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Chapter 1

Introduction

Computer algebra, the use of computers to do algebra rather than simply arith-
metic, is almost as old as computing itself, with the first theses [Kah53, Nol53]
dating back to 1953. Indeed it was anticipated from the time of Babbage, when
Ada Augusta, Countess of Lovelace, wrote

We may say most aptly that the Analytical Engine weaves alge-
braical patterns just as the Jacquard loom weaves flowers and leaves.
[oL43]

In fact, it is not even algebra for which we need software packages, computers
by themselves can’t actually do arithmetic: only a limited subset of it. If we ask

Excel1 to compute eπ
√
163−262537412640768744, we will be told that the answer

is 256. More mysteriously, if we go back and look at the formula in the cell, we

see that it is now eπ
√
163−262537412640768800. In fact, 262537412640768744 is

too large a whole number (or integer, as mathematicians say) for Excel to han-
dle, and it has converted it into floating-point (what Excel terms “scientific”)
notation. Excel, or any other software using the IEEE standard [IEE85] repre-
sentation for floating-point numbers, can only store them to a given accuracy,
about2 16 decimal places.3 In fact, it requires twice this precision to show that

eπ
√
163 6= 262537412640768744. Since eπ

√
163 = (−1)

√
−163, it follows from deep

results of transcendental number theory [Bak75], that not only is eπ
√
163 not

an integer, it is not a fraction (or rational number), nor even the solution of a
polynomial equation with integer coefficients: essentially it is a ‘new’ number.

1Or any similar software package.
2We say ‘about’ since the internal representation is binary, rather than decimal.
3In fact, Excel is more complicated even than this, as the calculations in this table show.

i 1 2 3 4 . . . 10 11 12 . . . 15 16
a 10i 10 100 1000 1. . . 0 . . . 1. . . 0 1011 1012 . . . 1015 1016

b a-1 9 99 999 9999 9. . . 9 . . . 9. . . 9 1012 . . . 1015 1016

c a-b 1 1 1 1 1 . . . 1 1 . . . 1 0
We can see that the printing changes at 12 decimal digits, but that actual accuracy is not lost
until we subtract 1 from 1016.

9



10 CHAPTER 1. INTRODUCTION

We will see throughout this book (for an early example, see page 36) that
innocent-seeming problems can give rise to numbers far greater than one would
expect. Hence there is a requirement to deal with numbers larger, or to greater
precision, than is provided by the hardware manufacturers whose chips underlie
our computers. Practically every computer algebra system, therefore, has a
package for manipulating arbitrary-sized integers (so-called bignums) or real
numbers (bigfloats).

But the fact that the systems can deal with large numbers does not mean
that we should let numbers increase without doing anything. If we have two
numbers with n digits, adding them requires a time proportional to n, or in
more formal language (see section 1.4) a time O(n). Multiplying them4 requires
a time O(n2). Calculating a g.c.d., which is fundamental in the calculation of
rational numbers, requires O(n3), or O(n2) with a bit of care5. This implies that
if the numbers become 10 times longer, the time is multiplied by 10, or by 100,
or by 1000. So it is always worth reducing the size of these integers. We will
see later (an early example is on page 91) that much ingenuity has been well-
spent in devising algorithms to compute “obvious” quantities by “non-obvious”
ways which avoid, or reduce, the use of large numbers. The phrase intermediate
expression swell is used to denote the phenomenon where intermediate quantites
are much larger than the input to, or outputs from, a calculation.

Notation 1 We write algorithms in an Algol-like notation, with := to indicate
assignment, and = (as opposed to C’s ==) to indicate the equality predicate. We
use indentation to indicate grouping6, rather than clutter the text with begin
. . . end. Comments are introduced by the # character, running to the end of
the line.

1.1 History and Systems

The first recorded use of computers to do computations of the sort we envisage

was in 1951 [MW51], where 180
(
2127 − 1

)2 − 1, a 79-digit number, was prime.
In 1953, two theses [Kah53, Nol53] kicked off the ‘calculus’ side of computer
algebra with programs to differentiate expressions. In the same year, [Has53]
showed that algorithms in group theory could be implemented on computers.

1.1.1 The ‘calculus’ side

The initial work [Kah53, Nol53] consisted of programs to do one thing, but the
focus soon moved on to ‘systems’, capable of doing a variety of tasks. One

4In principle, O(n logn log logn) is enough [AHU74, Chapter 8], but no computer algebra
system routinely uses this, for it is more like 20n logn log logn. However, most systems will
use ‘Karatsuba arithmetic’ [KO63, and section B.3], which takes O(nlog2 3 ≈ n1.585), once
the numbers reach an appropriate length, often 16 words [SGV94].

5In principle, O(n log2 n log logn) [AHU74, Chapter 8], but again no system uses it rou-
tinely.

6An idea which was tried in Axiom [JS92], but which turns out to be better in books than
in real life.
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early one was Collins’ system SAC [Col71], written in Fortran. Its descendants
continue in SAC-2 [Col85] and QEPCAD [Bro03]. Of course, computer algebra
systems can be written in any computer language, even Cobol [fHN76].

However, many of the early systems were written in LISP, largely because of
its support for garbage collection and large integers. The group at M.I.T., very
influential in the 1960s and 70s, developed MACSYMA [MF71, PW85]. This
system now exists in several versions [Ano07]. At about the same time, Hearn
developed Reduce [Hea05], and shortly after a group at IBM Yorktown Heights
produced SCRATCHPAD [GJY75]. This developed into AXIOM [JS92], a sys-
tem that attempted to match the generality of mathematics with ‘generic pro-
gramming’ to allow algorithms to be programmed in the generality in which
they are conventionally (as in this book) stated.

These were, on the whole, very large software systems, and attempts were
made to produce smaller ones. muMATH [RS79] and its successor DERIVE
[RS92] were extremely successful systems on the early PC, and paved the way for
the computer algebra facilities of many high-end calculators. Maple [CGGG83]
pioneered a ‘kernel+library’ design.

The basic Maple system, the kernel , is a relatively small collec-
tion of compiled C code. When a Maple session is started, the entire
kernel is loaded. It contains the essential facilities required to run
Maple and perform basic mathematical operations. These compo-
nents include the Maple programming language interpreter, arith-
metic and simplification routines, print routines, memory manage-
ment facilities, and a collection of fundamental functions. [MGH+03,
p. 6]

1.1.2 The ‘group theory’ side

Meanwhile, those interested in computation group theory, and related topics,
had not been idle. One major system developed during the 1970s/80s was CAY-
LEY [BC90]. This team later looked at Axiom, and built the system MAGMA
[BCM94], again with a strong emphasis on genericity. Another popular system
is GAP [BL98], whose ‘kernel+library’ design was consciously [Neu95] inspired
by Maple.

The reader may well ask ‘why two different schools of thought?’ The au-
thor has often asked himself the same question. The difference seems one of
mathematical attitude, if one can call it that. The designer of a calculus system
envisages it being used to compute an integral, factor a polynomial, multiply
two matrices, or otherwise operate on a mathematical datum. The designer of
a group theory system, while he will permit the user to multiply, say, permuta-
tions or matrices, does not regard this as the object of the system: rather the
object is to manipulate whole groups (etc.) of permutations (or matrices, or
. . .), i.e. a mathematical structure.
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1.1.3 A synthesis?

While it is too early to say that the division has been erased, it can be seen
that MAGMA, for example, while firmly rooted in the group-theory tradition,
has many more ‘calculus like’ features. Conversely, the interest in polynomial
ideals, as in Proposition 26, means that systems specialising in this direction,
such as SINGULAR [Sch03] or COCOA [GN90], use polynomial algorithms, but
the items of interest are the structures rather than the individual polynomials.

1.2 Expansion and Simplification

These two words, or the corresponding verbs ‘expand’ and ‘simplify’ are much
used (abused?) in computer algebra, and a preliminary explanation may be in
order. Computers of course, do not deal in mathematical objects, but, ulti-
mately, in certain bit patterns which are representations of mathematical ob-
jects.

Definition 1 A correspondence f between a class O of objects and a class R of
representations is a representation of O by R if each element of O corresponds
to one or more elements of R (otherwise it is not represented) and each element
of R corresponds to one and only one element of O (otherwise we do not know
which element of O is represented). In other words “is represented by”, is
the inverse of a surjective function “represents” from a subset of R (the “legal
representations”) to O.

Hence we could represent any mathematical objects, such as polynomials, by
well-formed strings of indeterminates, numbers and the symbols +,-,*,(,).
The condition “well-formed” is necessary to prevent nonsense such as )x+++1y(,
and would typically be defined by some finite grammer [ALSU07, Section 2.2].
With no simplification rules, such a representation would regard x-x as just
that, rather than as zero.

Definition 2 A representation of a monoid (i.e. a set with a 0, and an addition
operation) is said to be normal if the only representation of the object 0 is 0.

If we have a normal representation f , then we can tell if two objects a and b are
equal by computing f(a)− f(b): if this is zero, then a and b are equal, while is
this is not zero, they must be unequal. However, this is an inefficient method,
to put it mildly.

Definition 3 A representation is said to be canonical if every object has only
one representation, i.e. f is a bijection, or 1–1 mapping.

With a canonical representation, we can say that two objects “are the same if,
and only if, they look the same”. some comments on hashing
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1.2.1 Expansion

This word is relatively easy to define, as application of the distributive law, as
seen in the first bullet point of Maple’s description.

• The expand command distributes products over sums. This is
done for all polynomials. For quotients of polynomials, only
sums in the numerator are expanded; products and powers are
left alone.

• The expand command also expands most mathematical func-
tions, including . . ..

The precise meaning depends on the underlying polynomial representation used
(recursive/distributed — see page 26), so Maple, which is essentially distributed,
would expand x(y+ 1) into xy+x, while Reduce, which is recursive, would not,
but would expand y(x+ 1) into xy+x, since its default ordering is ‘x before y’.

Expansion can, of course, cause exponential blow-up in the size of the ex-
pression: consider (a + b)(c + d)(e + f) . . ., or sin(a + b + c + . . .). The second
bullet point of Maple’s description can lead to even more impressive expansion,
as in

expand(BesselJ(4,t)^3);

(just where did the number 165888 come from?) or

expand(WeierstrassP(x+y+z,2,3));

1.2.2 Simplification

This word is much used in algebra, particularly at the school level, and has
been taken over by computer algebra, which has thereby committed the sin of
importing into a precise subject a word without a precise meaning. Let us first
consider a few examples.

1. Does x2−1
x−1 simplify to x + 1? For most people, the answer would be

‘yes’, but some would query “what happens when x = 1”, i.e. would
ask whether we are dealing with abstract formulae, or representations of
functions. This is discussed further for rational functions on page 32, and
in item 5 below.

2. Does x1000−1
x−1 simplify to x999+· · ·+1 (assuming the answer to the previous

question is ‘yes’)? Here the fraction is much shorter than the explicit
polynomial, and we have misled the reader by writing · · · here7.

7The construct · · · is very common in written mathematics, but has had almost (but see
[SS06]) no analysis in the computer algebra literature.
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3. Does
√

1− x
√

1 + x simplify to
√

1− x2? Assuming the mathematical
validity, which is not trivial [BD02], then the answer is almost certainly
yes, since the second operations involves fewer square roots than the first.

4. Does
√
x− 1

√
x+ 1 simplify to

√
x2 − 1? This might be thought to be

equivalent to the previous question, but consider what happens when x =
−2. The first one simplifies to

√
−3
√
−1 = i

√
3 · i = −

√
3, while the

second simplifies to
√

3. Note that evaluations result in real numbers,
though they proceed via complex ones. Distinguishing this case from the
previous one is a subject of active research [CDJW00].

5. Assume we are working modulo a prime p, i.e. in the field Fp. Does
xp − x simplify to 0? As polynomials, the answer is no, but as functions
Fp → Fp, the answer is yes, by Fermat’s Little Theorem. Note that, as
functions Fp2 → Fp2 , say, the answer is no.

Now we give a few illustrations of what simplification means to different audi-
ences.

Teachers At a course on computer algebra systems for teachers of the French
‘concours’, among the most competitive mathematics examinations in the
western world, there was a round table on the meaning of simplification.
Everyone agreed that the result should be ‘mathematically equivalent’,
though it was less clear, prompted by example 1, exactly what this meant.
The response to example 2 was along the lines of “well, you wouldn’t ask
such a question”. The author wishes he had had examples 3 and 4 to hand
at the time!

The general consensus was that ‘simplification’ meant ’give me the an-
swer I want’. This answer is not effective, in the sense that it cannot be
converted into a set of rules.

Moses [Mos71] This is a seminal paper, but describes approaches to simplifi-
cation rather than defining it. Inasmuch as it does define it, it talks about
‘utility for further operations’, which again is not effective. However, the
principle is important, since a request to factor would find the expression

x999 + · · ·+ 1 appropriate8, whereas x1000−1
x−1 is in a field, and factorisation

is not a relevant question.

Carette [Car04] He essentially defines simplification in terms of the length of
the result, again insisting on mathematical equivalence. This would regard
examples 1 (assuming they were deemed to be mathematical equivalent)
and 3 as simplifications, but not 2, since the expression becomes longer.

Numerical Analysts A numerical analyst would be shocked at the idea that
x2 − y2 was ‘simpler’ than (x + y)(x − y). He would instantly quote an
example such as the following [Ham07].

8In fact, knowing the expression came from that quotient would be relevant [BD89] to
factorisation algorithms, but that’s beside the point here.
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For simplicity, assume decimal arithmetic, with perfect rounding
and four decimal places. Let x = 543.2 and y = 543.1. Then
x2 evaluates to 295100 and y2 evaluates to 295000, so x2 − y2
becomes 100, while (x+ y)(x− y) evaluates to 108.6, a perfect
rounding of the true answer 108.63.

Furthermore, if we take x = 913.2 and y = 913.1, x2 − y2 is
still 100, while the true result is 182.63.

This is part of the whole area of numerical stability : fascinating, but
outside the scope of this text.

One principle that can be extracted from the above is “if the expression is zero,
please tell me”: this would certainly meet both the teachers’ and Carette’s
views. This can be seen as a call for simplification to return a normal form
where possible [Joh71, Ric97].

Maple’s description of the ‘simplify’ command is as follows.

• The simplify command is used to apply simplification rules
to an expression.

• The simplify/expr calling sequence searches the expression,
expr, for function calls, square roots, radicals, and powers. It
then invokes the appropriate simplification procedures.

• symbolic Specifies that formal symbolic manipulation of ex-
pressions is allowed without regard to the analytical issue of
branches for multi-valued functions. For example, the expres-
sion sqrt(x^2) simplifies to x under the symbolic option. With-
out this option, the simplified result must take into account the
different possible values of the (complex) sign of x.

Maple does its best to return a normal form, but can be fooled: for example

RootOf
(

Z 4 + b Z 2 + d
)
− 1/2

√
−2 b+ 2

√
b2 − 4 d ,

which is actually zero (applying figure 3.2), does not simplify to zero under
Maple 11.

Because simplification may often require expansion, e.g. to take (x−1)(x+1)
to x2 − 1, the two are often confused, and indeed both Macsyma and Reduce
(internally) used ratsimp and *simp (respectively) to denote what we have
called expansion.

1.3 Algebraic Definitions

In this section we give some classic definitions from algebra, which we will return
to throughout this book. Other concepts are defined as they occur, but these
ones are assumed.
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Definition 4 A set R is said to be a ring if it has two binary operations + and
∗, a unary operation − and a distinguished element 0, such that, for all a, b
and c in R:

1. a+ (b+ c) = (a+ b) + c (associativity of +);

2. a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity of ∗);

3. a+ b = b+ a (commutativity of +);

4. a+ (−a) = 0;

5. a+ 0 = a;

6. a ∗ (b+ c) = (a ∗ b) + (a ∗ c) (distributivity of ∗ over +);

7. a ∗ b = b ∗ a (commutativity of ∗).

Not every text includes the last clause, and they would call a ‘commutative ring’
what we have called simply a ‘ring’. In the absence of the last clause, we will
refer to a ‘non-commutative ring’.

Definition 5 If R is a (possibly non-commutative) ring and ∅ 6= I ⊆ R, then
we say that I is a (left-)ideal of R, written I /R, if the following two conditions
are satisfied9:

(i) ∀f, g ∈ I, f − g ∈ I,

(i) ∀f ∈ R, g ∈ I, fg ∈ I.

There are also concepts of right ideal and two-sided ideal , but all concepts agree
in the case of commutative rings. Non-trivial ideals (the trivial ideals are {0}
and R itself) exist in most rings: for example, the set of multiples of m is an
ideal in Z.

Proposition 1 If I and J are ideals, then I + J = {f + g : f ∈ I, g ∈ J} and
IJ = {fg : f ∈ I, g ∈ J} are themselves ideals.

Definition 6 A ring is said to be noetherian, or to satisfy the ascending chain
condition if every ascending chain I1 ⊂ I2 · · · of ideals is finite.

Theorem 1 (Noether) If R is a commutative noetherian ring, then so is R[x]
(Notation 4, page 22).

Corollary 1 If R is a commutative noetherian ring, then so is R[x1, . . . , xn].

Definition 7 A ring R is said to be an integral domain if, in addition to the
conditions above, there is a neutral element 1 such that 1 ∗ a = a and, whenver
a ∗ b = 0, at least one of a and b is zero.

9We write f − g ∈ I since then 0 = f − f ∈ I, and then f + g = f − (0− g) ∈ I.
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Another way of stating the last is to say that R has no zero-divisors (meaning
none other than zero itself).

Definition 8 An element u of a ring R is said to be a unit if there is an element
u−1 such that u ∗ u−1 = 1. u−1 is called the inverse of u.

Definition 9 If a = u ∗ b where u is a unit, we say that a and b are associates.

Proposition 2 If a and b are associates, and b and c are associates, then a
and c are associates. In other words, being associates is an equivalence relation.

For the integers, n and −n are associates, whereas for the rational numbers,
any two non-zero numbers are associates.

Definition 10 If R is an integral domain such that every ideal I is principal,
i.e. I = (f) for some f ∈ R, then R is called a principal ideal domain, or P.I.D.

Classic P.I.D.s are the integers Z, and polynomials in one variable. Inside a
principal ideal domain, we have the classic concept of a greatest common divisor.

Proposition 3 Let R be a P.I.D., a, b ∈ R and (a, b) = (g). Then g is a
greatest common divisor of a and b, in the sense that any other common divisor
divides g, and g = ca+ db for c, d ∈ R.

Definition 11 If F is a ring in which every non-zero element is a unit, F is
said to be a field.

The “language of fields” therefore consists of two constants (0 and 1), four
binary operations (+, −, ∗ and /) and two unary operations (− and −1, which
can be replaced by the binary operations combined with the constants). The
rational numbers and real numbers are fields, but the integers are not. For any
m, the integers modulo m are a ring, but only if m is prime do they form a
field. The only ideals in a field are the trivial ones.

Definition 12 If R is an integral domain, we can always form a field from it,
the so called field of fractions, consisting of all formal fractions10 a

b : a, b ∈
R, b 6= 0, where a/b is zero if and only if a is zero. Addition is defined by
a
b + c

d = ad+bc
bd , and multiplication by a

b ∗
c
d = ac

bd . So a
b = c

d if, and only if,
ad− bc = 0.

In particular, the rational numbers are the field of fractions of the integers.

Definition 13 If F is a field, the characteristic of F , written char(F ), is the
least positive number n such that 1 + · · ·+ 1︸ ︷︷ ︸

n times

= 0. If there is no such n, we say

that the characteristic is zero.

10Strictly speaking, equivalence classes of formal fractions, under the equality we are about
to define.
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So the rational numbers have characteristic 0, while the integers modulo p have
characteristic p, as do, for example, the rational functions whose coefficients are
integers modulo p.

Proposition 4 The characteristic of a field, if non-zero, is always a prime.

1.3.1 Algebraic Closures

Some polynomial equations have solutions in a given ring/field, and some do
not. For example, x2− 1 = 0 always has two solutions: x = −1 and x = 1. The
reader may protest that, over a field of characteristic two, there is only one root,
since 1 = −1. However, over a field of characteristic two, x2 − 1 = (x− 1)2, so
x = 1 is a root with multiplicity two.

Definition 14 A field F is said to be algebraically closed if every polynomial
in one variable over F has a root in F .

Proposition 5 If F is algebraically closed, then every polynomial of degree n
with coefficients in F has, with multplicity, n roots in F .

Theorem 2 (“Fundamental Theorem of Algebra”) 11 C, the set of com-
plex numbers, is algebraically closed.

Definition 15 If F is a field, the algebraically closure of F , denoted F is the
field generated by adjoining to F the roots of all polynomials over F .

It follows from proposition 53 that the algebraic closure is in fact algebraically
closed.

1.4 Some Complexity Theory

As is usual in computing we will use the so-called “Landau notation”12 to de-
scribe the computing time (or space) of operations.

Notation 2 (“Landau”) Let N be some measure of the size of a problem,
and f some function. If t(N) is the time taken, on a given hardware/software
configuration, to solve the hardest problem of size N , we say that

t(N) = O(f(N)) (1.1)

if ∃C ∈ R,M : ∀N > Mt(N) < Cf(N).

We will also use “soft O” notation.

11The title is in inverted commas, since R and C are constructs of analysis, rather than
algebra.

12Though apparently first introduced by[Bac94, p. 401]. See [Knu74].
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Notation 3 (“soft O”) Let N be some measure of the size of a problem, and
f some function. If t(N) is the time taken, on a given hardware/software con-
figuration, to solve the hardest problem of size N , we say that

t(N) = Õ(f(N)) (1.2)

if ∀ε > 0∃C ∈ R,M : ∀N > M t(N) < Cf(N)1+ε.

We should note that “= O” and “= Õ” should really be written with “∈” rather
than “=”, and this use of “=” is not reflexive, symmetric or transitive. Also,
many authors use Õ to mean “up to logarithmic factors”, which is included in
our, more general, definition. [DL08].

The key results of complexity theory for elementary algorithms are that it
is possible to multiply two N -bit integers in time Õ(N), and two degree-N
polynomials with coefficients of bit-length at most τ in time Õ(Nτ). [AHU83]

However, the reader should be warned that Õ expressions are often far from
the reality experienced in computer algebra, where data are small enough that
the limiting processes in equations (1.1) and (1.2) have not really taken hold
(see note 4, or are quantised (in practice integer lengths are measured in words,
not bits, for example).

1.5 Some Maple

1.5.1 The RootOf construct

1.5.2 The simplify command

This Maple command has been discussed before. It is worth noting that simpli-
fication in this sense does not commute with substitution, and it can be argued
[Zim07] that it is a ‘user-oriented’ command that should not be used inside
Maple programs.
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Chapter 2

Polynomials

Polynomials are fundamental to much of mathematics, even when the objects
under discussion are apparently not polynomials, such as differential equations.
Equally, polynomials underpin much of computer algebra. But what, precisely,
are they?

2.1 What are polynomials?

There are numerous definitions. From our point of view, computer algebra,
we will adopt the following definition for commutative1 polynomials, leaving
non-commutative polynomials to be discussed in section 2.4.

Definition 16 (Polynomials) A (commutative) polynomial is built up from
coefficients, which are assumed to form a ring (definition 4), and certain in-
determinates (often called variables), by the algebraic operations of addition,
subtraction and multiplication. These are subject to the following laws, where
a, b, c are polynomials, m,n coefficients, and 0 and 1 certain distinguished coef-
ficients.

1. a+ b = b+ a;

2. (a+ b) + c = a+ (b+ c);

3. a+ 0 = a

4. a+ (−a) = 0;

5. a ∗ b = b ∗ a;

6. a ∗ (b ∗ c) = (a ∗ b) ∗ c;
1“Commutative” meaning a ∗ b = b ∗ a. Strictly speaking, we should also worry whether

addition is commutative, i.e. whether a+ b = b+ a, but we will always assume that addition
is commutative.

21
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7. a ∗ 1 = a;

8. a ∗ (b+ c) = (a ∗ b) + (a ∗ c);

9. m+ n = m⊕ n;

10. m ∗ n = m⊗ n;

where we have used ⊕ and ⊗ to denote the operations of addition and multipli-
cation on coefficients, which are assumed to be given to us.

The reader can think of the coefficients as being numbers, though they need not
be, and may include other indeterminates that are not the “certain indetermi-
nates” of the definition. However, we will use the usual ‘shorthand’ notation of
2 for 1 ⊕ 1 etc. The associative laws (2 and 6 above) mean that addition and
multiplication can be regarded as n-ary operations. A particular consequence
of these rules is

8’ m ∗ a+ n ∗ a = (m⊕ n) ∗ a

which we can think of as ‘collection of like terms’.

Proposition 6 Polynomials over a ring form a ring themselves.

If it is the case that a polynomial is only zero if it can be deduced to be zero by
rules 1–10 above, and the properties of ⊕ and ⊗, then we say that we have a free
polynomial algebra. Free algebras are common, but by no means the only one
encountered in computer algebra. For examples, trigonometry is often encoded
by regarding sin θ and cos θ as indeterminates, but subject to sin2 θ+ cos2 θ = 1
[Sto77].

Notice what we have not mentioned: division and exponentiation.

Definition 17 ((Exact) Division) If a = b ∗ c, then we say that b divides a,
and we write b = a

c .

Note that, for the moment, division is only defined in this context. We note
that, if c is not a zero-divisor, b is unique.

Definition 18 (Exponentiation) If n is a natural number and a is a polyno-
mial, then we define an inductively by:

• a0 = 1;

• an+1 = a ∗ an.

Notation 4 If K is a set of coefficients, and V a set of variables, we write
K[V ] for the set of polynomials with coefficients in K and variables in V . We
write K[x] instead of K[{x}] etc.
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2.1.1 How do we manipulate polynomials?

We have defined the abstract, almost Platonic, concept of polynomials as math-
ematical objects, and polynomial algebra as rules for these objects. What do
we mean by the representation of these objects in a computer system?

One option would be for a computer algebra system essentially to do nothing,
simply recording the computations requested by the user, so that a+b would
become simply a + b. However, we would not be very happy with a calculator
which computed 1+1 as “1+1”, as we would rather see “2”. In particular, if the
answer is 0, we would like to see that shown, i.e. we would like the representation
to be normal (definition 2).

2.1.2 Polynomials in one variable

We will first consider polynomials in one variable, say x. If the coefficients
come from a domain K, the polynomials in x over K are denoted by K[x]
(Notation 4). One obvious route to a canonical representation (definition 3) is
to insist that polynomials be expanded, i.e. that multiplication is only applied
to coefficients and variables, not to general polynomials. This is achieved by
applying distributivity, rule 8 from definition 16, where necessary, ensuring that
multiplication is not applied to additions. Once this is done, the polynomial is
of the form

∑n
i=0 aix

i, where the ai are coefficients.

Notation 5 We assume that an 6= 0. In this case, n is called the degree of
the polynomial, denoted deg(f), or degx(f) if we wish to make it clear which
variable is being considered. an is called the leading coefficient of f , and denoted
lc(f) or lcx(f). If lc(f) = 1, we say that f is monic. f − lc(f)xdeg(f), i.e. f
minus its leading term, is known as the reductum of f .

There is then an important distinction, which does not really occur when
doing algebra by hand: does one represent the zero coefficients, or not?

Definition 19 A representation2 is said to be dense if every coefficient, zero
or not, is represented, while it is sparse if zero coefficients are not stored.

Hence the polynomial x2+0x−1, normally written as x2−1, would be stored as
<1,0,-1> in a dense representation, but <<2,1>,<0,-1>> in a sparse representa-
tion. As is implicit in the previous sentence, the normal “human” representation
is sparse. Those systems that automatically expand, e.g. Reduce [Hea05], use a
sparse representation, since a system would look fairly silly if it was unable to
represent x1000000000+1 since it could not store the 999,999,999 zeros. However,
dense representations are often used internally in some algorithms.

Proposition 7 Both the dense and the sparse expanded representation are can-
onical (definition 3), provided that:

• leading (in the dense case) or all (in the sparse case) zeros are suppressed;

2In the current case, we are dealing with polynomials. But the concept is more general —
see section 3.2.2 for sparse matrices, for example.
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• (in the sparse case) the individual terms are stored in a specified order,
generally3 sorted.

Addition is fairly straight-forward in either representation. In Lisp, we can do
addition in a sparse representation as follows. We use a representation in which
the CAR of a polynomial is a term, whilst the CDR is another polynomial: the ini-
tial polynomial minus the term defined by the CAR, i.e. the reductum (Notation
5). A term is a CONS, where the CAR is the exponent and the CDR is the coeffi-
cient. Thus the LISP structure of the polynomial 3x2+1 is ((2 . 3) (0 . 1)),
and the list NIL represents the polynomial 0, which has no non-zero coefficients,
and thus nothing to store. In this representation, we must note that the num-
ber 1 does not have the same representation as the polynomial 1 (which is ((0

. 1))), and that the polynomial 0 is represented differently from the other
numerical polynomials.

(DE ADD-POLY (A B)

(COND ((NULL A) B)

((NULL B) A)

((GREATERP (CAAR A) (CAAR B))

(CONS (CAR A) (ADD-POLY (CDR A) B)))

((GREATERP (CAAR B) (CAAR A))

(CONS (CAR B) (ADD-POLY A (CDR B))))

((ZEROP (PLUS (CDAR A) (CDAR B)))

; We must not construct a zero term

(ADD-POLY (CDR A) (CDR B)))

(T (CONS (CONS (CAAR A) (PLUS (CDAR A) (CDAR B)))

(ADD-POLY (CDR A) (CDR B))))))

(DE MULTIPLY-POLY (A B)

(COND ((OR (NULL A) (NULL B)) NIL)

; If a = a0+a1 and b = b0+b1, then ab = a0b0 + a0b1 + a1b

(T (CONS (CONS (PLUS (CAAR A) (CAAR B))

(TIMES (CDAR A) (CDAR B)))

(ADD-POLY (MULTIPLY-POLY (LIST (CAR A))

(CDR B))

(MULTIPLY-POLY (CDR A) B))))))

If A has m terms and B has n terms, the calculating time (i.e. the num-
ber of LISP operations) for ADD-POLY is bounded by O(m + n), and that for
MULTIPLY-POLY by O(m2n) ((m(m+ 3)/2− 1)n to be exact).4 There are mul-
tiplication algorithms which are more efficient than this one: roughly speaking,
we ought to sort the terms of the product so that they appear in decreasing

3But we should observe that Maple, for example, which uses a hash-based order, is still
canonical, even though it may not seem so to the human eye.

4It is worth noting the asymmetry in the computing time of what is fundamentally a
symmetric operation. Hence we ought to choose A as the one with the fewer terms. If this
involves counting the number of terms, many implementors ‘cheat’ and take A as the one of
lower degree, hoping for a similar effect.
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order, and the use of ADD-POLY corresponds to an insertion sort. We know that
the number of coefficient multiplications in such a ‘classical’ method is mn, so
this emphasises that the extra cost is a function of the exponent operations
(essentially, comparison) and list manipulation. Of course, the use of a better
sorting method (such as “quicksort”) offers a more efficient multiplication algo-
rithm, say O(mn logm) [Joh74]. But most systems use an algorithm similar to
the procedure given above.

In a dense representation, we can use radically different, and more efficient,
methods based on Karatsuba’s method [KO63, and section B.3], which takes
timeO(max(m,n) min(m,n)0.57..., or the Fast Fourier Transform [AHU74, chap-
ter 8], where the running time is O(n log n).

