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Abstract. In this paper, the use of algebraic ianguages theory in solving an open problem in
combinatorics is shown. By constructing a bijection between convex polyominoes and words of
an algebraic language, and by solving the corresponding algebraic system, we prove that the
number of convex polyominoes with perimeter 2n+8 is (2n+11)4" —4(2n + 1)(2").

1. Iniroduction

Let A, be a class of combinatorial objects enumerated by the integer a, and
suppose that the corresponding generating function f(t) =Y. ., a,t" is algebraic. An
old idea, dear to M.P. Schiitzenberger, is to explain this algebraicity by expliciting
a bijection between A, and the words of a certain algebraic (context-free) language
L defined on the alphabet X by a non-ambiguous grammar.

Classically, from the non-ambiguous grammar, one can associate a proper alge-
braic system of equations in noncommutative power series. The unique solution of
the system contains the (noncommutative) generating function L=Y ,_, w of the
language L. By sending all variables x of X onto one variable 1, the series L becomes
f()y=Y, ., a,t", solution of an algebraic system in one variable f (see Schiitzenberger
[34, 35)).

Usually an explicit formula is known for a, or f(1) by means of classical calculus
techniques used in combinatorics (recurrence relation, Lagrange inversion formula,
etc.). The coding with words sheds more light upon the combinatorial comprehension
of A,. Each equation of the noncommutative algebraic system is in fact a com-
binatorial property of the objects of A,. The coding with words appears to be a
nice intermediate between the combinatorial objects themselves and the generating
function in one variable f(r).

Classical examples are those used with enumeration of trees or related objects
and can be found in [15, 17, 23, 24]. Deep-going examples are found in the work of
Cori and Vauquelin [6, 8], following the numerous formulae enumerating planar
maps obtained by Tutte et al. (see, for example, [37]).
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In this paper, the method is reversed: no formula is known for a, or f(t), nor
the fact that f(1) is algebraic. We vse the algebraic language methodology to prove
this fact and obtain an explicit formula. Here, A, is the set of convex polyominoes
with perimeter n.

Unit squares having their vertices at integer points in the Cartesian plane are
called cells. A polyomino is a connected subset of the plane which is a finite union
of cells and has no cut set, that is, the interior is also connected. The number of
cells is the area of the polyomino, the length of the border is the perimeter.
Polyominoes are defined up to translation. Note that, in the enumeration considered
here, symmetries or rotations are forbidden.

Polyominoes are classical objects in combinatorics and have been popularized
by Gardner and Golomb [16]. Except for some special class of polyominoes, very
few exact formulae are known. Enumeration of (general) polyominoes is a major
unsolved problem, also called the cell growth problem. Since Read [31], polyominoes
are also called (fixed) animals. '

A huge number of asymptotic results has been given by physicists for whom such
objects are important in statistical mechanics (they call animal the set of points
obtained by taking the center of each cell of a polyomino).

A polyomino P is said to be column- (respectively row-) convex if the intersection
of P with any vertical (respectively horizontal) line is a connected segment. A convex
polyomino is a polyomino which is both column- and row-convex (see Fig. 1).
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Fig. 1. A convex polyominao,

Klarner[19] gave an explicit expression for the generating function of row-convex
polvomir.oes enumerated according to the area. The generating function is rational
and is obtained by using a combinatorial interpretation of Fredholm integral
operation [20].

Knath raised the problem [21] to give some information about the number of
convex polyominoes. Klarner and Rivest [21] and Bender [1] gave asyvmptotic
estimates for the number a, of convex polyominoes having area n. More precisely,
a, - cy" with y=2.30914 ... and ¢=2.67564 .. ..
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We give here an exact formula for the number p,, of convex polyominoes having
a perimeter 2n. Surprisingly the result is very simple.

Theorem 1.1. The number p,, of convex polyominoes having a perimeter 2n is
ps=1,  p=2

and for n=0,
Pones={2n+11)4" =420+ ().

The method makes use of three steps:

Step (i) Bijection between convex polyominoes and words of an algebraic
language. In fact, three different types of polyominoes, and thus three languages,
have to be considered.

Step (ii) Solving the three corresponding algebraic systems and obtaining the
generating function p(1) =Y, _, p-.t*". These systems have about 20 to 40 equations
each. We are thus led to employ carefully the algebraic language methodology by
using auxiliary algebraic languages and some substitution operators. Also, multi-
head finite automata can be used in order to encode convex polyominoes of the
second type with words of a rational language (accepted by a finite automata), and
thus reduce the computation of the corresponding generating function to a deter-
minant calculus (in our case the matrix has size 16 X 16). The final solution (especially
for polyominoes of the third type) has been made possible using the symbolic
manipulation system MACSYMA from MIT.

Step (iii) Expanding the generating function p(t) in order to obtain the formula
for p,,.

Remark 1.2. To the knowiedge of the authors, no ‘classical’ proof of Theorem 1.1
has been found yet.

Remark 1.3. The concept of convex polyominoes appears in some algcrithmic
problems related to integrated circuit manufacture. A layer of an integrated circuit
is printed on a photographic plate by flashing rectangles and produce an image
equal to their superposition. The plate will become a photographic mask in the
manufacture of integrated circuit. The image is a (union of) polyominoes. Neglecting
some additional technical constraints, the problem is tc produce the image using
as few rectangles as possible. Masek [26] proved that finding the minimum number
of rectangles is NP-complete. Chaiken et al. [9] established a beautiful min-max
property about this number in the case of convex polyominoes, for which a poly-
nomial time algorithm can be deduced. Then, Berge et al. [2] looked for possibie
extensions to vertically convex polyominoes and the so-called ‘pataconvex’ poly-
ominoes.

For another example of relationships between poiyominoes, and VLSI and non-
conventional architectures, see Van Leeuwen [38].
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This paper has been made self-contained for both ‘combinatorists’ and ‘theoretical
computer scientists’.
We recall a few geometric notations used in all this paper.

Notations. The: plane Z XZ is denoted by II. A path w is a sequence w=
(so, S1, - - -, 5,) of points of II. The point s, (respectively s, ) is the starting (respec-
tively final) point. The length of w is the integer n. Each pair (s;, s;1,) is an elementary
step of the path. The elementary step (s, §;4,) is called North (South, East, West
respectively) iff s;=(x,y), s, =(x',y') with x=x', y'=y+1 (x=x', y'=y—1;
x'=x+1,y=y"; x'=x—1, y=1'respectively).

2. Algebraic languages (for ‘pure’ combinatorists)

This section has been introduced for the combinatorists not familiar with the
classical concept (in Theoretical Computer Science) of algebraic language. We will
not give complete formal definitions for every notion we use, but we will, with
examples, give a brief outline of what is necessary. For more details, see the works
of Berstel [3], Ginsburgh [14] or Salomaa and Soittola [33].

Notations. Let X be a finite nonempty set called alphabet. We denote by X™ the
free monoid generated by X, that is, the set of words written with letters from X,
together with the product defined as the concatenation of two words: foru=u,... u
and v=wv,... 0, we iuve uv=u; ... U, ... 0,

The empty word is denoted by e. The number of occurrences of the letter x in
the word w is denoted by |w|, and the length of w by |w|=Y | |w|. If the word
w can be factorized as w = ufv, we say that the word u (f, v respectively) is a left
Jactor ( factor, right factor respectively) of w.

Let K be a unitary commutative ring (in fact K will be Z or Q). We denote by
K{X) (respectively K[[ X ]]) the algebra of noncommutative (respectively commuta-
tive) power series with variables from X and coefficients in K. By commuting
variables, one obtains a canonical morphism « :K{X) - K[[X]].

r

A language is nothing but a subset of X*. For any language L we associate the
generating function L=3% _ , w, element of Z{X ). Note that for every language A,
B, C the equality C = A- B means that C = AB and that any word w of C has a
unique factorization w = uv with uc A, ve B. Also the equality C = A+ B means
(C=AuBand AnB=0.

An algebraic (also called context-free) grammar is a 4-tuple G = (N, X, P, s) where
N 1nd X are finite disjoint sets, s is an element of N and P is a finite set of pairs
ta, B) with e N and Be (N u X)* Such a pair is called a production and also
dencied by a - B.
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Starting from s, one defines a set of words of (N U X)* by applying recursively

substitutions of the form uav->u upv with (a, ,3)5 P. The subset of words of X* is

called the language generated by G and denoted by L(G). Such a language is called
algebraic (or context-free). We give some (very elementary) examples that wil! be
used in this paper.

