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 ON THE MEAN DURATION OF A BALL AND CELL GAME; A FIRST
 PASSAGE PROBLEM'

 BY HARRY DYM AND EUGENE M. LUKS

 Massachusetts Institute of Technology and Tufts University

 1. Introduction. In this paper we study the mean duration of the following r
 ball n cell game:

 Each of r balls is placed at random into one of n cells. A ball is considered
 "captured" if (after all r balls have been distributed) it is the sole occupant of its
 cell. Captured balls are eliminated from further play. This completes the first
 "trial." The remaining balls are recovered and the process repeated (trials,
 2, 3, 4, ... etc.). The play continues until all balls have been captured. The
 number of trials required to achieve this state is called the duration of the game.

 We first show, in Section 2, that the probability of exactly r - t balls remaining
 in play (or of exactly t balls being "captured") is equal to

 Pr,r.t(n) Enit (-1)' jt )(,)( i)j! [(n - i)r./nr]

 Various bounds on the probability of this event are then derived for subsequent
 use. When the intent is clear the n dependency may be suppressed and the symbol

 Pr, used instead of Prt(n). The notation is suggestive of that used in the theory
 of Markov chains. Indeed, the r ball n cell game may be identified with an r + 1
 state Markov chain, the states being the number of balls possibly in play at any
 stage: r, r - 1, *., 2, 1, or 0. In keeping with conventional Markov chain
 terminology we shall refer to the quantities Prt(n) as transition probabilities.
 Note also that the mean duration of an r ball game is equal to the mean first
 passage time to state "0" from initial state "r."

 Denoting the mean duration of the game by Mn(r) (or simply M(r) if there is
 no ambiguity) we proceed in Section 3 to derive the bounds:

 r (- 1)]' < Mn(r) < , [1 - Pjj(n)]-f < n2[n/(n -1)
 The principal result of this paper, namely that

 Mn(r) = ,=ijl[n/(n - r)]-1 + 0(1) (r oo, n fixed)

 appears in Section 4. There it is also shown that

 Mn(r) = Zj1[1 - Pjj(n)]-l + 0(1) (r-* oo,n fixed).

 The arguments leading to this last result which appear in Section 4 (up to and
 including Theorem 1) are presented in a form suggested by the referee. They

 Received 14 December 1964; revised 27 September 1965.
 1 This paper is a revised version of TM-04091 (1964) (Technical Document Number

 64-639), the MITRE Corporation, Bedford, Massachusetts. This work reported herein
 was supported by the MITRE Corporation under Contract No. AF 19 (628) 2390.

 517

This content downloaded from 128.6.45.205 on Wed, 04 Jan 2023 21:17:12 UTC
All use subject to https://about.jstor.org/terms



 518 HARRY DYM AND EUGENE M. LUKS

 may, as he noted, be extended to a larger class of Markov chains than the ball
 and cell game. This is discussed briefly following Theorem 1 in Section 4.

 Since

 Zr=~ i7'[n/(n - l)] --[(n - 1)/r][n/(n - 1)1? (r -+ oo, n fixed),

 it follows readily from the results cited that

 M,(r) - (n/r)[n/(n - 1)]r1 (r -* o0, n fixed)
 where, it is interesting to note, r[(n - 1)/n]?-l is equal to the mean number of
 balls captured in the first trial. The difference between the mean and its
 asymptote, however, diverges to infinity exponentially fast. In fact it may be

 shown that for any fixed integer t > 0,

 Z=jiF'[n/(n - 1)1'-' [(n - 1)/r][n/(n - 1)]fE o (n - 1)i/(rj)
 (r oo,n fixed).

 2. The transition probabilities. Let Ai denote the event: cell number i, i =
 1, *--, n, contains exactly one ball. Then

 (2.1) P(Ai n A2n ... n Ai,) = P(A1 n A2n ... n Ak)

 = (k)k![(n - k)7k/nr].

 Hence, setting

 (2.2) So(r, n) = 1,

 Sk(r, n) = (')P(Al n A2n n Ak), k = 1,.* ,n,

 and using the formula for the realization of exactly t out of n events [1], p. 96,
 we get

 (2.3) P7,r_t(n) = Z7=t(-1) (z)Ss(r, n).

 Equation (2.3) may be "inverted" to yield

 (2.4) Sm(r, n) = k=m (mk)Pr,r-k(n), m = 0, 1, * * , n.

 Clearly (2.4) implies that Sl(r, n) is equal to the average number of balls
 captured in a single trial, and also that

 (2.5) Pr,r-t(n) -< St(r, n), t = 0, 1, . , n.