There is a technical, but occasionally important, difficulty with this pro-
cedure, reported in [ABD88]. We explain this difficulty in order to illustrate
the problems which can arise in the translation of mathematical formulae into
computer algebra systems. In MULTIPLY-POLY, we add a0b1 to a1b. The order
in which these two objects are calculated is actually important. Why, since this
can affect neither the results nor the time taken? The order can dramatically
affect the maximum memory space used during the calculations. If a and b are
dense of degree n, the order which first calculates a0b1 should store all these
intermediate results before the recursion finishes. Therefore the memory space
needed is O(n2) words, for there are n results of length between 1 and n. The
other order, a1b calculated before a0b1, is clearly more efficient, for the space
used at any moment does not exceed O(n). This is not a purely theoretical re-
mark: [ABD88] were able to factorise x1155 − 1 with REDUCE in 2 megabytes
of memory, but they could not remultiply the factors without running out of
memory, which appears absurd.

Division is fairly straight-forward: to divide f by g, we keep subtracting
appropriate (meaning ci = (lc(f)/lc(g))xdegf−degg) multiples of g from f until
the degree of f is less than the degree of g. If the remaining term (the remainder)
is zero, then g divides f , and the quotient can be computed by summing the
cix

i. This is essentially the process known to schoolchildren as “long division”.

2.1.3 A factored representation

Instead of insisting that multiplication not be applied to addition, we could
insist that addition not be applied to multiplication. This would mean that a
polynomial was represented as a product of polynomials, each the sum of simple
terms:

f =
∏
i

fi =
∏
i

 ni∑
j=0

ai,jx
j

 . (2.1)

In practice, repeated factors are stored explicitly, as in the following format:

f =
∏
i

fdii =
∏
i

 ni∑
j=0

ai,jx
j

di

. (2.2)



26 CHAPTER 2. POLYNOMIALS

We have a choice of using sparse or dense representations for the fi, but usually
sparse is chosen. It is common to insist that the fi are square-free5 and relatively
prime6 (both of which necessitate only g.c.d. computations7 — lemma 3), but
not necessarily8 irreducible. Hence this representation is generally known as
partially factored. In this format, the representation is not canonical, since the
polynomial x2−1 could be stored either as that (with 2 terms), or as (x−1)(x+1)
(with 4 terms): however, it is normal in the sense of definition 2. For equality
testing, see excursus B.2

Multiplication is relatively straight-forward, we check (via g.c.d. computa-
tions9) for duplicated factors between the two multiplicands, and then combine
the multiplicands. Addition can be extremely expensive, and the result of an
addition can be exponentially larger than the inputs: consider

(x+ 1)(x2 + 1) · · · (x2
k

+ 1) + (x+ 2)(x2 + 2) · · · (x2
k

+ 2),

where the input has 4(k + 1) non-zero coefficients, and the output has 2k+1

(somewhat larger) ones.
This representation is not much discussed in the general literature, but is

used in Redlog [DS97] and Qepcad [CH91], both of which implement cylindrical
algebraic decomposition (see section 3.4), where a great deal of use can be made
of corollaries 13 and 14.

2.1.4 Polynomials in several variables

Here the first choice is between factored and expanded. The arguments for, and
algorithms handling, factored polynomials are the same as in the case of one
variable. The individual factors of a factored form can be stored in any of the
ways described below for expanded polynomials, but recursive is more common
since it is more suited to g.c.d. computations (sections 4.1 and 4.2), which as
we saw above are crucial to manipulating factored representations.

If we choose an expanded form, we have one further choice to make, which
we explain in the case of two variables, x and y, and illustrate the choices with
x2y + x2 + xy2 − xy + x− y2.

recursive — C[x][y]. We regard the polynomials as polynomials in y, whose
coefficients are polynomials in x. Then the sample polynomial would be

5Which almost certainly improves compactness, but see [CD91], where a dense polynomial
of degree 12 was produced (13 terms), whose square had only 12 nonzero terms, and the
process can be generalised. Twelve is minimal [Abb02].

6Which often improves compactness, but consider (xp−1)(xq−1) where p and q are distinct
primes, which would have to be represented as (x− 1)2(xp−1 + · · ·+ 1)(xq−1 + · · ·+ 1).

7These g.c.d. computations, if carried out by modular or p-adic methods (pages 91 and
98), should be cheap if the answer is “no simplification”, and otherwise should lead to greater
efficiency later.

8If we were to insist on irreducibility, we would need to store xp−1 as (x−1)(xp−1+· · ·+1),
with p + 2 terms rather than with 2. Furthermore, irreducibility can be expensive to prove
[ASZ00].

9Again, these should be cheap if there is no factor to detect, and otherwise lead to reduc-
tions in size.
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(x − 1)y2 + (x2 − x)y + (x2 + x)y0. We have made the y0 term explicit
here: in practice detailed representations in different systems differ on this
point.

recursive — C[y][x]. We regard the polynomials as polynomials in x, whose
coefficients are polynomials in y. Then the sample polynomial would be
(y + 1)x2 + (y2 − y + 1)x+ (−y2)x0.

distributed — C[x, y]. We regard the polynomials as polynomials in x and
y, whose coefficients are numbers. With 6 terms (as in this example),
there are 6! = 720 possible orders. It is usual to impose two additional
constraints on the order on terms, or more accurately on the monomials10,
i.e. ignoring the coefficients, which we will denote11 as >.

Definition 20 An ordering is said to be an admissible ordering if it sat-
isfies the following conditions.

• Compatibility with multiplication: if a > b then, for all monomials c,
ac > bc.

• Well-foundedness: for all non-trivial monomials a, a > 1.

These requirements greatly reduce the available orders for our sample
polynomial. One possibility would be to sort by total degree (i.e. the sum
of the degrees in each variable), using degree in x as a tie-breaker. This
would give us x2y+ xy2 + x2− xy− y2 + x. There is a fuller discussion of
such orderings in section 3.3.4. However, we should note one important
property of admissible orders here.

Theorem 3 (Descending Chain Condition; Dickson’s Lemma)
Any decreasing sequence (with respect to an admissible ordering) of mono-
mials is finite. [Dic13]

In general, if there are n variables, there are n! possible recursive representations,
but an infinite number of possible distributed representations, though clearly
only finitely many different ones for any one given polynomial or finite set of
polynomials.

In both cases, we use sparse, rather than dense, representations, since any
reasonable multivariate polynomial had better be sparse: degree 6 in each of 6
variables means 76 = 117649 terms. The same results as for univariate polyno-
mials apply.

Proposition 8 For a fixed ordering, both recursive and distributed representa-
tions are canonical (definition 2). Partially factored representations are normal,
but not canonical.

10We use the term monomial to mean a product of (possibly repeated) variables, as in xyz
or x2y, without any coefficient. Usage on this point differs.

11We are not making any numerical evaluation of the monomials, merely saying which order
we put the monomials in.
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It makes no sense to compare polynomials in different representations, or the
same representation but different orderings. We have spoken about ‘represen-
tations’, but in fact the division between recursive and distributed goes deeper.
While characterisations 3 and 2 of a Gröbner base (theorem 13) can make sense
in either view, characterisations 4 and 1 (the only effective one) only make sense
in a distributed view. Conversely, while the abstract definitions of factorisation
and greatest common divisors (definition 22) make sense whatever the view, the
only known algorithms for computing them (algorithm 1 or the advanced ones
in chapter 4) are inherently recursive12.

2.1.5 Other representations

Sparse representations take up little space if the polynomial is sparse. But
shifting the origin from x = 0 to x = 1, say, will destroy this sparsity, as
might many other operations. The following example, adapted from [CGH+03],
illustrates this. Let Φ(Y, T ) be

∃X1 . . . ∃Xn(X1 = T + 1)∧ (X2 = X2
1 )∧ · · · ∧ (Xn = X2

n−1)∧ (Y = X2
n). (2.3)

The technology described in section 3.4.2 will convert this to a polynomial equa-
tion

Ψ(Y, T ) : Y = (1 + T )2
n

. (2.4)

Dense or sparse representations have problems with this, in the sense that ex-
pression (2.3) has length O(n), but expression (2.4) has length O(2n) or more.
A factored representation could handle the right-hand side, assuming that we
are not representing the equations as polynomial = 0. But changing the last
conjunct of Φ to (Y = (Xn + 1)2) changes Ψ to

Y =
(

1 + (1 + T )2
n−1
)2
, (2.5)

whose factored representation now has length O(2n).
Factored representations display a certain amount of internal structure, but

at the cost of an expensive, and possibly data-expanding, process of addition.
Are there representations which do not have these ‘defects’? Yes, though they
may have other ‘defects’.

Expression tree This representation “solves” the cost of addition in the fac-
tored representation, by storing addition as such, just as the factored

representation stored multiplication as such. Hence
(
(x+ 1)3 − 1

)2
would

be legal, and represented as such. Equation (2.5) would also be stored
compactly provided exponentiation is stored as such, e.g. Z2 requiring
one copy of Z, rather than two as in Z · Z. This system is not canoni-
cal, or even normal: consider (x + 1)(x − 1) − (x2 − 1). This would be
described by Moses [Mos71] as a “liberal” system, and generally comes

12At least for commutative polynomials. Factorisation of non-commutative polynomials is
best done in a distributed form.
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with some kind of expand command to convert to a canonical represen-
tation. Assuming now that the leaf nodes are constants and variables,
and the tree’s internal nodes are (binary, i.e. with two arguments) addi-
tion, subtraction and multiplication, then a tree with maximal depth p
can represent a polynomial with maximum total degree 2p. It would need
to have 2p − 1 internal nodes (all multiplication), and 2p leaf nodes. The
degree is easy to bound, by means of a tree-walk, but harder to compute,
especially if cancellation actually occurs. Similarly, the leading coefficient
can be computed via a simple tree-walk if no cancellation occurs.

Expression DAG also known as Straight-Line Program (SLP) [IL80].
This is essentially13 the representation used by Maple — it looks like the
previous representation, but the use of hashing in fact makes it a directed
acyclic graph (DAG). Again, a straight-line program of length l (i.e. a
DAG of depth l−1) can store a polynomial of degree 2l−1. The difference
with the expression tree representation above is that we only need l nodes,
since the nodes can be reused.

This format is essentially immune to the “change of origin” problem men-
tioned above, since we need merely replace the x node by a tree to compute
x + 1, thus adding two nodes, and possibly increasing the depth by one,
irrespective of the size of the polynomial. The general ‘straight-line’ for-
malism has advantages where multi-valued functions such as square root
are concerned: see the discussions around figures 3.1 and 3.2.

However, there is one important caveat about straight-line programs: we
must be clear what operations are allowed. If the only operations are +,
− and ×, then evidently a straight-line program computes a polynomial.
Equally, if division is allowed, the program might not compute a polyno-
mial. But might it? If we look at figure 2.1, we see that p = x2 − 1 and

q = x− 1, so the result is p
q = x2−1

x−1 = x+ 1. Or is it? If we feed in x = 1,

we in fact get 0
0 , rather than 2. This is a singularity of the kind known as

a removable singularity, because limx→1
p(x)
q(x) = 2. In fact [IL80, Theorem

3], deciding if two straight-line programs are equivalent is undecidable if
division is allowed.

We said earlier that the only known algorithms for computing greatest
common divisors were recursive. This is essentialy true, and means that
the computation of greatest common disivors of straight-line programs is
not a straight-forward process [Kal88].

Additive Complexity This [Ris85, Ris88] is similar to a straight-line pro-
gram, except that we only count the number of (binary) addition/subtrac-
tion nodes, i.e. multiplication and exponentiation are ‘free’. Hence the
degree is unbounded in terms of the additive complexity, but for a given

13Maple uses n-ary addition and multiplication, rather than binary, as described in section
C.1.
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Figure 2.1: A polynomial SLP

x
⇓ ↘

−1 ∗ ↓ −1
↘ ↙ ↓ ↙

p→ + + ← q
↘ ↙

/

Figure 2.2: Code fragment A — a graph

p:=x+1;

q:=p;

r:=p*q;

expression (tree/DAG) can be bounded by a tree-walk. A univariate poly-

nomial of additive complexity a has at most Ca
2

real roots for some ab-
solute constant C: conjecturally this can be reduced to 3a. These bounds
trivially translate to the straight-line program and expression tree cases.

“Additive complexity” is more of a measure of the ‘difficulty’ of a polynomial
than an actual representation. Of the others, the first was used in Macsyma for
its “general expression”, and the second is used in Maple14. In fact, Macsyma
would15 allow general DAGs, but would not force them. Consider the two code
fragments in figures 2.2 and 2.3. In the case of figure 2.2, both systems would
produce the structure in figure 2.4. For figure 2.3, Macsyma would produce the
structure16 in figure 2.5. Maple would still produce the structure of figure 2.4,
since the hashing mechanism would recognise that the two x+ 1 were identical.

14Until such time as operations such as expand are used!
15Not explicitly, but rather as a side-effect of the fact that Macsyma is implemented in Lisp,

which cares little for the difference. The basic function EQUAL does not distinguish between
acyclic and cyclic structures

16The x is shown as shared since the Lisp implementation will store symbols unqiuely.

Figure 2.3: Code fragment B — a tree

p:=x+1;

q:=x+1;

r:=p*q;
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Figure 2.4: DAG representation

1 x
↘ ↙

p→ + ← q
⇓

r → ∗

Figure 2.5: Tree representation

1 x 1
↘ ↙ ↘ ↙

p→ + + ← q
↘ ↙
r → ∗

2.2 Rational Functions

Of course, we want to manipulate a wider class of expressoins, and even 1
x is

not a polynomial.

Definition 21 A rational function is built up from coefficients, which are as-
sumed to form an integral domain (definition 7), and certain indeterminates,
by the algebraic operations of addition, subtraction, multiplication and division
(except that division by zero is not permitted). In addition to the laws in def-
inition 16 (but with a, b and c interpreted as rational functions), the following
law is obeyed.

10+1 a ∗ (1/a) = 1.

Proposition 9 Any rational function can be put over a common denominator,
i.e. written as n/d where n and d are polynomials, known as the numerator and
denominator respectively.

Proposition 10 In common denominator format, a
b = c

d if, and only if, ad−
bc = 0.

We can in fact characterise three simple forms of equality.

common coefficients An example of this would be.

x2 − 2x+ 1

x2 − 1
versus

2x2 − 4x+ 2

2x2 − 2
.

Here we need to remove the g.c.d. of the contents (definition 26) of the
two polynomials.
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“up to sign” An example of this would be.

−x2 + 2x− 1

x2 − 1
versus

x2 − 2x+ 1

−x2 + 1
.

These are ‘clearly equal’ but “computers don’t do clearly”. We need a
convention, and the common one17 is ‘leading coefficient positive’ in the
denominator. However, this does not generalise so easily to other domains
of coefficients [DT90].

common factors An example of this would be

x2 − 2x+ 1

x2 − 1
versus

x− 1

x+ 1
.

If we put the difference between the two over a common denominator, we

get 0
x2−1 = 0. The reader may complain that x2−2x+1

x2−1 “is undefined when

x = 1”, whereas x−1
x+1 “has the value 0”. However, we have not defined

what we mean by such substitutions, and for the purposes of this chapter,
we are concerned with algebraic equality in the sense of proposition 10.

2.3 Greatest Common Divisors

The following definition is valid whenever we have a concept of division.

Definition 22 h is said to be a greatest common divisor, or g.c.d., of f and g
if, and only if:

1. h divides both f and g;

2. if h′ divides both f and g, then h′ divides h.

This definition clearly extends to any number of arguments. The g.c.d. is nor-
mally written gcd(f, g).

Note that we have defined a g.c.d, whereas it is more common to talk of the
g.c.d. However, ‘a’ is correct. We normally say that 2 is the g.c.d. of 4 and 6,
but in fact −2 is equally a g.c.d. of 4 and 6.

Proposition 11 If h and h′ are greatest common divisors of a and b, they are
associates (definition 9).

Greatest common divisors need not exist. For example, let us consider the set
of all integers with

√
−5. 2 clearly divides both 6 and and 2 + 2

√
−5. However,

so does 1 +
√
−5 (6 = (1 +

√
−5)(1−

√
−5)), yet there is no multiple of both 2

and 1 +
√
−5 which divides both.

17By no means the only possible one: ‘leading coefficient negative’ would be equally valid,
as would ‘trailing coefficient positive’.
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Definition 23 An integral domain (definition 7) in which any two elements
have a greatest common divisor is known18 as a g.c.d. domain.

If R is a g.c.d. domain, then the elements of the field of fractions (definition 12)
can be simplified by cancelling a g.c.d. between numerator and denominator,
often called “reducing to lowest terms”. While this simplifies fractions, it does
not guarantee that they are normal or canonical. One might think that 0

1
was the unique representation of zero required for normality, but what of 0

−1?

Equally −12 = 1
−2 , and in general we have to remove the ambiguity caused by

units. In the case of rational numbers, we do this automatically by making the
denominator positive, but the general case is more difficult [DT90].

Definition 24 h is said to be a least common multiple, or l.c.m., of f and g
if, and only if:

1. both f and g divide h ;

2. if both f and g divide h′, then h divides h′.

This definition clearly extends to any number of arguments. The l.c.m. is
normally written lcm(f, g).

Proposition 12 If gcd(f, g) exists, then fg/ gcd(f, g) is a least common mul-
tiple of f and g.

This result is normally written as fg = gcd(f, g)lcm(f, g), but this is only true
up to associates. We should also note that this result does not extend to any
number of arguments.

2.3.1 Polynomials in one variable

For univariate polynomials over a field, we can define a more extended version
of division.

Definition 25 If a and b 6= 0 are polynomials in K[x], K a field, and a = qb+r
with deg(r) < deg(b), then we say that b divides a with quotient q and remainder
r, and q and r are denoted quo(a, b) and rem(a, b).

It is clear that q and r exist, and are unique. Division in the previous sense
then corresponds to the case r = 0.

Theorem 4 (Euclid) If K is a field, the univariate polynomials K[x] form a
g.c.d. domain.

Algorithm 1 (Euclid)
Input: f, g ∈ K[x].
Output: h ∈ K[x] a greatest common divisor of f and g

18Normally known as a unique factorisation domain, but, while the existence of greatest
common divisors is equivalent to the existence of unique factorisation, the ability to compute
greatest common divisors is not equivalent to the ability to compute unique factorisations
[FS56, DGT91], and hence we wish to distinguish the two.
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i := 1;
if deg(f) < deg(g)

then a0 := g; a1 := f ;
else a0 := f ; a1 := g;

while ai 6= 0 do
ai+1 = rem(ai−1, ai);
#qi :=the corresponding quotient: ai+1 = ai−1 − qiai
i := i+ 1;

return ai−1;

Proof. We must first show that this is an algorithm, i.e. that the potentially
infinite loop actually terminates. But deg(ai) is a non-negative integer, strictly
decreasing each time round the loop, and therefore the loop must terminate. So
ai = 0, but ai = rem(ai−2, ai−1), so ai−1 divides ai−2. In fact, ai−2 = qi−1ai−1.
Now ai−1 = ai−3 − qi−2ai−2, so ai−3 = ai−1(1 + qi−2qi−1), and so on, until we
deduce that ai−1 divides a0 and a1, i.e. f and g in some order. Hence the result
of this algorithm is a common divisor. To prove that it is a greatest common
divisor, we must prove that any other common divisor, say d, of f and g divides
ai−1. d divides a0 and a1. Hence it divides a2 = a0 − q1a1. Hence it divides
a3 = a1 − q2a2, and so on until it divides ai−1.

We should note that our algorithm is asymmetric in f and g: if they have
the same degree, it is not generally the case that gcd(f, g) = gcd(g, f), merely
that they are associates.

Lemma 1 In these circumstances, the result of Euclid’s algorithm is a linear
combination of f and g, i.e. ai−1 = λf + µg: λ, µ ∈ K[x].

Proof. a0 and a1 are certainly such combinations: a0 = 1 ·f+0 ·g or 1 ·g+0 ·f
and similarly for g. Then a2 = a0 − b1a1 is also such a combination, and so on
until ai−1, which is the result.

The above theory, and algorithm, are all very well, but we would like to
compute (assuming they exist!) greatest common divisors of polynomials with
integer coefficients, polynomials in several variables, etc. So now let R be any
g.c.d. domain.

Definition 26 If f =
∑n
i=0 aix

i ∈ R[x], define the content of f , written
cont(f), or contx(f) if we wish to make it clear that x is the variable, as
gcd(a0, . . . , an). Technically speaking, we should talk of a content, but in the
theory we tend to abuse language. and talk of the content. Similarly, the prim-
itive part, written pp(f) or ppx(f), is f/cont(f). f is said to be primitive if
cont(f) is a unit.

Proposition 13 If f divides g, then cont(f) divides cont(g) and pp(f) divides
pp(g). In particular, any divisor of a primitive polynomial is primitive.

The following result is in some sense a converse of the previous sentence.

Lemma 2 (Gauss) The product of two primitive polynomials is primitive.
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Proof. Let f =
∑n
i=0 aix

i and g =
∑m
j=0 bjx

j be two primitive polynomials,

and h =
∑m+n
i=0 cix

i their product. Suppose, for contradiction, that h is not
primitive, and p is a prime19 dividing cont(h). Suppose that p divides all the
coefficients of f up to, but not including , ak, and similarly for g up to but not
including bl. Now consider

ck+l = akbl +

k−1∑
i=0

aibk+l−i +

k+l∑
i=k+1

aibk+l−i (2.6)

(where any indices out of range are deemed to correspond to zero coefficients).
Since p divides cont(h), p divides ck+l. By the definition of k, p divides

every ai in
∑k−1
i=0 aibk+l−i, and hence the whole sum. Similarly, by definition of

l, p divides every bk+l−i in
∑k+l
i=k+1 aibk+l−i, and hence the whole sum. Hence p

divides every term in equation (2.6) except akbl, and hence has to divide akbl.
But, by definition of k and l, it does not divide either ak or bl, and hence cannot
divide the product. Hence the hypothesis, that cont(h) could be divisible by a
prime, is false.

Corollary 2 cont(fg) = cont(f)cont(g).

Theorem 5 (“Gauss’ Lemma”) If R is a g.c.d. domain, and f, g ∈ R[x],
then gcd(f, g) exists, and is gcd(cont(f), cont(g)) gcd(pp(f),pp(g)).

Proof. Since R is an integral domain, its field of fractions, say K is a field.
Hence, in K[x] where theorem 4 is applicable, pp(f) and pp(g) have a greatest
common divisor, say h. If c is any non-zero element of R, then ch is also a
greatest common divisor of f and g. Hence we can assume that h is in R[x]
and, as a polynomial of R[x], is primitive. In K[x], f is a multiple of h, say
f = hk for k ∈ K[x]. We can write k = dk′, where k′ ∈ R[x] and is primitive.
Then d−1pp(f) = hk′. But h and k′ are primitive, so, by the Lemma, their
product is primitive, and d is a unit. Hence h is, in R[x], a common divisor of
pp(f) and pp(g).

But, if h̄ is a common divisor of pp(f) and pp(g) in R[x], it is certainly
a common divisor of f and g in K[x], hence divides h in K[x], and so pp(h̄)
divides h in R[x]. Hence h is a greatest common divisor of pp(f) and pp(g) in
R[x], and the rest of the theorem is obvious.

This gives us one obvious means of computing g.c.d.s in R[x], which can be
described as “compute in K[x] and sort out the contents afterwards”. Certainly
this is an algorithm, but is it a good one? Consider the computation of the g.c.d.
of the following two polynomials (this analysis is mostly taken from [Bro71]):

A(x) = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5;

B(x) = 3x6 + 5x4 − 4x2 − 9x+ 21.

19The reader may complain that, in note 18, we said that the ability to compute g.c.d.s
was not equivalent to the ability to compute unique factors, and hence primes. But we are
not asking to factorise cont(f), merely supposing, for the sake of contradiction that it is
non-trivial, and therefore has a prime divisor.
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The first elimination gives A− (x
2

3 −
2
9 )B, that is

−5

9
x4 +

1

9
x2 − 1

3
,

and the subsequent eliminations give

−117

25
x2 − 9x+

441

25
,

233150

19773
x− 102500

6591
,

and, finally,

−1288744821

543589225
.

Since this is a number, it follows that no polynomial can divide both A and B,
i.e. that gcd(A,B) = 1.

It is obvious that these calculations on polynomials with rational coefficients
require several g.c.d. calculations on integers, and that the integers in these
calculations are not always small.

We can eliminate these g.c.d. calculations by working all the time with
polynomials with integer coefficients, and this gives a generalisation of the ai of
algorithm 1, known as polynomial remainder sequences or p.r.s., by extending
the definition of division.

Definition 27 Instead of dividing f by g in K[x], we can multiply f by a
suitable power of the leading coefficient of g, so that the divisions stay in R.
The pseudo-remainder of dividing f by g, written prem(f, g), is the remainder
when one divides lc(g)deg(f)−deg(g)+1f by g, conceptually in K[x], but in fact all
the calculations can be performed in R, i.e. all divisions are exact in R. This
is denoted20 by prem(f, g).

In some applications (section 3.1.7) it is necessary to keep track of the signs:
we define a signed polynomial remainder sequence or s.p.r.s. of f0 = f and
f1 = g to have fi proportional by a positive constant to −rem(fi−2, fi−1).

This gives us a pseudo-euclidean algorithm, analogous to algorithm 1 where we
replace rem by prem, and fix up the contents afterwards. In the above example,
we deduce the following sequence:

−15x4 + 3x2 − 9,

15795x2 + 30375x− 59535,

1254542875143750x− 1654608338437500

and
12593338795500743100931141992187500.

Again, this is a number, so gcd(A,B) = 1. We have eliminated the fractions,
but at a cost of even larger numbers. Can we do better?

20This definition agrees with Maple, but not with all software systems, which often use prem

to denote what Maple calls sprem, i.e. only raising lc(g) to the smallest power necessary.
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2.3.2 Subresultant sequences

One option would be to make the ai primitive at each step, since we are going
to fix up the content terms later: giving the so-called primitive p.r.s. algorithm.
This is perfectly reasonable when it is a question of polynomials in one variable,
and is essentially equivalent to calculating with rational numbers, but over a
common denominator. However, if we come to polynomials in several variables,
every step of the g.c.d. for polynomials in n variables would involve the g.c.d. of
several polynomials in n− 1 variables, each step of each of which would involve
the g.c.d. of several polynomials in n− 2 variables, and so on.

The following, slightly mysterious21, algorithm will do the trick. By the
Subresultant Theorem [Loo82], all divisions involved are exact, i.e. we always
stay in R[x]. Furthermore, the factors βi that are cancelled are generically as
large as possible, where by “generically” we mean that, if the coefficients of
f and g were all independent, nothing more could be cancelled22.

Algorithm 2 (General p.r.s.)
Input: f, g ∈ K[x].
Output: h ∈ K[x] a greatest common divisor of pp(f) and pp(g)
Comment: If f, g ∈ R[x], where R is an integral domain and K is the field of
fractions of R, then all computations are exact in R[x].

i := 1;
if deg(f) < deg(g)

then a0 := pp(g); a1 := pp(f);
else a0 := pp(f); a1 := pp(g);

δ0 := deg(a0)− deg(a1);
β2 := (−1)δ0+1;
ψ2 := −1;
while ai 6= 0 do

ai+1 = prem(ai−1, ai)/βi+1;
#qi :=the corresponding quotient: ai+1 = ai−1 − qiai
δi := deg(ai)− deg(ai+1);
i := i+ 1;

ψi+1 := −lc(ai−1)δi−2ψ
1−δi−2

i ;

βi+1 := −lc(ai−1)ψ
δi−1

i+1 ;
return pp(ai−1);

In the same example as before, we get the following:

a2 = 15x4 − 3x2 + 9,

21Some of the mystery is explained by corollary 3 on page 55.
22The reader may comment that the example, repeated below with this algorithm, shows a

consistent factor of 3 in a2, and this is true however the coefficients are perturbed. Indeed, if
the leading coefficient of a1 is changed to, say, 4, we get a consistent factor of 4. However, if
the coefficient of x7 in a0 is made non-zero, then the common factor will generally go away,
and that is what we mean by “generically”.
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a3 = 65x2 + 125x− 245,

a4 = 9326x− 12300,

a5 = 260708.

Here the numbers are much smaller, and indeed it can be proved that the
coefficient growth is only linear in the step number. a2 has a content of 3,
which the primitive p.r.s. would eliminate, but this content in fact disappears
later. Similarly a3 has a content of 5, which again disappears later. Hence we
have the following result.

Theorem 6 Let R be a g.c.d. domain. Then there is an algorithm to calculate
the g.c.d. of polynomials in R[x]. If the original coefficients have length bounded
by B, the length at the i-th step is bounded by iB.

This algorithm is the best method known for calculating the g.c.d., of all those
based on Euclid’s algorithm applied to polynomials with integer coefficients. In
chapter 4 we shall see that if we go beyond these limits, it is possible to find
better algorithms for this calculation.

2.3.3 Polynomials in several variables

Here it is best to regard the polynomials as recursive, so that R[x, y] is regarded
as R[y][x]. In this case, we now know how to compute the greatest common
divisor of two bivariate polynomials.

Algorithm 3 (Bivariate g.c.d.)
Input: f , g ∈ R[y][x].
Output: h ∈ R[y][x] a greatest common divisor of f and g

hc := the g.c.d. of contx(f) and contx(g)
# this is a g.c.d. computation in R[y].
hp := algorithm 2 (ppx(f),ppx(g))
# replacing R by R[y], which we know, by theorem 6, is a g.c.d. domain.
return hchp
# which by theorem 5 is a g.c.d. of f and g.

This process generalises.

Theorem 7 If R is a g.c.d. domain, then R[x1, . . . , xn] is also a g.c.d. domain.

Proof. Induction on n, with theorem 6 as the building block.
What can we say about the complexity of this process? It is easier to anal-

yse if we split up the division process rem(ai−1, ai) into a series of repeated
subtractions of shifted scaled copies of ai from ai−1. Each such subtraction
reduces deg(ai−1), in general by 1. For simplicity, we shall assume that the
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reduction is precisely by 1, and that23 deg(ai+1) = deg(ai)−1. It also turns out
that the polynomial manipulation in x is the major cost (this is not the case
for the primitive p.r.s, where the recursive costs of the content computations
dominates), so we will skip all the other operations (the proof of this is more
tedious than enlightening). Let us assume that degx(f) + degx(g) = k, and
that the coefficients have maximum degree d. Then the first subtraction will
reduce k by 1, and replace d by 2d, and involve k operations on the coefficients.
The next step will involve k− 1 operations on coefficients of size 2d, and so on,
giving

∑k
i=0(k − i)F (id), where F (d) is the cost of operating on coefficients of

degree d. Let us suppose that there are v variables in all : x and v − 1 in the
coefficients.

v = 2 Here the coefficients are univariate polynomials. If we assume classic
multiplication on dense polynomials, F (d) = cd2 + O(d). We are then
looking at

k∑
i=0

(k − i)F (id) ≤ c

k∑
i=0

(k − i)i2d2 +

k∑
i=0

kO(id)

≤ ck

k∑
i=0

i2d2 − c
k∑
i=0

i3d2 + k3O(d)

= c

(
1

3
k4 +

1

2
k3 +

1

6
k2
)
d2 − c

(
1

4
k4 +

1

2
k3 +

1

4
k2
)
d2 + k3O(d)

= c

(
1

12
k4 − 1

12
k2
)
d2 + k3O(d)

which we can write as O(k4d2). We should note the asymmetry here: this
means that we should choose the principal variable (i.e. the x in algorithm
3) to be whichever of x and y minimises

min(max(degx(f),degx(g)),max(degy(f),degy(g))).

v = 3 Here the coefficients are bivariate polynomials. If we assume classic mul-
tiplication on dense polynomials, F (d) = cd4+O(d3). We are then looking
at

k∑
i=0

(k − i)F (id) ≤ c

k∑
i=0

(k − i)i4d42 +

k∑
i=0

kO(i3d3)

≤ ck

k∑
i=0

i4d4 − c
k∑
i=0

i5d4 + k5O(d3)

23This assumption is known as assuming that the remainder sequence is normal . Note that
our example is distinctly non-normal, and that, in the case of a normal p.r.s., ψi = ±1. In
fact, the sub-resultant algorithm was first developed for normal p.r.s., where it can be seen as
a consequence of the Dodgson–Bareiss Theorem (theorem 12).
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= c

(
1

5
k6 + · · ·

)
d2 − c

(
1

6
k6 + · · ·

)
d2 + k5O(d3)

= c

(
1

30
k6 + · · ·

)
d4 + k5O(d3)

which we can write as O(k6d4). The asymmetry is again obvious.

general v The same analysis produces O(k2vd2v−2).

