,1,2,3,4,5,6,8,9,10,12,16,17,18,20,23,2 24,2 , 9
33, 3h,36 ho,43,45,46,48,53,5

It cen be described as

 (5) 85t {0, 2%, 2*.38 15.2% (mod 63)}

-
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This is one of two inequivalent sets with parameters (63,31,15) . Th

€ 2. Factorization in Cyeclotomic Fields. A prime p =1 (mod q) ,

other one is due t i
*6 due to Gordon, Mills and Welch [6]. i qQ=2m+ 1 is also a prime can be decomposed in the cyclotomic
For n =6 there are 6 inequivalent difference sets (127,63,31) 1A eld of g-th roots of unity £ into the product [4]

the quadratic residues modulo 127 , the Hall set [7], the Singer set

and three sets of Baumert and Fredricksen [2]. | 1 -ll v = & Im e -1
sen [2]. The last four can all be §2.1) p= [[m(z") =T mz1). [w( 8 = FA(C)FA(C )
described in terms of the cosets ci of 18-th power residues. The ] 4 vl =t =

Singer set i 2
& 1 [2] a =1, ai+ad$0(modq_), and A is any set A,j defined
(aa = 1 (mod p))

(6) 8¢t {CO’CJ.’C2’C3’CS’06’07’010’016}

. @=1,2, ..., m)

AJ: {alad, 88y, .ees amaj}
where 3 is in Cl .

It might be of interest to use the structure suggested by (5) to For g=3 and g =5 <there is a unique set A corresponding to
attempt to find difference sets with parameters (255,127,63) .

FA(C) and FA(;’l) In fact FA(C) is the well known Jecobi function
-1

(2.3) R(1, 1) = ¥ x (x)x (x+ 1) .
x=1 ¢ a !

For g = T there are two such systems, namely

and 1,2,h .

. 1,2,
2: 1,3’
1,h,

Vi w

We note the appearance once more of the invarient residue differ-

ence set 1,2,4 (modulo 7) . It leads to the Jacobi function
+

[
R(1, 2) = r + sz + 22 + ') + 2(g3 + g0 + 0)

- 84 - -85 -
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where iy = indga\) (v=1,2, ..., 10)

-~ a -

bp = (s + t - 2r)2 + 7(s - t)2 . Bt condition on a; in (2.1) becomes

The system 2 leads to R(1, 1) in (2.3).

From our point of view, it is interesting to note that the system
X is in fact the supplementary difference set m -~ (v,k,A) = 3 - (7,3,3)
of m =3 sets each having k = 3 elements, in which the non-zero dif-
ferences modulo 7 taken within each set, but not between sets, each ap-

pear A =3 times [12]. It leads to BIBD (21,7,9,3,3) .

For q = 11 theke are 16 possible sets, the invariant quadratic

3

residue difference set modulo 11, nemely 1,3,4,5,9, and three systems then i goes into

We note that if we replace g =2 by g =2

of 5 sets each, namely 3i and the set 12 goes into I3 , while Il remeins invarient.

Thus the a's which go with the unknown function FA(C) are the cubes

of the a's which go with R(1, 2) .

1,2,3,b 1,2,3,4,6
) 1,2,6,7 3 1,2,3,6,7 ; -
IR RS B FRAEAN : = 2 ible sets consisting of 5 systems
1 1,3,4,6 2 1,3,6,7.9 3 For q = 13 there are 32 possible
1,3,5,7 1,2,4,6,8

iof six sets each and of the pair of the sets

1,3,7.8,9,11

The systems Zl and 22 lead to the two Jacobi functions R(1l,1) and} A(2.6) 1,2,3,5,659 and

respectively [4]. The function FA(I;) corresponding to ). is usual-

3

1y simply discarded as superfluous.. It was ou¥ original purpose to shed

vhich go into each other. These consist of quartic residues module i3,

some light on what might be called non-Jacobi functions. nemely 1,3,9 and of the coset of the quartic non-residues which con-—

We note first of all that each of the three systems for g =11 tains either 2 or 8 , in other words {Co’cl} and {co,c3} . This

forms & 5 - (11,5,10) supplementary difference set. We next inquire This set

pair of supplementary difference sets is due to Szekeres [11].

whether there is some connection between these sets. In order to do so

corresponds to the Jacobi function R(1,3) . Two of the 5 systems of

we introduce a primitive root g(mod 11) and define and R(1,2) , two

six sets correspond to the Jacobi functions R(1,1)
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by a.l . The remaining un- |

ds to an index set which is independent of the primi-

more are related to these by replacing a; is E“S‘{Pplementary difference

explained set lea

tive root as follows

g .
M +

1,2,3915, 59 7 03192939 Sllo
192379 > 9:10 0,1,2, ) 9:11 Proof
2' l’55699910911 I- 091,3:8910911 == Denote as usual by (u’ V) the number of soluti
: L 10,11 0,2,7,9,10,11 ions (v, 1)
1, ’5’7’ s 3Cs il S pf the congruence
193’h!6’ 8’11 055,7389 9910
1,2,4,6, 8,10 0,2,3,4, 5, T - ,
o.11) 2mi+u = 2my+
end to en unknown function FA(C) . g +1 = gV (mod p) .
Thus, althc;ugh we have not succeeded in our original quest, we -
§ince f is odd we have

have stumbled on & family of supplementary difference sets which appears

to be new. Our index sets can be generalized by realizing that the i's
are representatives of the cosets Ci to give the following theorem. (u, v) = (v + m, u+m) .