Example 2.1 (Dyck word). Let G=(N, X, P,s) with N ={D}, X ={x, %}, s = D and
P is given by the two productions D - xDxD, D~ e. The language L(G) is the
classical ‘restricted Dyck language’ on two letiers. Throughout this paper, this
language will be called Dyck language for short and will be denoted by D. The
words w of D, or Dyck words, are chara.terized by the two following conditions:
(1) for any left factor of u of w, |u|, = |ul;!
(2) lwl\' = Iw’i-

Example 2.2 (Motzkin word). The words w of {x, X, b}* (respectively {x, x, b, r}*)
satisfying the above conditions (1) and (2) are called Motzkin words (respectively
2-colored Motzkin words). The Motzkin words are generated by the following
grammar:

N ={M}, s=M, X ={x, x, b},
M > xMIM, M > bM, M-e.

By adding the rule M - rM, one obviously obtains a grammar for the 2-colored
Motzkin words.

Example 2.3 (Fibonacci word). 1.et FB be the set of words of {x, a}* which can be
factorized as a product of words reduced to *“a™ or xx, and having an even length.
Such words are generated by the algebraic grammar:

N ={FB, G}, s =F8, X ={x, a}
and productions

FB- aG, F - xxFI, FB-e, G- aFB, G - xxG.

In this paper, such words will b called Fibonacci words (of even length) and will
appear in Section 3.

The three above examples are examples of a non-ambiguous algebraic grammar
G, that is, each word of L(G) can be formed in a "unique way’ using the producticns
of P. For example, every Motzk:n word w is either the empty word (produced by
M - e}, or produced by M - bM, or produced by M - xMxM. Also, in the second
(respectively third) case, the factorization w = by, ve M (respectively w = xuxv,
ue M, ve M) is unique.
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Such properties for the above examples are equivalent to state the following
equalities, in algebra Z{X) for the corresponding (noncommutative) generating
functions (where CM denotes the set of 2-colored Motzkin words):

(3) D=1+xDxD,

(4) M=1+bM+xMxM,

(5) CM='+bCM+rCM+xCMxCM,

(6) FB=1+aG+ xxFB, G = aFB+ xxG.

The step going from the non-ambiguous algebraic grammar to the corresponding
algebraic system in Z{X) can be done in a general way. Each element a in N
corresponds to an equation « =3,, B, where the B;’s are all the words appearing in
the production of the form a - B. In the ‘good’ cases the system has a unique
solution (in the a’s). For more details, see, for example, the works of Nivat 28]
or Salomaa and Soittola [33], and the pioneer papers of Schiitzenberger [34, 35]
and Chomsky and Shiitzenberger [5].

Now, if one wants to enumerate L(G) n X" (the words of length n of the language
L(G)), one sends by a morphism @ all variables x € X onto a single variable . We
obtain an algebraic system for the corresponding (ordinary) generating function
O(L)=f(1)=Y, ., a,t" (with a,=|L(G)n X"|).

For the above examples we can solve the corresponding one-variable equation
or algebraic system and obtain the following equations:

(7) (D) =c(t) =%—i4——r)—‘— (Dyck words),
(8) M) =m(t) =“ - t)~(12~1221 30 (Motzkin words),
(9)  6(CM) =em(r) = 29 ;f' —4n” (2-colored Motzkin words),
(10) 0(FB) =(b(r) = l_~—%i’—+? (Fibonacci words with even length).

Note that the coefficient of °" in ¢(r) is the classical Catalan number C, =
[1/(n+1)](5") (which can be obtained by expanding in power series « (1)). Also, the
coeflicient of 1" in m(1) is the less classical Motzkin number M,,. Note also the relation

(1 T+ rfem(r) = (1),
which implies that the number of 2-colored Motzkin words of length n equals the
Catalan number C,,,, (see a bijective proof in Section 3).
The coeflicient of +*" in f(t) is the Fibonacci number F,, (defined by the recurrence
F,..=F,+F, . F,=F =1).
The language FB of Example 2.3 is in fact a rational language, that is. a language
which can be obtained by applying recursively, from the family of finite languages,
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the three operations
union(A, B)-> Au B,
product(A, B)> AB={w=uv,ue A, ve B},
star operation A—> A*, submonoid of X* generated by A,

For example, we can write
(12) FB={Ixx}ua(xx)*a)*.

Such an expression for a rational language L, using only the three operations
union, product and star operation is called a rational expression of L. In the same
way as above for grammar, one can define a non-ambiguous rational expression.
From such an expression for L, one immediately deduces an expression for L by
replacing the operations (for languages) union, product and star, respectively by
sum, product, and ‘quasi-inversion® A*- (1 — A)™' (in the algebra Z{ X )). Applying
morphism 6, one obta’ *s the generating function f(t) for a, =|L~ X"|.

Also, it is pos.ible tha. the ~r1 n.aar defining L leads to a linear system for f(t).
The calculus is thus reduced (0 a determinant calculus.

L can also bt~ defined by a so-called finite automaion, that is a S5-tuple A=
(S.s, F, X, p) where S is a finite set (the states), s€ S (initial state), F< S (final
states), X a finite set (input alphabet) and u:S XX - S (transition function). The
action of u is extended to words of X™* by defining u*: S x X* > § with u*(s, ux) =
mw(u*(s, u), x). A word w of X* is accepted by the automaton A iff u*(s, w)e F.
The well-known Kleene's Theorem states that L is rational iff L is accepted by a
finite automata.

Usually a finite automata is visualized by a label=d graph, with vertices the states
and labeled arrows corresponding to u. An automaton accepting the Fibonacci
~ords of FB of Example 2.3 is displayed in Fig. 2.
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— 1 3
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Fig. 2 A finite automaton for the Fibonacci woids FB.
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Let S be totally ordered, S ={s,, ..., s}, and let M be the k X k matrix M =(a,)
where a; is the formal sum of letters x € X such that u(s;, x)=s;. Let L; be the
iunguage accepted with initial state s = s, and final state s;. Then the (commutative)
generating function a(L,) of Z[[x]] is equal to the (i, j)-co>flicient of the matrix
(1— M) . Thus the calculus is reduced to determinant calcu'us. Note that a nice
expression for the determinant det(1 — M) is given by

(13) det(1-M)= Y (=Dv(y)...v(¥),

where y,,..., 7, are two by two disjoint cycles of S (not necessarily covering all
the vertices of S), the edges of the cycle are edges of a labeled graph representing
the automaton, and the valuation v(y;) is the product of the lettcrs labeling the
edges of v,

An analogous expression exists for the (i, j)-cofactor. This gives an easier way
to obtain the generating function a(L;) (see Figs. 2 and 12).

An important notion in algebraic language theory is the concept of iterative pair
of a word w of an algzebraic language L, that is, a factorization of w of the form
w = fugvh such that, for every n=1, the word fu"gv"h is in L. Various ‘iterative
lemmas’ are known {see [3, 29]). We will use here Boasson’s lemma. Two iterative
pairs of w, w=fiu,g,0,h, and w = f,u,g,v,h, are said to be overlapping if one can
write w = au,Bu,yv,8v,e or w= au-Bu,yv,6v,e. Boasson's lemma [4] says that no
word of an algebraic language has overlapping iterative pairs.

We show that this lemma implies that there is no hope t¢ encode a convex
polyomino P with word of an algebraic language L by just following the border of P.

For example, one can choose a canonical point and e¢ncode P by a word with
four letters, obtained by following the border (clockwise, for example) and writing
the letter corresponding to one of the four possible elementary steps North, South,
East or West. It would be possible to characterize words corresponding to convex
polyominoes. Another possible coding would be with three leiters, corresponding
to clementary steps: turn right, turn left or go ahead.

It is easy to see that an iterative pair of w¢ L corresponds te define two portions
of the border of P, iocated between the points «, 8 and v, 8, such that (e, 8, v. 8)
is a parallelogram and with some conditions between the first and last step of the
portion of paths going from « to 8 and y to & (see Fig. 3). Overlapping iterative
pairs are easily found, and thus the language L is not algebraic.

3. Stacks and parallelogram polyominoes

The fundamental idea for the encoding of a convex pelyomino P is to split it
into three simpler polyominoes. This trisection was introduced by Kiarner and
Rivest [21] and is defined as follows.
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>,

Fig. 3. Iterative pairs.