We see that the cost is exponential in v, even though it is polynomial in d and
k. This is not a purely theoretical observation: any experiment with several
variables will bear this out, even when the inputs (being sparse) are quite small:
the reader need merely use his favourite algebra system on

a0 := ax4 + bx3 + cx2 + dx+ e; a1 := fx4 + gx3 + hx2 + ix+ j,

treating x as the main variable (which of course one would not do in practice),
to see the enormous growth of the coefficients involved.

2.3.4 Square-free decomposition

Let us revert to the case of polynomials in one variable, x, over a field K, and let
us assume that char(K) = 0 (see definition 13 — the case of characteristic non-
zero is more complicated [DT81], and we really ought to talk about ‘separable
decomposition’ [Lec08]).

Definition 28 The formal derivative of f(x) =
∑n
i=0 aix

i is written f ′(x) and
computed as f ′(x) =

∑n
i=1 iaix

i−1.

This is what is usually referred to as the derivative of a polynomial in calculus
texts, but we are making no appeal to the theory of differentiation here: merely
defining a new polynomial whose coefficients are the old ones (except that a0
disappears) multiplied by the exponents, and where the exponents are decreased
by 1.

Proposition 14 The formal derivative satisfies the usual laws:

(f + g)′ = f ′ + g′ (fg)′ = f ′g + fg′.

Proof. by algebra from the definition. This is taken up in more generality in
Proposition 43.

Let us consider the case f = gnh, where g and h have no common factors.
Then f ′ = gnh′ + ngn−1g′h and is clearly divisible by gn−1. n is not zero in
K (by the assumption on char(K)), so g does not divide f ′/gn−1 = gh′ + ng′h.
Hence gcd(f, f ′) is divisible by gn−1 but not by gn. These considerations lead
to the following result.
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Proposition 15 Let f =
∏k
i=1 f

ni
i where the fi are relatively prime and have

no repeated factors. Then

gcd(f, f ′) =

k∏
i=1

fni−1i .

Definition 29 The square-free decomposition of a polynomial f is an expres-
sion

f =

n∏
i=1

f ii (2.7)

where the fi are relatively prime and have no repeated factors. f is said to be
square-free if n = 1.

Note that some of the fi may be 1.

Lemma 3 Such a decomposition exists for any non-zero f , and can be calcu-
lated by means of gcd computations and divisions.

Proof. Let g = gcd(f, f ′) =
∏n
i=1 f

i−1
i by the previous proposition. Then

f/g =
∏n
i=1 fi and gcd(g, f/g) =

∏n
i=2 fi. Hence

f/g

gcd(g, f/g)
= f1.

Applying the same process to g will compute f2, and so on.
This is not in fact the most efficient way of computing such a decomposition:

a better method was given by Yun [Yun76].

2.4 Non-commutative polynomials

The label “non-commutative polynomials” in fact covers three cases.

1. The indeterminates commute, but the coefficients do not. For definiteness,
we will refer to this case as polynomials with non-commuting coefficients.
In this case, rule 5 of definition 16 has to be replaced by

5′ x ∗ y = y ∗ x;

where x and y are indeterminates, not general polynomials. This means
that some of the traditional laws of algebra cease to operate: for example

(ax+ b)(ax− b) = a2x2 − b2

becomes

(ax+ b)(ax− b) = a2x2 + (−a ∗ b+ b ∗ a)x− b2
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2. The coefficients commute, but the indeterminates do not. For definiteness,
we will refer to this case as polynomials with non-commuting indetermi-
nates. In this case, rule 5 of definition 16 has to be replaced by the
assumption

• m⊗ n = n⊗m.

At this point, many of the traditional laws of algebra cease to operate:
even the Binomial Theorem in the form

(x+ y)2 = x2 + 2xy + y2

has to be replaced by

(x+ y)2 = x2 + (xy + yx) + y2.

A common case of non-commuting indeterminates is in differential algebra,
where the variable x and the differentiation operator d

dx do not commute,
but rather satisfy the equation

d

dx
(xa) = x

da

dx
+ a. (2.8)

3. Neither can be assumed to commute, in which case rule 5 of definition 16
is just deleted, with no replacement.

Notation 6 If the variables do not commute, it is usual to use the notation
R〈x1, . . . , xn〉 for the ring of polynomials with coefficients in R and the non-
commuting variables x1, . . . , xn.



Chapter 3

Polynomial Equations

In the first parts of this chapter, we will deal with polynomial equations, either
singly or as sets of equations. A preliminary remark is in order. Any polynomial
equation

A = B, (3.1)

where A and B are polynomial equations, can be reduced to one whose right-
hand side is zero, i.e.

A−B = 0. (3.2)

Notation 7 Henceforth, all polynomial equations will be assumed to be in the
form of (3.2).

3.1 Equations in One Variable

We may as well assume that the unknown variable is x. If the equation is linear
in x then, by the notation above, it takes the form

ax+ b = 0. (3.3)

The solution is then obvious: x = −b/a.

3.1.1 Quadratic Equations

Again, by the notation above, our equation takes the form

ax2 + bx+ c = 0. (3.4)

The solutions are well-known to most schoolchildren: there are two of them, of
the form

x =
−b±

√
b2 − 4ac

2a
. (3.5)

43
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However, if b2− 4ac = 0, i.e. c = b2/4a then there is only one solution: x = −b
2a .

In this case, the equation becomes ax2 + bx+ b2

4a = 0, which can be re-written

as a
(
x+ b

2a

)2
= 0, making it more obvious that there is a repeated root, and

that the polynomial is not square-free (definition 29).
Mathematicians dislike the sort of anomaly in “this equations has two solu-

tions except when c = b2/4a”, especially as there are two roots as c tends to
the value b2/4a. We therefore say that, in this special case, x = −b

2a is a double
root of the equation. This can be generalised, and made more formal.

Definition 30 If, in the equation f = 0, f has a square-free decomposition
f =

∏n
i=1 f

i
i , and x = α is a root of fi, we say that x = α is a root of f of

multiplicity i. When we say we are counting the roots of f with multiplicity,
we mean that x = α should be counted i times.

Proposition 16 The number of roots of a polynomial equation over the complex
numbers, counted with multiplicity, is equal to the degree of the polynomial.

Proof. deg(f) =
∑
ideg(fi), and each root of fi is to be counted i times as a

root of f . That fi has i roots is the so-called Fundamental Theorem of Algebra.
In this case, the two roots are given by the two possible signs of the square

root, and
√

0 is assumed to have both positive and negative signs.

3.1.2 Cubic Equations

There is a formula for the solutions of the cubic equation

x3 + ax2 + bx+ c, (3.6)

albeit less well-known to schoolchildren:

1

6

3

√
36 ba− 108 c− 8 a3 + 12

√
12 b3 − 3 b2a2 − 54 bac+ 81 c2 + 12 ca3 −

2b− 2
3a

2

3
√

36 ba− 108 c− 8 a3 + 12
√

12 b3 − 3 b2a2 − 54 bac+ 81 c2 + 12 ca3
− 1

3
a.

We can simplify this by making a transformation1 to equation (3.6): replacing
x by x− a

3 . This transforms it into an equation

x3 + bx+ c (3.7)

(where b and c have changed). This has solutions of the form

1

6

3

√
−108 c+ 12

√
12 b3 + 81 c2 − 2b

3
√
−108 c+ 12

√
12 b3 + 81 c2

. (3.8)

1This is the simplest case of the Tschirnhaus transformation[vT83], which can always
eliminate the xn−1 term in a polynomial of degree n.
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S :=
√

12 b3 + 81 c2;

T := 3
√
−108 c+ 12S;

return
1

6
T − 2b

T
;

Figure 3.1: Program for computing solutions to a cubic

Now a cubic is meant to have three roots, but a näıve look as equation (3.8)
shows two cube roots, each with three values, and two square roots, each with
two values, apparently giving a total of 3 × 3 × 2 × 2 = 36 values. Even if
we decide that the two occurrences of the square root should have the same
sign, and similarly the cube root should have the same value, i.e. we effectively
execute the program in figure 3.1, we would still seem to have six possibilities.
In fact, however, the choice in the first line is only apparent, since

1

6

3

√
−108 c− 12

√
12 b3 + 81 c2 =

2b
3
√
−108 c+ 12

√
12 b3 + 81 c2

. (3.9)

In the case of the quadratic with real coefficients, there were two real solu-
tions if b2− 4ac > 0, and complex solutions otherwise. However, the case of the
cubic is more challenging. If we consider x3 − 1 = 0, we compute (in figure 3.1)

S := 9; T := 6; return 1;

(or either of the complex cube roots of unity if we choose different values of T ).
If we consider x3 + 1 = 0, we get

S := 9; T := 0; return “ 0
0”;

but we can (and must!) take advantage of equation (3.9) and compute

S := −9; T := −6; return − 1;

(or either of the complex variants).
For x3 + x, we compute

S :=
√

12; T :=
√

12; return 0;

and the two complex roots come from choosing the complex roots in the com-

putation of T , which is really
3
√

12
√

12. x3−x is more challenging: we compute

S :=
√
−12; T :=

√
−12; return {−1, 0, 1}; (3.10)

i.e. three real roots which can only be computed (at least via this formula)
by means of complex numbers. In fact it is clear that any other formula must
have the same problem, since the only choices of ambiguity lie in the square and
cube roots, and with the cube root, the ambiguity involves complex cube roots
of unity.
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3.1.3 Quartic Equations

Here the equation would be x4 + ax3 + bx2 + cx+ d, but after the Tschirnhaus
transformation x→ x− a

4 , analogous to that which took equation (3.6) to (3.7),
we can assume that a = 0. A truly marvellous solution then looks as follows
(but the page is too small to contain it!).

√
6

12

√√√√−4 b
3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3 +

(
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

)2/3
+ 48 d+ 4 b2

3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

+1/12

√√√√√√√√−
48 b

3

√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

√√√√−4 b
3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3 +

(
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

)2/3
+ 48 d+ 4 b2

3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

+ 6

√√√√−4 b
3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3 +

(
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

)2/3
+ 48 d+ 4 b2

3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

(
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

)2/3
+ 288

√√√√−4 b
3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3 +

(
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

)2/3
+ 48 d+ 4 b2

3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

d+ 24

√√√√−4 b
3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3 +

(
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

)2/3
+ 48 d+ 4 b2

3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

b2 + 72 c
√

6
3

√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

 1
3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

1√
−4 b 3
√
−288 db+108 c2+8 b3+12

√
−768 d3+384 d2b2−48 db4−432 dbc2+81 c4+12 c2b3+(−288 db+108 c2+8 b3+12

√
−768 d3+384 d2b2−48 db4−432 dbc2+81 c4+12 c2b3)

2/3
+48 d+4 b2

3
√
−288 db+108 c2+8 b3+12

√
−768 d3+384 d2b2−48 db4−432 dbc2+81 c4+12 c2b3

(3.11)
We can adopt the same formulation as in figure 3.1, as shown in figure 3.2. Here

S :=
√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

T :=
3
√
−288 db+ 108 c2 + 8 b3 + 12S

U :=

√
−4 bT + T 2 + 48 d+ 4 b2

T

return

√
6

12
U +

√
6

12

√
−
(
8 bTU + UT 2 + 48Ud+ 4Ub2 + 12 c

√
6T
)

TU

Figure 3.2: Program for computing solutions to a quartic

the problem of multiple choices is even more apparent, but in this formulation
it turns out that choices cancel, much as in the case of the cubic. We have
the same problem as in the case of the cubic, that real solutions can arise from
complex intermediates, but also that the answer apparently involves

√
6, even

though it clearly need not do so in reality. For example, with x4 − 5x2 + 4,
whose solutions are ±1,±2, we can evaluate

S := 72
√
−3; T := 17 +

√
−3; U := 3

√
6; return 2; (3.12)

taking the other square root at the end gives 1, and taking the other square root
when computing U gives −1 or −2. We should also note that T was evaluated

as 3
√

4760 + 864
√
−3: not entirely obvious.

3.1.4 Higher Degree Equations

When it comes to higher degree equations, the situation is very different.

Theorem 8 (Abel, Galois [Gal79]) The general polynomial equation of de-
gree 5 or more is not soluble in radicals (i.e. in terms of k-th roots).
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In fact,2 if we choose such a polynomial “at random”, the probability of its
having a solution that can be expressed in terms of radicals is zero. Of course,
any particular quintic, or higher degree equation, may have solutions expressible
in radicals, such as x5 − 2, whose solutions are 5

√
2, but this is the exception

rather than the rule.
Hence algebra systems, if they handle such concepts, can only regard the

roots of such equations as being defined by the polynomial of which they are
a root. A Maple example3 is given in figure 1.5.1, where the Maple operator
RootOf is generated. It is normal to insist that the argument to RootOf (or its
equivalent) is square-free: then different rooots are genuinely different. Then α,
the first root of f(x), satisfies f(α) = 0, the second root β satisfies f(x)/(x−α) =
0, and so on. Even if f is irreducible, these later polynomials may not be, but
determining the factorisations if they exist is a piece of Galois theory which
would take us too far out of our way [FM89]. It is, however, comparatively easy
to determine the Monte Carlo question: “such factorisations definitely do not
exist”/“they probably do exist” [DS00].

It should be noted that handling such constructs when the defining poly-
nomial is not irreducible can give rise to unexpected results. For example, in
Maple, if α is RootOf(x^2-1,x), then 1

α−1 returns that, but attempting to eval-
uate this numerically gives infinity, which is right if α = 1, but wrong if α = −1,
the other, equally valid, root of x2 − 1. In this case, the mathematical answer
to “is α − 1 zero?” is neither ‘yes’ nor ‘no’, but rather ‘it depends which α
you mean’, and Maple is choosing the 1 value (as we can see from 1

α+1 , which
evaluates to 0.5). However, the ability to use polynomials not guaranteed to
be irreducible can be useful in some cases — see section 3.3.6. In particular,
algorithm 7 asks if certain expressions are invertible, and a ‘no’ answer here
entrains a splitting into cases, just as asking “is α−1 zero?” entrains a splitting
of RootOf(x^2-1,x).

3.1.5 Solutions in Real Radicals

We have seen above, both in the case of the cubic, equation (3.10), and the
quartic, equation (3.12), that real roots may need to be expressed via complex
radicals, even if all the root are real. Indeed, in the case of the cubic, this is
necessary. However, the quartic x4 + 4x3 + x2 − 6x+ 2, whose roots are{

−1 +
√

3,−1−
√

3,−1 +
√

2,−1−
√

2
}

shows that polynomials can have real roots expressible in terms of real radicals
,and a slightly less obvious example is given by x4 + 4x3 − 44x2 − 96x + 552,

2The precise statement is as follows. For all n ≥ 5, the fraction of polynomials of degree n
and coefficients at most H which have a root expressible in radicals tends to zero as H tends
to infinity.

3By default, Maple will also use this formulation for roots of most quartics, and the expres-
sion in figure 3.2 is obtained by convert(%,radical) and then locating the sub-expressions by
hand. This can be seen as an application of Carette’s view of simplification (page 14), though
historically Carette’s paper is a retrospective justification.
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whose roots are{
−1−

√
25 + 2

√
6,−1 +

√
25 + 2

√
6,−1−

√
25− 2

√
6,−1 +

√
25− 2

√
6

}
.

There is a little-known theorem in this area.

Theorem 9 ([Isa85]) Suppose that all the roots of an irreducible polynomial
f(x) over Q are real. Then if any root of the polynomial is expressible in radicals,
the degree of the polynomial must be a power of two.

3.1.6 Equations of curves

For a fuller description of this topic, see [Ful69]. In particular, we only consider
the affine case, whereas the projective case (i.e. allowing for “points at infinity”)
is in many ways more general.

Definition 31 An (affine) algebraic curve C(x1, . . . , xn) in n dimensions over
a field K is the set of solutions (x1, . . . , xn) to n − 1 independent algebraic
equations, i.e. polynomials gi(x1, . . . , xn) = 0.

If n = 2 we say that we have a plane algebraic curve.
Of course, the precise curve and equations are often not very interesting: for

instance we would like to think that the parabola x21 − x2 was “the same” as
y1 − y22 , and so on.

Definition 32 Two curves C(x1, . . . , xn) and C ′(y1, . . . , ym) are said to be bi-
rationally equivalent if there are two families of rational functions

F = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

and
G = (g1(y1, . . . , ym), . . . , gn(y1, . . . , ym))

such that:

1. for almost all (x1, . . . , xn) ∈ C, (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) is de-
fined and ∈ C ′;

2. for almost all (y1, . . . , ym) ∈ C ′, g1(y1, . . . , ym), . . . , gn(y1, . . . , ym) is de-
fined and ∈ C;

3. almost everywhere, F and G are mutually inverse, i.e.

fi(g1(y1, . . . , ym), . . . , gn(y1, . . . , ym)) = yi

and
gj(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) = xj .

“Almost everywhere” means “on a non-empty Zariski open set” [Ful69, ], and
can be thought of as “except where we get 0

0 behaviour”.
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Theorem 10 Every algebraic curve is birationally equivalent to a plane curve.

Proof. If there are more than two variables, there is more than one equation,
and we can use resultants to eliminate one variable and one equation.

We then have the concept [Sen08] of a curve being soluble by radicals. In
this case, the generic curve of degree greater than six is not soluble by radicals
[Zar26]. However, many “interesting” curves are soluble by radicals.

Proposition 17 [Sen08, Corollary 3.2] Every irreducible plane curve of degree
at most five is soluble by radicals.

Proposition 18 [Sen08, Corollary 3.3] Every irreducible singular plane curve
of degree at most six is soluble by radicals.

It is also the case4 that the offset , i.e. the curve defined as the set of points a
fixed distance d from the original curve, to a curve soluble by radicals is also
soluble by radicals.

3.1.7 How many real roots?

We have seen that it is not obvious how many real roots a polynomial has: can
we answer that question, or more formally the following?

Problem 1 Given a square-free polynomial f , determine how many real roots
f has, and describe each real root sufficiently precisely. Many authors have
asked the same question about non-square-free polynomials, and have laboured
to produce better theoretical complexity bounds, since the square-free part of a
polynomial may have larger coefficients than the original polynomial. However,
in practice it is always better to compute the square-free part first.

Definition 27 introduced the concept of a signed polynomial remainder sequence,
also called a Sturm–Habicht sequence: fi is proportional by a positive constant
to −rem(fi−2, fi−1). The positive constant is normally chosen to keep the coef-
ficients integral and as small as possible.

Definition 33 If f is a square-free polynomial, let Vf (a) denote the number of
sign changes in the sequence f0(a), f1(a), . . . , fn(a), where f0, . . . , fn is the
Sturm–Habicht sequence of f and f ′, also known as the Sturm sequence of f .

If f is not square-free, we need more careful definitions [BPR06], and to be clear
whether we are counting with multiplicity or not.

4Unpublished. Prof. Sendra has supplied this proof for plane curves.
Let (R1, R2) be a square parametrization of the curve and K0 = C(t) ⊂ K1 ⊂ . . . ⊂ Ks be

a (radical) field tower such that R1, R2 ∈ Ks. Considering the formal derivation with respect
to t, one can deduce (for instance by induction on s) that if R ∈ Ks then its derivative R′ is
also in Ks.

Now consider a = (R′1)2 + (R′2)2 ∈ Ks and Ks+1 = Ks(
√
a), then (O1, O2) = (R1, R2) ±

d/
√
a(−(R2)′, (R1)′) ∈ (Ks+1)2. So (O1, O2) is radical with the tower K0 ⊂ . . . ⊂ Ks ⊂

Ks+1.
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Theorem 11 (Sturm) If a < b are not zeros of f , and f is square-free, then
Vf (a)− Vf (b) is the number of zeros of f in (a, b).

Vf (∞) (which can be regarded as lima→∞ Vf (a)) can be computed as the num-
ber of sign changes in the sequence of leading coefficients of the Sturm sequence.
Similarly, Vf (−∞) is the number of sign changes in the sequence of leading co-
efficients of the Sturm sequence with the signs of the odd-degree terms reversed.
Hence Vf (−∞)−Vf (∞), the total number of real roots, is easily computed from
the Sturm sequence.

While the obvious way of computing Vf (a) is by the definition, i.e. evaluating
f0(a), . . ., this turns out not to be the most efficient. Rather, while computing
the Sturm sequence f0 . . . , we should also store the quotients qi, so that fi(x) =
− (fi−2(x)− qi(x)fi−1(x)). We then compute as follows.

Algorithm 4 (Sturm Sequence evaluation)

Input:
a: A number
fn(x): Last non-zero element of Sturm sequence of f
qi(x): Quotient sequence from Sturm sequence of f

Output: Sequence L of fn(a), fn−1(a), . . . , f0(a).

L[n] := fn(a);
L[n− 1] := qn+1(a)L[n];
for i = n . . . 2

L[i− 2] := qi(a)L[i− 1]− L[i];
return L

If f has degree n, coefficients of bit-length at most τ , a has numerator
and denominator of bit-length σ, this algorithm has asymptotic complexity
Õ(d2 max(σ, τ)) [LR01].

Since it is possible to say how big the roots of a polynomial can be (proposi-
tions 59, 60 and 61), we can determine, as precisely as we wish, the location of
the real roots of a univariate polynomial: every time the Sturm sequence says
that there are more than one root in an interval, we divide the interval in two,
and re-compute V (a)− V (b) for each half.

This is far from the only way of counting and locating real roots, i.e. solving
problem 1: other methods are based on Descartes’5 rule of signs (Theorem 23:
the number of roots of f in (0,∞) is less than or equal to, by an even number,
the number of sign changes in the coefficients of f) [CA76], its generalisation
the Budan–Fourier theorem [Hur12] (Corollaries 21 and 22: the number of roots
of f in6 [a, b] is less than or equal to, by an even number, the number of sign
changes in the derivatives of f evaluated at a (i.e. f(a), f ′(a), f ′′(a) . . . ) less the
same evaluated at b), on continued fractions [TE07], or on numerical methods
[Pan02].

5This rule is always called after Descartes, though the proof actually seems to be due to
Gauss [BF93].

6We assume neither a nor b are roots.
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3.2 Linear Equations in Several Variables

We now consider the case of several polynomial equations in several (not nec-
essarily the same number) of variables.

Notation 8 The variables will be called x1, . . . , xn, though in specific examples
we may use x, y or x, y, z etc.

3.2.1 Linear Equations and Matrices

A typical set of 3-by-3 linear equations might look like the following.

2x+ 3y − 4z = a;

3x− 2y + 2z = b;

4x− 3y − 2z = c.

If we denote by M the matrix

 2 3 −4
3 −2 2
4 −3 −1

, x the (column) vector (x, y, z)

and a the (column) vector (a, b, c), then this becomes the single matrix equation

M.x = a, (3.13)

which has, assuming M is invertible, the well-known solution

x = M−1.a. (3.14)

This poses two questions: how do we store matrices, and how do we compute
inverses?

3.2.2 Representations of Matrices

The first question that comes to mind here is “dense or sparse?”, as in definition
19 (page 23). For a dense representation of matrices, the solution is obvious:
we store a two-dimensional array (or one-dimensional array of one-dimensional
arrays if our language does not support two-dimensional arrays) containing the
values mi,j of the elements of the matrix. The algorithms for adding and multi-
plying dense matrices are pretty obvious, though in fact it is possible to multiply
two 2× 2 matrices with seven multiplications of entries rather than the obvious
eight [Str69, Win71]: this leads to being able to multiply two n×n matrices with
O(nlog2 7≈2.807) element multiplications rather than O(n3). In theory one can
do better than this, O(n2.376), [CW90], but these methods requite unfeasably
large7 n to be cost-effective.

For a sparse representation of matrices, we have more choices.

7Even Strassen’s method, with floating-point numbers, has break-even points between 400
and 2000 rows (160,000 to 4 million elements) [DN07].
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row-sparse Here M is stored as a one–dimensional array of rows: the i-th
row consisting of a list of pairs (j,mi,j). This representation is equivalent
to that of the sparse polynomial

∑
jmi,jx

j , and this technique has been
used in practice [CD85] and has a useful analogue in the case of non-linear
equations (see section 3.3.3).

column-sparse Here M is stored as a one–dimensional array of columns: the
j-th column consisting of a list of pairs (i,mi,j).

totally sparse Here M is stored as a list of triples (i, j,mi,j).

structured There are a large variety of special structures of matrices familar
to numerical analysts, such as ‘banded’, ‘Toeplitz’ etc. Each of these
can be stored efficiently according to their special form. In fact, Toeplitz
matrices, of the form

a1 a2 a3 . . . an−1 an
an a1 a2 a3 . . . an−1
...

. . . · · · · · ·
. . .

...
a2 a3 . . . an−1 an a1

 ,

are, strictly speaking, dense, but only have n distinct entries, so are
“information-sparse”.

Clearly, if the matrix is structured, we should use the corresponding represen-
tation. For randomly sparse matrices, the choice depends on what we are doing
with the matrix: if it is row operations, then row-sparse is best, and so on. One
big issue with sparse matrices is known as fill-in — the tendency for operations
on sparse matrices to yield less sparse matrices. For example, if we multiply two
n × n matrices, each with e non-zero elements per row, with n � e, we would
expect, assuming the non-zero elements are scattered at random, the resulting
matrix to have e2 non-zero elements per row. This has some apparently para-
doxical consequences. Suppose M and N are two such matrices, and we wish to
compute MNv for many vectors v. Clearly, we compute MN once and for all,
and multiply this by v, and for dense M and N , this is right if there are more
than n such vectors v. But, if n � e > 2, this is not optimal, since, once MN
is computed, computing (MN)v requires ne2 operations, while compluting Nv
requires ne, as does computing M(Nv), totalling 2ne < ne2.

3.2.3 Matrix Inverses: not a good idea!

The first response to the question “how do we compute matrix inverses” ought
to be “are you sure you want to?” Solving (as opposed to thinking about the
solution of) equation (3.13) via equation (3.14) is often not the best way to
proceed. Gaussian elimination (possibly using some of the techniques described
later in this section) directly on equation (3.13) is generally the best way. This is
particularly true if M is sparse, since M−1 is generally not sparse — an extreme



3.2. LINEAR EQUATIONS IN SEVERAL VARIABLES 53

example of fill-in. Indeed, special techniques are generally used for the solution
of large sparse systems, particularly those arising in integer factorisation or
other cryptographic applications [HD03].

The usual method of solving linear equations, or computing the inverse of a
matrix, is via Gaussian elimination, i.e. transforming equation (3.13) into one in
which M is upper triangular, and then back-substituting. This transformation
is done by row operations, which amount to adding/subtracting multiples of one
row from another, since

P = Q & R = S implies P + λR = Q+ λS. (3.15)

If we try this on the above example, we deduce successively that z = a−18b+13c,
y = a − 14b + 10c and x = a − 15b + 11c. Emboldened by this we might try a
larger matrix:

M =


a b c d

e f g h

i j k l

m n o p

 .

After clearing out the first column, we get the matrix
a b c d

0 − eba + f − eca + g − eda + h

0 − iba + j − ica + k − ida + l

0 −mba + n −mca + o −mda + p

 .

Clearing the second column gives us

a b c d

0 − eba + f − eca + g − eda + h

0 0 − (− iba +j)(− eca +g)
(− eba +f)

− ic
a + k

−(− iba +j)(− eda +h)
(− eba +f)

− id
a + l

0 0 − (−mba +n)(− eca +g)
(− eba +f)

− mc
a + o

(mba −n)(− eda +h)
(− eba +f)

− md
a + p


,

which we can “simplify” to
a b c d

0 −eb+af
a

−ec+ag
a

−ed+ah
a

0 0 afk−agj−ebk+ecj+ibg−icf
−eb+af

afl−ahj−ebl+edj+ibh−idf
−eb+af

0 0 afo−agn−ebo+ecn+mbg−mcf
−eb+af

afp−ahn−ebp+edn+mbh−mdf
−eb+af

 .

(3.16)
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After clearing the third column, the last element of the matrix is

−

(
−
(
− iba + j

) (
− eda + h

)(
− eba + f

) − id

a
+ l

)(
−
(
−mba + n

) (
− eca + g

)(
− eba + f

) − mc

a
+ o

)
×

(
−
(
− iba + j

) (
− eca + g

)(
− eba + f

) − ic

a
+ k

)−1
−
(
−mba + n

) (
− eda + h

)(
− eba + f

) − md

a
+ p.

This simplifies to

−

−afkp+ aflo+ ajgp− ajho− angl + anhk + ebkp− eblo
−ejcp+ ejdo+ encl − endk − ibgp+ ibho+ ifcp− ifdo

−inch+ indg +mbgl −mbhk −mfcl +mfdk +mjch−mjdg
afk − agj − ebk + ecj + ibg − icf

. (3.17)

The numerator of this expression is in fact the determinant of the original ma-
trix, |M |.

In general, for an n×n matrix, we would perform O(n3) computations with
rational functions, which would, if we were to simplify, involve g.c.d. computa-
tions, often costly.

Can we do better? We could take a leaf out of the calculation on page
36, and not introduce fractions, but rather cross-multiply. If we do this while
clearing column one, we get

a b c d

0 −eb+ af −ec+ ag −ed+ ah

0 aj − ib ak − ic al − id

0 −mb+ an ao−mc ap−md

 .

After clearing column two,we get

a b c d

0 −eb+ af −ec+ ag −ed+ ah

0 0 (−aj + ib) (−ec+ ag) + (−aj + ib) (−ed+ ah) +
(−eb+ af) (ak − ic) (−eb+ af) (al − id)

0 0 (−an+mb) (−ec+ ag) + (−an+mb) (−ed+ ah) +
(−eb+ af) (ao−mc) (−eb+ af) (ap−md)


.

The result of the next step is better contemplated than printed!
However, if we do contemplate the result printed above, we see that rows

3 and 4 contain polynomials of degree four, whereas in the “simplified” form
(3.16) we only have polynomials of degree three in the numerators. Indeed, if
we were to expand the matrix above, we would observe that rows three and
four each had a common factor of a. Similarly, if we were to (or were to get a
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computer algebra system to) expand and then factor the last step, we would get
a2(af−eb)|M |, as in equation (3.17). Such common factors are not a cöıncidence
(indeed, they cannot be, since M is the most general 4× 4 matrix possible).