£ be 0dd and let £

Theorem. Let p = 2mf +1 be & prime. Let
. N ! Now let & = g2m‘r+t b
cosets of 2m-th ° power residues) t e an element of. the se .
Losens == Rowel t Ct . The number of

be & primitive root of p . Define the

'

5 that 3 t - 4 3 t +
S & 6 1s represen ed as” the difference between elements of two
gets of the set S is the number of solutions H of the congru-
(\) > ) 14

(1 =0,1, -os 2m = 1)
(v=0,1, cees £=1)
2my+i-

2mp+i n+m(ei-en) 2m\)+;j-n+m(ej—en)

g - g = g2m‘r+t

(mod p) ,

) . _ - 3 el o by (2.12) is
(2.8) iy = 3 +1m=;‘1 , where €, o, 3 > )

() -=n -1t +mie -en)) , i—n—t+m(ei_€n)) .

J

Then for every choice of € 3 the system of m sets

)

' Therefore the numbe i
! r Nn(ét) of times that Gt apears as the dif-

(2.9) B3 [y 4 2 Cg g > 0t b - .
0mn l.n m-1 "mnj .- .
EiEnce between the elements of 8 s
n

- 88 -

set m -
(v,k,\) and a BIBD (wv,v omk,k ,A) with

(2.1 =p=
0) v=p=2mf+1, k=(p-1)/2=nf, A=nlat-1)/2 (£ oca)
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m-1 m-1 ! . )
(2.1k) v (8,) = )Y (J-n-t+m(e e ), i-n-tém(e,-e ) =N . (6)

i=0 j=0 J - ntm gextic residue cosets. [This appears to be new, put m= 3 .]

Borollary L. TFor every prime p= 9 (mod 16) the theorem gives two
by (2.12), Similarly since the sum is symmetric,in i and J-, it re-
fossible systems of L4 sets of octic cosets each.
mains unaltered if ¢ is changed and is therefore a function of n +t
n . gens go into each other if g is replaced by g3 .
Hence -

However, these sys-

The system

8, :{c.,c.,C 59C } s, : {c_,c.,C ,c 1, 8, : {c_,c .
(2.15) N (8)=n_0(8 ) for r=20,1, ..., 2ul) o 0 e

ik due to J. Wallis and Whiteman [1h].
Hence the total number of times N(Gt) that Gt appears as a dif- ’

. W ollary 5. For m =5 there are three systems of cosets of 10th pow-
ference in all the m sets Sn is ]

g residues of p = 11 (mod 20) . The system generated by

m-1+r m-1
n+r t r) = 2 1\]'\)(6'0—1‘

T T
N(S,) = N (S8, ) = N
n=0 = t n=0 v=r n=0 ‘ S o {c

o’cl’ce’ch’cs}

by (2.14) and is therefore independent of +t , which proves the theoreny

hains  invariant if g 1is replaced by a power of g prime to 10

We note that the normalizing condition eo = 0 insures that C0 i

E]

ptile the systems generated by
in every Sn and therefore Cm never appears so that =1 is not in g

set, and if an element a is in S, then -a is not in Sn . The i N

n Sgi CpsCpsCysCesCy  and 8y {C45C,5),»C5Cgl
complementary sets will contain Cm and hence -1 in every set. 7

The following special cases of the theorem might be worth noting.

into each other if g is replaced by g3 . The remaining set

Corollary 1. For every prime p = 3 (mod 4) there exists a difference

{CO Cys CM’C6’C8} is simply the set of quadratic residues as in Cor-
set of guadratic residues. [m = 1]

Corollary 2. For every prime p =5 (mod 8) there exists a pair of

i lary 6. For m =6 , there are 5 systems of cosets of 12th pow-
Szekeres supplementary difference sets SO: {CO, Cl} and sl; {CO’ ] =3 -
¥ residues of p = 13 (mod 214) . The one which is independent of the
of quartic residue cosets. [11], [12]. 1
tive root is generated by 5o {C 5C,5C.5C_,C. .} . There is
Corollary 3. For every prime p =7 (mod 12) there exists a supplemen- l 2°73°75°710

a palr of Szekeres sets as in Corollary 2.

tary set S {co, ¢ 02} » 8yt {co, c

. CS} . Sz“{Co’Ch’ cs} of

1

07}, SB’ {00,05,06,07}
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