 The observation that 1 - Prr(n) = P(A1 u A2 u ... u A.) leads to the bounds

 (2.6) 1 - Prr(n) < nP(Al) = SI(r, n),

 (2.7) 1 - Prr(n) > nP(Al) - (?)P(Al n A2) = Sl(r, n) - S2(r, n),

 (2.8) 1 - Prr(n) > P(A1) = Si(r, n)/n

 all of which will be utilized below.
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 A FIRST PASSAGE PROBLEM 519

 3. Bounds on M(r). It is well known that

 (3.1) M(r) = t=li PrtM(t) + 1

 or equivalently that

 (3.2) M(r) = t-l [Prt/(l - Prr)]M(t) + (1 - Prr)

 We shall use (3.2) to show inductively that

 (3.3) M(r) < EL,= (1 -Pii)-

 ( = =1(mean no. of trials to leave state "i")).

 Clearly (3.3) holds if r = 1 for M(1) = (1 - Pi)-1. Suppose it is valid
 for r < s. A substitution into (3.2) then yields

 M(s) < t-1 [P8z/(l - PS8)]=L1 (1 - Pii)1 + (1 -P9)

 = - (1 - Pio ES-1 [P8t/(l1- P88)] + (1 - P88)
 Since Pst P8 ? 1 P-P88 (3.3) is valid for r = s also. Now, using (2.8) in
 conjunction with (3.3) we get the upper bound

 (3.4) M(r) < nZli-F[n/(n -)]'-

 < nE= [n/(n - 1)]i- < n2[n/(n -1)1r1.
 A lower bound for M(r) may be deduced from (3.2) with the aid of (2.6):

 (3.5) M(r) > (1 - Prr)-1 > r1-[n/(n -)]r-1

 The latter bound, while not necessarily strong, does establish the exponential
 growth of M(r) with r.

 4. The limiting behavior of Mn(r) (r -> oo, n fixed). It follows easily from (3.2)
 that

 (1 - Pjj)- - [M(j) - M(j - 1)]

 = (1 - Pjj)-EjZ [M(j - 1) - M(s)JP8

 C,M(j - 1),

 where

 (4.1) c0 = (1-Pjj) -o'Z Pi'.

 Hence, utilizing this inequality in (3.3) we see that

 o < Z;=1 (1 -Pj)-l- M(r)

 = Zj=2 {(1- Pj)-' - [M(j) - M(j - 1)]} ? E=2 CjM(j - 1)

 This implies
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 520 HARRY DYM AND EUGENE M. LUKS

 THEOREM 1.

 M(r) = = (1 - Pj')-1 + 0(1) (r -> oo)

 whenever ,-=2 CjM(j - 1) ? j=2 j (1 - Pkk) < co.

 It should be noted that Theorem 1 is valid for any Markov chain (with states
 0, 1, 2, *.. ) whose transition probabilities, Pij, satisfy the conditions:

 (1) Pjj< 1,j= 1, 2, , and
 (2) Pi, = 0 ifj> i.
 In the case at hand we find, upon substituting (2.5) and (2.8) into (4.1),

 Cj = (1 - Pjj) >kjo Pjk < [n/Sl(j, n)]k=2 Sk(j, n)

 - [(n - 1)/j][n/(n - 1)]';k=2 (k)(n)k!(n-
 < [(n - 1)/j][n/(n - 1j[(n - 2)/nV kZ=2 (kI)

 _ (n - 1)[(n - 2)/(n -)]2j

 which when combined with (3.4) yields

 CAM(j - 1) ? (n - 1)3 2nj'-1[1 - (n - )-2]).

 Hence

 }j=2 C,M(j - 1) ? X,'=2 (n - 1) 2njn-'[1 - (n 1-211 < oo

 and Theorem 1 implies

 (4.2) Mn(r) = , (1 - Pj)-1 + 0(1) (r -? co, n fixed).

 Now, it follows by (2.6), (2.7) and (2.8) that

 0 < (1 - Pjj)-1 - [Si(j, n)]f' = (S1 - 1 + Pjh)/(l-Pj1)S

 ? nS2/1S2 < n[l - (n - 1)-2]2

 and thus, since EZ=s- n[l -(n-1 ) 2] < 00, we can, recalling the formula for
 Sj(j, n), write

 Mn(r) E= Z1j-[n/(n - l) + 0(1) (r-> oo,n fixed).

 The above derivation also shows that

 M2(r) =

 REMARK 1. Consider the difference between the mean and the approximating
 sum:

 En(r) = Mn(r) - 1:!=.ljF'[n/(n -
 E2(r) = 0. Direct computation indicates that 1E3(r) I < 0.25 and that E3(r)

 approaches about 0.042 as r approaches infinity. Sample estimates of En(r)
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 A FIRST PASSAGE PROBLEM 521

 were also obtained for the cases 4 < n < 12 by simulating the game on a digital
 computer. The estimates for En(r) were, at least in the range r < 5n, always
 less than one in magnitude.
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