Theorem 12 (Dodgson–Bareiss [Bar68, Dod66]) 8 Let a
(k)
i,j be the deter-

minant ∣∣∣∣∣∣∣∣∣
a1,1 a1,2 . . . a1,k a1,j
a2,1 a2,2 . . . a2,k a2,j
. . . . . . . . . . . . . . .
ak,1 ak,2 . . . ak,k ak,j
ai,1 ai,2 . . . ai,k ai,j

∣∣∣∣∣∣∣∣∣ ,
i.e. that of rows 1 . . . k and i, with columns 1 . . . k and j. In particular, the

determinant of the matrix of size n whose elements are (ai,j) is a
(n−1)
n,n and

ai,j = a
(0)
i,j . Then (assuming a

(−1)
0,0 = 1):

a
(k)
i,j =

1

a
(k−2)
k−1,k−1

∣∣∣∣∣ a
(k−1)
k,k a

(k−1)
k,j

a
(k−1)
i,k a

(k−1)
i,j

∣∣∣∣∣ .
Proof. By fairly tedious induction on k.

Corollary 3 (Bareiss’ algorithm) When doing fraction-free Gaussian elim-
ination, after clearing column k, every elements of rows k + 1 . . . n is divisible

by a
(k−2)
k−1,k−1.

This is actually the ‘one-step’ variant of Bareiss [Bar68]: there are other variants
with more advanced look-ahead, but they do not (and can not) cancel any more
in general. This result accounts for the factor of a observed in rows 3 and 4
above, and for the factors of a2 and af − eb in the last step. Cancelling the a in
rows 3 and 4 would in fact automatically prevent the a2 from being generated
— far better than generating it and then cancelling it!

Corollary 4 If the initial entries are integers of length m (resp. polynomials of
degree m), then after k steps, the entries will have length (resp. degree) O(km).

This is to be contrasted with the O(2km) of the näıve fraction-free approach.
It is possible to view Euclid’s algorithm for polynomials as Gaussian elimi-

nation in a matrix (Sylvester’s matrix — definition 65) of coefficients, and the
factors βi that are cancelled by the sub-resultant variant for normal polynomial
remainder sequences (footnote 23 on page 39) are those predicted by corollary
3 above.

3.2.4 Over/under-determined Systems

So far we have implicitly assumed that there are as many equations as there
are unknowns, and that the equations determine the unknowns precisely (in

8The Oxford logician Charles Dodgson was better known as Lewis Carroll.
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other words, that the determinant of the corrsponding matrix is non-zero).
What happens if these assumptions do not hold? There are several cases to
be distinguished.

Over-determined and consistent Here the ‘extra’ equations are consistent
with those that determine the solution. A trivial example in one variable
would be the pair 2x = 4, 3x = 6.

Over-determined and inconsistent Here the ‘extra’ equations are not con-
sistent with those that determine the solution. A trivial example in one
variable would be the pair 2x = 4, 3x = 9, where the first implies that
x = 2, but the second that x = 3.

Spuriously over-determined This is a generalisation of “over-determined
and consistent” when, after deleting the ‘extra’ equations that convery
no new information, we are left with an under-determined system.

Under-determined and consistent Here there are not enough equations (pos-
sibly after deleting spurious ones) to determine all the variables. An exam-
ple would be x+y = 3. Here x can be anything, but, once x is chosen, y is
fixed as 3−x. Equally, we could say that y can be anything, but, once y is
chosen, x is fixed as 3−y. The solutions form a k-dimensional hyper-plane,
where k is the number of variables minus the number of (non-spurious)
equations.

Under-determined yet inconsistent Here the equations (possibly after delet-
ing spurious ones) are still inconsistent. One example would be x+ 2y +
3z = 1, 2x+ 4x+ 6z = 3.

We are then left with three possibilities for the solutions, which can be cate-
gorised in terms of the dimension (‘dim’).

dim = −1 This is the conventional ‘dimension’ assigned when there are no so-
lutions, i.e. the equations are inconsistent.

dim = 0 Precisely one solution.

dim > 0 An infinite number of solutions, forming a hyperplane of dimension
dim.

3.3 Nonlinear Equations in Several Variables

Most of the section has its origin in the pioneering work of Buchberger [Buc70].
Some good modern texts are [AL94, BW93, CLO06].

If the equations are nonlinear, equation (3.15) is still available to us. So,
given the three equations

x2 − y = 0 x2 − z = 0 y + z = 0,
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we can subtract the first from the second to get y−z = 0, hence y = 0 and z = 0,
and we are left with x2 = 0, so x = 0, albeit with multiplicity 2 (definition 30).
However, we can do more than this. Given the two equations

x2 − 1 = 0 xy − 1 = 0, (3.18)

there might seem to be no row operation available. But in fact we can subtract
x times the second equation from y times the first, to get x− y = 0. Hence the
solutions are x = ±1, y = x.

We can generalise equation (3.15) to read as follows: for all polynomials f
and g,

P = Q & R = S implies fP + gR = fQ+ gS. (3.19)

Lemma 4 In equation (3.19), it suffices to consider terms (monomials with
leading coefficients) for f and g rather than general polynomials.

Proof. Let f be
∑
aimi and g be

∑
bimi, where the mi are monomials and

the ai and bi coefficients (possibly zero, but for a given i, both ai and bi should
not be zero, since then mi would be redundant). Then for each i, the monomial
version of equation (3.19) gives

P = Q & R = S implies aimiP + bimiR = aimiQ+ bimiS.

Then we can use equation (3.15) repeatedly, with λ = 1, to add these together
to get the general form of equation (3.19).

Because of equation (3.2), we can regard equations as synonymous with
polynomials. Equation (3.19) then motivates the following definition.

Definition 34 Let S be a set of polynomials in the variables x1, . . . , xn, with
coefficients from R. The ideal generated by S, denoted (S), is the set of all
finite sums

∑
fisi: si ∈ S, fi ∈ R[x1, . . . , xn]. If S generates I, we say that S

is a basis for I.

Proposition 19 This is indeed an ideal in the sense of definition 5.

Strictly speaking, what we have defined here is the left ideal : there are also
concepts of right ideal and two-sided ideal , but all concepts agree in the case of
commutative polynomials, which we will assume until section 3.3.13.

Proposition 20 ((S)) = (S).

Definition 35 Two sets of polynomial equations are equivalent if the polyno-
mials defining the left-hand sides generate the same ideal. We will see how to
test this in corollary 5.
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Just as an upper triangular matrix is a nice formulation of a set of linear equa-
tions, allowing us to “read off”, the solutions, so we would like a similarly ‘nice’
basis for an ideal generated by non-linear equations. In order to do this, we
will regard our polynomials in a distributed format, with the terms sorted in
some admissible (page 27) ordering >. Note that we are not requiring that
the polynomials are stored this way in an algebra system, though in fact most
algebra systems specialising in this area will do so: we are merely discussing
the mathematics of such polynomials. Having fixed such an ordering >, we can
define the following concepts.

Definition 36 If f is a non-zero polynomial, the leading term of f , denoted
lt(f), is that term greatest with respect to >. The corresponding monomial is
called the leading monomial of f , lm(f). We will sometimes apply lm to sets,
where lm(S) = {lm(s)|s ∈ S}.

“Monomial algebra” is a particularly simple form of polynomial algebra: in
particular

gcd

(
n∏
i=1

xaii ,

n∏
i=1

xbii

)
=

n∏
i=1

x
min(ai,bi)
i ,

lcm

(
n∏
i=1

xaii ,

n∏
i=1

xbii

)
=

n∏
i=1

x
max(ai,bi)
i .

Definition 37 If lm(g) divides lm(f), then we say that g reduces f to h =
lc(g)f − (lt(f)/lm(g))g, written f →g h. Otherwise we say that f is reduced
with respect to g. The Maple user should note that Maple’s Reduce command
actually implements complete reduction — see Definition 38.

If R is a field, division is possible, and so it is more usual to reduce f to
f − (lt(f)/lt(g))g. In the construction of h, the leading terms of both lc(g)f
and (lt(f)/lm(g))g are lc(f)lc(g)lm(f), and so cancel. Hence lm(h) < lm(f).
This observation and theorem 3 give us the following result.

Proposition 21 Any chain f1 →g f2 →g f3 · · · is finite, i.e. terminates in a

polynomial h reduced with respect to g. We write f1
∗→
g
h.

These concepts and results extend to reduction by a set G of polynomials, where
f →G h means ∃g ∈ G : f →g h. We must note that a polynomial can have
several reductions with respect to G (one for each element of G whose leading
monomial divides the leading monomial of f). For example, let G = {g1 =
x − 1, g2 = y − 2} and f = xy. Then there are two possible reductions of f :
f →g1 h1 = f − yg1 = y, and f →g2 h2 = f − xg2 = 2x. In this case h1 →g2 2

and h2 →g1 2, so that f
∗→
G

2 uniquely, but even this need not always be the case.
If we let G = {g1 = x−1, g2 = x2} and f = x2−1, then f →g2 h2 = f−g2 = −1,

whereas f →g1 f − xg1 = x− 1→g1 0: so f
∗→
G

0 or −1.
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This definition deals with reduction of the leading monomial of f by g, but
it might be that other monomials are reducible. For simplicity we consider the
case when R is a field.

Definition 38 If any term cm of f is reducible by g, i.e. the leading monomial
of g divides m, we say that g part-reduces f , and write f ⇒g f − (cm/lt(g))g.

We can continue this process (only finitely often, by repeated application of

theorem 3), until no monomial of f is reducible by g, when we write f
∗⇒
g
h, and

say that f is completely reduced by g to h. Again, this extends to reduction by
a set of polynomials.

In section 3.2.1, we performed row operations: subtracting a multiple of one
row from another, which is essentially what reduction does, except that the
‘multiple’ can include a monomial factor. It turns out that we require a more
general concept, given in the next definition.

Definition 39 Let f, g ∈ R[x1, . . . , xn]. The S-polynomial of f and g, written
S(f, g) is defined as

S(f, g) =
lt(g)

gcd(lm(f), lm(g))
f − lt(f)

gcd(lm(f), lm(g))
g. (3.20)

We note that the divisions concerned are exact, and that this generalises reduc-
tion in the sense that, if lm(g) divides lm(f), then f →g S(f, g). As with
reduction, the leading monomials in the two components on the righthand
side of equation (3.20) cancel. Another way of thinking of the S-polynomial
(when R is a field) is that it is the difference between what you get by reducing
lcm(lm(f), lm(g)) by f and by g.

Proposition 22 S(f, g) = −S(g, f).

Proposition 23 S(f, g) ∈ ({f, g}).

3.3.1 Gröbner Bases

From now until section 3.3.12, we will assume that R is a field. However, we
will continue to use R, and not gratuitously make polynomials monic, since this
can be expensive.

Theorem 13 [BW93, Proposition 5.38, Theorem 5.48] The following condi-
tions on a set G ∈ R[x1, . . . , xn], with a fixed ordering > on monomials, are
equivalent.

1. ∀f, g ∈ G,S(f, g)
∗→
G

0.

2. If f
∗→
G
g1 and f

∗→
G
g2, then g1 and g2 differ at most by a multiple in R,

i.e.
∗→
G

is essentially well-defined.

3. ∀f ∈ (G), f
∗→
G

0.
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4. (lm(G)) = (lm((G))), i.e. the leading monomials of G generate the same
ideals as the leading monomials of the whole of (G).

If G satisfies these conditions, G is called a Gröbner base (or standard basis).

These are very different kinds of conditions, and the strength of Gröbner theory

lies in their interplay. Condition 2 underpins the others:
∗→
G

is well-defined.
Condition 1 looks technical, but has the great advantage that, for finite G, it
is finitely checkable: if G has k elements, we take the k(k − 1)/2 unordered
(by proposition 22) pairs from G, compute the S-polynomials, and check that
they reduce to zero. This gives us either a proof or an explicit counter-example

(which is the key to algorithm 5). Since f
∗→
G

0 means that f ∈ (G), condition
3 means that ideal membership is testable if we have a Gröbner base for the
ideal. Condition 4 can be seen as a generalisation of “upper triangular” — see
section 3.3.3.

Now let G and H be Gröbner bases, possibly with respect to different or-
derings.

Proposition 24 If ∀g ∈ G, g ∗→
H

0, then (G) ⊆ (H).

Proof. Let f ∈ (G). Then f
∗→
G

0, so f =
∑
cigi. But gi

∗→
H

0, so gi =
sumdijhj . Therefore f = sumj (

∑
i cidij)hj , and so f ∈ (H).

Corollary 5 If ∀g ∈ G, g ∗→
H

0, and ∀h ∈ H,h ∗→
G

0, then (G) = (H).

Over a field, a particularly useful Gröbner base is a completely reduced
Gröbner base (abbreviated crGb) G, i.e. one where every element is completely
reduced with respect to all the others: in symbols

∀g ∈ G g
∗⇒
G\{g}

g.

For a consistent set of linear polynomials, the crGb would be a set of linear
polynomials in one variable each, e.g. {x − 1, y − 2, z − 3}, effectively the
solution. In general, a crGb is a canonical (definition 3) form for an ideal: two
ideals are equal if, and only if, they have the same crGb (with respect to the
same ordering, of course).

Every polynomial ideal has a Gröbner base: we will show this constructively
for finitely-generated9 ideals over noetherian (definition 6) rings.

Algorithm 5 (Buchberger)
Input: finite G0 ⊂ R[x1, . . . , xn]; monomial ordering >.
Output: G a Gröbner base for (G0) with respect to >.

9In fact, every polynomial ideal over a noetherian ring is finitely generated. However,
it is possible to encode undecidability results in infinite descriptions of ideals, hence we say
“finitely generated” to avoid this paradox.



3.3. NONLINEAR EQUATIONS IN SEVERAL VARIABLES 61

G := G0; n := |G|;
# we consider G as {g1, . . . , gn}
P := {(i, j) : 1 ≤ i < j ≤ n}
while P 6= ∅ do

Pick (i, j) ∈ P ;
P := P \ {(i, j)};
Let S(gi, gj)

∗→
G
h

If h 6= 0 then
# lm(h) /∈ (lm(G))
gn+1 := h; G := G ∪ {h};
P := P ∪ {(i, n+ 1) : 1 ≤ i ≤ n};
n := n+ 1;

Proof. The polynomials added to G are reductions of S-polynomials of mem-
bers of G, and hence are in the same ideal as G, and therefore of G0. If this
process terminates, then the result satisfies condition 1, and so is a Gröbner
base for some ideal, and therefore the ideal of G. By proposition 23 and the

properties of
∗→
G

, h ∈ (G), so (G) is constant throughout this process and G
has to be a Gröbner base for (G0). Is it possible for the process of adding new
h to G, which implies increasing (lm(G)), to go on for ever? No: corollary 1
says that the increasing chain of (lm(G)) is finite, so at some point we cannot
increase (lm(G)) any further, i.e. we cannot add a new h.

Proposition 25 Every finitely generated polynomial ideal over a field K has a
completely reduced Gröbner base with respect to any given ordering, and this is
unique up to order of elements and multiplication by elements of K∗.

Hence, for a fixed ordering, a crGb is a “fingerprint” of an ideal, uniquely
identifying it. This makes definition 35 algorithmic. It also allows ideal arith-
metic.

Proposition 26 Let G1 and G2 be Gröbner bases of the ideals I1 and I2 with
respect to a fixed ordering. Then:

1. I1 / I2 iff ∀g ∈ G1 g
∗→
G2

0;

2. I1 + I2 = (G1 ∪G2);

3. I1I2 = ({g1g2 | g1 ∈ G1, g2 ∈ G2}) .

Furthermore, all these processes are algorithmic.

We have proved nothing about the running time of Buchberger’s algorithm.
Indeed, “algorithm” is almost an over-statement: we have not specified the
choice of (i, j) ∈ P at all. It turns out that the complexity, though not the
correctness, of the algorithm is strongly dependent on this choice.
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Proposition 27 (Buchberger’s gcd (or First) Criterion [Buc79]) If

gcd(lm(f), lm(g)) = 1, (3.21)

then S(f, g)
∗→
{f,g}

0.

In practice, this is implemented by not even adding to P , either in the initial
construction or when augmenting it due to a new h, pairs for which equation
(3.21) is satisfied. This proposition also explains why the more general construct
of an S-polynomial is not relevant to linear equations: when f and g are linear,
if they have the same leading variable, one can reduce the other, and if they do
not, then the S-polynomial reduces to zero.

Proposition 28 (Buchberger’s lcm (or Third) Criterion [Buc79]) If I =

(B) contains f , g, h and the reductions under
∗→
B

of S(f, g) and S(f, h), and
if both lcm(lm(f), lm(g)) and lcm(lm(f), lm(h)) divide lcm(lm(g), lm(h)), then

S(g, h)
∗→
B

0, and hence need not be computed.

This has been generalised to a chain of polynomials fi connecting g and h: see
[BF91].

Propositions 27 and 28 are therefore sufficient to say that we need not com-
pute an S-polynomial: the question of whether they are necessary is discussed
by [HP07]. Terminology varies in this area, and some refer to Buchberger’s
Second Criterion as well. The more descriptive gcd/lcm terminology is taken
from [Per09].

3.3.2 How many Solutions?

Here we will try to give an analysis of the various possibilities for the number
of solutions of a set of polynomial equations. We will assume that a crGb for
the polynomials has been computed, which therefore cannot be overdetermined
in the sense of having redundant equations. However, we may still need more
equations than variables — see the examples at the start of section 3.3.6.

Unlike section 3.2.4 however, we have to ask ourselves “in which domain are
the solutions?” We saw in theorem 8 that, even for an equation in one variable,
the ‘solutions’ may have no simpler formulation than ‘this is a root of p(x)’.
Fortunately, this is all that we need. We will assume that K is the algebraic
closure (definition 15) of (the field of fractions of) R.

Definition 40 The set of solutions over K of an ideal I is called the variety of
I, written V (I). If S is a set of polynomials which generates I, so I = 〈S〉, we
will write V (S) as shorthand for V (〈S〉).

We should note that two different ideals can have the same variety, e.g. (x) and
(x2) both have the variety x = 0, but the solution has different multiplicity.

Definition 41 The radical of an ideal I, denoted
√
I, is defined as

√
I = {p|∀x ∈ V (I), p(x) = 0} .
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If I is generated by a single polynomial p,
√
I is generated by the square-free

part of p.

Proposition 29
√
I is itself an ideal.

Proposition 30 V (I1 · I2) = V (I1) ∪ V (I2).

Proposition 31 V (I1 ∪ I2) = V (I1) ∩ V (I2).

Definition 42 The dimension of an ideal I in S = k[x1, . . . , xn] is the maxi-
mum number of algebraically independent, over k, elements of the quotient S/I.
We can also talk about the dimension of a variety.

No solutions in K Here the crGb will be {1}, or more generally {c} for some
non-zero constant c. The existence of a solution would imply that this
constant was zero, so there are no solutions. The dimension is undefined,
but normally written as −1.

A finite number of solutions in K There is a neat generalisation of the re-
sult that a polynomial of degree n has n roots.

Proposition 32 The number (with multiplicity) of solutions of a system
with Gröbner basis G is equal to the number of monomials which are not
reducible by G.

It follows from this that, if (and only if) there are finitely many solutions,
every variable xi must appear alone, to some power, as the leading mono-
mial of some element of G. In this case, the dimension is zero. We return
to this case in section 3.3.6.

An infinite number of solutions in K Then some variables do not occur
alone, to some power, as the leading monomial of any element of G. In
this case, the dimension is greater than zero.

While ‘dimension’, as defined above, is a convenient generalisation of the linear
case, many more things can happen in the non-linear case. If the dimension of
the ideal is d, there must be at least d variables which do not occur alone, to
some power, as the leading monomial of any element of G. However, if d > 0,
there may be more. Consider the ideal (xy − 1) / k[x, y]. {xy − 1} is already a
Gröbner base, and neither x nor y occur alone, to any power, in a leading term
(the only leading term is xy). However, the dimension is 1, not 2, because fixing
x determines y, and vice versa, so there is only one independent variable. In the
case of a triangular set (definition 44), we can do much better, as in proposition
33.
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3.3.3 A Matrix Formulation

Equation (3.13) showed how a family of linear equations can be represented as
a matrix equation. We can do the same with nonlinear equations: (3.18) can
be written as

(
1 0 0 0 −1
0 1 0 0 −1

)
x2

xy
x
y
1

 = 0 (3.22)

However, this does not give us an obvious solution. Rather, we need to extend
the system, allowing not just the original equations, but also y times the first
and x times the second, to give the following.


1 0 0 0 −1 0
0 1 0 0 0 −1
1 0 0 −1 0 0
0 0 1 0 0 −1



x2y
x2

xy
x
y
1

 = 0. (3.23)

Elimination in this gives us


1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 0 −1 1 0
0 0 1 0 0 −1



x2y
x2

xy
x
y
1

 = 0, (3.24)

which produces, as the third row, the equation y − x, as we do (up to a change
of sign) after (3.18). In pure linear algebra, we can do no further, since we really
require y times this equation. This means considering


1 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 −1
1 0 0 0 −1 0 0 0 0
0 1 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 −1





x2y2

x2y
x2

xy2

xy
x
y2

y
1


= 0. (3.25)
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Eliminating here (using row 1 to kill the leading term in row 4, and the same
with row 2 against row 5) gives


1 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 −1
0 0 0 0 −1 0 1 0 0
0 0 0 0 0 −1 0 1 0
0 0 0 0 1 0 0 0 −1





x2y2

x2y
x2

xy2

xy
x
y2

y
1


= 0, (3.26)

and now row 4 can kill the leading term in row 6, to give


1 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 −1
0 0 0 0 −1 0 1 0 0
0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 1 0 −1





x2y2

x2y
x2

xy2

xy
x
y2

y
1


= 0. (3.27)

The last line of this corresponds to y2−1. To use this to deduce an equation for
x, we would need to consider x times this equation, which would mean addig
further rows and columns to the matrix.

No-one would actually suggest doing this in practice, any more than any-one
would compute a g.c.d. in practice by building the Sylvester matrix (which is
actually the univariate case of this process), but the fact that it exists can be
useful in theory, as we will find that the Sylvester matrix formulation of g.c.d.
computation is useful in section 4.1.

3.3.4 Orderings

In section 2.1.4, we defined an admissible ordering on monomials, and the theory
so far is valid for all orderings. What sort of orderings are admissible? We first
need an ordering on the variables themselves, which we will also denote >, and
we will assume that x1 > · · · > xn (in examples, x > y > z). Suppose the
two monomials to be compared are A = xa11 . . . xann and B = xb11 . . . xbnn . These
monomials have total degree a =

∑n
i=1 ai and b =

∑n
i=1 bi.

purely lexicographic — plex in Maple We first compare a1 and b1. If they
differ, this tells us whether A > B (a1 > b1) or A < B (a1 < b1). If they
are the same, we go on to look at a2 versus b2 and so on. The order is
similar to looking up words in a dictionary/lexicon — we look at the first
letter, and after finding this, look at the second letter, and so on. In this
order x2 is more important than xy10.
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total degree, then lexicographic — grlex in Maple We first look at the
total degrees: if a > b, then A > B, and a < b means A < B. If
a = b, then we look at lexicographic comparison. In this order xy10 is
more important than x2, and x2y more important than xy2.

total degree, then reverse lexicographic — tdeg in Maple This order is
the same as the previous, except that, if the total degrees are equal, we
look lexicographically, then take the opposite. Many systems, in particular
Maple and Mathematica10, reverse the order of the variables first. The
reader may ask “if the order of the variables is reversed, and we then
reverse the sense of the answer, what’s the difference?”. Indeed, for two
variables, there is no difference. However, with more variables it does
indeed make a difference. For three variables, the monomials of degree
three are ordered as

x3 > x2y > x2z > xy2 > xyz > xz2 > y3 > y2z > yz2 > z3

under grlex, but as

x3 > x2y > xy2 > y3 > x2z > xyz > y2z > xz2 > yz2 > z3

under tdeg. One way of seeing the difference is to say that grlex with
x > y > z discriminates in favour of x, whereas tdeg with z > y > x
discriminates against z. This metaphor reinforces the fact that there is
no difference with two variables.

It seems that tdeg is, in general, the most efficient order.

k-elimination Here we choose any order >′ on x1, . . . , xk, and use that. If this
cannot decide, we then use a second order >′′ on xk+1, . . . , xn. Since >′

is admissible, the least monomial is x01 . . . x
0
k, so this order will eliminate

x1, . . . , xk as far as possible, in the sense that the polynomials in only
xk+1, . . . , xn in a Gröbner base computed with such an order are all that
can be deduced about these variables. It is common, but by no means
required, to use tdeg for both >′ and >′′. Note that this is not the
same as simply using tdeg, since the exponents of xk+1, . . . , xn are not
considered unless x1, . . . , xk gives a tie.

weighted orderings Here we compute the total degree with a weighting fac-
tor, e.g. we may weight x twice as much as y, so that the total degree of
xiyj would be 2i + j. This can come in lexicographic or reverse lexico-
graphic variants.

matrix orderings These are in fact the most general form of orderings [Rob85].
Let M be a fixed n× n matrix of reals, and regard the exponents of A as
an n-vector a. Then we compare A and B by computing the two vectors
M.a and M.b, and comparing these lexicographically.

10http://reference.wolfram.com/mathematica/tutorial/PolynomialOrderings.html

http://reference.wolfram.com/mathematica/tutorial/PolynomialOrderings.html
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lexicographic M is the identity matrix.

grlex M =


1 1 . . . 1 1
1 0 . . . 0 0

0
. . . 0 . . . 0

...
...

...
...

...
0 . . . 0 1 0

.

tdeg It would be tempting to say, by analogy with grlex, that the matrix

is


1 1 . . . 1 1
0 0 . . . 0 1
0 . . . 0 1 0
...

...
...

...
...

0 1 0 . . . 0

. However, this is actually grlex with the

variable order reversed, not genuine reverse lexicographic. To get

that, we need the matrix


1 1 . . . 1 1
−1 0 . . . 0 0

0
. . . 0 . . . 0

...
...

...
...

...
0 . . . 0 −1 0

, or, if we are

adopting the Maple convention of reversing the variables as well,
1 1 . . . 1 1
0 0 . . . 0 −1
0 . . . 0 −1 0
...

...
...

...
...

0 −1 0 . . . 0

.

k-elimination If the matrices are Mk for >′ and Mn−k for >′′, then

M =

(
Mk 0
0 Mn−k

)
.

weighted orderings Here the first row of M corresponds to the weights,
instead of being uniformly 1.

Most “serious” Gröbner systems11 implement matrix orderings, but have
special case implementations for the more common ones listed above, often
storing the (weighted) total degree as well as the individual degrees to
minimise recomputation.

3.3.5 Example

Consider the three polynomials below.

g1 = x3yz − xz2,
g2 = xy2z − xyz,
g3 = x2y2 − z.

11Such as SINGULAR [Sch03], CoCoA [Abb04] or Macauley [BS86].
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The S-polynomials to be considered are S(g1, g2), S(g1, g3) and S(g2, g3). We
use a purely lexicographical ordering with x > y > z. The leading terms of
g2 = xy2z − xyz and g3 = x2y2 − z are xy2z and x2y2, whose l.c.m. is x2y2z.
Therefore

S(g2, g3) = xg2 − zg3 = (x2y2z − x2yz)− (x2y2z − z2) = −x2yz + z2.

This polynomial is non-zero and reduced with respect to G, and therefore G is
not a Gröbner basis. Therefore we can add this polynomial (or, to make the
calculations more readable, its negative) to G — call it g4. This means that the
S-polynomials to be considered are S(g1, g2), S(g1, g3), S(g1, g4), S(g2, g4) and
S(g3, g4).

Fortunately, we can make a simplification, by observing that g1 = xg4, and
therefore the ideal generated by G does not change if we suppress g1. This sim-
plification leaves us with two S-polynomials to consider: S(g2, g4) and S(g3, g4).

S(g2, g4) = xg2 − yg4 = −x2yz + yz2,

and this last polynomial can be reduced (by adding g4), which gives us yz2−z2.
As it is not zero, the basis is not Gröbner, and we must enlarge G by adding
this new generator, which we call g5. The S-polynomials to be considered are
S(g3, g4), S(g2, g5), S(g3, g5) and S(g4, g5).

S(g3, g4) = zg3 − yg4 = −z2 + yz2,

and this last one can be reduced to zero (by adding g5) In fact, this reduction
follows from Buchberger’s lcm (third) criterion, proposition 28.

S(g2, g5) = zg2 − xyg5 = −xyz2 + xyz2 = 0.

S(g4, g5) = zg4 − x2g5 = −z3 + x2z2 = x2z2 − z3,

where the last rewriting arranges the monomials in decreasing order (with re-
spect to <). This polynomial is already reduced with respect to G, G is
therefore not a Gröbner basis, and we must add this new polynomial to G
— let us call it g6. The S-polynomials to be considered are S(g3, g5), S(g2, g6),
S(g3, g6), S(g4, g6) and S(g5, g6). The reader can check that G reduces all these
S-polynomials to zero, and that G is therefore a Gröbner basis of the ideal, viz.

g2 = xy2z − xyz,
g3 = x2y2 − z,
g4 = x2yz − z2,
g5 = yz2 − z2,
g6 = x2z2 − z3.

No power of x, y or z occurs alone, so we see that the variety is certainly not
zero-dimensional, even though we have three equations in three variables, and z
is undetermined. If z 6= 0, then g5 can be divided by z2 to give y = 1 and then
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g3 becomes x2 − z, hence this part of the solution variety is a parabola. But if
z = 0, all equations except g3 collapse, and we have x2y2 = 0. Hence this part
of the solution variety is two straight lines x = z = 0 and y = z = 0, each in
fact of multiplicity four. Hence the solution is in fact of dimension one, a fact
that was not evident when we started.

3.3.6 The Gianni–Kalkbrener Theorem

In this section, we will consider the case of dimension 0, i.e. finitely many
solutions over K. We first remark that the situation can be distinctly more
challenging than in the case of linear equations, which we illustrate by means
of two examples.

1. G = {x2 − 1, y2 − 1}. This is a Gröbner base with respect to any or-
dering. There are four irreducible monomials {1, x, y, xy}, and hence four
solutions, x = ±1, y = ±1.

2. G = {x2 − 1, y2 − 1, (x − 1)(y − 1)}. This is also a Gröbner base with
respect to any ordering. There are three irreducible monomials {1, x, y},
and hence three solutions. There are x = 1, y = ±1, but when x = −1,
we only have y = 1. The additional polynomial (x−1)(y−1), which rules
out the monomial xy, rules out the solution x = y = −1. Another way of
looking at this is that, when x = 1, the polynomial (x−1)(y−1) vanishes,
but when x = −1, it adds an extra constraint.

Can we generalise this? The answer is ‘yes’, at least for purely lexicographical
Gröbner bases of zero-dimensional ideals. If the order is xn < xn−1 < · · · < x1
then such a Gröbner base G must have the form

pn(xn)

pn−1,1(xn−1, xn), . . . , pn−1,kn−1(xn−1, xn),

pn−2,1(xn−2, xn−1, xn), . . . , pn−2,kn−2(xn−2, xn−1, xn),

· · ·
p1,1(x1, · · · , xn−1, xn), . . . , p1,k1(x1, · · · , xn−1, xn),

where degxi(pi,j) < degxi(pi,j+1) and pi,ki is monic in xi. Let Gk = G ∩
k[xk, . . . , xn], i.e. those polynomials in xk, . . . , xn only.