Notations. Let P be a convex polyomino and Rect(P) be the smallest rectangie
(considered as a convex polyomino) containing P. The polyomino P touches the
border of Rect(/) along four connected segments. Each: of these segments has two
extreme points and thus we introduce 8 points, as shown in Fig. 4. The Westmost
(respectively Fastmost) of the points of # on the segment composing the South
(respectively North) border of Rect(P) is denoted by S(P) (respectively N(P)).

Fig. 4. Trisection of a convex polyomina.
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Following counterclockwise the border of P, one meets successively the above 8
canonical points in the order: S(P), S'(P), E(P), E'(P), N(P), N'(P), W(P),
W'(P).

Note that some of these points can be identical, that is, possibly $'=E, E'= N,
N'=Wor W=38§,

We can now define two important subclasses of convex polyominoes. A
parallelogram polyomino is a convex polyomino P such that S(P)= W'(P) and
N(P)= E’'(P) (see Fig. 6). A stack polyomino is a convex polyomino such that
S(P)= W'(P) and S'(P)= E(P) (see Fig. 7).

In other words, a parallelogram polyomino is a polyomino such that the inteisec-
tion with every line perpendicular to the main diagonal is a connected segmert. It
can also be characterized with the border formed with two paths, having only Zast
and Morth elementary steps, having the same initial and final points, and bzing
disjoint except at the extreme points.

For any convex polyomino P, let A (respectively Ay ) be the vertical line passing
by the points S (respectively N). These two lines split the polyomino P into three
(possibly empty) parts. The part between A and Ay is a parallelogram polyomino
(or the symmetric, up to a vertical axis, of a parallelogram polyomino). The two
extreme parts are, up to 90° rotation, stack polyominoes (see Fig. 4).

In fact, three cases have to be considered according to the act that A is at the
right of 45 (type 1 polyomino), or Ay = A¢ (type 11 polyomino), or Jdy is at the
left of A (type 111 polyomino) (see Fig. 5). Note that the symmetric, up to a vertical
axis, of a type II! polyomino, is a (special case of) type 1 polyomino.

? o

S

Tvpe Ivpetl Type N
big. 5. The three types of convex polvominoes,
The first values of the number of convex polyominoes with the perimeter 2n are

given in Table |

It is casy to enumerate parallelogram and stack polvominoes according to the
perimeter.
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Table 1. Number of convex polyominoes with perimeter 2n.

Perimeter 2n Type | Type 11 Type 111 Total P,,,
4 1 1
6 2 2
8 7 7

10 27 1 28
12 110 9 1 120
14 460 55 13 528
16 1948 286 110 2344
18 8296 1362 758 10416

20 35400 6143 4617 46160

22 151056 26729 25895 203680

24 643892 113471 136949 894312

For parallelogram polyominoes. the result and the bijection with Dyck words is
now classical (see Polya [30], Gessel and Viennot [13] or Shapiro and Zeilberger
[36]). We recall here this bijection.

Let P be a parallelogram polyomino with perimeter 2n +2 = 4. Such a polyomino
is defined by wwo paths @ and 7 of length n+1 starting at S(P) and endirg at
N(P). The <wo paths do not intersect, except at the endpoints. We suppose that &
is above (North) path 7. To fix the ideas (and the polyomino P), suppose S(P)=
(0,0). For i =0, let A, be the line with equation y=—x+i Forany i, Isisn—1,
we look for the kind (North or East) of the elementary steps w; (respectively 7;)
of the path w (respectively ), and delimited by the two lines 4, and 4,,,. We thus
defineaword w = w, ... w,_,oflength n — 1 of {x, X, b, r}* by the followirg condition,

w, =X if w, is a North step and 7, an East step,

(14) w, =X if w, is an East step and 5, a North step,
~ w,=b if w; is a North step and 7, a North step,

w,=r if w, is an East step and n; an East step.

The word w satisfies condition (1) because the two paths w and 7 are not
intersecting, and condition (2) because the two paths end at the same point. Thus,
w is a 2-colored Motzkin word (Example 2.2). Obviously, the map P->w is a
bijection between parallelogram polyominoes with perimeter 2n+2 and 2-colored
Motzkin words of length n—1.

Now for such a word w = w, ... w,_, we define the word v =xh(w,) ... h(w,.,)X
where h is the morphism {x, %, b, r}* > {x, x}* defined by the condition

(15)  h(x)=xx, h(x) = xx, h(b) = xx, h(r) = xx.

It is easily shown that the map w- v = xh(w)x is a bijection between 2-colored
Motzkin words of length n — 1 and Dyck words of length 2n. We deduce the following
lemma.
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Lemma 3.1. The number of parallelogram polyominoes with perimeter 2n+2 is the
Catalan number C,=[1/(n+1)](Z".

The map P - v = y(P) defined above by conditions (14) and (15) is a bije:tion.
An example is displayed in Fig. 6.
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Fig. 6. The (classical) bijection y between paraltelogram polyominoes and Dyck words.

Now let P be a stack polyomino with perimeter 2n+4. The border of such a
polyoniino is made with two non-intersecting (except at the ¢..dpoints) paths @ and
n. Path 7 is a path going from S(P) to S'(P)= E(P) anc composed only with p
East steps. Path w is above 7, goes from S(P) to E(P) and is made with p East
steps, n-- p+2 North steps and n— p+2 South steps. "n this path, the North steps
occur before the South steps, and the first (respectively last) step is always a North
(respectively South) step. We define word w of leugth 2n +4 of {a, x}* by following
pach w from S(P) to E(P) and writing the leder “a™ (respectively the factor xx)

each time one meets a North or South step (respectively an East step). We obtain
a word characterized by the three folle wing conditions:
(16) we{u, xx}*< {a, x}*,

(17) the first (respectively last) letter of w is “‘a™,

(18) |w|, is an even number, say 2p and after the pth letter “a” there is a factor
XX
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If we delete the first and last letter of w, and a factor xx (which always exists) between
the pth and (p+1)st a’s, we obtain a word v = @(P) of even length 2n.
Obviously, the map P-» v = @(P) is a bijection between stack polyominoes with
perimeter 2n +4 and words of length 2n satisfying (16) having an even number of
“a”, that is nothing but what we have called Fibonacci words in Example 2.3. An
example of the bijection @ is given in Fig. 7.

- - R
w 3
/ \
/ \
/ )
d \
7~
i L l
! ‘——-—O-——-—-(.i
/T \
| S _
| R ~
| ¢ o \
\ )
woss o o o o o L
~ - /7
~—~ - —
—-— - g - -
PlP) - axxxxaxxasaaxxxx

Fig. 7. The bijection @ between stack polyominoes and Fibonacci words.

From Example 2.3 and equation (10), we deduce the following lemma.

Lemma 3.2. The number of stack polyominoes with perimeter 2n+4 is the Fibonacci
nurmber F,, with generating function

Y Ft’"= Ul
n=0 2n -(l—f—lz)(]"‘f"tz).

Thus each part of the trisection of a convex polyomino can be encoded by a word
of an algebraic (or rational) language. The idea is to mix the three codings in a
single one. The major problem is to define a ‘gluing’ process, keeping the algebraic
as well - as the convex property. Unfortunately, with the above coding y between
parallelogram polyominoes and Dyck words, this ‘gluing’ process would lead tc
non-algebraic languages. It would be possible to ‘insert’ the coding with Fibonacci
words into 2-colored Motzkin words, but it seems impossible to obtain words of an
algebraic language having a tractable associated algebraic system of equations.

We are going to give a more elaborate bijection between parallelogram poly-
ominoes and Dyck words, which will fit very well with our ‘gluing’ problem.
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4. The bijection B between Dyck words and parallelogralh polyominoes

Let w be a Dyck word of length 2n. A factor xx (respectively xx) is called a peak
(respectively trough) of w. We number the peaks (respectively trough) from left. to
right. Let k=1 be the number of peaks of w (thus w has k — | troughs). The height
of the peak w = fxxg is defined by 1+ 6(f) with & the function

(19) 8(f)= Ifl\: —Iﬂi

The height of the trough w = fXxg is defined-as 8(f).