Theorem 14 (Gianni–Kalkbrener [Gia89, Kal89]) Let α be a solution of
Gk+1. Then if lcxk(pk,i) vanishes at α, then (pk,i) vanishes at α. Furthermore,
the lowest degree (in xk) of the pk,i not to vanish at α, say pk,mα , divides all
of the other pk,j at α. Hence we can extend α to solutions of Gk by adding
xk = RootOf(pk,mα).

This gives us an algorithm to describe the solutions of a zero-dimensional ideal
from such a Gröbner base G. This is essentially a generalisation of back-
substitution into triangularised linear equations, except that there may be more
than solution, since the equations are non-linear, and possibly more than one
equation to substitute into.
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Algorithm 6 (Gianni–Kalkbrener) GK(G,n,A)
Input: A Gröbner base G for a zero-dimensional ideal I in n variables with
respect to lexicographic order.
Output: A list of solutions of G.

S := {xn = RootOf(pn)}
for k = n− 1, . . . , 1 do

S := GKS(G, k, S)
return S

In practice, particularly if we are interested in keeping track of multiplicities
of solutions, it may be more efficient to perform a square-free decomposition
(Definition 29) of pn, and initialise S to a list of the RootOf of each of its
square-free factors, and also associate the multiplicity to each solution.

Algorithm 7 (Gianni–Kalkbrener Step) GKS(G, k,A)
Input: A Gröbner base G for a zero-dimensional ideal I with respect to lexico-
graphic order, an integer k, and A a list of solutions of Gk+1.
Output: A list of solutions of Gk.

B := ∅
for each α ∈ A

i:=1
while (L := lcxk(pk,i(α))) = 0 do i := i+ 1
if L is invertible
# see last paragraph of section 3.1.4, page 47

then B := B ∪ {(α ∪ {xk = RootOf(pk,i(α))})}
else # α is split as α1 ∪ α2

B := B ∪GKS(G, k, {α1}) ∪GKS(G, k, {α2})
return B

In case 2. above, the three equations are G = {x2 − 1, y2 − 1, (x − 1)(y − 1)}.
Taking xn = x, we start off with S = {x = RootOf(x2 − 1)}, and we call GKS
on this. The initial value of L is RootOf(x2− 1)− 1, and we ask whether this is
invertible. Adopting a common-sense (i.e. heuristic) approach for the moment,
we see that this depends on which root we take: for +1 it is not invertible,
and for −1 it is. Hence GKS makes two recursive calls to itself, on x = 1 and
x = −1.

GKS(G, 1, {x = 1}) Here L := lcx1
(p1,1(x = 1)) is 0, so we consider p1,2, whose

leading coefficient is 1, so y = RootOf(y2 − 1).

GKS(G, 1, {x = −1}) Here L := lcx1(p1,1(x = −1)) is −2, and y = 1.

There is a larger worked example of this later, at equation (3.34).
The theorem can be generalised in several ways to non-zero-dimensional

ideals, but not completely [FGT01, Example 3.11].
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3.3.7 The Faugère–Gianni–Lazard–Mora Algorithm

We have seen in the previous section that, for a zero-dimensional ideal, a purely
lexicographical Gröbner base is a very useful concept. But these are generally
the most expensive to compute, with a worst-case complexity of O(dn

3

) for poly-
nomials of degree d in n variables [CGH88]. A total degree, reverse lexicographic

Gröbner base, on the other hand, has complexity O(dn
2

), or O(dn) if the num-
ber of solutions at infinity is also finite [Laz83]. Hence the following algorithm
[FGLM93] can be very useful, with >′ being total degree, reverse lexicographic
and >′′ being purely lexicographical , though it does have uses in other settings
as well.

Algorithm 8 (FGLM)
Input: A Gröbner base G for a zero-dimensional ideal I with respect to >′; an
ordering >′′.
Output: A Gröbner base H for I with respect to >′′.

H := ∅; i := j := 0
Enumerate the monomials irreducible under H in increasing order for >′′

#This is finite by proposition 32
for each such m

Let m
∗→
G
v

if v =
∑j
k=1 ckvk

then hi+1 := m−
∑j
k=1 ckmk

H := H ∪ {hi+1}; i := i+ 1
else j := j + 1; mj := m; vj := v

return H
#It is not totally trivial that H is a Gröbner base, but it is [FGLM93].

Since this algorithm is basically doing linear algebra in the space spanned by the
irreducible monomials under G, whose dimension D is the number of solutions
(proposition 32), it is not surprising that the running time seems to be O(D3),
whose worst case is O(d3n).

An an example of the FGLM algorithm, we take the system Aux from their
paper12, with three polynomials

abc+ a2bc+ ab2c+ abc2 + ab+ ac+ bc

a2bc+ a2b2c+ b2c2a+ abc+ a+ c+ bc

a2b2c+ a2b2c2 + ab2c+ ac+ 1 + c+ abc

The total degree Gröbner basis has fifteen polynomials, whose leading monomi-
als are

c4, bc3, ac3, b2c2, abc2, a2c2, b3c, ab2c, a2bc, a3c, b4, ab3, a2b2, a3b, a4.

12The system is obtained as they describe, except that the substitutions are x5 = 1/c,
x7 = 1/a.
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This defines a zero-dimensional ideal (c4, b4 and a4 occur in this list), and we
can see that the irreducible monomials are

1, c, c2, c3, b, bc, bc2, b2, b2c, b3, a, ac, ac2, ab, abc, ab2, a2, a2c, a2b, a3 :

twenty in number (as opposed to the 64 we would have if the basis only had
the polynomials a4 + · · · , b4 + · · · , c4 + · · ·). If we wanted a purely lexicographic
base to which to apply Gianni-Kalkbrener, we would enumerate the monomials
in lexicographic order as

1 (irreducble)

c (irreducble)

c2 (irreducble)

c3 (irreducble)

c4 which reduces to − 185
14 −

293
42 a

3 − 1153
42 a2b + 509

7 ab2 − 323
42 b

3 − 2035
42 a2c −

821
21 abc + 173

6 b2c − 751
14 ac

2 + 626
21 bc

2 + 31
42 c

3 − 449
14 a

2 + 1165
14 ab − 772

21 b
2 +

550
21 ac−

429
7 bc+ 184

21 c
2 − 407

6 a− 281
42 b−

4799
42 c

...

c20 which reduces to − 156473200555876438
7 + 1355257348062243268

21 bc2 −
2435043982608847426

21 a2c− 455474473888607327
3 a− 87303768951017165

21 b−
5210093087753678597

21 c+ 1264966801336921700
7 ab− 995977348285835822

7 bc−
2106129034377806827

21 abc+ 136959771343895855
3 b2c+ 1119856342658748374

21 ac+
629351724586787780

21 c2 − 774120922299216564
7 ac2 − 1416003666295496227

21 a2b+
1196637352769448957

7 ab2 − 706526575918247673
7 a2 − 1536916645521260147

21 b2 −
417871285415094524

21 a3 − 356286659366988974
21 b3 + 373819527547752163

21 c3, which
can be expressed in terms of the previous ones as −1 + 6 c+ 41 c2 −
71 c3 + 41 c18− 197 c14− 106 c16 + 6 c19− 106 c4− 71 c17− 92 c5− 197 c6−
145 c7 − 257 c8 − 278 c9 − 201 c10 − 278 c11 − 257 c12 − 145 c13 − 92 c15;
(and all higher powers of c are therefore expressible)

b which can be expressed in terms of the previous ones as
− 9741532

1645371 −
8270
343 c+ 32325724

548457 c2 + 140671876
1645371 c3 − 2335702

548457 c
18 + 13420192

182819 c14 +
79900378
1645371 c

16 + 1184459
1645371 c

19 + 3378002
42189 c4 − 5460230

182819 c
17 + 688291

4459 c5 +
1389370
11193 c6 + 337505020

1645371 c7 + 118784873
548457 c8 + 271667666

1645371 c9 + 358660781
1645371 c10 +

35978916
182819 c11 + 193381378

1645371 c12 + 553986
3731 c13 + 43953929

548457 c15;
(and all multiples of b are therefore expressible)

a which can be expressed in terms of the previous ones as 487915
705159 c

18− 4406102
705159 c−

16292173
705159 c14 − 17206178

705159 c2 − 1276987
235053 c

16 − 91729
705159 c

19 + 377534
705159 −

801511
26117 c

3 −
26686318
705159 c4 + 4114333

705159 c
17− 34893715

705159 c5− 37340389
705159 c6− 409930

6027 c7− 6603890
100737 c

8−
14279770
235053 c9− 15449995

235053 c10− 5382578
100737 c

11− 722714
18081 c

12− 26536060
705159 c13− 13243117

705159 c15.
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These last three give us the Gröbner base in a purely lexicographical order,
which looks like

{
c20 + · · · , b+ · · · , a+ · · ·

}
. As there are twenty solutions in

reasonably general position (the polynomial in c alone does factor, but is square-
free), we only need one polynomial per variable, as is often the case.

The existence of this algorithm leads to the following process for ‘solving’ a
set of polynomial equations.

Algorithm 9
Input: A set S of polynomials
Output: A ‘description of solutions’

G :=Buchberger(S,>tdeg)
if G is not zero-dimensional (Proposition 32)

then return “not zero-dimensional”
else H :=FGLM(G,>plex)

Use Gianni–Kalkbrener to solve H

3.3.8 The Shape Lemma

Let us look again at example 2 of section 3.3.6. Here we needed three equations
to define an ideal in two variables. We note that interchanging the rôles of x
and y does not help (in this case, it might in others). However, using other
coordinates than x and y definitely does. If we write the equations in terms of
u = x+ y, v = x− y instead, we get the basis

[−4 v + v3, v2 − 4 + 2u] : (3.28)

three values for v (0, 2 and−2), each with one value of u (2, 0 and 0 respectively),
from which the solutions in x, y can be read off. Note that ordering v before u
would give the basis

[u2 − 2u, uv, v2 − 4 + 2u], (3.29)

which is not triangular.

This kind of operation is called, for obvious reasons, a rotation. Almost all
rotations will place the equations “in general position”: and many theoretical
approaches to these problems assume a “generic rotation” has been performed.
In practice, this is a disaster, since sparsity is lost.

Definition 43 ([BMMT94]) A basis for a zero-dimensional ideal is a shape
basis if it is of the form

{g1(x1), x2 − g2(x1), . . . , xn − gn(x1)} .

This is a Gröbner basis for any ordering in which ‘degree in x1’ is the first
criterion: in the terminology of matrix orderings (page 66), any ordering where
the first row of the matrix is (λ, 0 . . . , 0).
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For a shape basis, the Gianni–Kalkbrener process is particularly simple: “de-
termine x1 and the rest follows”. Almost all zero-dimensional ideals have shape
bases. The precise criterion (•) in the theorem below is somewhat technical,
but is satisfied if there are no repeated components.

Theorem 15 (Shape lemma) [BMMT94, Corollary 3] After a generic rota-
tion, a zero-dimensional ideal has a shape basis if, and only if,

• each primary component is simple or of local dimension 1.

Furthermore [BMMT94, Lemma 2], such a rotation need only be 1-generic, i.e.

have matrix

(
1 v
0 I

)
for some generic vector v.

Their paper generalises this to ideals of higher dimension, but the complexity
in notation is not worth it for our purposes.

3.3.9 Triangular Sets

An alternative approach to polynomial equation solving is that of characteristic
[Rit32, Wu86] or triangular [Laz91] sets. See [ALMM99] for a reconciliation of
the various theories, and [AMM99] for a practical comparison. We can regard
triangular sets as an approach based on recursive views of polynomials, while
Gröbner bases are based on a distributed view. We assume that the variables
x1, . . . , xn are ordered as x1 < . . . < xn, and define the main variable of p,
mvar(p), to be the most important variable occurring in p.

Definition 44 A set T of polynomials is said to be triangular if different poly-
nomials have different main variables.

Example 2 of section 3.3.6 shows that there may not always be a triangular set
generating a particular ideal. If we have a triangular set, then the structure of
the ideal, and the variety, is relatively obvious.

Definition 45 Let T be a triangular set generating an ideal I in k[x1, . . . , xn].
Then every variable xi which occurs as a main variable is called algebraic, and
the set of such variables is denoted AlgVar(T ).

Proposition 33 For a triangular set T , the dimension of I(T ) is n−|AlgVar(T )|.

Much of the theory applies to positive dimension as well, but we will only
consider in this section the case of zero-dimensional ideals/varieties. Let V be
a zero-dimensional variety, and Vk be its projection onto x1, . . . , xk, i.e.

Vk = {(α1, . . . , αk) : ∃(α1, . . . , αn) ∈ V }.

Definition 46 A zero-dimensional variety V is equiprojectable iff, for all k,
the projection Vk → Vk−1 is an nk : 1 mapping for some fixed nk. Note that this
definition depends on the order of the xi: a variety might be equiprojectable
with respect to one order, but not another, as in (3.28) versus (3.29).
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Such an equiprojectable variety will have
∏
nk points (i.e. solutions, not count-

ing multiplicity, to the equations).

Proposition 34 Every equiprojectable variety corresponds to a triangular set,
and vice versa.

The variety V of Example 2 of section 3.3.6 is {(x = −1, y = 1), (x = 1, y =
±1)} and is not equiprojectable. However, it can be written as V = V1 ∪ V2
where V1 = {(x = −1, y = 1)} and V2 = {(x = 1, y = ±1)}, each of which is
equiprojectable. The corresponding triangular sets are T1 = {x+ 1, y − 1} and
T2 = {x− 1, y2 − 1}.

Theorem 16 (Gianni–Kalkbrener (triangular variant)) Every zero-dim-
ensional variety can be written as a union of disjoint equiprojectable varieties
— an equiprojectable decomposition.

In fact, each solution description in Algorithm 6 is a description of an equipro-
jectable variety.

This theorem can be, and was, proved independently, and the decomposition
into triangular sets (the union of whose varieties is the original variety) can be
computed directly. This gives us an alternative to algorithm 9: compute the
triangular sets corresponding to the equiprojectable decomposition, and solve
each one separately [Laz92].

It appears that the triangular set approach is more suitable to modular
methods (section 4.1) than the Gröbner-base approach, but this is an area of
active research.

3.3.10 Positive Dimension

Here we consider the case of solution sets of positive dimension (over the alge-
braic closure, e.g. over the complexes). As in Theorem 16, the ultimate aim is
to express a variety as a union (preferably a disjoint union) of “nicer” varieties,
or other sets.

Definition 47 If P and Q are two (finite) sets of polynomials, we call the
ordered pair (P,Q) a quasi-algebraic system, and we write Z(P,Q), the zeros
of the quasi-algebraic system, for V (P ) \V (

∏
Q), with the convention that if Q

is empty,
∏
Q = 1, so V (Q) = ∅.

Z(P,Q) = {x ∈ Kn|(∀p ∈ P p(x) = 0) ∧ (∀q ∈ Q q(x) 6= 0)} .

We say that (P,Q) is consistent if Z(P,Q) 6= ∅.

In Definition 40, we defined the variety of a set of polynomials, but we need some
more concepts, all of which depend on having fixed an order of the variables.

Definition 48 Let p be a polynomial. The main variable of p, denoted mvar(p),
is the most important variable of p. The initial of p, written init(p), is its leading
coefficient, when regarded as a univariate polynomial in mvar(p).
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If S = {p1, . . . , pk} is a finite set of polynomials, we write

init(S) = lcm1≤i≤kinit(pi).

It should be noted that many authors define init(S) as
∏

1≤i≤k init(pi). Since
we are normally concerned with the zeros of init(S), the two definitions have
the same consequences, and ours leads to smaller polynomials.

Definition 49 If T is a triangular system, we define the pseudo-remainder of
p by T to be the pseudo-remainder of dividing p by each qi ∈ T in turn (turn
defined by decreasing order of mvar(qi)), regarded as univariate polynomials in
mvar(qi).

This is a generalization of Definition 27 (page 36).

Definition 50 Let S be a finite set of polynomials. The set of regular zeros of
S, written W (S), is Z(P, {init(P )}) = V (S) \ V ({init(S)}). For (a1, . . . , an) to
be in W (S), where S = {p1, . . . , pk}, we are insisting that all of the pi vanish
at this point, but none of the init(pi).

For Example 2 of section 3.3.6, the variety is {(x = −1, y = 1), (x = 1, y = ±1)}.
If we take y > x, then the inital of the set of polynomials is lcm(1, x − 1, 1) =
x − 1, so only the zero with x = −1, y = 1 is regular. Conversely, if we take
x > y, the initial is y − 1 and only the zero with y = −1, x = 1 is regular. This
emphasises that W depends on the variable ordering. It is also a property of
the precise set S, not just the ideal 〈S〉.

In this case, W (S) was in fact a variety (as always happens in dimension 0).
In general, this is not guaranteed to happen: consider the (trivial) triangular
system S = {(x−1)y−x+1} with y > x. Since this polynomial is (x−1)(y−1),
V (S) is the two lines x = 1 and y = 1. However, W (S) is the line y = 1 except
for the point (1, 1). In fact this is the only direct description we can give,
though we could say that W (S) is “almost” the line y = 1. This “almost” is
made precise as follows.

Definition 51 If W is any subset of Kn, the Zariski closure of W , written13

W , is the smallest variety containing it:

W =
⋂
{V (F ) |W ⊆ V (F )},

which is itself a variety by Proposition 31.

In the example above, W (S) = V (y − 1).

3.3.10.1 An example

This example is from [AMM99, p. 126]14. Suppose we have, in two dimensions,
a manipulator consisting of an arm of length 1 fixed at the origin, and with

13Note that we use the same notation for algebraic closure and Zariski closure.
14The author is grateful to Russell Bradford for explaining the geometric context.
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another arm, also of length 1, at its other end. We wish the far end of the
manipulator to reach the point (a, b) in the plane. Let θ1 be the angle that the
first arm makes with the x axis, and write c1 = cos θ1, s1 = sin θ1. Let θ2 be
the angle that the second arm makes with the first. Then we have the following
equations

c1 + cos(θ1 + θ2) = a (3.30)

s1 + sin(θ1 + θ2) = b (3.31)

s21 + c21 = 1 (3.32)

s22 + c22 = 1, (3.33)

where the last two equations state that the arms have length 1. We can apply
the addition formulae for trigonometric functions to (3.30) and (3.31) to get

c1 + c1c2 − s1s2 = a 3.30′,

s1 + c1s2 + c2s1 = b 3.31′.

Rewriting these equations as polynomials, assumed to be zero, and using the
order

c2 > s2 > c1 > s1 > b > a,

we get

S = {c2c1 − s2s1 + c1 − a, c2s1 + s2c1 + s1 − b, c21 + s21 − 1, c22 + s22 − 1},

which is not triangular since c2 is the main variable of three different equations.
[AMM99] implement the method of [Laz91] to express V (S) as a (disjoint)

union
W (T1) ∪W (T2) ∪W (T3),

where

T1 = {(b2 + a2)(4s21 − 4bs1 + b2 + a2)− 4a2, 2ac1 + 2bs1 − b2 − a2,

2as2 + 2(b2 + a2)s1 − b2 − a2b, 2c2 − b2 − a2 + 2},

T2 = {a, 2s1 − b, 4c21 + b2 − 4, s2 − bc1, 2c2 − b2 + 2},

T3 = {a, b, c21 + s21 − 1, s2, c2 + 1}.

3.3.10.2 Regular Zeros and Saturated Ideals

Definition 52 If T is a triangular system, define the saturated ideal of T to
be

sat(T ) = {p ∈ K[x1, . . . , xn]|∃n ∈ N init(T )np ∈ (T )}
= {p ∈ K[x1, . . . , xn]|prem(p, T ) = 0} .
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In other words it is the set of polynomials which can be reduced to zero by T
after multiplying by enough of the initials of T so that division works. In terms
of the more general concept of saturation I : S∞ of an ideal ([Bou61, p. 90]),
this is (T ) : (init(T ))∞.

Theorem 17 ([ALMM99, Theorem 2.1]) For any non-empty triangular set
T ,

W (T ) = V (sat(T )).

In the example motivating Definition 51, sat(S) is generated by y−1, and indeed
W (S) = V (sat(S)).

3.3.11 Conclusion

Whether we follow the Gianni–Kalkbrener approach directly (algorithm 9) or
go via triangular sets, the solutions to a zero-dimensional family of polynomial
equations can be expressed as a union of (equiprojectable) sets, each of which
can be expressed as a generalised RootOf construct. For example, if we take the
ideal

{−3x− 6 + x2 − y2 + 2x3 + x4,−x3 + x2y + 2x− 2 y,−6 + 2x2 − 2

y2 + x3 + y2x,−6 + 3x2 − xy − 2 y2 + x3 + y3},

its Gröbner basis (purely lexicographic, y > x) is

[6− 3x2− 2x3 +x5,−x3 +x2y+ 2x− 2 y, 3x+ 6−x2 + y2− 2x3−x4]. (3.34)

There are seven irreducible monomials: 1, x, x2, x3, x4, y and xy. We know
that x satisfies a quintic, and y then satisfies

(
x2 − 2

)
y−x3+2x. When x2 = 2,

this vanishes, so our quintic for x decomposes into (x2 − 2)(x3 − 3), and the
whole solution reduces to〈

x2 − 2, y2 − x
〉
∪
〈
x3 − 3, y − x

〉
. (3.35)

Unfortunately, we do not have a convenient syntax to express this other than
via the language of ideals. We are also very liable to fall into the ‘too many
solutions’ trap, as in equation (3.8): Maple resolves the first component (in
radical form) to {

y =
4
√

2, x =
√

2
}
, (3.36)

and the second one to {
y =

3
√

3, x =
3
√

3
}
, (3.37)

both of which lose the connections between x and y (x = y2 in the first case,
x = y in the second).

We are also dependent on the choice of order, since with x > y the Gröbner
basis is

[6− 3 y4 − 2 y3 + y7, 18− 69 y2 − 9 y4 − 46 y + 23 y5 − 2 y6 + 73x], (3.38)
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and no simplification comes to mind, short of factoring the degree seven poly-
nomial in y, which of course is (y3 − 3)(y4 − 2), and using the choice here to
simplify the equation for x.

Maple’s RegularChains package, using the technology of section 3.3.9, pro-
duces essentially equation (3.35) for the order y > x, and for x > y produces

[[
(
2 y + y3 + 4 y2 + 2

)
x− 8− 2 y2 − 2 y3 − 2 y, y4 − 2],

[
(
5 y + 3 + 4 y2

)
x− 12− 5 y2 − 3 y,−3 + y3]],

essentially the factored form of 3.38.

3.3.12 Coefficients other than fields

Most of the theory of this section, notably theorem 13, goes over to the case
when R is a P.I.D. (definition 10) rather than a field, as described in [BW93,
section 10.1]. However, when it comes to computation, things are not quite so
obvious. What is the Gröbner base of {2x, 3y} [Pau07]? There are two possible
answers to the question.

• {2x, 3y} [Tri78].

• {2x, 3y, xy} [Buc84].

We note that xy = x(3y) − y(2x) ∈ (2x, 3y), so we need xy to reduce to zero.
We therefore modify definition 39 as follows

Definition 53 Let f, g ∈ R[x1, . . . , xn]. Suppose the leading coefficients of f
and g are af and ag, and the leading monomials mf and mg. Let a be a least
common multiple of af and ag, and write a = afbf = agbg. Let m be the least
common multiple of mf and mg. The S-polynomial of f and g, written S(f, g)
is defined as

S(f, g) = bf
m

mf
f − bg

m

mg
g. (3.39)

Let cfaf + cgag = gcd(af , ag), and define the G-polynomial of f and g, written
G(f, g), as

G(f, g) = cf
m

mf
f + cg

m

mg
g. (3.40)

Note that (3.39) is the same as (3.20) up to a factor of gcd(af , ag). The S-
polynomial is defined up to unit factors, whereas the G-polynomial is much less
well-defined, but it turns out not to matter.

For the example quoted above, S(2x, 3y) = 0 (which follows from Proposition
27), while G(2x, 3y) = xy. Algorithm 5 goes over to this setting, execpt that
we have to add G-polynomials as well as S-polynomials, and some care has to
be taken to eliminate G-polynomials first — see [BW93, table 10.1].
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3.3.13 Non-commutative Ideals

Much of the general mechanism of ideals generalises to the case of non-commut-
ative ideals, provided we are careful to distinguish left, right or two-sided ideals.
However, the theory is notably weaker. In particular we have the following
opposite of theorem 1 and its corollary.

Proposition 35 K〈x1, . . . , xn〉 is not noetherian for n ≥ 2.

Hence Buchberger’s algorithm 5 might not terminate, and in general it does not
[Mor86].

In fact, not only does this approach not work, but no approach can, as
demonstrated by this result.

Proposition 36 ([KRW90]) Ideal membership is insoluble in Q〈x1, x2〉.

One case of great interest is when R is some field of (expressions representing)
functions, and the “indeterminates” are differential or difference operators.

Example 1 R is Q(x, y) and the indeterminates are ∂
∂x and ∂

∂y , so that we are

working in R[ ∂∂x ,
∂
∂y ]. Here the “indeterminates” commute with each other, but

not with R, since ∂
∂x (xf) = f + x ∂

∂xf , i.e. ∂
∂xx = 1 + x ∂

∂x .

We should note that the result of multiplying a term by an indeterminate is

not necessarily a term, e.g. ∂
∂x

(
x ∂
∂x

)
= ∂

∂x + x ∂2

∂x2 . This makes characterising
a Gröbner base harder, but the following definition is an appropriate generali-
sation of the last clause of theorem 13 in the setting where the indeterminates
commute with each other.

Definition 54 [Pau07, Definition 4] A finite subset G of I \ {0}, where I is a
left-ideal, is a Gröbner basis of I iff, for all monomials m, the R-ideal (lc(f)|f ∈
I ∧ lm(f) = m) is generated by {lc(g)|g ∈ G ∧ lm(g) divides m}.

If R is a principal ideal domain, it is possible to define S-polynomials and
G-polynomials as in the previous section, but in general we need to consider
more complicated (but still finitely many) combinations [Pau07]. This leads
to an effective test for a Gröbner base in this setting, i.e. we need to check
that finitely many combinations reduce to zero. We also get a generalisation
of Buchberger’s algorithm [Pau07, Proposition 10]: if the combination does not
reduce to zero, add it. Termination is non-trivial, however.

3.4 Equations and Inequalities

While it is possible to work in more general settings (real closed fields), we will
restrict our attention to solving systems over R. Consider the two equations

x2 + y2 = 1 (3.41)

x2 + y2 = −1. (3.42)
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Over the complexes, there is little to choose between these two equations, both
define a one-dimensional variety. Over R, the situation is very different: (3.41)
still defines a one-dimensional variety (a circle), while (3.42) defines the empty
set, even though we have only one equation in two variables.

Hence we can essentially introduce the constraint x ≥ 0 by adding a new
variable y and the equation y2 − x = 0. We can also introduce the constraint
x 6= 0 by adding a new variable z and xz − 1 = 0 (essentially insisting that x
be invertible). Hence x > 0 can be introduced. Having seen that ≥ and > can
creep in through the back door, we might as well admit them properly, and deal
with the language of real closed fields, i.e. the language of fields (definition 11)
augmented with the binary predicate > and the additional laws:

1. Precisely one of a = b, a > b and b > a holds;

2. a > b and b > c imply a > c;

3. a > b implies a+ c > b+ c;

4. a > b and c > 0 imply ac > bc.

This is the domain of real algebraic geometry , a lesser-known, but very im-
portant, variant of classical algebraic geometry. Suitable texts on the subject
are [BPR06, BCR98]. However, we will reserve the word ‘algebraic’ to mean
a set defined by equalities only, and reserve semi-algebraic for the case when
inequalities (or inequations15) are in use. More formally:

Definition 55 An algebraic proposition is one built up from expressions of the
form pi(x1, . . . , xn) = 0, where the pi are polynomials with integer coefficients,
by the logical connectives ¬ (not), ∧ (and) and ∨ (or). A semi-algebraic propo-
sition is the same, except that the building blocks are expressions of the form
pi(x1, . . . , xn)σ0 where σ is one of =, 6=, >,≥, <,≤.

This language is in fact redundant, since 6=,≥,≤ can be replaced with the help
of ¬, but corresponds more closely to natural usage. The reader will also notice
that it is not quite the language of real closed fields described above, since we
do not allow division. This is partly for ease of subsequent development, but
also allows us to sidestep “division by zero” questions, as raised in problem 1 of
section 1.2.2. Hence the proposition p

q > 0 has to be translated as (q > 0 ∧ p >
0)∨ (q < 0∧ p < 0), which is not true when q = 0. If this is not what we mean,
e.g. when p and q have a common factor, we need to say so.

3.4.1 Applications

It runs out that many of the problems one wishes to apply computer algebra to
can be expressed in terms of real semi-algebraic geometry. This is not totally
surprising, since after all, the “real world” is largely real in the sense of R.

15Everyone agrees that an equation a = b is an equality. a > b and its variants are referred
to an inequalities. This only leaves the unfamiliar inequation for a 6= b.
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Furthermore, even if problems are posed purely in terms of equations, there
may well be implicit inequalities as well. For example, it may be implicit that
quanitites are non-negative, or that concentrations is biochemistry lie in the
range [0, 1].

Robot motion planning . . .
It is also often important to prove unsatisfiability , i.e. that a semi-algebraic

formula has no solutions. [Mon09] gives several examples, ranging from program
proving to biological systems. The program proving one is as follows. One
wishes to prove that I is an invariant (i.e. if it was true at the start, it is true
at the end) of a program which moves from one state to another by a transition
relation τ . More formally, one wishes to prove that there do not exist two states
s, s′ such that s ∈ I, s′ /∈ I, but s→τ s

′. Such a pair (s, s′) would be where “the
program breaks down”, so a proof of unsatisfiability becomes a proof of program
correctness. This places stress on the concept of ‘proof’ — “I can prove that
there are no bad cases” is much better than “I couldn’t find any bad cases”.

3.4.2 Quantifier Elimination

A fundamental result of algebraic geometry is the following, which follows from
the existence of resultants (section A.1).

Theorem 18 A projection of an algebraic set is itself an algebraic set.

For example, the projection of the set defined by{
(x− 1)

2
+ (y − 1)

2
+ (z − 1)

2 − 4, x2 + y2 + z2 − 4
}

(3.43)

on the x, y-plane is the ellipse

8x2 + 8 y2 − 7− 12x+ 8xy − 12 y. (3.44)

We can regard equation (3.43) as defining the set

∃z
(

(x− 1)
2

+ (y − 1)
2

+ (z − 1)
2

= 4 ∧ x2 + y2 + z2 = 4
)

(3.45)

and equation (3.44) as the quantifier-free equivalent

8x2 + 8 y2 − 12x+ 8xy − 12 y = 7. (3.46)

Is the same true in real algebraic geometry? If P is a projection operator,
and < denotes the real part, then clearly

P (<(U) ∩ <(V )) ⊆ <(P (U ∩ V )). (3.47)

However, the following example shows that the inclusion can be strict. Consider{
(x− 3)

2
+ (y − 1)

2
+ z2 − 1, x2 + y2 + z2 − 1

}
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Its projection is (10− 6x− 2 y)
2
, i.e. a straight line (with multiplicity 2). If we

substitute in the equation for y in terms of x, we get z =
√
−10x2 + 30x− 24,

which is never real for real x. In fact <(U) ∩ <(V ) = ∅, as is obvious from
the geometric interpretation of two spheres of radius 1 centred at (0, 0, 0) and
(3, 1, 0). Hence the methods we used for (complex) algebraic geometry will not
translate to real algebraic geometry.

The example of y2−x, whose projection is x ≥ 0, shows that the projection
of an algebraic set need not be an algebraic set, but might be a semi-algebraic
set. Is even this guaranteed? What about the projection of a semi-algebraic
set? In the language of quantified propositions, we are asking whether, when F
is an algebraic or semi-algebraic proposition, the proposition

∃y1 . . . ∃ymF (y1, . . . , ym, x1, . . . , xn) (3.48)

has a quantifier-free equivalentG(x1, . . . , xn), whereG is a semi-algebraic propo-
sition. We can generalise this.

Problem 2 (Quantifier Elimination) Given a quantified proposition16

Q1y1 . . . QmymF (y1, . . . , ym, x1, . . . , xn), (3.49)

where F is a semi-algebraic proposition and the Q1 are each either ∃ or ∀, does
there exist a quantifier-free equivalent G(x1, . . . , xn). If so, can we compute it?

The fact that there is a quantifier-free equivalent is known as the Tarski–
Seidenberg Principle [Sei54, Tar51]. The first constructive answer to the ques-
tion was given by Tarski [Tar51], but the complexity of his solution was in-
describable17. A better (but nevertheless doubly exponential) solution had
to await the concept of cylindrical algebraic decomposition (CAD) [Col75] de-
scribed in the next section.

Notation 9 Since ∃x∃y is equivalent to ∃y∃x, and similarly for ∀, we extend
∃ and ∀ to operate on blocks of variables, so that, if x = (x1, . . . , xn), ∃x is
equivalent to ∃x1 . . . ∃xn. If we use this notation to rewrite equation 3.49 with
the fewest number of quantifiers, the quantifiers then have to alternate, so the
formula is (where the yi are sets of variables)

∀y1∃y2∀y3 . . . F (y1,y2, . . . , x1, . . . , xn), (3.50)

or

∃y1∀y2∃y3 . . . F (y1,y2, . . . , x1, . . . , xn). (3.51)

In either form, the number of quantifiers is one more than the number of alter-
nations.

16Any proposition with quantified variables can be converted into one in this form, so-called
prenex normal form — see any standard logic text.

17In the formal sense, that there was no elementary function which could describe it, i.e.
no tower of exponentials of fixed height would suffice!
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3.4.3 Algebraic Decomposition

Definition 56 An algebraic decomposition of Rn is an expression of Rn as
the disjoint union of non-empty connected sets, known as cells, each defined as

p1(x1, . . . , xn)σ0 ∧ · · · ∧ pm(x1, . . . , xn)σ0, (3.52)

where the σ are one of =, >,<. Equation (3.52) is known as the defining formula
of the cell C, and denoted Def(C).

These should properly be called semi-algebraic decompositions, but this termi-
nology has stuck. Note that (3.52) need not define a non-empty connected set
— external information is required to show this. We should note that these
definitions are a very restricted form of definition 55. Here are some examples.

1. R1 can be decomposed as {x < 0} ∪ {x = 0} ∪ {x > 0}.

2. R1 cannot be decomposed as {x2 = 0} ∧ {x2 > 0}, as the second set is
not connected. Rather, we need the previous decomposition.

3. R1 cannot be decomposed as

{(x2 − 3)2 − 2 = 0} ∧ {(x2 − 3)2 − 2 > 0} ∧ {(x2 − 3)2 − 2 < 0},

as the sets are not connected. Rather, we need the decomposition (writing
(x2 − 3)2 − 2 as f)

{f > 0 ∧ x < −2} ∪ {f = 0 ∧ x < −2} ∪ {f < 0 ∧ x < 0} ∪
{f = 0 ∧ x > −2 ∧ x < 0} ∪ {f > 0 ∧ x > −2 ∧ x < 2} ∪

{f = 0 ∧ x > 0 ∧ x < 2} ∪ {f < 0 ∧ x > 0} ∪
{f = 0 ∧ x > 2} ∪ {f > 0 ∧ x > 2}.

4. R2 can be decomposed as {(x2+y2) < 0}∪{(x2+y2) = 0}∪{(x2+y2) > 0}.

5. R2 cannot be decomposed as {xy < 1} ∪ {xy = 1} ∪ {xy > 1}, as the last
two sets are not connected. Rather, we need the more complicated

{xy < 1} ∪
{xy = 1 ∧ x > 0} ∪ {xy = 1 ∧ x < 0} ∪
{xy > 1 ∧ x < 0} ∪ {xy > 1 ∧ x > 0}.

6. R2 cannot be decomposed as {f < 0} ∪ {f = 0} ∪ {f > 0}, where f =(
x2 + y2 − 1

) (
(x− 3)2 + y2 − 1

)
, as the first two sets are not connected.

Rather, we need the more complicated

{f < 0 ∧ x < 3
2} ∪ {f < 0 ∧ x > 3

2} ∪ {f = 0 ∧ x < 3
2}

∪{f = 0 ∧ x > 3
2} ∪ {f > 0}
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The reader may complain that example 3 is overly complex: can’t we just write

{f > 0 ∧ x < −2} ∪ {x = −
√

3 +
√

2} ∪ {f < 0 ∧ x < 0} ∪

{x = −
√

3−
√

2 < 0} ∪ {f > 0 ∧ x > −2 ∧ x < 2} ∪

{x =
√

3−
√

2} ∪ {f < 0 ∧ x > 0} ∪ {x =
√

3 +
√

2} ∪ {f > 0 ∧ x > 2}?

In this case we could, but in general theorem 8 means that we cannot18: we need
RootOf constructs, and the question then is “which root of . . .”. In example
3, we chose to use numeric inequalities (and we were lucky that they could be
chosen with integer end-points). It is also possible [CR88] to describe the roots
in terms of the signs of the derivatives of f , i.e.

{f > 0 ∧ x < −2} ∪ {f = 0 ∧ f ′ < 0 ∧ f ′′′ < 0} ∪ {f < 0 ∧ x < 0} ∪
{f = 0 ∧ f ′ > 0 ∧ f ′′′ < 0} ∪ {f > 0 ∧ x > −2 ∧ x < 2} ∪

{f = 0 ∧ f ′ < 0 ∧ f ′′′ > 0} ∪ {f < 0 ∧ x > 0} ∪
{f = 0 ∧ f ′ > 0 ∧ f ′′′ > 0} ∪ {f > 0 ∧ x > 2}

(as it happens, the sign of f ′′ is irrelevant here). This methodology can also
be applied to the one-dimensional regions, e.g. the first can also be defined as
{f > 0 ∧ f ′ > 0 ∧ f ′′ < 0 ∧ f ′′′ < 0}.

We may ask how we know that we have a decomposition, and where these
extra constraints (such as x > 0 in example 5 or x < 3

2 in example 6) come
from. This will be addressed in the next section, but the brief answers are:

• we know something is a decomposition because we have constructed it
that way;

• x = 0 came from the leading coefficient (with respect to y) of xy − 1,
whereas 3

2 in example 6 is a root of Discy(f).

We stated in definition 56 that the cells must be non-empty. How do we
know this? For the zero-dimensional cells {f = 0 ∧ x > a ∧ x < b}, we can rely
on the fact that if f changes sign between a and b, there must be at least one
zero, and if f ′ does not19, there cannot be more than one: such an interval can
be called an isolating interval . In general, we are interested in the following
concept.

Definition 57 A sampled algebraic decomposition of Rn is an algebraic de-
composition together with, for each cell C, an explicit point Sample(C) in that
cell.

By ‘explicit point’ we mean a point each of whose coordinates is either a rational
number, or a precise algebraic number: i.e. a defining polynomial20 together
with an indication of which root is meant, an isolating interval, a sufficiently

18And equation (3.11) means that we probably wouldn’t want to even when we could!
19Which will involve looking at f ′′ and so on.
20Not necessarily irreducible, though it is normal to insist that it be square-free.
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exact21 numerical approximation or a Thom’s Lemma [CR88] list of signs of
derivatives.

Definition 58 A decomposition D of Rn is said to the sign-invariant for a
polynomial p(x1, . . . , xn) if and if only if, for each cell C ∈ D, precisely one of
the following is true:

1. ∀x ∈ C p(x) > 0;

2. ∀x ∈ C p(x) < 0;

3. ∀x ∈ C p(x) = 0;

It is sign-invariant for a set of polynomials if, and only if, for each polynomial,
one of the above conditions is true for each cell.

It therefore follows that, for a sampled decomposition, the sign throughout the
cell is that at the sample point.

3.4.4 Cylindrical Algebraic Decomposition

Notation 10 Let n > m be positive natural numbers, and let Rn have coordi-
nates x1, . . . , xn, with Rm having coordinates x1, . . . , xm.

Definition 59 An algebraic decomposition D of Rn is said to be cylindrical
over a decomposition D′ of Rm if the projection onto Rm of every cell of D is a
cell of D′. The cells of D which project to C ∈ D′ are said to form the cylinder
over C, denoted Cyl(C). For a sampled algebraic decomosition, we also insist
that the sample point in C be the projection of the sample points of all the cells
in the cylinder over C.

Cylindricity is by no means trivial.

Example 2 Consider the decomposition of R2 = S1 ∪ S2 ∪ S3 where

S1 = {(x, y) | x2 + y2 − 1 > 0},
S2 = {(x, y) | x2 + y2 − 1 < 0},
S3 = {(x, y) | x2 + y2 − 1 = 0}.

This is an algebraic decomposition, and is sign-invariant for x2 + y2 − 1. How-
ever, it is not cylindrical over any decomposition of the x-axis R1. The projec-
tion of S2 is (−1, 1), so we need to decompose R1 as

(−∞,−1) ∪ {−1} ∪ (−1, 1) ∪ {1} ∪ (1,∞). (3.53)

21By this, we mean an approximation such that the root cannot be confused with any other,
which generally means at least an approximation close enough that Newton’s iteration will
converge to the indicated root. Maple’s RootOf supports such a concept.
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S3 projects onto [−1, 1], which is the union of three sets in (3.53). We have to
decompose S3 into four sets:

S3,1 = {(−1, 0)}, S3,2 = {(1, 0)},
S3,3 = {(x, y) | x2 + y2 − 1 = 0 ∧ y > 0},
S3,4 = {(x, y) | x2 + y2 − 1 = 0 ∧ y < 0}.

S1 splits into eight sets, one above each of (−∞,−1) and (1,∞) and two above
each of the other components of (3.53). It is obvious that this is the minimal
refinement of the original decomposition to possess a cylindric decomposition.
Furthermore in this case no linear transformation of the axes can reduce this.
If we wanted a sampled decomposition, we could choose x-coordinates of −2,
−1, 0, 1 and 2, and y-coordinates to match, from {0,±1,±2}.

Cylindricity is fundamental to solving problem 2 via the following two proposi-
tions.

Proposition 37 Let

∃xn . . . ∃xm+1P (x1, . . . , xn) (3.54)

be an existentially quantified formula, D be a sampled algebraic decomposition
of Rn which is sign-invariant for all the polynomials occurring in P , and D′

be a sampled algebraic decomposition of Rm such that D is cylindrical over D′.
Then a quantifier-free form of (3.54) is∨

C′∈D′∃C∈Cyl(C′)P (Sample(C))

Def(C ′). (3.55)

Proposition 38 Let

∀xn . . . ∀xm+1P (x1, . . . , xn) (3.56)

be a universally quantified formula, D be a sampled algebraic decomposition of
Rn which is sign-invariant for all the polynomials occurring in P , and D′ be
a sampled algebraic decomposition of Rm such that D is cylindrical over D′.
Then a quantifier-free form of (3.56) is∨

C′∈D′∀C∈Cyl(C′)P (Sample(C))

Def(C ′). (3.57)

These two propositions lead to a solution of problem 2.

Theorem 19 ([Col75]) Let x0, . . . ,xk be sets of variables, with xi = (xi,1, . . . ,

xi,ni), and let Ni =
∑i
j=0 nj. Let P (x0, . . . ,xk) be a semi-algebraic proposition,

Di be an algebraic decomposition of RNi such that each Di is cylindric over Di−1
and Dk is sign-invariant for all the polynomials in P . Then a quantifier-free
form of

Qkxk . . . Q1x1P (x0, . . . ,xk) (3.58)
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(where the Qi are ∀ or ∃) is ∨
C′∈D0∀∃C∈Cylk(C′)P (Sample(C))

Def(C ′), (3.59)

where by ∀∃ we mean that we are quantifying across the coordinates of Sample(C)
according to the quantifiers in (3.58).

We can use the (sampled) cylindrical algebraic decomposition in example 2 to
answer various questions.

Example 3 ∀y x2+y2−1 > 0. For the sampled cells 〈(−∞,−1), (x = −2, y =
0)〉 and 〈(1,∞), (x = 2, y = 0)〉, the proposition is true at the sample points,
hence true everywhere in the cell. For all the other cells in (3.53), there is a
sample point for which it is false (in fact, y = 0 always works). So the answer
is (−∞,−1) ∪ (1,∞).

Example 4 ∃y x2 + y2 − 1 > 0. For every cell in (3.53), there is a sample
point above it for which the proposition is true, hence we deduce that the answer
is (3.53), which can be simplified to true.

We should note (and this is both one of the strengths and weaknesses of this
approach) that the same cylindrical algebraic decomposition can be used to
answer all questions of this form with the same order of (blocks of) quantified
variables, irrespective of what the quantifiers actually are.

Example 5 (∃y x2 + y2 − 1 > 0) ∧ (∃y x2 + y2 − 1 < 0). This formula
is not directly amenable to this approach, since it is not in prenex form. In
prenex form, it is ∃y1∃y2

(
(x2 + y21 − 1 > 0) ∧ (x2 + y22 < 0)

)
and we need an

analogous22 decomposition of R3 cylindric over R1. Fortunately, (3.53) suffices
for our decomposition of R1, and the answer is (−1, 1), shown by the sample
point (x = 0, y1 = 2, y2 = 0), and by the fact that at other sample points of R1,
we do not have y1, y2 satisfying the conditions.

However, it could be argued that all we have done is reduce problem 2 to
the following one.

Problem 3 Given a quantified semi-algebraic proposition as in theorem 19,
produce a sign-invariant decomposition Dk cylindrical over the appropriate Di

such that theorem 19 is applicable. Furthermore, since theorem 19 only talks
about “a” quantifier-free form, we would like the simplest possible such Dk (see
[Laz88]).

There is no common term for such a decomposition: we will call it block-
cylindrical .

22Easier said than done. Above x = −1 we have nine cells:{y1 < 0, y1 = 0, y1 > 0} × {y2 <
0, y2 = 0, y2 > 0}, and the same for x = 1, whereas above (−1, 1) we have 25, totalling 45.
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3.4.5 Computing Algebraic Decompositions

Though many improvements have been made to it since, the basic strategy for
computing algebraic decompositions is still that due to Collins [Col75], and is
to compute them cylindrically, as illustrated in the following diagram.

Sn ∈ R[x1, . . . , xn] Rn Rn decomposed by Dn

↓ ↓ ↑ Cyl
Sn−1 ∈ R[x1, . . . , xn−1] Rn−1 Rn−1 decomposed by Dn−1
↓ ↓ ↑ Cyl
· · · · · · ↓ ↑ · · ·
S2 ∈ R[x1, x2] R2 R2 decomposed by D2

↓ ↓ ↑ Cyl
S1 ∈ R[x1] R1 −→︸︷︷︸

Problem 1

R1 decomposed by D1.

From the original proposition, we extract the set of polynomials Sn. We then
project this set into Sn−1 in n − 1 variables, and so on, until we have a set
of univariates S1. We then isolate, or otherwise describe, the roots of these
polynomials, as described in problem 1, to produce a decomposition D1 of R1,
and then successively lift this to a decomposition D2 of R2 and so on, each Di

being sign-invariant for Si and cylindrical over Di−1.

Note that the projection from Si+1 to Si must be such that a decomposition
Di sign-invariant for Si can be lifted to a decomposition Di+1 sign-invariant for
Si+1. Note also that the decomposition thus produced will be block-cylindric
for every possible blocking of the variables, since it is block-cylindric for the
finest such.

Projection turns out to be a trickier problem than might be expected. One’s
immediate thought is that one needs the discriminants (with respect to the
variable being projected) of all the polynomials in Si+1, since this will give all
the critical points. Then one sees that one needs the resultants of all pairs
of such polynomials. Example 5 (page 84) shows that one might need leading
coefficients. Then there are issues of what happens when leading coefficients
vanish. This led Collins [Col75] to consider the following projection operation.

3.4.6 Complexity

Let us suppose that there are s polynomials involved in the input formula (3.49),
of maximal degree d. Then such a cylindrical algebraic decomposition can be

computed in time O
(

(sd)2
O(k))

)
.

There are examples [BD07, DH88], which shows that this behaviour is best-
possible, indeed the projection onto R1 might have a number of components
doubly-exponential in k.
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3.5 Conclusions

1. The RootOf construct is inevitable (theorem 8), so should be used, as
described in footnote 3 (page 47). Such a notation can avoid the “too
many solutions” trap — see equations (3.36) and (3.37). We should find
a way of extending it to situations such as equation (3.35).

2. While matrix inversion is a valuable concept, it should generally be avoided
in practice.

3. Real algebraic geometry is not simply “algebraic geometry writ real”: it
has different problems and needs different techniques.

3.5.1 Open Problems

Open Problem 4 The FGLM algorithm is O(D3) where D is the number of
solutions. Can faster matrix algorithms such as Strassen–Winograd [Str69,
Win71] speed this up?



Chapter 4

Advanced Algorithms

4.1 Modular Methods

In chapter 2, describing the subresultant method of computing greatest common
divisors, we said the following.

This algorithm is the best method known for calculating the g.c.d.,
of all those based on Euclid’s algorithm applied to polynomials with
integer coefficients. In chapter 4 we shall see that if we go beyond
these limits, it is possible to find better algorithms for this calcula-
tion.

Now is the time to fulfil that promise, which we do by describing the historically-
first “advanced” algorithm, and its greatest success, g.c.d. calculation.

4.1.1 Gcd in one variable

Let us consider Brown’s example from page 35 again:

A(x) = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5; (4.1)

B(x) = 3x6 + 5x4 − 4x2 − 9x+ 21. (4.2)

Let us suppose that these two polynomials have a common factor, that is a
polynomial P (of non-zero degree) which divides A and B. Then there is a
polynomial Q such that A = PQ. This equation still holds if we take each
coefficient as an integer modulo 5. If we write P5 to signify the polynomial P
considered as a polynomial with coefficients modulo 5, this equation implies that
P5 divides A5. Similarly, P5 divides B5, and therefore it is a common factor1 of
A5 and B5. But calculating the g.c.d. of A5 and B5 is fairly easy:

A5(x) = x8 + x6 + 2x4 + 2x3 + 3x2 + 2x;

1Note that we cannot deduce that P5 = gcd(A5, B5): a counter-example is A = x − 3,
B = x+ 2, where P = 1, but A5 = B5 = x+ 2, and so gcd(A5, B5) = x+ 2, whereas P5 = 1.

91
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B5(x) = 3x6 + x2 + x+ 1;
C5(x) = remainder(A5(x), B5(x)) = A5(x) + 3(x2 + 1)B5(x) = 4x2 + 3;
D5(x) = remainder(B5(x), C5(x)) = B5(x) + (x4 + 4x2 + 3)C5(x) = x;
E5(x) = remainder(C5(x), D5(x)) = C5(x) + xD5(x) = 3.

Thus A5 and B5 are relatively prime, which implies that P5 = 1. As the leading
coefficient of P has to be one, we deduce that P = 1.

The concept of modular methods is inspired by this calculation, where there
is no possibility of intermediate expression swell, for the integers modulo 5 are
bounded (by 4). Obviously, there is no need to use the integers modulo 5: any
prime number p will suffice (we chose 5 because the calculation does not work
modulo 2, for reasons to be described later, and 3 divides one of the leading
coefficients). In this example, the result was that the polynomials are relatively
prime. This raises several questions about generalising this calculation to an
algorithm capable of calculating the g.c.d. of any pair of polynomials:

1. how do we calculate a non-trivial g.c.d.?

2. what do we do if the modular g.c.d. is not the modular image of the g.c.d.
(as in the example in the footnote1)?

3. how much does this method cost?

4.1.1.1 Bounds on divisors

Before we can answer these questions, we have to be able to bound the coeffi-
cients of the g.c.d. of two polynomials.

Theorem 20 (Landau–Mignotte Inequality [Lan05, Mig74, Mig82]) Let
Q =

∑q
i=0 bix

i be a divisor of the polynomial P =
∑p
i=0 aix

i (where ai and bi
are integers). Then

q
max
i=0
|bi| ≤

q∑
i=0

|bi| ≤ 2q
∣∣∣∣ bqap
∣∣∣∣
√√√√ p∑

i=0

a2i .

These results are corollaries of statements in Appendix A.2.2.

If we regard P as known and Q as unknown, this formulation does not
quite tell us about the unknowns in terms of the knowns, since there is some
dependence on Q on the right, but we can use a weaker form:

q∑
i=0

|bi| ≤ 2p

√√√√ p∑
i=0

a2i .

When it comes to greatest common divisors, we have the following result.
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Corollary 6 Every coefficient of the g.c.d. of A =
∑α
i=0 aix

i and B =
∑β
i=0 bix

i

(with ai and bi integers) is bounded by

2min(α,β) gcd(aα, bβ) min

 1

|aα|

√√√√ α∑
i=0

a2i ,
1

|bβ |

√√√√ β∑
i=0

b2i

 .

Proof. The g.c.d. is a factor of A and of B, the degree of which is, at most,
the minimum of the degrees of the two polynomials. Moreover, the leading
coefficient of the g.c.d. has to divide the two leading coefficients of A and B,
and therefore has to divide their g.c.d.

A slight variation of this corollary is provided by the following result.

Corollary 7 Every coefficient of the g.c.d. of A =
∑α
i=0 aix

i and B =
∑β
i=0 bix

i

(where ai bi are integers) is bounded by

2min(α,β) gcd(a0, b0) min

 1

|a0|

√√√√ α∑
i=0

a2i ,
1

|b0|

√√√√ β∑
i=0

b2i

 .

Proof. If C =
∑γ
i=0 cix

i is a divisor of A, then Ĉ =
∑γ
i=0 cγ−ix

i is a divisor of

Â =
∑α
i=0 aα−ix

i, and conversely. Therefore, the last corollary can be applied

to Â and B̂, and this yields the bound stated.
It may seem strange that the coefficients of a g.c.d. of two polynomials can

be greater than the coefficients of the polynomials themselves. One example
which shows this is the following (due to Davenport and Trager):

A = x3 + x2 − x− 1 = (x+ 1)2(x− 1);
B = x4 + x3 + x+ 1 = (x+ 1)2(x2 − x+ 1);

gcd(A,B) = x2 + 2x+ 1 = (x+ 1)2.

This example can be generalised, as say

A = x5 + 3x4 + 2x3 − 2x2 − 3x− 1 = (x+ 1)4(x− 1);
B = x6 + 3x5 + 3x4 + 2x3 + 3x2 + 3x+ 1 = (x+ 1)4(x2 − x+ 1);

gcd(A,B) = x4 + 4x3 + 6x2 + 4x+ 1 = (x+ 1)4.

In fact, Mignotte [Mig81] has shown that the number 2 in corollaries 6 and 7 is
asymptotically the best possible, i.e. it cannot be replaced by any smaller c.

4.1.1.2 The modular – integer relationship

In this sub-section, we answer the question raised above: what do we do if
the modular g.c.d. is not the modular image of the g.c.d. calculated over the
integers?

Lemma 5 If p does not divide the leading coefficient of gcd(A,B), the degree
of gcd(Ap, Bp) is greater than or equal to that of gcd(A,B).
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Proof. Since gcd(A,B) divides A, then (gcd(A,B))p divides Ap. Similarly, it
divides Bp, and therefore it divides gcd(Ap, Bp). This implies that the degree
of gcd(Ap, Bp) is greater than or equal to that of gcd(A,B)p. But the degree of
gcd(A,B)p is equal to that of gcd(A,B), for the leading coefficient of gcd(A,B)
does not cancel when it is reduced modulo p.

This lemma is not very easy to use on its own, for it supposes that we know
the g.c.d. (or at least its leading coefficient) before we are able to check whether
the modular reduction has the same degree. But this leading coefficient has
to divide the two leading coefficients of A and B, and this gives a formulation
which is easier to use.

Corollary 8 If p does not divide the leading coefficients of A and of B (it may
divide one, but not both), then the degree of gcd(Ap, Bp) is greater than or equal
to that of gcd(A,B).

As the g.c.d. is the only polynomial (to within an integer multiple) of its degree
which divides A and B, we can test the correctness of our calculations of the
g.c.d.: if the result has the degree of gcd(Ap, Bp) (where p satisfies the hypothesis
of this corollary) and if it divides A and B, then it is the g.c.d. (to within an
integer multiple).

It is quite possible that we could find a gcd(Ap, Bp) of too high a degree.
For example, in the case cited above, gcd(A2, B2) = x + 1 (it is obvious that
x+ 1 divides the two polynomials modulo 2, because the sum of the coefficients
of each polynomial is even). The following lemma shows that this possibility
can only arise for a finite number of p.

Lemma 6 Let C = gcd(A,B). If p satisfies the condition of the corollary above,
and if p does not divide Resx(A/C,B/C), then gcd(Ap, Bp) = Cp.

Proof. A/C and B/C are relatively prime, for otherwise C would not be the
g.c.d. of A and B. By the corollary, Cp does not vanish. Therefore

gcd(Ap, Bp) = Cp gcd(Ap/Cp, Bp/Cp).

For the lemma to be false, the last g.c.d. has to be non-trivial. This implies that
the resultant Resx(Ap/Cp, Bp/Cp) vanishes, by proposition 47 of the Appendix.
This resultant is the determinant of a Sylvester matrix, and |Mp| = (|M |)p, for
the determinant is only a sum of products of the coefficients. In the present case,
this amounts to saying that Resx(A/C,B/C)p vanishes, that is that p divides
Resx(A/C,B/C). But the hypotheses of the lemma exclude this possibility.

Definition 60 If gcd(Ap, Bp) = gcd(A,B)p, we say that the reduction of this
problem modulo p is good, or that p is of good reduction. If not, we say that p
is of bad reduction.

This lemma implies, in particular, that there are only a finite number of values
of p such that gcd(Ap, Bp) does not have the same degree as that of gcd(A,B),
that is the p which divide the g.c.d. of the leading coefficients and the p which
divide the resultant of the lemma (the resultant is non-zero, and therefore has
only a finite number of divisors). In particular, if A and B are relatively prime,
we can always find a p such that Ap and Bp are relatively prime.
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4.1.1.3 Computing the g.c.d.: one large prime

In this section we answer the question posed earlier: how do we calculate a non-
trivial g.c.d.? One obvious method is to use the Landau-Mignotte inequality,
which can determine an M such that all the coefficients of the g.c.d. are bounded
by M , and to calculate modulo a prime number greater than 2M . This method
translates into the following algorithm (where Landau_Mignotte_bound(A,B)
applies corollary 6 and/or corollary 7, and find_large_prime(2M) produces a
different prime > 2M each tine it is called within a given invocation of the algo-
rithm). We restrict ourselves to momic polynomials, and assume modular_gcd

gives a monic result, to avoid the problem that a modular g.c.d. is only defined
up to a constant multiple.

Algorithm 10 (Modular GCD (Large prime version))
Input: A,B monic polynomials in Z[x].
Output: gcd(A,B)

M :=Landau_Mignotte_bound(A,B);
do p :=find_large_prime(2M);

if p does not divide gcd(lc(A), lc(B))
then C :=modular_gcd(A,B, p);

if C divides A and C divides B
then return C

forever #Lemma 6 guarantees termination

If the inputs are not monic, we still know that the leading coefficient of the
g.c.d. divides each leading coefficient lc(A) and lc(B), and therefore their g.c.d.
g = gcd(lc(A), lc(B)). We therefore compute

C := pp(gmodular_gcd(A,B) (mod M))

instead, where the pp is needed in case the leading coefficient of the g.c.d. is a
propoer factor of g.

It is tempting to argue that this algorithm will only handle numbers of the
size of twice the Landau–Mignotte bound, but this belief has two flaws.

• While we have proved that there are only finitely many bad primes, we
have said nothing about how many there are. The arguments can in fact
be made effective, but the results tend to be unduly pessimistic, since it
is extremely likely that all the bad primes would be clsutered just above
2M .

• In theory, the division tests could yield very large numbers if done as tests
of the remainder being zero: for example the remainder on dividing x100

by x − 10 is 10100. This can be solved by a technique known as “early
abort” trial division.

Proposition 39 If h, of degree m, is a factor of f of degree n, the coef-
ficient of xn−m−i in the quotient is bounded by

(
n−m
i

)
1

lc(h) ||f ||.
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This is basically Corollary 17. Hence, as we are doing the trial division,
we can give up as soon as we find a coefficient in the quotient that exceeds
this bound, which is closely related to M (the difference relates to the
leading coefficient terms).

For example, if we take p = 7 in the example at the start of this chapter,
we find that the g.c.d. of A7 and B7 is x + 10 (it could equally well be
x + 3, but x + 10 makes the point better). Does x + 10 divide B? We
note that ||B|| ≈ 23.92. Successive terms in the quotient are 3x5 (and 3
is a permissible coefficient), −30x4 (and 30 <

(
5
1

)
× 23.92) and 305x3, at

which point we observe that 305 >
(
5
2

)
× 23.92 = 239.2, so this cannot be

a divisor of B. hence 7 was definitely unlucky.

With this refinement, it is possible to state that the numbers dealt with
in this algorithm are “not much larger” than 2M , thugh considerable
ingenuity is needed to make this statement more precise.

If we apply this algorithm to the polynomials at the start of this section,

we deduce that
√∑8

i=0 a
2
i =
√

113,
√∑6

i=0 b
2
i = 2

√
143, and hence corollary 6

gives a bound of

26 min

(√
113,

2

3

√
143

)
≈ 510.2, (4.3)

so our first prime would be 1021, which is indeed of good reduction. In this
case, corollary 7 gives a bound of

26 min

(
1

5

√
113,

2

21

√
143

)
≈ 72.8, (4.4)

so our first prime would be 149. In general, we cannot tell which gives us the
best bound, and it is normal to take the minimum.

Open Problem 5 A significant factor in the Landau–Mignotte bound here,
whether (4.3) or (4.4), was the 2min(8,6) contribution from the degree of the
putative g.c.d. But in fact the exponent is at most 4, not 6, since the g.c.d.
cannot have leading coefficient divisible by 3 (since A does not). Hence the
g.c.d. must have at most the degree of the g.c.d. modulo 3, and modulo 3 B has
degree 4.

Can this be generalised, and is it worth it? In view of the ‘early success’
strategies discussed later, the answer to the last part is probably negative.