To w, we associate two sequences a(w)=(a,,...,ax) and b(w)=(b,, ..., b 1)
by the condition

(20) for i, 1 <i=k (respectively 1 <i=<k—1), the number a; (respectively b,) is

the height of the ith peak (respectively trough).

Obviously, these two sequences satisfy the following condition,

(21) forany i Il<isk-I, I<bh=<a, and |I<b,<a,,. ‘

For any i, | <i<k, we consider a vertical strip of i cells. Inside each strip, the
cells are ordered down-up. Now we ‘glue’ these strips together according to the
sequence b(w). More precisely, for i, | <i<k—1, the (i+1)st strip is ‘glued’ on
the right of the ith strip such that the first b; cells of the (i + I)st strip are ‘glued’
to the last b; cells of the ith strip (se2 Fig. 8). Formaily these two strips form a

®
A @ ®
RN ONEPFN
/S 3 AN \/ AN
e N/ 2 N\

1

w - X X X X X X x x X X X X X X x x X X

Bilwlz

Fig. 8. The bijection B8 between Dyck words and parallelogram polyominoes.
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parallelogram polyomino P, such that the path w(P;) (respectively n(P,)) defined
in Section 3 has the following sequence of elementary steps: North q; times, East,
North (a,,,—b,) times, East (respectively East, North (a; —b,) times, East, North
a,., times).

We thus obtain a parallelogram polyomino P denoted by P = B(w).

The perimeter p is given by

X
(22) p=Y (2+2a,-b,-b,_))
=1

with the convention b,= b, =0. :

The sum (22) is easily seen to be equal to the length of the Dyck word w, increased
by 2.

We now describe a map u which will te the reverse biject on of B.

Let P be a parallelogram polyomino with perimeter 2n+2. Let k be the number
of East sieps of the paths w(P) and »(P) defined in Section 3. The polyomino P
is formed with k vertical strips, which we number from left to right. We define two
sequences of integers a(P)=(a,,..., a) and b(P)=(b,,..., b,_,) such that a; is
the number of cells of the ith strip, and b, is the length of the segment common to
the border of the ith and (i+ 1)st strips.

Obviously, such sequences satisfy relztions (21) and (22} (with p =2n+2). Making
the convention b, = b, =0, we define the word w = 4,1, ... u, v, by the relation

. S _ "
(23) rorlslSk' u,~=x(“"' ! and Ui=«\—“+u' ‘).

It is easy to check that w is a Dyck word. From relaticn (22), the length of w is
2n. Cenote by u(P)= w the Dyck word thus obtained.

It is easy to see that maps B and u are the inverses of cach other. We thus have
the following proposition.

Proposition 4.1. The map B defined above is a bijection from Dyck words of length
2n onto parallelogram polyominoes of perimeter 2n+2. The area of P is the sum of
the height of the peaks of B(P).

Remark 4.2. For a parallelogram polyomino P, define I(P) (respectively r(P)) as
to be the distance between the two poinis (defined in Section 3) W(P) and W'(P)
(respectively E(P) and E'(P)). For a Dyck word w, let I(P) (respectively r(P)) be
the maximum length of a left (respectively right) factor of w equal to a power of
v (respectively ¥). We have proved that the double distribution (I, r) for
parallelogram polyominoes with perimeter 2n + 2 is the same as the double distribu-
tion ([, r) for Dyck words with length 2n.

Remark 4.3. Using the ¢l ssical ‘André’s reflexion principle’, it can be proved that
the number a,,, of Dyck words w of length 2n such that I(w)=i and r(w)=j



184 M.-P. Delest G. Viennot

(defined in Remark 4.2) is given by
(24) @, =2 -0,

with the convention (3) =0 when b > a.

Remark 4.4. Define the width of a parallelogram polyomino to be the number of
vertical strips composing this polyomino. Applying Gessel and Viennot's [13]
methodology interpretating determinants as noncrossing paths, it is easy to prove
that the number b, ; of parallelogram polyominoes with perimeter 2n +2 and width
k is given by the 2 X2 determinant

Gon (6D
G2 ()
This determinant is equal to (1/n)(;)(x",) and using Proposition 4.1, we deduce

the well-known formula for the number of Dyck words of length 2n having k peaks
(see, for example, Kreweras [22]).

(25) bn,k =

Remark 4.5. itisinteresting to note that the bijection 8 can be defined in a completely
different way, using binary trees and some new combinatorial properties relating
‘prefix order’, ‘symmetric order’ and ‘height’ of vertices. We suppose here that the
reader is familiar with this terminology for binary trees and briefly describe the
nther version of B. For more details and combinatorial properties, the reader is
referred to Viennot [41].

Let w=w,...w,, be a Dyck word of length 2n. First we define the Dyck word
W= W,,...w, where w, is x (respectively %) if w; is ¥ (respectively x). It is verv
classical to associate to the Dyck word w a complete binary tree B (with 2n+1
vertices) using the prefix order (here the left subtree is traversed after the right
subtree). Then deleting the leaves of B, we obtain a binary tree b (with n vertices)
which we order according to the symmetric order (called also inorder) (see Fig. 9).
Now we define a path w of length n — | such that, for | <i=< n— |, the ith elementary
step is North (respectively East) if the ith vertex of b has (respectively does not
have) a right son. The number of East steps is thus the number of left edges of the
binary tree b. Under the jith East step of @ we put a horizontal edge such that the
distance between these two edges is equal to the right height o the jth vertex of b
having a left son. It is a ~ombinatorial property of binary trees that these horizontal
edges are East steps of a {unique) path n having only East and North steps and
same endpoints as w. Sliding 45° downwards path n gives a path »’, and adding
two ‘corners’ we obtain a parallelogram polyomino P (see Fig. 9).

It can be proved that this map w - P is a bijection, identica! to B. The reverse
map can also be described, using the analogue, for binary trees, of Schiitzenberger’s
‘jeu de taquin’ for Youug tableaux (see Viennot [41]).
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Fig. 9. The bijection B with binary trees.

S. The coding of type I polyominoes

‘W2 combine the bijection @ between stack polyominoes and Fibonacci werds)
with the bijection B (between parallelogram pnlyominoes and Dyck words) in order
to give a bijection between type I (convex) polyominoes and some words of an
alg:cbraic language.
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A pigmented Dyck word is a word w of {x, X, a}* satisfying the three following
conditions: .
(26a) the word d,(w) obtained by deleting the a’s from w is a Dyck word,
(26b) w can be factorized in the form w = w,w,w; with w, € x{a, x}*x or w, =¢,
w, e {x, X}*, wye x{a, X}*X or w;=¢,
(26¢) the above factorization is such that |w,|, and |ws|, are even.

length 23.

If u is a Dyck word, define the left leg (respectively right leg) to be the longest
left (respuctively right) factor of u in {x}* (respectively {x}*). Conditions (26a)-(26¢)
say that a pigmented Dyck word is a Motzkin word obtained from a Dyck word by
inserting an even number of letters ““a” (the ‘pigment’) between the first and last
letter of the left leg (respectively right leg).

Propesition 5.2. There exists a bijection between type 1 convex polyominoes having
perimeter 2n+2 and pigmented Dyck words (defined by (26)) of length 2n.

Proof. Let w be a pigmented Dyck word. Let p (respectively ¢) be the length of
the left (respectively right) leg of the Dyck word d, (w).

First, using the bijection B defined in Section 4, we construct the parallelogram
polyomino P = gB(d,(w)). The distance hetween the two points S(P) = W'(P) and
W(P) (respectively E(P) and E'(P)= N(P)) is p (respectively q).

Now we ‘glue’ two stack polyominoes on each side of P in the following way.

Let w, (respectively ws;) be the longest left (respectively right) factor of w such
that w, € {a, x}* (respectively w,e {a, }*). If |w,|, =0 (respectively |w |, =0), there
is nothing to ‘glue’ on the left-hand (respectively right-hand) side of P.

Suppose |w,|, #0. We can write w, = xu,v,x with |u,|, =|e,]. = r. Let w! be the

word of length p+2r, wi = xu xv, =z, ... z,,,, With z, € {a, x}. We construct a path
o, of length p+27 going from S(P) to W(P) and such that the ith step is North
if z,= x and is East or West if z; = a. For the first r a’s of w|, we choose an East

stzp, while for the last r a’s of w|, we choose a West step. We have glued a stack
polyomino on the line joining S{P) and W(P) (see Fig. 10 where the construction
15 displayed for the pigmented Dyck word of Example 5.1).