4.1.1.4 Computing the g.c.d.: several small primes

While algorithm 10 does give us some control on the size of the numbers being
considered, we are still often using numbers larger than those which hindsight
would show to be necessary. For example, in (4.1), (4.2) we could deduce co-
primeness using the prime 5, rather than 1021 from (4.3) or 149 from (4.4). If
instead we consider (x− 1)A and (x− 1)B, the norms change, giving 812.35 in
(4.3) (a prime of 1627) and 116.05 in (4.4) (a prime of 239). Yet primes such
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Figure 4.1: Algorithm 11

Algorithm 11 (Modular GCD (Small prime version))
Input: A,B polynomials in Z[x].
Output: gcd(A,B)

M :=Landau_Mignotte_bound(A,B);
g := gcd(lc(A), lc(B));
p := find_prime(g);
C := gmodular_gcd(A,B, p);
if deg(C) = 0 then return 1
N := p; # N is the modulus we will be constructing
while N < 2M repeat

p := find_prime(g);
C := gmodular_gcd(A,B, p);
if deg(C) = deg(D)

then D := Algorithm 17(C,D, p,N);
N := pN ;

else if deg(C) < deg(D)
# C proves that D is based on primes of bad reduction
if deg(C) = 0 then return 1
D := C;
N := p;

else #D proves that p is of bad reduction, so we ignore it
D := pp(D); # In case multiplying by g was overkill
Check that D divides A and B, and return it
If not, all primes must have been bad, and we start again

as 5, 11, 13 etc. will easily show that the result is x− 1. Before we leap ahead
and use such primes, though, we should reflect that, had we taken (x − 10)A
and (x − 10)B, 5 would have suggested x as the gcd, 11 would have suggested
x+ 1, 13 would have suggested x+ 3 and so on.

The answer to this comes in observing that the smallest polynomial (in terms
of coefficient size) which is congruent to x modulo 5 and to x+ 1 modulo 11 is
x−10 (it could be computed by algorithm 17). More generally, we can apply the
Chinese Remainder Theorem (Theorem 22) to enough primes of good reduction,
as follows. We assume that find_prime(g) returns a prime not dividing g, a
different one each time. The algorithms is given in Figure 4.1 We should note
the heavy reliance on Corollary 8 to detect bad reduction. We impose g as the
leading coefficient throughout, and make the result primitive at the end as in
the large prime variant.



98 CHAPTER 4. ADVANCED ALGORITHMS

4.1.1.5 Computing the g.c.d.: early success

While Algorithm 11 will detect a g.c.d. of 1 early, it will otherwise compute as
far as the Landau–Mignotte bound if the g.c.d. is not 1. While this may be
encessary, it would be desirable to terminate earlier if we have already found
the g.c.d. This is easily done by replacing the line

then D := Algorithm 17(C,D, p,N);

by

then D′ := D
D := Algorithm 17(C,D, p,N);
if D = D′ #We may have found the answer

then E := pp(D);
if E divides A and B

then return E;
# Otherwise this was a false alert, and we continue as normal.

We should note that we return an E which divides the inputs, and is derived
from modular images, and therefore has to be the greatest common divisor by
Corollary 8.

4.1.2 Polynomials in several variables

The same techniques can be used to compute the greatest common divisor of
polynomials in several variables. This is even more important than in the case of
univariate polynomials, since the coeffcient growth observed on page 36 becomes
degree growth in the other variables. As a trivial example of this, we can consider

A = (y2 − y − 1)x2 − (y2 − 2)x+ (2y2 + y + 1);

B = (y2 − y + 1)x2 − (y2 + 2)x+ (y2 + y + 2).

The first elimination gives

C = (2y2 − 4y)x+ (y4 − y3 + 2y2 + 3y + 3),

and the second gives

D = −y10 + 3 y9 − 10 y8 + 11 y7 − 23 y6 + 22 y5 − 37 y4 + 29 y3 − 32 y2 + 15 y − 9.

The algorithm is based on Algorithm 11, except that evaluating a variable
at a value replaces working modulo a prime.

4.1.3 Conclusions

4.2 p-adic Methods

In this section, we wish to consider a different problem, that of factoring poly-
nomials.
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4.2.1 Introduction to the factorization problem

For simplicity, we will begin with the case of factoring a univariate polynomial
over Z. More precisely, we consider the following.

Problem 6 Given f ∈ Z[x], compute polynomials fi ∈ Z[x] (1 ≤ i ≤ k) such
that:

1. f =
∏k
i=1 fi;

2. each fi is irreducible in Z[x], i.e. any polynomial g that divides fi is either
an integer or has the same degree as fi.

We might wonder whether we wouldn’t be better off considering fi ∈ Q[x], but
in fact the answers are the same.

Proposition 40 Any factorization over Q[x] of a polynomial f ∈ Z[x] is (up
to rational multiples) a factorization over Z[x].

Proof. Let f =
∏k
i=1 fi with fi ∈ Q[x]. By clearing denoninators and removing

contents, we can write fi = cigi with gi ∈ Z[x] and primitive and ci ∈ Q. Hence

f =
(∏k

i=1 ci

)(∏k
i=1 gi

)
, and, since the product of primitive polynomials is

primitive (Lemma 2),
∏k
i=1 ci is an integer, and can be absorbed into, say, g1.

Even knowing that we have only to consider integer coefficients does not
seem to help much — we still seem to have an infinite number of possibilities
to consider. In fact this is not quite the case.

Notation 11 Let the polynomial f =
∑n
i=0 aix

i to be factored have degree n,
and coefficients bounded by H. Let us suppose we are looking for factors of
degree at most d.

Corollary 9 (to Theorem 20) It is sufficient to look for factors of degree
d ≤ n/2, whose coefficients are bounded by 2dH.

One might have hoped that it was sufficient to look for factors whose coefficients
are bounded by H, but this is not the case. [Abb09] gives the example of

f = x80 − 2x78 + x76 + 2x74 + 2x70 + x68 + 2x66 + x64 + x62 + 2x60 + 2x58

−2x54 + 2x52 + 2x50 + 2x48 − x44 − x36 + 2x32 + 2x30 + 2x28 − 2x26

+2x22 + 2x20 + x18 + x16 + 2x14 + x12 + 2x10 + 2x6 + x4 − 2x2 + 1

whose factors have coefficients as large as 36, i.e. 18 times as large as the
coefficients of f .

Corollary 10 To detect all irreducible factors of f (except possibly for the last
one, which is f divided by all the factors of degree ≤ n/2), it suffices to consider(
2dH

)d+1
polynomials.

We can in fact do better, since the leading coefficient of the factor must divide
an, and similarly the trailing coefficient must divide a0, so we get 2d(d−1)Hd+1,
and in practice such “brute force” methods2 can easily factor low-degree poly-
nomials, but the asymptotics are still very poor.

2Sometimes known as Newton’s algorithm.
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4.2.2 Modular methods

Hence we might want to use modular methods. Assuming always that p does
not divide an, we know that, if f is irreducible modulo p, it is irreducible over
the integers. Since, modulo p, we can assume our polynomials are monic, there
are only pd polynomials of degree d, this gives us a bound that is exponential
in d rather than d2.

In fact, we can do better by comparing results of factorizations modulo
different primes. For example, if f is quartic, and factors modulo p into a
linear and a cubic, and modulo q into two quadratics (all such factors being
irreducible), we can deduce that it is irreducible over the integers, since no
factorization over the integers is compatible with both pieces of information.

It is an experimental observation [Mus78] that, if a polynomial can be proved
irreducible this way, five primes are nearly always sufficient to prove it. This
seems to be the case for polynomials chosen “at random”3: more might be
required if the shape of the polynomial is not random [Dav97].

4.2.3 Factoring modulo a prime

Throughout this section, we let p be an odd4 prime, and f a polynomial of
degree n which is square-free modulo p.

4.2.3.1 Berlekamp’s small p method

4.2.3.2 Berlekamp’s large p method

4.2.3.3 The Cantor–Zassenhaus method

This method is generally attributed to [CZ81]5. It is based on the following
generalization of Fermat’s (Little Theorem).

Proposition 41 All irreducible polynomials of degree d with coefficients modulo

p divide xp
d − x.

Corollary 11 All irreducible polynomials of degree d with coefficients modulo

p divide xp
d−1 − 1, except for x itself in the case d = 1. Furthermore, no

irreducible polynomials of degree more than d divide xp
d−1 − 1.

Corollary 12 Half of the irreducible polynomials of degree d (except for x itself

in the case d = 1) with coefficients modulo p divide x(p
d−1)/2 − 1.

Algorithm 12 (Distinct Degree Factorization)
Input: f(x) a square-free polynomial modulo p, not divisible by x; a prime p
Output: A decomposition f =

∏
fi, where each fi is the product of irreducibles

of degree i

3Which means that the Galois gorup of the polynomial is almost always Sn.
4It is possible to generalise these methods to the case p = 2, but the cost, combined with

the unlikelihood of 2 being a good prime, means that computer algebraists rarely do so.
5Though [Zip93] credits algorithm 12 to [Arw18].
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i:=1
while 2i ≤ deg(f)

g := xp
i−1 (mod f) (*)

fi := gcd(g − 1, f)
f := f/fi
i := i+ 1

if f 6= 1
then fdeg(f) := f

Note that the computation in line (*) should be done by the repeated squaring
method, reducing modulo f at each stage. We can save time in practice by
re-using the previous g.

If fi has degree i, then it is clearly irreducible: otherwise we have to split
it. This is the purpose of the next algorithm, which relies on a generalization
of Corollary 11.

Proposition 42 ([CZ81, p. 589]) Let f be a product of r > 1 irreducible
polynomials of degree d modulo p, and g a random (non-constant) polynomial

of degree < d. Then the probability that gcd(g(p
d−1)/2 − 1, f) is either 1 or f is

at most 21−r.

Algorithm 13 (Split a Distinct Degree Factorization)
Input: A prime p, a degree d and a polynomial f(x) (mod p) known to be the
product of irreducibles of degree d (and not divisible by x)
Output: The factorization of f (modulo p) into irreducibles of degree d.

if d = deg(f)
then return f # degree d so is irreducible

W := {f}
ans := ∅
while W 6= ∅ # factors of degree d found
h :=RandomPoly(p,d)

h := h(p
i−1)/2 (mod g) (*)

V := ∅ # list of polynomials to be processed
for g ∈W do

h1 := gcd(h− 1, g)
if deg(h1) = 0 ∨ deg(h1) = deg(g)

then V := V ∪ {g} # we made no progress
else process(h1)

process(g/h1)
W := V

return ans

Here RandomPoly(p,d) returns a random non-constant polynomial modulo p of
degree less than d, and the sub-function process(g1) takes a polynomial g1 which
is a result of splitting g by h1, and adds it to ans if it has degree d, otherwise
adds it to V .
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4.2.4 The recombination problem

However, as pointed out above, the fact that we have a factorization of f modulo
pk, where pk > 2M , M being the Landau–Mignotte bound (Theorem 20), or
some alternative (see page 120) on the size of any coefficients in any factor of
f , does not solve our factorization problem. It is perfectly possibly that f is
irreducible, or that f does factor, but less than it does modulo p.

Assuming always that p does not divide lc(f), all that can happen when we
reduce f modulo p is that a polynomial that was irreducible over the integers
now factors modulo p (and hence modulo pk). This gives us the following
algorithm, first suggested in [Zas69].

Algorithm 14 (Combine Modular Factors)
Input: A prime power pk, a monic polynomial f(x) over the integers, a fac-
torisation f =

∏r
i=1 fi modulo pk

Output: The factorization of f into monic irreducible polynomials over the
integers.

ans := ∅
M :=LandauMignotteBound(f)
S := {f1, . . . , fr}
for subsets T of S

h :=
∏
g∈T g

if h divides f
then ans := ans ∪ {h}

f := f/h
S := S \ T
M := min(M,LandauMignotteBound(f))

To guarantee irreducibility of the factors found, the loop must try all subsets of
T before trying T itself, but this still leaves a lot of choices for the loop: see 1
below.

The running time of this algorithm is, in the worst case, exponential in r since
2r−1 subsets of S have to be considered (2r−1 since considering T effectively also
considers S \T ). Let n be the degree of f , and H a bound on the coefficients of
f , so the Landau–Mignotte bound is at most 2n(n+1)H, and k ≤ logp(2

n+1(n+
1)H).

Many improvements to, or alternatives to, this basic algorithm have been
suggested since. In essentially chronological order, the most significant ones are
as follows.

1. [Col79] pointed out that there were two obvious ways to code the “for
subsets T of S” loop: increasing cardinality of T and increasing degree of∏
g∈T g. He showed that, subject to two very plausible conjectures, the

average number of products actually formed with the cardinality ordering
was O(n2), thus the average running time would be polynomial in n.
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2. [LLJL82] had a completely different approach to algorithm 14. They
asked, for each d < n, “given f1 ∈ S, what is the polynomial g of de-
gree d which divides f over the integers and is divisible by f1 modulo pk.
Unfortunately, answering this question needed a k far larger than that
implied by the Landau–Mignotte bound, and the complexity, while poly-
nomial in n, was O(n12), at least while using classical arithmetic. This
paper introduced the ‘LLL’ lattice reduction algorithm, which has many
applications in computer algebra and far beyond.

3. [ABD85] showed that,by a combination of simple divisibility tests and
“early abort” trial division (Proposition 39) it was possible to make dra-
matic reductions, at the time up to four orders of magnitude, in the con-
stant implied in the statement “exponential in r”.

4. [ASZ00] much improved this, and the authors were able to eliminate whole
swathes of possible T at one go.

5. [vH02] reduces the problem to a ‘knapsack’ problem, which is also solved
by LLL, but the lattices involved are much smaller — of dimension r
rather than n. At the time of writing, this seems to be the best known
method. His paper quoted a polynomial of degree n = 180, with r = 36
factors of degree 5 modulo p = 19, but factoring as two polynomials of
degree 90 over the integers. This took 152 seconds to factor.

4.2.5 Conclusions

1. Although no system to the author’s knowledge implements it, it would be
possible to implement an efficient procedure to find all factors of limited
total degree d. This would be efficient for three reasons:

• the Cantor–Zassenhaus algorithm (section 4.2.3.3) need only run up
to maximum degree d;

• it should be possible to use smaller bounds on the lifting

• The potentially-exponential recombination process need only run up
to total degree d. In particular, if d = 1, no recombination is needed.
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Chapter 5

Calculus

Throughout this chapter we shall assume that we are in characteristic zero, and
therefore all rings contains Z, and all fields contain Q. The emphasis in this
chapter will be on algorithms for integration. Historically, the earliest attempts
at integration in computer algebra [Sla61] were based on rules, and attempts
to “do it like a human would”. These were rapidly replaced by algorithmic
methods, based on the systematisation in [Ris69] of work going back to Liouville.
Recently, attempts to get ‘neat’ answers have revived interest in rule-based
approaches, which can be surprisingly powerful on known integrals — see [JR10]
for one recent approach. In general, though, only the algorithmic approach is
capable of proving that an expression in unintegrable.

5.1 Introduction

We defined (Definition 28) the formal derivative of a polynomial purely alge-
braically, and observed (Proposition 2.3.4) that it satisfied the sum and product
laws. We can actually make the whole theory of differentiation algebraic as fol-
lows.

Definition 61 A differential ring is a ring equipped with an additional unary
operation, referred to as differentiation and normally written with a postfix ′,
which satisfies two additional laws:

1. (f + g)′ = f ′ + g′;

2. (fg)′ = fg′ + f ′g.

A differential ring which is also a field is referred to as a differential field.

Definition 28 and Proposition 2.3.4 can then be restated as the following result.

Proposition 43 If R is any ring, we can make R[x] into a differential ring by
defining r′ = 0 ∀r ∈ R and x′ = 1.

105
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Definition 62 In any differential ring, an element α with α′ = 0 is referred to
as a constant.

We will revisit this definition in section 6.2.

Proposition 44 In any differential field(
f

g

)′
=
f ′g − fg′

g2
. (5.1)

The proof is by differentiating f = g
(
f
g

)
. (5.1) is generally referred to as the

quotient rule and can be given a fairly tedious analytic proof in terms of ε/δ,
but from our present point of view it is an algebraic corollary of the product
rule. It therefore follows that K(x) can be made into a differential field.

Notation 12 (Fundamental Theorem of Calculus) (Indefinite) integration
is the inverse of differentiation, i.e.

F =

∫
f ⇔ F ′ = f. (5.2)

The reader may be surprised to see a “Fundamental Theorem” reduced to the
status of a piece of notation, but from the present point of view, that is what
it is. We shall return to this point in section 6.1. The reader may also wonder
“where did dx go?”, but x is, from this point of view, merely that object such
that x′ = 1, i.e. x =

∫
1.

We should also note that we have no choice over the derivative of algebraic
functions.

Proposition 45 Let K be a differential field, and θ be algebaric over K with
p(θ) = 0 for some polynomial p =

∑n
i=0 aiz

i ∈ K[z]. Then K(θ) can be made
into a differential field in only one way: by defining

θ′ = −
∑n
i=0 a

′
iθ
i∑n

i=0 iaiθ
i−1 . (5.3)

In particular, if the coefficients of p are all constants, so is θ.

The proof is by formal differentiation of p(θ) = 0.

5.2 Integration of Rational Functions

The integration of polynomials is trivial:∫ n∑
i=0

aix
i =

n∑
i=0

1

i+ 1
aix

i+1. (5.4)
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Since any rational function f(x) ∈ K(x) can be written as

f = p+
q

r
with

{
p, q, r ∈ K[x]
deg(q) < deg(r)

, (5.5)

and p is always integrable by (5.4), we have proved the following (trivial) result.

Proposition 46 (Decomposition Lemma (rational functions)) In the no-
tation of (5.5), f is integrable if, and only if, q/r is.

q/r with deg(q) < deg(r) is generally termed a proper rational function.

5.2.1 Integration of Proper Rational Functions

In fact, the integration of proper rational functions is conceptually trivial (we
may as well assume r is monic, absorbing any constant factor in q):

1. perform a square-free decomposition (Definition 29) of r =
∏n
i=1 r

i
i;

2. factorize each ri completely, as ri(x) =
∏ni
j=1(x− αi,j);

3. perform a partial fraction decomposition of q/r as

q

r
=

q∏n
i=1 r

i
i

=

n∑
i=1

qi
rii

=

n∑
i=1

ni∑
j=i

i∑
k=1

βi,j,k
(x− αi,j)k

; (5.6)

4. integrate this term-by-term, obtaining∫
q

r
=

n∑
i=1

ni∑
j=i

i∑
k=2

−βi,j,k
(k − 1)(x− αi,j)k−1

+

n∑
i=1

ni∑
j=i

βi,j,1log(x− αi,j).

(5.7)

From a practical point of view, this approach has several snags:

1. we have to factor r, and even the best algorithms from the previous chapter
can be expensive;

2. we have to factor each ri into linear factors, which might necessitate the
introduction of algebraic numbers to represent the roots of polynomials;

3. These steps might result in a complicated expression of what is otherwise
a simple answer.

To illustrate these points, consider the following examples.∫
5x4 + 60x3 + 255x2 + 450x+ 274

x5 + 15x4 + 85x3 + 225x2 + 274x+ 120
dx

= log(x5 + 15x4 + 85x3 + 225x2 + 274x+ 120)
= log(x+ 1) + log(x+ 2) + log(x+ 3) + log(x+ 4) + log(x+ 5)

(5.8)
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is pretty straightforward, but adding 1 to the numerator gives∫
5x4 + 60x3 + 255x2 + 450x+ 275

x5 + 15x4 + 85x3 + 225x2 + 274x+ 120
dx

= 5
24 log(x24 + 72x23 + · · ·+ 102643200000x+ 9331200000)

= 25
24 log(x+ 1) + 5

6 log(x+ 2) + 5
4 log(x+ 3) + 5

6 log(x+ 4) + 25
24 log(x+ 5)

(5.9)
Adding 1 to the denominator is pretty straightforward,∫

5x4 + 60x3 + 255x2 + 450x+ 274

x5 + 15x4 + 85x3 + 225x2 + 274x+ 121
dx

= log(x5 + 15x4 + 85x3 + 225x2 + 274x+ 121),
(5.10)

but adding 1 to both gives∫
5x4 + 60x3 + 255x2 + 450x+ 275

x5 + 15x4 + 85x3 + 225x2 + 274x+ 121
dx

= 5
∑
α

α ln
(
x+

2632025698

289
α4 − 2086891452

289
α3+

608708804

289
α2 − 4556915

17
α+

3632420

289

)
,

(5.11)

where

α = RootOf
(
38569 z5 − 38569 z4 + 15251 z3 − 2981 z2 + 288 z − 11

)
. (5.12)

Hence the challenge is to produce an algorithm that achieves (5.8) and (5.10)
simply, preferably gives us the second form of the answer in (5.9), but is still
capable of solving (5.11). We might also wonder where (5.11) came from.

5.2.2 Hermite’s Algorithm

The key to the method (usually attributed to Hermite [Her72], though infor-
mally known earlier) is to rewrite equation (5.7) as∫

q

r
=
s1
t1

+

∫
s2
t2
, (5.13)

where the integral on the right-hand resolves itself as purely a sum of logarithms,
i.e. is the

∑n
i=1

∑ni
j=i βi,j,1log(x− αi,j) term. Then a standard argument from

Galois theory shows that s1, t1, s2 and t2 do not involve any of the αi, i.e. that
the decomposition (5.13) can be obtained without introducting any algebraic
numbers. If we could actually obtain this decomposition without introducing
these algebraic numbers, we would have gone a long way to solving objection 2
above.

We can perform a square-free decomposition (Definition 29) of r as
∏
rii,

and then a partial fraction decomposition to write

q

r
=
∑ qi

rii
(5.14)



5.2. INTEGRATION OF RATIONAL FUNCTIONS 109

and, since each term is a rational function and therefore integrable, it suffices
to integrate (5.14) term-by-term.

Now ri and r′i are relatively prime, and hence there are an a and a b satisfying
ari + br′i = 1. Therefore∫

qi
rii

=

∫
qi(ari + br′i)

rii
(5.15)

=

∫
qia

ri−1i

+

∫
qibr

′
i

rii
(5.16)

=

∫
qia

ri−1i

+

∫
(qib/(i− 1))

′

ri−1i

−
(
qib/(i− 1)

ri−1i

)′
(5.17)

= −
(
qib/(i− 1)

ri−1i

)
+

∫
qia+ (qib/(i− 1))

′

ri−1i

, (5.18)

and we have reduced the exponent of ri by one. When programming this method
one may need to take care of the fact that, while qi

ri
i

is a proper rational function,
qib

ri−1
i

may not be, but the excess is precisely conpensated for by the other term

in (5.18).

Hence, at the cost of a square-free decomposition and a partial fraction de-
composition, but not a factorization, we have found the rational part of the inte-
gral, i.e. performed the decomposition of (5.14). In fact,w ehave done somewhat
better, since the

∫
s2
t2

term will have been split into summands corresponding
to the different ri.

5.2.3 The Horowitz–Ostrogradski Algorithm

Although quite simple, Hermite’s method still needs square-free decomposition
and partial fractions. Horowitz [Hor69, Hor71] therefore proposed to computer
algebraists the following method, which was in fact already known [Ost45], but
forgotten. It follows from (5.18) that, in the notation of (5.14) t1 =

∏
ri−1i .

Furthermore evenry factor of t2 arises from the ri, and is not repeated. Hence
we can choose

t1 = gcd(r, r′) and t2 = r/t1. (5.19)

Having done this, we can solve for the coefficients in s1 and s2, and the resulting
equations are linear in the unknown coefficients. More precisely, the equations
become

q = s′1(r/ti)− s1
t′1t2
t1

+ s2t1, (5.20)

where the linearity is obvious. The programmer should note that s1/t1 is guar-
anteed to be in lowest terms, but s2/t2 is not (and indeed will be 0 if there is
no logarithmic term).
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5.2.4 The Trager–Rothstein Algorithm

Whether we use the method of section 5.2.2 or 5.2.3, we have to integrate
the logarithmic part. (5.8)–(5.11) shows that this may, but need not, require
algebraic numbers. How do we tell? The answer is provided by the following
observation1 [Rot76, Tra76]: if we write the integral of the logarithmic part as∑
ci log vi, we can determine the equation satisfied by the ci, i.e. the analogue

of (5.12), by purely rational computations.

So write ∫
s2
t2

=
∑

ci log vi, (5.21)

where we can assume:

1. the vi are polynomials (using log f
g = log f − log g);

2. the vi are square-free (using log
∏
f ii = sumi log fi);

3. the vi are relatively prime (using c log pq+d log pr = (c+d) log p+c log q+
d log r);

4. the ci are all different (using c log p+ c log q = c log pq);

5. the ci generate the smallest possible extension of the original field of co-
efficients.

(5.21) can be rewritten as

s2
t2

=
∑

ci
v′i
vi
. (5.22)

Hence t2 =
∏
vi and, writing uj =

∏
i 6=j vi, we can write (5.22) as

s2 =
∑

civ
′
iui. (5.23)

Furthermore, since t2 =
∏
vi, t

′
2 =

∑
v′iui. Hence

vk = gcd(0, vk)

= gcd
(
s2 −

∑
civ
′
iui, vk

)
= gcd (s2 − ckv′kuk, vk)

since all the other ui are divisible by vk

= gcd
(
s2 − ck

∑
v′iui, vk

)
for the same reason

= gcd (s2 − ckt′2, vk) .

1As happens surprisingly often in computer algebra, this is a case of simultaneous discovery.
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But if l 6= k,

gcd (s2 − ckt′2, vl) = gcd
(∑

civ
′
iui − ck

∑
v′iui, vl

)
= gcd (clv

′
lul − ckv′lul, vl)

since all the other ui are divisible by vl
= 1.

Since t2 =
∏
vl, we can put these together to deduce that

vk = gcd(s2 − ckt′2, t2). (5.24)

5.3 Liouville’s Theorem

Definition 63 Let K be a field of functions. The function θ is an elementary
generator over K if one of the following is satisfied:

(a) θ is algebraic over K, i.e. θ satisfies a polynomial equation with coefficients
in K;

(b) θ is an exponential over K, i.e. there is an η in K such that θ′ = η′θ, which
is only an algebraic way of saying that θ = exp η;

(c) θ is a logarithm over K, i.e. there is an η in K such that θ′ = η′/η, which
is only an algebraic way of saying that θ = log η.

Definition 64 Let K be a field of functions. An overfield K(θ1, . . . , θn) of K
is called a field of elementary functions over K if every θi is an elementary
generator over K. A function is elementary over K if it belongs to a field of
elementary functions over K.
If K is omitted, we understand C(x): the field of rational functions.

Theorem 21 (Liouville’s Principle) Let f be a function from some function
field K. If f has an elementary integral over K, it has an integral of the following
form: ∫

f = v0 +

n∑
i=1

ci log vi, (5.25)

where v0 belongs to K, the vi belong to K̂, an extension of K by a finite number
of constants algebraic over K, and the ci belong to K̂ and are constant.

Another way of putting this is to say that, if f has an elementary integral over
K, then f has the following form:

f = v′0 +

n∑
i=1

civ
′
i

vi
. (5.26)
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5.4 Integration of Logarithmic Functions

Let θ be a (transcendental) logarithm over K.

Lemma 7 (Decomposition Lemma (logarithmic)) f ∈ K(θ) can be writ-
ten uniquely as p+ q/r, where p, q and r are polynomials of K[θ], q and r are
relatively prime, and the degree of q is less than that of r. If f has an elementary
integral over K, then p and q/r each possess an elementary integral over K.

5.5 Integration of Exponential Functions

Let θ be a (transcendental) exponential over K.

Lemma 8 (Decomposition Lemma (exponential)) f ∈ K(θ) can be writ-
ten uniquely as p+ q/r, where p is a generalised (or Laurent) polynomial (that
is
∑n
i=−m aiθ

i), q and r are polynomials of K[θ] such that θ does not divide r,
q and r are relatively prime, and the degree of q is less than that of r. If f has
an elementary integral over K, then each of the terms of p, and also q/r, have
an elementary integral over K.



Chapter 6

Algebra versus Analysis

We have seen in the previous chapter how we can construct an algebraic theory
of mathematical objects such as ‘exp’, ‘log’ and ‘atan’. From an algebraic point
of view, they seem to behave like the mathematical objects we are familiar
with from analysis. Are they the same? If not, what are the differences? This
is perhaps one of the less-discussed topics1 in computer algebra, and indeed
possibly in mathematics more generally.

6.1 Fundamental Theorem of Calculus Revisited

In the previous chapter we reduced the Fundamental Theorem of Calculus to
the status of Notation 12.

6.2 Constants Revisited

In the previous chapter we defined (Definition 62) a constant as being an element
whose derivative was zero. How well does this compare with our usual intuition,
which is of a constant function?

1But see [Dav10].
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Appendix A

Algebraic Background

A.1 The resultant

It quite often happens that we have to consider whether two polynomials, which
are usually relatively prime, can have a common factor in certain special cases.
The basic algebraic tool for solving this problem is called the resultant. In this
section we shall define this object and we shall give some properties of it. We
take the case of two polynomials f and g in one variable x and with coefficients
in a ring R.

We write f =
∑n
i=0 aix

i and g =
∑m
i=0 bix

i.

Definition 65 The Sylvester matrix of f and g is the matrix

an an−1 . . . a1 a0 0 0 . . . 0
0 an an−1 . . . a1 a0 0 . . . 0
...

. . .
. . .

. . . . . .
. . .

. . .
. . .

...
0 . . . 0 an an−1 . . . a1 a0 0
0 . . . 0 0 an an−1 . . . a1 a0
bm bm−1 . . . b1 b0 0 0 . . . 0
0 bm bm−1 . . . b1 b0 0 . . . 0
...

. . .
. . .

. . . . . .
. . .

. . .
. . .

...
0 . . . 0 bm bm−1 . . . b1 b0 0
0 . . . 0 0 bm bm−1 . . . b1 b0


where there are m lines constructed with the ai, n lines constructed with the bi.

Definition 66 The resultant of f and g, written Res(f, g), or Resx(f, g) if
there is doubt about the variable, is the determinant of this matrix.

Well-known properties of determinants imply that the resultant belongs to R,
and that Res(f, g) and Res(g, f) are equal, to within a sign. We must note that,
although the resultant is defined by a determinant, this is not the best way

115
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of calculating it. Because of the special structure of the Sylvester matrix, we
can consider Euclid’s algorithm as Gaussian elimination in this matrix (hence
the connection betwen the resultant and the g.c.d.). One can also consider the
sub-resultant method as an application of the Sylvester identity (theorem 12)
to this elimination. It is not very difficult to adapt advanced methods (such as
the method of sub-resultants described in section 2.3.2, or the modular and p-
adic methods described in chapter 4) to the calculation of the resultant. Collins
[1971] and Loos [1982] discuss this problem. We now give a version of Euclid’s
algorithm for calculating the resultant. We denote by lc(p) the leading coef-
ficient of the polynomial p(x),by degree(p) its degree, and by remainder(p, q)
the remainder from the division of p(x) by q(x). We give the algorithm in a
recursive form.

Algorithm 15 (resultant)
Input: f, g;
Output: r = Res(f, g).

n := degree(f);
m := degree(g);
if n > m then r := (−1)nmresultant(g, f)

else an := lc(f);
if n = 0 then r := amn

else h := remainder(g, f);
if h = 0 then r := 0

else p := degree(h);
r := am−pn resultant(f, h);

return r;

We write h =
∑p
i=0 cix

i and ci = 0 for i > p. This algorithm does indeed
give the resultant of f and g for, when n ≤ m and n 6= 0, the polynomials
xig − xih (for 0 ≤ i < n) are linear combinations of the xjf (for 0 ≤ j < m),
and therefore we are not changing the determinant of the Sylvester matrix of f
and g by replacing bi by ci for 0 ≤ i < m. Now this new matrix has the form(
A ∗
0 B

)
where A is a triangular matrix with determinant am−pn and B is the

Sylvester matrix of f and h. From this algorithm we immediately get

Proposition 47 Res(f, g) = 0 if and only if f and g have a factor in common.