Dually, if [wy], = 25 # 0, we construct a path w; of length g + 25 going from N(P)
to EXP). Here “x"" corresponds to a South step, while the first s a's to an Fast step
and the last s a’s to West step.

We thus obtain © unvex polyomino Q = ¥,(w). The border of this polyomino is
made of the two paths @, and w,, the part of the upper border of P !ving between
W(P)and N(P),and the part of the lower border of P lying between S( P) and E(P).

Itis easily seen chat S(Q) = S(P) and N(Q) = N(P). The polyomino Q is of type
I, with perimeter 2n+2. From the fact that 8 is a bijection, it is easy to deduce that
Y, is a bijection. T}



Algebraic languages and polyominoes enumeration

187

w_ ¥ 3 a X aIXX XXX XX XXX ¥ ¥ Y¥Y¥Ya3asxwanaoaoao
w X X X X X Xxxx X X X ¥Xaaxaaa

wi=xaaxxaax w3'=aaia§<aaai

-_——h

N(P]

W%I’
U

M

w!P) V. ]

oy,
IV//// Y T N
V/// ////WWé .
.
| |

- |

4

Q =y (w)
1

Fig. 10. The bijection ¥,.
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The reader famiiiar with algeoralc language% theory will easily consiruci a ‘push-
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6. The generating function for type 1 polyominoes

In this section we introduce auxiliary languages and give the generating function
(in one variable) for the pigmented Dyck language.

Notations. We denote by Y thc alphabet {x, %, y, 7} and by u the morphism Y* -
{x, X}* defined by its action on the letters of Y*:

(27)

pix)=u(y)=x and wu(X}=p(y)=x.
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Let H be the sct of words w of Y™ satisfying the following two conditions:

(28) wm(w) is a Dyck word of {x, x}*,

(29) w has one of the following forms: w = y*5* k=1, or w = uxw'xv with u € {y}*,
ve {y}* and w'e{x, x}*.

In other words, a word w of H is obtained from a Dyck word w" of {x, X}* by

changing each letter x (respectively x) of the left (respectively right) leg of w" into
y (respectively y).

Let L be the set of words of Y* satisfying condition (28) and
(29a) w=e or w=uxw withue{y}* and w'e{x, X}*.
Let R be the set of words of Y* satisfying condition (28) and
(29b) w=e or w=w'xv with ve{y}* and w’'e{x, x}*.

The noncommutative generating function H € Z{ Y)) of the auxiliary language H
satisfies the following algebraic system of equations:

H = yy+ yHy + yLXDxRYy,

L=1+yLxD,
(30)

R =1+ DxRy,

D =1+ xDxD.

The first equation is just a translation of the following fact. For every word w e H,
let w(w)=u,...u be the unique factorization of the Dyck word w into prime
words w; (Dyck words which are not product of other Dyck words). Then if k=1,
w has the form w = yuy with either u=¢, or ue H. If k# 1, then w has a uniguc
factorization w = yw iw'xw,y with w,e L, w'e D, w, € R (and in fact u(yw, %) = u,
and w(xw, )= 1),

The second and third equations come from analogous properties for the languages
L and R

Let Z be the alphabet {x, X, y, J, a, b}. We define the two substitution operators
A and p sending every word we Y* into a set of words of Z*. The words of A(w)
(respectively p(w)) are the words obtained from w by changing any letter v (respec-
tively ) into the factor a'x (respectively £b') with i = 0. In language theory, A and
p are very simple examples of a so-called rational transduction.

Let Sc{x, X, a, b}* be the language defined by

(31) we Sl there exists u, ve Z* such that yuie H, ve A(p(u)), w = xoi.

Let V< S the set of words we S such that

£32) |w|, and |w|, are even.

The reader can easily prove the following lemma.

Lemma 6.1. The language obtained by replacing in each word of V the letter **b™ by
“a” (Vdefined by (31) and (32)) is the set of pigmented Dyck words defined by (26).
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Remark 6.2 (for ‘language theorists’). The pigmented Dyck is algebraic because V
is obtained from the Dyck language D using the operations rational transduction
and intersection with a rational language.

Notations. We introduce the following generating functions in commutative vari-
ables x, X, y, ¥, a, b:

h(x, x, v, ¥)=a(H), I(x, X, y, ¥)=a(L),
r(x, X, v. ¥) = a(R), s(x, X, a, b) = a(S),

1-(1-4xx%)"?

v(x,X,a,b)=a(R) and d(x,¥)=a(D)= —
2xx

From Proposition 5.2 and Lemma 6.1, the (ordinary) generating function
Y. .1 Pinsat™" for the number pb,., of type I polyominoes with perimeter 2n+2 is
the formal series obtained by sending all variables on ¢, that is,

(33) p(D= T pl.r"=rov).
The substitut’ons A and.p defined on the family of languages of Z* have analogues
in the set of fe:raal series.

We define the morphisms (of commutative algebra) A and p:Z[[ Y]]~> Z[[Z]] by
the conditions

(34a) ).\(_v)=l—i—, AMz)=z forzeY,z#y,
—a

(34b) p(5) ="

b p(z)=z forzeY,z#

The reader will easily prove that relation (31) can be extended to power series
in the following way:

(35) s(x,.\",a.b)-:(l~—a)(l-b)h(x,f,-—i—~, X )
l-a’ 1-b

In order to obtain the analogue, for power series, of relation (32), it suffices to
take according to the variable “‘a™ the even part of the power series s, and then
take again. according to the variable b, the even part of the result. Thus

(36)  r(x, % a,b)=(s(x % a, b)+s(x, % —a,b)+s(x, %, a,-b)
+s(x, X, —a, —b)).
Noting that s is symmetric in a and b, we i 'uce, from (33),

(37)  pAny=a(s( L 0+F2s(L 0Lt v =t —1).
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The generating functions a(x, X, y, y), I(x, X, y, §) and r(x, X, y, y) satisfy a commu-
tative analogue of the algebraic system (30), which can be solved by linear equations:

R ]
1 —dxy’ 1—dxyp’

(38) |/

(39)  h(x, %y, 7) = —22— (1+ x%dlr).
1-yy

An explicit expression for p,(t¢) can be obtained from relations (35), (37), (38)
and (39).

In order to simplify the calculus we denote

. - 1+4
A(t)=(1-41%)"?, c(t)=-l—2~lfzé=d(t,t) and E(r)=—_’l—2~.

We have

1

(40) c6=c+6:t2 and cP=c-1.

From (38) and (39) we deduce

_ yy xxd )
41 h iRt I £ = - 1+ = *
) hix %) l—yy( (1 —dxy)(1-dxy)

Using (35) we have

t!(1—a)(1-b) r*(t—a)(1-b)e )
4 =
(42)  s{t,r,a,b) (l—a—b+ab—t2)(l+(l-a—t3c‘)(l—-b——tzc) ’

(1= =21+ 1%)

(4 =
\ 3) S(t,t,t,t) (1_21)2(1__‘2(,)

Multiplying numerator and denominator by (1 — £°¢) gives

(1=0*(1 =21+ =20~ (1 = 1)2Q)

44) s(t,t,1,t)= a
(44 ( ) 501 -21)°

Similarly we compute success:vely
(-1 + (=1
@5)  so 1,1, - =100 ')(H Hl-rje )
(1=2¢%) (I+t=tc)l=t-1¢)

(=11 =20 =1%)
(1=2(1 =217 - 3¢)’

Multiplying numerator and denominator by (I —2¢>— t°¢) gives

(46) s(n 0, t,—1)=

(=) =200 +20(1 =307 - (1= 1)(1=20))

(87)  s(e 41, —1) = d
! 20 -20)(20 - D2+ 1)
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Also from (42) we have

z%1+:V( t%|+:Vc)
= |+ 3 .
(1+2r) (1+1—1%)

(48) s(t,1,-1,-1)

L PUHD1 2+ )
(49) s, -1,-1)= (1+20%(1-f*c)

Multiplying numerator and denominator by 1 — °¢ gives similarly
g o

I+ )2 ((1+2t+:2=2-(1+1)°4)

(50) s(', '9 _',—') == 2(]+2t)2

Now using (37), and adding (44), (47) and (50) we obtain (using MACSYMA)
the following generating function for type 1 polyominoes.

Theorem 6.3. The gencrating function for the number p’, of type 1 polyominoes having
perimeter 2n is

o -8+ 211~ 1915+ 41%)
"2 (1=20°(1 +20)*(1 -2¢°%)

=281 —-41%)"2,

7. The coding of type II polyominoes

Type 1l polyominoes (i.e., polyominoes P such that S(P) and N(P) are on the
same vertical line) are obtained by ‘gluing’ together two stack polyominoes, as
shown in Fig. 11. In this section we construct a bijection ¥,, bei..een type II
pelyominoes having perimeter 2n+8 and a certain set B of pairs (u, v) of words,
with total length |u|+|v]=2n. The construction for ¥,, is a more elaborate version
of the construction for @ introduced in Section 3, and related to Fibonacci numbers.
Dyck language is not involved here and the final generating function py,(t) is rational.

Let B be the set of all pairs of words u, v € {x, z, a}” sa isfying the three followirg
conditions:

(51a) wand ve{a, z}* - {a, ax}",

(51b) |ul. =|v].#0,

(51¢) |u|, and jv|, are even numbers.

Remark 7.1. For (u, v)e B, |u|+|v] is even (=2n) and such a pair is in bijection
with the word u/ v (of length 2n+ 1) of a certain language B < {x, z, a, /}*. Language
theorists will easily see that B is a “linear’ language, and thus algebraic.

Proposition 7.2. There exists a bije-tion between type 11 polyominoes with perimeter
2n+8 and pairs (u, v) € B (defined by (51)) with |u|+|v|=2n.

®
Proof. Let P be a type Il polvomino with perimeter 2n+8. Let A be the vertical
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‘Pn(P):(zaazazlea.zzazzxxaaxln)

Fig. 11. The bijection ¥,

line where S(P)and N(P) are located. The border of P intersects along two disjoints
segments. Let M = M(P) (respectively M'=M'(P)) be the upper (respectively
lower) extreme point of the segment having S(P) (respectively N(P)) as other
extreme point. Let D (respectively D') be the horizontal line containing the point
M (respectively M’). Starting from M and following clockwise the border of P, we
successively meet the following paths:

- w; from M to W having West and North steps, .

- 7, from W to N having East and North steps,

- & from N to M’ having only South steps,

- w> from M’ to E having East and South steps,

7> from E to S having West and South steps,

- &> from § to M haviig only North steps.

+
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Remark 7.3. Note that the first (respectively last) step of w, is necessarily West
(respectively North). The first (respectively last) step of w, is West (respectively
South). Also the last step of 7, (respectively 7,) is East (respectively West) and ¢,
and &, are nonempty.

Proof of Proposition 7.2 (continued). Let T (respectively Ty ) be the ‘South transla-
tion’ (x, y)=>(x,y-1) (respectively‘North translation’ (x, y) - (x, y+1)). We define
W=TJ(W) N= Ts(N), E = Ty(E) and S = Tn(S). The step (W, W) (respectively
(E, E)) is the last step of the path w, (respectively w,). Let | (respectively w}) be
the path obtained from w, (reznectively w,) by deleting this last step. The step
(N, N) (respectively (S, §)) is the first step of the path £, (respectively &,). Let ¢
(respectively £;) be the path obiained by deleting this first step.

We define 7, = T (n,) (path going from W to N) and 7, = Tn(7,) (path going
from E to §). _

From Remark 7.3, the polyomino P can be reconstructed from the six paths w},
w3, &1. &3, M, 72 The total length of these paths is 2n+4.

We define the word u’ by following (from M to N via W) first the path ), and
then the path 7,, and by writing a letter “a” (respectively , a factor xx) each
time we inake an Easi or West step (respectively a North step located between the
two lincs D and D', a North step above the line D’).

Dually, we define the word v’ by following (from M’ to S via E) first the path
w3, and then the path 1,, and by writing a letter “‘a” (respectively “z”, a factor xx)
each time we make an East or West step (respectlvely a South step located between
the two lines D and D’, a South step below the line D).

Lxample. For the polyomino P (with perimeter 30) displayed in Fig. 11, we have

65 (1]

W' = azaazazzxxaa and v’ = azzazzxxaaxxaa.

Obviously (ér Remark 7.3) the first and last letter of u’ {respectively v') is “a
We define u (respectively v) to be the word obtamed by deleting these two letters
and finally

(52) ¥ (P)=(u,v).

It is easy to verify that |ul+|v| =2n and that (u, v) satisfies the three conditions
(51a)-(S1c) defining the set B.

Conversely, let (u, v) be a pair of B with |u|+|v|=2n. We define u’'= aua and
v’ = ava. The number of “x” in u’ is an even numbei, say 2r (=0). Also denote
lt la =2p=2. Let u” be the word obtained from u’ by replacmg each factor xx by

“x™ and by inserting an *“‘x” just after the pth letter “"a”. Also let 2s =|v'|, =0,
2g =|v'|. =2 and v” be the word obtained in a similar way. Let m =|u|. =|v].. We
define the four points S=(0, —(s+1)), M =(0,0), M'=(0,m), N=(0, m+r+1).
These four points are all distinct.

Reading from left to right the word u” (respectively v") and similarly to the process
defining @ ' in Section 3, we construct a path y, (respectively x.) going from M
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to N (respectively M’ to S). Each letter “x” or *“z” corresponds to a North
(respectively South) step. The first p (respectively q) letters “‘a’ correspond to a
West (respectively East) step. The last p (respectively q) letters “*a” correspond to
an East (respectively West) step.

Now we respectively define £, (£,) to be the path going from N to M’ (S to M).
The path &, (&) has r+1 (s+1) South (North) steps.

It is easy to verify that the four paths &,, &, x1, x» define the border of a type 11
polyomino P with perimeter 2n+8. Also, the reader will verify that the two corre-
spondences defined above are inverse each other. [

8. The generating function for type Il polyominoes

The language B defined in Remark 7.1 and coding type II polyominoes is algebraic
but 1ot rational. It would be possible to give a length preserving bijection between
words of B and words of a rational language, using a multi-head automaton.

These kinds of automaton are well known in theoretical computer science (see,
for example, [27, 32, 43]). A word w = u/v of B can be recognized by a two-head
finite automaton in the following sense. At the beginning, the heads are pointing
at the first letter of ¥ and v. The automaton begins to read u. Each time one of the
heads reads a letter z, the automaton will read the next letter with the other head.
Each head moves to the right. When the word reaches the final state, each letter
has been read once (and only once) by one of the heads. The first head is pointing
at the symbol */™, the second is pointing at the last letter ot v. The computation
of the generating function for the number of words of B of length 2n+1 is thus
reduced to a determinant calculus. Relation (13), and the analogous expression for
the cofactor, gives an efficient way to compute these determinants. For pedagogical
purpose, we give in Fig. 12 a 16-states two-head automaton accepting B.

It is perhaps better to apply the same procedure as in Section 6, using substitution
operators.

Let K be the set of pairs (w, w.) of words of {u, v, ¥, a, b}* sutisfying the conditions

(52a) w=ww,, weu® (a+x0)* w.cot (b+.an)¥,
(53b) |wl, =lw|, 0.

Taking the corresponding noncommutative generating function and applying the
morphism «, we can easily write
- . ‘ ur
(54) )3 a(w))a(w,)=- : 3 .
Cwpoman K (l—uel—a—-x)(1-b-x")

As in Section 6, we apply the substitutions defined by

{5%8) yu-»— A
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Fig. 12. The finite two-head automaton for type IT polyominoes.

Let k(u, v, x, a, b) be the generating function (54) and b(z, x, a, b) be the generating
function defined by

(56) bz x,a,b)= Y a(w)a(w,).

(wy,wale B

As in Section 6, we obviously have
(57)  b(nt, 0, 0)=4rit, t, ) +2r(t, =1, 1)+ r(1, —1, — 1)),

where r(x, a, b) is defined by

(58)  r(x h)*k( X b)
L~ r(_\,a, - l“a,l"’b,a, .

From (55) and (58) we first compute

3

X
159)  r(x,a b)= : ~
S T e Ty sy e Ty gy ey
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We have successively

-

: -
(60) r(‘a’a’)x(l_zt)(l_t_t2)2’
« tl
O (6=t )= T A+ 1)

B}

2

(62) r(t’_t’_t)z(l+2r)(l+r-t2)2'

Comtining (60), (61), (62) and using (57) and Proposition 7.2, we deduce the
following theorem.

Theorem 8.1. The generating function p,(t) for the number p%,, of type 11 convex
polyom:noes with perimeter 2n is

HUT T P 4, .6
(63) ¥ phen= (1 3t‘+2l +r‘)) _
nes (1=-20(1+20)(1=2Yi+t—-t)y (1 —t—1)

9. The coding for type II1 polyominoes

The coding for type 111 polyominoes is a sort of combination of the coding for
type I (Section S) and for type Il (Section 7). The coding of the middle part of the
trisection (parallelogram polyomino) is exactly the same as for type 1. The coding
of the stack polyominoes is analogous to the construction given in Section 7 (a
letter “a” encodes a West or East step, a letter "= or a factor xx encodes a North
or South sfcp).

Nevertheless, we need to introduce some slight modifications in the mixing of
the three words coding each part of the trisection, in order to obtain tractable
algebraic systems. Also we choose a coding such that large parts of the computations
for type 1 can be used again for type I11.

Let Q be a type IIl polyomino with perimeter 2n +2, i.e. the vertical line Ay
supporting N is at the left-hand side of the vertical line 4¢ supporting S. The middle
part between Ay and Ag 1s a reverse parallelogram polvominoe P, that s, the symmetric,
up to a vertical line, of a parallelogram polyomino P. Denote by (1, I') (respectively
(J, 7)) the segment P~ Ay (respectively P dy). Also we suppose [ is below [
(respectively J above J'). The two stacks polyominoes of the trisection are necessarily
nonempty. Respectively denote by SI (SJ) the right (left) stack polyomino. Let
respectively I” (J”) be the intersection ot 4 (44 ) with the upper (lower) border
of S1 (S1). The point /" is between I and 1" with 1 # I". The point J" is between J
and J" with J # J". Also we must have I # S and J# N (see Fig. 13).

Let w=pg8 '(P) be the Dyck werd coding the parailelogram polyomino ™ as
defined in Section 4. Respectively denote by x” (£ the lett leg (right leg) of w and
n == 2 wx? Recall that the length of the segment (1 I') (respectively (J, J)vis p
(respectively g).
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Fig. 13. The bijection ¥,,,.

Let D, (respectively D,) be the horizontal line supporting I (respectively J).

We define the word u by following counterclockwise the border of the stack
polyomino SI, from S to 1" (passing through S’, E and E’). Each time we make a
horizontal (East or West) step we write a letter “*a”. Each time we make a Norih
step, we write a letter “x" (iespectively “z’") if the step is above D, (respectively
below Dy).

Analogously, we define tiic word v by tollowing counterclockwise (and writing
v from right to left) the border of stack polyomino SJ from N to J”, with “a” for
an horizontal step, and X" (respectively ““z”) for a South step below (respectively
above) D, Necessarily we have

(64)  |uly, |v]a

Uls, U, U], #O.

u

RS
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We define i = |ul, (i.e., the distance between I and I") and j = |v|; (i.e., the distance
between J and J").

By concatening the words u, w, v and deleting i letters “x”’ and j letters *¥’’ from
w, we define the word

(65) V(Q)=ux""'wx 'y,

The length of this word is 2n —|ul, —|v]..

The reader will easily verify that ¥ is a bijection between type 111 polyominoes
with perimeter 2n+2 and words we {x, %, z, a, b}*, of length 2n — |w|, and satisfying
the five following conditions:

(664) the word d,,.(w) obtained by deleting from w the letters a, b, z is a

nonempty Dyck word,
(66b) w has a factorization of the form w = afghb with fe{a, z}* - {a, x}*, ge
{x, x}*, he{b, x}* - {b, z}*, |f].#0, |n].#0,

(66¢c) |w|,=2r and |w|, =2s are nonzero even numbers,

(66d) there exists a letter “*x™ in w before the last “‘a” of w: there exists a letter
*x" after the first “b“ of w,

(66e) between the rth and (r+1)st “a” of w there exists a letter “x™ or 'z’
between the sth and (s+1)st “*b” of w there exists a letter “x™" or *

The reader would be enclined to replace in the same way as for type 11 each letter
*z”" by a factor zz in order to have a length preserving bijection. It is better to make
thls substitution after the operations defined below. These operations cancel the
condition (66d) and (66¢) and slightly modify (66b).

The numbers |ul, and |v|, are even numbers. Denote |ul, = 2r, |v], =2s. Let "
(= x or z) be the letter of u following the rth “a™. If v =x, then we denote by u’
the word obtained by deleting this letier v = x and adding a letter “x™ at the end
of u. If y =z, we delete this letter y = z, replace the first letter *'x”" in u by *z"" and
put a letter “x™ at the end. We define dually v’, by taking the letter y (-— X or z)
just before the (s+ 1)st b (sth from right to left), and doing the analogom operations
(replacing “first letter x™ by *‘last letter ™" and “end™ by “beginning").

Finally, we define the word

(67) W, ()) =p.(u'x" "Wt ),

where p. is the morphism = - z° (and leaving other letters invariant).

Example. For the polyomino Q displayed in Fig. 13, we have successively

W = XXAXXXXXXXX XXX,
o 2N '
u= aa:a@aza. Xdad, M =QAqazaazazxax,

vx bi)j@h:h, ' = Xbhzbzbh,

-
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The reader will easily prove the following proposition.

Proposition 9.1. The map V¥, defined by (67) is a bijection between type 1i: poly-
ominoes with perimeter 2n+2 and words we {x, X, z, a, b}* of length Zn saiisfying
conditions (66a), (66¢c) and the following condition:
(66b)’ w has a factorization of the form w = afxgxhb with fe€ {a, zz}* - {a, x}*,
|fl: #0, ge{x, x}*, he{b, x}* - {b, zz}*, |h|. #0.

10. The generating function for type 111 polyominoes

We use the same kind of techniques as for types 1 and II (auxiliary languages
and substitution operators). Details of the proof (and MACSYMA computations!)
are omitted.

We start again with the auxiliary languages H and S of Section 6, defined by the
relations (28), (29) and (3!). Their respective {commutative) generating functions
h(x, X, y,¥) and s(x, X, a, b) are given by (41) and (35). We will use the same
notations of that se~tian for d(x, x), c(t), ¢(i) and A(1).

Let S by the szt ¢ wvords w of {x, X, a, b}* defined by

(68) weS iff wea*Sbh*,  |w|,=0, |w|,#0.
Let G be the (algebraic) language of {x, X, y, 7, a, b}* defined by
(69) G =a(a+»)V*ySy(b+¥)*b.

After Sections 6 and 8, the nonspecialist reader is now familiar with the
methodology for translating conditions defining languages like (67), (68) and (69),
into equations in noncommutative power series. From Proposition 9.1 he (or she)

will easily prove that the generating function py,(1) =Y, ., piat>" for the number

piY of type 111 convex polyominoes is given by the following equations (we have
denoted by §(x, X, a, b) and g(x, X, y, ¥, @, b) the respective commutative power series

«(S) and a(L)):

(70)  pu(D) =53(g(e, 6, 2, 2, 6, 0420t 1, 2,07, —t, ) +g(4, 1,02, 1%, =1, 1)),

abyy
== s(x,x,a,b),
(l—a-y)(1=-b-7) (

1
2 §ix, X =—5(x, X, a, b) —
(72) §(x,x a,b) (I_a)(l_b)s(x,x,a ) —a

(7 g(x, %,y ¥,a,b)=

s(x, X, a,0)

—(llb)s(x,f,(), b)+d(x,x)—1.

The series py;,(1) is computed from equations (35), (41), (70), (71) and (72).
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Let g,, &, £, Gi, G, G, defined as follows:

- ( b= abx’ s(x, x, a, b)
(73) el = -y —a )1 -b-x) 00

abx®

(1—a)(1—a-x*)(1-b—x?%)

(74) g:(x’ a, b) = S(x, X, a, O)a

abx®(c(x)-1)
(1—a—-x*)(1-b-x7)

(75) gi(x,a,b)=

(76)  Gi(t)=4(gi(t, 1, 1) +2g(t,—t, )+ g1, —1,—1)) fori=1,2,3.
From (70), (71) and (72) we have

(77)  pi(t) = G,(1) —2G-(1) + Gi(¢).

Now using (35) and (41), we have successively

f(1=2t+ =21~ (1-1)’4)

78 = B AR s
(78)  gdL b0 20-20°(1—1- 1)

A= =20(1+20(1 =3+ (1= N1+ (1 =207)A)

(79 - 2 ? ’
{79y g, -01) 200-20(1+200(1 =t =) 1 +1-17)

PO+ 2t+ 02 =20 = (1+ 1))

(80) g (t,—1,—1)= 20042071+t =17)° .

(1 =824 341 =941+ 12615 — 541" + 81'7)
200 =201 +20°1 =200+ 1= (1 =t - 1°)

81y G()=

~ (1 -6+ 161" -241°+20:% - 81" A
2002070+ 200 =250+ 1= A =1 =17

1o

t

(82 S 1) = = s ;
4 gl (I=r=t)y(V=t=t+1(1—=1e)

Multiplving numerator and denominator by (1 -1 - U+ (= 1)¢) gives us

=1+ t+20+(1-04)
AL=-2001=1=1)

10
t

:(l~1~t3)(l+t~t3)(-l~t+13+r:(1+1)c-)'

(82b) g.(n, 0, 1) =

C(83a) g.An,—-11)

Multiplving numerator and denominator by (=1 —r+t"+ r°(t+ 1)¢) gives us

PP A Gl Rl Lol LA 2 Y
. FLN A “.2(l+2t)(l+f‘"'3):(l“’I"I:).
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From
—“1+1+
84 (t, —1,—1 =———-———,— 5(t, —
(84) g ) (71 gx( , 1),
~1+t+
(85) At =)= 1412 2 82(

we have
(86a) Gu(t)———,{———(g.(! L,t)+g(t,—t1)),

f(=1+47+(1-212 = 2tH)4)

B66) G = e+ 200+ - (- - P

For G;(t), we have successively
1°(1-21" - 4)

p 1§ e e o
=142+ 4)
200+ t=H( =1-rY

°(1-20° - 4)

(89) gt —t.-1)= 2“:‘1-_'—_\_—,

(87) g, t,t)=

(88)  gu, -t )=

f(1=-21°-.1)

9 )= 5 .
R T s

Combining (81), (86b) and (90) according to (77), we have the following theorem.

Theorem 10.1. The generating function for the number pi') of type 111 convex poly-
ominoes with perimeter 2n is

O ¥ pna 12 2007475 = 127494951 - 271" + 41'%)

w6 (I~’t)(l+2t)(1-—°t W1+t~ (1 =t-17)
=281 -4r) V?

11. The number of convex polyominoes

The generating function p(r) for the number p,, of convex polyominoes with
perimeter 2n is obtained by adding the three generating functions p(t), pn(t). piu(1)
given in Theorems 6.3, 8.1 and 10.1 We thus restore the initial symmetries of the
convex polyomino and dramatic simplifications occur. Using again MACSYMA,
we obtain the following theorem.
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. (1 -62+111%-41° s
(92) ¥ potn=— 6 )—413(1—4z2)‘-‘/~.

=2 B (1-4r%)?

The surprising fact is that the inverses of the zeros of the denominator of the
rational fraction are integers.

We can expand the generating function (92). The rational fraction gives success-
ively

(93)
=60+ 1114 —41°)

(94) (i

=r'+21°+ ¥ 2n+11)4""*,

The algebraic part is expanded as follows,

1 IX3X - x(2n+
(95) (1-4rt)y 2z y L 1X3X - xQ2nt+1)

L 4"12"
neo2" n!

Subtracting (95) times 41" from (94) we have proved our formula given in Theorem
1.1:

(96)  panix=(2n+ 114" =420+ 1)().

12. Conclusion and final remarks

(1) We have solved an open problem in enumerative combinatorics by using alge-
braic languages methodology, while tentatives using ‘classical’ analytic techniques
have not yet succeeded. Although the final formula is surprisingly simple, so far
this is the only proof we know.

(2) We believe that one of the interests of this method lies in the confrontation
between two different points of view. Combinatorists are looking for enumeration
formulae while algebraic language theorists are motivated by Computer Science
considerations. In particular, the combinatorist is looking at the languages up to a
commutation of the letters, and may consider languages not necessarily algebraic,
but being in bijection with an algebraic (or even rational) language. Multi-head
push-down automata are of special use to produce such bijections.

Such considerations are illustrated by Cori et al. [7] where shuffle of two Dyck
words < {x, ¥}* and ve {y, F}* is changed bijectively into a pair of two Dyck words.
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Note that these commutation considerations are different from the theoretical
concepts of commutative languages introduced by Latteux [25].

(3) In this paper, there is a constant interplay between the bijections, the languages
and the computations (in commutative variables). Other codings (especially for
types II and III) would be possible, using the main idea of the two bijections &
and B for stack and parallelogram polyominoes. A more direct bijection can be
explicited for type II, but with algebraic languages that are not linear. The bijection
we gave in Section 7 has the advantage to produce a language easy to define and
leading to an ultimate coding with words of a rational language. Slight modifications
of a bijection can make the language not algebraic.

(4) M.-P. Delest has produced a direct extension of the bijection 8 for row-convex
polyominoes (see Section 1). This bijection gives an algebraic generating function
for the number of row-convex polyominoes according to the perimeter [10]. (Remark
that conversely to the case of convex polyominoes, the enumeration of row-corivex
polyominoes according i{o the perimeter is much more difficult than enumeration
according to the area.) It is possible to characterize in this coding polyominoes that
also are column-coavex. Thus it would be possible to give a unique algebraic
language coding all convex polyominoes. Unfortunately, the definition of the
language is much more complicated than the one of the three languages introduced
here, and the corresponding computations seem to be much longer.

(5) It would be easy to define a unique algebraic language (a slight extension of
the pigmented Dyck language) such that the three algebraic languages coding each
type of polyominoes are contained in that language.

(6) It would be possible to write down an algebraic grammar defining the languages
for types I and 111 such that the commutative corresponding algebraic systems can
be solved by a succession of linear systems of equations, in term of the generating
function c(t) of the Dyck language. Roughly speaking, the algebraicity has Geen
‘concentrated’ in the Dyck language. The generating functions p;(t) and p;;(t) are
rational expressions in term of t and c(¢). This fact was crucial for solving the
systems. The corresponding languages are in a certain sense (containing the two
concepts ‘commutativity’ and ‘rationality’) close to the Dyck language. Note that
the Motzkin language of Section 3 does not have this property. A theoretical
investigation about such languages would be probably of interest.

We now make some final remarks from the combinatorial point of view.
(7) First, the next step for future work would be to give a direct {bijective) proof

of the formula for p,,. Things are completely different once an exact formula is
Known!
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Note that a dirzct classical approach would be to define a convex polyomino as
a 4-tuple of paths: take the part of the border going clockwise from S to W’
(respectively W to N, N to £', E to §'). If these 8 points (notice some can be not
distinct) are fixed on each side of a rectangle R, then the total number of such
4-tuples is a product of four binomial coefficients. But some paths can intersect and
the configuration does not correspond to a polyomino. Taking the difference between
two products of four binomizis coefficients gives (from the Gessel-Viennot
methodology [13]) the right number of polyominoes. Thus p,, is obtained by taking
the difference of two sums (for all points, and all rectangles of perimeter 2n) of
products of four binomial coefficients. The difference of two numbers giving p., is
not the same as the difference of the formula of Theorem 1.1. Using the bijection

B and formula (24), it would be possible to reduce the sum to products of three
binomial coefficients.

(8) A major problem would be to introduce the area of the polyomino in our
computation. This has been done for stack polyominoes [42] and parallelogram
polyominoes [30, 12, 18]. The area is easily determined froin the word coding the
polyomino. The problem is to make a g-analog of what we have done.

(9) Notice that since this work was completed, we have solved two cther problems
using the same methodology: the number of the so-called dirccted lattice animals
introduced recently in statistical physics (see [40]) and the number of secondary
structures of single-stranded nucleic acids (i.e., RNAS, ...) having a given com-
plexity in biology (sce [39]). With the coding of Cori and Vauquelin [8] for planar
maps, we have four examples of a coding of a planar ‘picture’ with words of an
algebraic language. It is intriguing that the four codings use languages “close’ to the
Motzkin and Dyck languages.

(10) In conciusion, convex polyominoes enumeration is an example of a com-

binatorial problem soived by ‘bijective’ methods. The irony is that the solution ends
with tedious computations.
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