It is now easy to prove the following propositions:

Proposition 48 If the αi are the roots of f , then

Res(f, g) = amn

n∏
i=1

g(αi).
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Proposition 49 If the βi are the roots of g, then

Res(f, g) = (−1)mnbnm

m∏
i=1

f(βi).

Proposition 50 Res(f, g) = amn b
n
m

∏n
i=1

∏m
j=1 (αi − βj).

Proof [Duv87]. We write the right hand sides of the three propositions as

R2(f, g) = amn

n∏
i=1

g(αi),

R3(f, g) = (−1)mnbnm

m∏
i=1

f(βi),

R4(f, g) = amn b
n
m

n∏
i=1

m∏
j=1

(αi − βj).

It is clear that R2(f, g) and R3(f, g) are equal to R4(f, g). The three proposi-
tions are proved simultaneously, by induction on the integer min(n,m). If f and
g are swapped, their resultant is multiplied by (−1)nm, and gives R4(f, g) =
(−1)nmR4(g, f), while R2(f, g) = (−1)nmR3(g, f). We can therefore suppose
that n ≤ m. Moreover R2(f, g) is equal to amn when n = 0, as is the resultant
of f and g, and R4(f, g) is zero when n > 0 and h = 0, as is the resultant.
It only remains to consider the case when m ≥ n > 0 and h 6= 0. But then
R2(f, g) = am−pn R2(f, h) for g(αi) = h(αi) for each root αi of f , and the al-
gorithm shows that Res(f, g) = am−pn Res(f, h), from which we get the desired
result.

Corollary 13 Res(fg, h) = Res(f, h) Res(g, h).

Definition 67 The discriminant of f , Disc(f) or Discx(f), is

a2n−2n

n∏
i=1

n∏
j=1
j 6=i

(αi − αj).

Proposition 51 Disc(f) = 0 if, and only if, f has a repeated root, i.e. is not
square-free.

Proposition 52 Res(f, f ′) = an Disc(f). Moreover Disc(f) ∈ R.

Corollary 14 Disc(fg) = Disc(f) Disc(g) Res(f, g)2.

Whichever way they are calculated, the resultants are often quite large. For
example, if the ai and bi are integers, bounded by A and B respectively, the

resultant is less than (n+ 1)
m/2

(m+ 1)
n/2

AmBn, but it is very often of this
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order of magnitude (see section A.2). Similarly, if the ai and bi are polynomials
of degree α and β respectively, the degree of the resultant is bounded bymα+nβ.
A case in which this swell often matters is the use of resultants to calculate
primitive elements, which uses the following result.

Proposition 53 If α is a root of p(x) = 0, and β is a root of q(x, α) = 0, then
β is a root of Resy(y − p(x), q(x, y)).

A.2 Useful Estimates

Estimates of the sizes of various things crop up throughout computer algebra.
They can be essentially of three kinds.

• Upper bounds: X ≤ B.

• Lower bounds: X ≥ B.

• Average sizes: X “is typically” B. This may be a definitive average
result (but even here we have to be careful what we are averaging over:
the average number of factors of a polynomial is one, for example, but this
does not mean we can ignore factorisation), or some heuristic “typically
we find”.

Estimates are used throughout complexity theory, of course. “Worst case” com-
plexity is driven by upper bound results, while “average case” complexity is
driven by average results. They are also used in algorithms: most algorithms of
the ‘Chinese Remainder’ variety (section 4.1) rely on upper bounds to tell when
they have used enough primes/evaluation points. In this case, a better upper
bound generally translates into a faster algorithm in practice.

A.2.1 Matrices

How big is the determinant |M | of an n× n matrix M?

Notation 13 If v is a vector, then |v| denotes the Euclidean norm of v,√∑
|v2i |. If f is a polynomial, |f | denotes the Euclidean norm of its vector

of ceofficients.

Proposition 54 If M is an n× n matrix with entries ≤ B, |M | ≤ n!Bn.

This bound is frequently used in analysis, but we can do better.

Proposition 55 (Hadamard bound Hr) If M is an n×n matrix whose rows
are the vectors vi, then |M | ≤ Hr =

∏
|vi|, which in turn is ≤ nn/2Bn.

Corollary 15 If f and g are polynomials of degrees n and m respectively, then
Res(f, g) ≤ |f |m|g|n.

Corollary 16 If f is a polynomial of degree n, then Disc(f) ≤ nn−1|f |2n−1.
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In practice, especially if f is not monic, it is worth taking rather more care over
this estimation.

Proposition 56 (Hadamard bound (columns)) If M is an n × n matrix
whose columns are the vectors vi, then |M | ≤ Hc =

∏
|vi| ≤ nn/2Bn.

In practice, for general matrices one computes min(Hr, Hc). While there are
clearly bad cases (e.g. matrices of determinant 0), the Hadamard bounds are
“not too bad”. As pointed out in [AM01], log(min(Hr, Hc)/|M |) is a measure
of the “wasted effort” in a modular algorithm for computing the determinant,
and “on average” this is O(n), with a variance of O(log n). It is worth noting
that this is independent of the size of the entries.

A.2.2 Coefficients of a polynomial

Here we are working implicitly with polynomials with complex coefficients,
though the bounds will be most useful in the case of integer coefficients.

Notation 14 Let

f(x) =

n∑
i=0

aix
i = an

n∏
i=1

(x− αi)

be a polynomial of degree n (i.e. an 6= 0). Define the following measures of the
size of the polynomial f :

H(f) (often written ||f ||∞), the height or 1-norm, is maxni=0 |ai|;

||f || (often written ||f ||2), the 2-norm, is
√∑n

i=0 |ai|2;

L(f) (often written ||f ||1), the length or 1-norm, is
∑n
i=0 |ai|;

M(f) , the Mahler measure of f , is |an|
∏
|αi|>1

|αi|.

Proposition 57

H(f) ≤ ||f || ≤ L(f) ≤ (n+ 1)H(f),

where the first inequality is strict unless f is a monomial, the second is strict
unless all the ai are equal or zero, and the third is strict unless all the ai are
equal.

We should note that the last inequality could be replaced by ≤ cH(f), where
c is the number of nonzero monomials in f , but this seems not to be much
exploited.

Proposition 58 (Landau’s Inequality [Lan05], [Mig89, §4.3]) .

M(f) ≤ ||f ||

and the inequality is strict unless f is a monomial.
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Corollary 17 |an−i| ≤
(
n
i

)
M(f) ≤

(
n
i

)
M(f).

The first part of this follows from the fact that an−i is ±an times a sum of
(
n
i

)
products of roots, and products of roots are bounded by Proposition 58. For
some applications, e.g. Theorem 20, we often bound

(
n
i

)
by 2n, but for others,

such as Proposition 39, the more precise value is needed. 2n might seem like
overkill, but in fact, both in general and in the application to factoring [Mig81],
2 cannot be replaced by any smaller number.

It should be noted that the Landau–Mignotte bound is not the only way to
bound the coefficients of a polynomial: [Abb09] give four methods that depend
on knowing the degree of the factor being searched for, and two others that will
bound the least height of a factor. Depressingly, he gives a family of exampls
that shows that no bound is superior to any other, and indeed [Abb09, 3.3.5]
it may be necessary to “mix-and-match” using different bounds for different
coefficients.

A.2.3 Roots of a polynomial

Several questions can be asked about the roots of a univariate polynomial. The
most obvious ones are how large/small can they be, but one is often interested in
how close they can be. These questions are often asked of the real roots (section
3.4.4), but we actually need to study all roots, real and complex. The distinction
between real and complex roots is pretty fine, as shown in the following example.

Example 6 (Wilkinson Polynomial [Wil59]) Let W20 have roots at −1 ,
−2 , . . . , −20, so that W20 = (x+1)(x+2) . . . (x+20) = x20+210x19+· · ·+20!.
Consider now the polynomial W20(x) + 2−23x19. One might expect this to have
twenty real roots close to the original ones, but in fact it has ten real roots, at
approximately −1, −2, . . .−7, −8.007, −8.917 and −20.847, and five pairs of
complex conjugate roots, −10.095±0.6435i, −11.794±1.652i, −13.992±2.519i,
−16.731± 2.813i and −19.502± 1.940i.

The discriminant of W20 is 2.74×10275, which would seem well away from zero.
However, the largest coefficient of W20 is 1.38×1019, and of W ′20 is −3.86×1019.
The norms of W20 and W ′20 are 2.27×1019 and 6.11×1019, so corollary 16 gives
a bound of 4.43 × 10779 for Disc(W20), and a direct application of corollary
15 gives 3.31 × 10763. Hence the discriminant of W20 is “much smaller than
it ought to be”, and W20 is “nearly not square-free”. Put another way, the
Sylvester matrix for the discriminant is very illconditioned (this was in fact
Wilkinson’s original motivation for constructing W20): the discrepancy between
the actual determinant and corollary 15 is 489 decimal digits, whereas [AM01]
would lead us to expect about 17.

Notation 15 Let f ∈ C[x] =
∑n
i=0 aix

i, and let the roots of f be α1, . . . , αn,
and define

rb(f) = max
1≤i≤n

|αi|,
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sep(f) = min
1≤i<j≤n

|αi − αj |.

sep(f) is zero if, and only if, f has a repeated factor.

Proposition 59 [Cau29, p. 122] rb(f) ≤ 1 + max(|ai|)/|an|.

Corollary 18 If the polynomial f does not take the value 0 at x = 0, then every
root of f has absolute value at least |a0|/(|a0|+ max(|ai|).

Proposition 60 [Cau29, p. 123]

rb(f) ≤ max

n|an−1|
an

,

√
n|an−2|
an

, . . . , n−1

√
n|a1|
an

, n

√
n|a0|
an

 .

Proposition 61 [Knu98, 4.6.2 exercise 20]

rb(f) ≤ B = 2 max

 |an−1|
an

,

√
|an−2|
an

, . . . , n−1

√
|a1|
an

, n

√
|a0|
an

 .

Furthermore, there is at least one root of absolute value ≥ B/(2n).

Applied to W20, these propositions give respectively 1.38×1019, 4200 and 420. If
we centre the roots, to be −9.5, . . . , 9.5, the three propositions give respectively
2.17×1012, 400 and 40 (and hence the roots of W20 are bounded by 2.17×1012,
409.5 and 49.5). While the advantages of centrality are most prominent in
the case of proposition 59, they are present for all of them. There are in fact
improved bounds available in this (an−1 = 0) case [Mig00].

If instead we re-balance W20 so that the leading and trailing coefficients are
both 1, by replacing x by 20

√
20!x, then the bounds for this new polynomial are

6961419, 505.76 and 50.58 (and hence the roots of W20 are bounded by 838284.7,
4200 and 420).

Proposition 62 ([Gra37]) If p(x) = pe(x
2) + xpo(x

2), i.e. pe(x
2) is the even

terms of p(x), then the roots of q(x) = p2e(x) − xp2o(x) are the squares of the
roots of p.1

Applying this process to W20, then computing the three bounds, and square-
rooting the results, gives us bounds of 3.07× 1018, 239.58 and 75.76. Repeating
the process gives 2.48 × 1018, 61.66 and 34.67. On the centred polynomial, we
get 2.73 × 1012, 117.05 and 37.01, and a second application gives 1.83 × 1018,
30.57 and 17.19 (and hence root bounds for W20 as 1.83×1018, 40.07 and 26.69).
This last figure is reasonably close to the true value of 20 [DM90].

1For the history of the attribution to Graeffe, see [Hou59].
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A.2.4 Root separation

The key result is the following.

Proposition 63 ([Mah64]) sep(f) >
√

3|Disc(f)|n−(n+2)/2|f |1−n.

We note that the bound is zero if, and only if, the discriminant is zero, as it
should be, and this bound is unchanged if we multiply the polynomial by a
constant. The bound for W20 is 7.27 × 10−245, but for the centred variant it
becomes 1.38×10−113. Should we ever need a root separation bound in practice,
centring the polynomial first is almost always a good idea. Similarly re-balancing
changes the separation bound to 5.42× 10−112, which means 6.52× 10−113 for
the original polynomial.

The monic polynomials of degree 7 with maximum root separation and all
roots in the unit circle are:

six complex x7 − 1, with discriminant −823543, norm
√

2 and root bounds

[2.0, 1.383087554, 2.0]

and root separation bound (proposition 63)
√
3

56 ≈ 3.09× 10−2 (true value
0.868);

four complex x7−x, with discriminant 66 = 46656, norm
√

2 and root bounds

[2.0, 1.383087554, 2.0]

and root separation bound (proposition 63) 27
√
21

18607 ≈ 7.361786385 × 10−3

(true value 1);

two complex x7 − 1
4 x

5 − x3 + 1
4 x, with discriminant −506254096 ≈ −12.36, norm

1
4

√
34 ≈ 1.457737974 and root bounds

[2, 1.626576562, 2.0]

and root separation bound (proposition 63) 1880
√
21

82572791 ≈ 9.99 × 10−5 (true
value 1/2);

all real x7 − 14
9 x

5 + 49
81 x

3 − 4
81 x, with discriminant2

10485760000

1853020188851841
≈ 5.66× 10−6, (A.1)

norm 17
81

√
86 ≈ 1.946314993 and root bounds

[
23

9
, 3.299831645, 2.494438258]

and root separation bound (proposition 63) 83980800
32254409474403781

√
3
√

7 ≈ 1.19×
10−8 (true value 1/3).

2We note how the constraint that all the roots be real forces the discriminant to be small.
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If there are n + 1 equally-spaced real roots (call the spacing 1 for the time
being), then the first root contributes n! to

∏
i

∏
j 6=i(αi − αj), the second root

1!(n− 1)! and so on, so we have a total product of

n∏
i=0

i!(n− i)! =

n∏
i=0

i!2 =

(
n∏
i=0

i!

)2

. (A.2)

This is sequence A055209 [Slo07], which is the square of A000178.
If we now assume that the roots are equally-spaced in [−1, 1], then the

spacing is 2/n, we need to correct equation (A.2) by dividing by (n/2)n(n−1):
call the result Cn. C is initially greater than one, with C3 = 65536

59049 ≈ 1.11, but
C4 = 81

1024 , C5 = 51298814505517056
37252902984619140625 ≈ 0.001377042066, and C6 as in (A.1).

While assuming equal spacing might seem natural, it does not, in fact, lead
to the largest values of the discriminant. Consider polynomials with all real
roots ∈ [−1, 1], so that we may assume the extreme roots are at ±1.

degree 4 Equally spaced roots, at ± 1
3 , give a discriminant of 65536

59049 ≈ 1.11,
whereas ± 1√

5
gives 4096

3125 ≈ 1.31, the optimum. The norms are respectively
√
182
9 ≈ 1.4999 and

√
62
5 ≈ 1.575.

degree 5 Equally spaced roots, at ± 1
2 and 0, give a discriminant of 81

1024 ≈
0.079, whereas ±

√
3
7 and 0 gives 12288

16807 ≈ 0.73, the optimum. The norms

are respectively
√
42
4 ≈ 1.62 and

√
158
7 ≈ 1.796.

degree 6 Equally spaced roots, at± 3
5 and± 1

5 , give a discriminant of 51298814505517056
37252902984619140625 ≈

0.00138. Unconstrained solving for the maximum of the discriminant, us-
ing Maple’s Groebner,Solve, starts becoming expensive, but if we assume

symmetry, we are led to choose roots at ±
√

147±42
√
7

21 , with a discriminant

of 67108864
16209796869 ≈ 0.0041. The norms are respectively 2

√
305853
625 ≈ 1.77 and

2
√
473
21 ≈ 2.07.

degree 7 Equally spaced roots, at± 2
3 , ± 1

3 and 0, give a discriminant of 209715200000
5615789612636313 ≈

5.66 · 10−6. Again assuming symmetry, we are led to choose roots at
±
√

495±66
√
15

33 and 0, which gives 209715200000
5615789612636313 ≈ 3.73 ·10−5. The norms

are respectively 17
√
86

81 ≈ 1.95 and 2
√
1577
33 ≈ 2.41,

degree 8 Equally spaced roots, at ± 5
7 , ± 3

7 and ± 1
7 , give a discriminant of

≈ 5.37 · 10−9. Assuming symmetry, we get roots at ± ≈ 0.87, ± ≈ 0.59
and ± ≈ 0.21, with a discriminant of ≈ 9.65 · 10−8. The norms are

respectively ≈ 2.15 and
√
2
√
727171
429 ≈ 2.81.

degree 9 Equally spaced roots, at ± 3
4 , ± 1

2 , ± 1
4 and 0, give a discriminant of

1.15·10−12. Assuming symmetry, we get roots at ±0.8998, ±0.677, ±0.363
and zero, with a discriminant of ≈ 7.03·10−11. The norms are respectively√

5969546
1024 ≈ 2.39 and ≈ 3.296.
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If we now consider he case with two complex root, which may as well be at
x = ±i, we have the following behaviour.

degree 4 The maximal polynomial is x4−1, with discriminant −256 and norm√
2. The bound is

√
6

216 ≈ 0.153.

degree 5 The maximal polynomial is x5−x, with discriminant −256 and norm√
2. The bound is 4

√
15

625 ≈ 0.0248.

degree 6 Equally spaced roots, at ±13 , gives a discriminant of −108.26 and

a norm of 2
√
41
9 . The bound is 400

√
132

1860867 ≈ 2.38 · 10−3. The maximal
discriminant is attained with roots at ±1√

3
, with discriminant −419430419683 ≈

−213.09 and norm 2
√
5

3 . The bound is 4
√
5

3375 ≈ 2.65 · 10−3.

degree 7 Equally spaced roots, at ±12 and 0, gives a discriminant of ≈ −12.36

and norm of
√
34
4 ≈ 1.46. The bound is 1800

√
21

82572791 ≈ 9.99 · 10−5. The

maximal discriminant is attained with roots at 4

√
3
11 , with discriminant

≈ 40.8 and norm of 2
√
77

11 ≈ 1.596. The bound is ≈ 1.06 · 10−4.

A.3 Chinese Remainder Theorem

In this section we review the result of the title, which is key to the methods in
section 4.1.1.4, and hence to much of computer algebra.

Theorem 22 (Chinese Remainder Theorem (coprime form)) Two con-
gruences

X ≡ a (mod M) (A.3)

and
X ≡ b (mod N) (A.4)

, where M and N are relatively prime, are precisely equivalent to one congruence

X ≡ c (mod MN). (A.5)

By this we mean that, given any a, b, M and N , we can find such a c that
satisfaction of (A.3) and (A.4) is precisely equivalent to satisfying (A.5). The
converse direction, finding (A.3) and (A.4) given (A.5), is trivial: one takes a
to be c (mod M) and b to be d (mod N).

Algorithm 16 (Chinese Remainder)
Input: a, b, M and N (with gcd(M,N) = 1).
Output: c satisfying Theorem 22.

Compute λ, µ such that λM + µN = 1;
#The process is analogous to Lemma 1 (page 34)

c:=a+ λM(b− a);
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Clearly c ≡ a (mod M), so satisfying (A.5) means that (A.3) is satisfied. What
about (A.4)?

c = a+ λM(b− a)

= a+ (1− µN)(b− a)

≡ a+ (b− a) (mod N)

so, despite the apparent asymmetry of the construction, c ≡ b (mod N) as
well.

In fact,we need not restrict ourselves to X being an integer: X may as well
be polynomials (but M and N are still integers).

Algorithm 17 (Chinese Remainder (Polynomials))
Input: Polynomials a =

∑n
i=0 aix

i, b =
∑n
i=0 bix

i, and integers M and N
(with gcd(M,N) = 1).
Output: A polynomial =

∑n
i=0 cix

i satisfying Theorem 22.

Compute λ, µ such that λM + µN = 1;
#The process is analogous to Lemma 1 (page 34)

for i := 0 to n do
ci:=ai + λM(bi − ai);



126 APPENDIX A. ALGEBRAIC BACKGROUND



Appendix B

Excursus

This appendix includes various topics on computer algebra that do not seem to
be well-treated in the literature.

B.1 The Budan–Fourier Theorem

For the sake of simplicity, we will consider only square-free polynomails in this
section: the results generalise fairly easily to non square-free ones.

Definition 68 Given a sequence A of non-zero numbers a0, . . . , an, the number
of sign variations of A, witten V (A), is the number of times two consecutive
elements have different signs, i.e. aiai+1 < 0. If A does contain zeros, we erase
them before doing this computation, or equivalent we count the number of (i, j)
with aiaj < 0 and all intermediate ai+1, . . . , aj−1 = 0. If f is the polynomial
anx

n + · · · a0, we write V (f) rather than V (A) where A is the sequence of
coefficients of f .

Proposition 64 V (f) = V (f(0), f ′(0), . . . , f (n)(0) for a polynomial f of degree
n.

The reader should note that the definition of variation is numerically unsta-
ble. V (1) = 0, and therefore (by the erasure rule) V (1, 0) = 0. For positive
ε, V (1, ε) = 0, but V (1,−ε) = 1. This is related to the fact that x + ε has no
positive real roots, but x− ε has one, as seen in the following result.

Theorem 23 (Descartes’ rule of signs [CA76]) (the number of roots of f
in (0,∞) is less than or equal to, by an even number, V (f).

Corollary 19 The number of roots of f in (a,∞) is less than or equal to, by
an even number, V (f(x− a)).

Corollary 20 The number of roots of f in (a,∞) is less than or equal to, by
an even number, V ((f(a), f ′(a), . . . , f (n)(a)).

127
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For dense f , there is not a great deal to choose between these two formulations,
but, since the derivatives of a sparse polynomial are sparse but its translate is
not, corollary 20 is greatly to be preferred to corollary 19 in the sparse case.

Let us fix f , and consider V (y) := V (f(x−y)) and N(y) := |{x > y : f(x) =
0}| as functions of y. For large enough y, both are zero. As y decreases, N(y)
increases monotonically, by 1 at each root of f . In fact, the same monotonic
behaviour is true of V (y), increasing by 1 at roots of f and by 2 at certain other
points. This allows us to compute the number of roots in an interval, a result
known as the Budan–Fourier Theorem1.

Corollary 21 (Budin–Fourier Theorem) The number of roots of f in (a, b)
is less than or equal to, by an even number, V (f(x− a))− V (f(x− b)).

Corollary 22 (Budin–Fourier Theorem [Hur12]) The number of roots of
f in (a, b) is less than or equal to, by an even number, V ((f(a), f ′(a), . . . , f (n)(a))−
V ((f(b), f ′(b), . . . , f (n)(b)).

For the same reasons as above, corollary 22 is to be preferred in the case of
sparse polynomials.

We can also deduce some results about the number of roots of sparse poly-
nomials. If f has n non-zero terms, V (f) ≤ n − 1. We note that V (axk) = 0,
and this polynomial indeed has no roots in (0,∞).

Corollary 23 A square-free polynomial in x with n terms, not divisible by x,
has at most 2(n − 1) roots in R. If it is divisible by x, then the answer is at
most 2n− 1.

The example of x3−x, which has three real roots (±1, 0) shows that the special
case is necessary.

Open Problem 7 Show that the same is true for non-square-free polynomials,
with the addition that only distinct roots are counted. This would be trivial if
we knew that the square-free part of a polynomial with n terms had at most n
terms, but alas that is not the case [CD91].

B.2 Equality of factored polynomials

This section treats the following problem.

Problem 8 Given two polynomials in factored form (section 2.1.3), are they
equal? More precisely, if

f =

n∏
i=1

faii g =

m∏
j=1

g
bj
j ,

1See [BdB22, Fou31]. The question of precedence was hotly disputed at the
time: see [Akr82] and http://www-history.mcs.st-andrews.ac.uk/Biographies/Budan_de_

Boislaurent.html.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Budan_de_Boislaurent.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Budan_de_Boislaurent.html
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with the fi and gj square-free and relatively prime, i.e.:w gcd(fi, fi′) = 1,

gcd(gj , gj′) = 1), is f
?
=g.

The obvious solution is to expand f and g, and check that the expanded forms
(which are canonical) are equal. Can we do better?

One important preliminary remark is that the square-free representation of
a polynomial is unique. This leads to the following result.

Proposition 65 If f = g, then every ai has to be a bj, and vice versa. For
each such occurring value k, we must verify

fk =

n∏
i=1
ai=k

fi
?
=gk =

m∏
j=1
bj=k

gj . (B.1)

In particular, fk and gk must have the same degree, i.e.

n∑
i=1
ai=k

deg(fi) =

m∑
j=1
bj=k

deg(gj). (B.2)

Again, we could check fk
?
=gk by expansion, but there is a better way.

Example 7 Let f = x2
l−1 and g = (x−1)(x+1)(x2 +1) · · · (x2l−1

+1), where
both are square-free, so proposition 65 does not help. f is already expanded, but

expansion of g can give rise to x2
l−1 + x2

l−2 + · · · + x + 1, which has length
O(2l), whereas g has length O(l).

From now on we will assume that we are working over a domain that includes
the integers.

Lemma 9 If f and g have degree at most N , and agree at N + 1 different
values, then f = g.

Proof. f − g is a polynomial of degree at most N , but has N + 1 zeros, which
contradicts proposition 5 if it is non-zero.

Hence it suffices to evaluate f and g at N + 1 points xi and check that the
values agree. It is not necessary to construct any polynomial, and the integers
involved are bounded (if we choose |xi| < N) by BNN , where B is a function
of the coefficients of the fi, gj . Furthermore, we can evaluate at all these points
in parallel. However, it does seem that we need to evaluate at N + 1 points, or
very nearly so, even if f and g are very small.

Open Problem 9 Produce some non-trivial bounds on the maximum number
of zeros of f−g, where f and g have small factored representations. See [RR90].

The best we can say is as follows. Suppose, in the notation of (B.1), each fi
has ki non-zero terms, and gj has lj non-zero terms, and no fi or gj is x (if
either was, then trivially f 6= g, since a common factor of x would have been
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detected). Then, by Corollary 23, f − g, if it is not identically zero, has at most

2

(∑n
i=1
ai=k

ki +
∑m

j=1
bj=k

lj − 1

)
roots in R, and hence, if it is zero when evaluated

at more than this number of integers, is identically zero. The factor of 2 can be
dropped if we use only positive evaluation points, and rely on Theorem 23.

B.3 Karatsuba’s method

This method was originally introduced in [KO63] for multiplying large integers:
however, it is easier to explain in the (dense) polynomial context, where issues
of carrying do not arise. Consider the product of two linear polynomials

(aX + b)(cX + d) = acX2 + (ad+ bc)X + bd. (B.3)

This method so patently requires four multiplications of the coefficients that
the question of its optimality was never posed. However, [KO63] rewrote it as
follows:

(aX + b)(cX + d) = acX2 + [(a+ b)(c+ d)− ac− bd]X + bd, (B.4)

which only requires three distinct multiplications, ac and bd each being used
twice. However, it requires four coefficients additions rather than one, so one
might question the practical utility of it. For future reference, we will also
express2 equation (B.4) as

(aX + b)(cX + d) = ac(X2 −X) + (a+ b)(c+ d)X + bd(1−X), (B.5)

which makes the three coefficient multiplications explicit.
However, it can be cascaded. Consider a product of two polynomials of

degree three (four terms):

(a3Y
3 + a2Y

2 + a1Y + a0)(b3Y
3 + b2Y

2 + b1Y + b0). (B.6)

If we write X = Y 2, a = a3Y +a2 etc., this product looks like the left-hand side
of equation (B.4), and so can be computed with three multiplications of linear
polynomials, each of which can be done in three multiplications of coefficients,
thus making nine such multiplications in all, rather than the classic method’s
16.

If the multiplicands have 2k terms, then this method requires 3k =
(
2k
)log2 3

multiplications rather than the classic
(
2k
)2

. For arbitrary numbers n of terms,
not necessarily a power of two, the cost of “rounding up” to a power of two is
subsumed in the O notation, and we see a cost of O(nlog2 3) rather than the
classic O(n2) coefficient multiplications. We note that log2 3 ≈ 1.585, and the
number of extra coefficient additions required is also O(nlog2 3), being three extra

2This formulation is due to [Mon05].
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additions at each step. While the “rounding up” is not important in O-theory,
it matters in practice, and [Mon05] shows various other formulae, e.g.

(aX2 + bX + c)(dX2 + eX + f) =

cf(1−X) + be(−X + 2X2 −X3) + ad(−X3 +X4) + (b+ c)(e+ f)(X −X2)

+(a+ b)(d+ e)(X3 −X2) + (a+ b+ c)(d+ e+ f)X2,

requiring six coefficient multiplications rather than the obvious nine, or eight if
we write it as (

aX2 + (bX + c)
) (
dX2 + (eX + f)

)
=

adX4 + aX2(eX + f) + dX2(bX + c) + (bX + c)(eX + f)

and use (B.4) on the last summand (asymptotics would predict 3log2 3 ≈ 5.7, so
we are much nearer the asymptoic behaviour). Cascading this formula rather
than (B.4) gives O(nlog3 6), which as log3 6 ≈ 1.63 is not as favorable asymp-
totically. His most impressive formula describes the product of two six-term
polynomials in 17 coefficient multiplications, and log6 17 ≈ 1.581, a slight im-
provement. We refer the readerto the table in [Mon05], which shows that his
armoury of formulae can get us very close to the asymptotic costs.

Theorem 24 We can multiply two (dense) polynomials with m and n terms
respectively in O

(
max(m,n) min(m,n)(log2 3)−1) coefficient operations.

Let the polynomials be f = am−1Y
m−1 + · · · and f = bn−1Y

n−1 + · · · Without
loss of generality, we may assume m ≥ n (so we have to prove O(mnlog2 3−1),
and write k = dmn e. We can then divide f into blocks with n terms (possibly

fewer for the most significant one) each: f =
∑k−1
i=1 fiY

in. Then

fg =

k−1∑
i=1

(fig)Y in.

Each fig can be computed in time O(nlog2 3), and the addition merely takes
time O(m − n) (since there is one addition to be performed for each power of
Y where overlap occurs). Hence the total time is O(knlog2 3), and the constant
factor implied by the O-notation allows us to replace k = dmn e by m

n , which
gives the desired result.

B.3.1 Karatsuba’s method and sparse polynomials

The use of the Karatsuba formula and its variants for sparse polynomials is
less obvious. One preliminary remark is in order: in the dense case we split
the multiplicands in equation (B.6) or its equivalent in two (the same point for
each), and we were multiplying components of half the size. This is no longer
the case for sparse polynomials, e.g. every splitting point of

(a7x
7 + a6x

6 + a5x
5 + a0)(b7 + b2x

2 + b1x+ b0) (B.7)
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gives a 3–1 split of one or the other: indeed possibly both, as when we use x4

as the splitting point.
Worse, in equation (B.5), the component multiplications were on ‘smaller’

polynomials, whereas, measured in number of terms, this is no longer the case.
If we split equation (B.7) at x4, the sub-problem corresponding to (a+b)∗(c+d)
in equation (B.5) is

(a7x
3 + a6x

2 + a5x
1 + a0)(b3 + b2x

2 + b1x+ b0)

which has as many terms as the original (B.7). This difficulty led [Fat03] to
conclude that Karatsuba-based methods did not apply to sparse polynomials.
It is clear that they cannot always apply, since the product of a polynomial
with m terms by one with n terms may have mn terms, but it is probaby the
difficulty of deciding when they apply that has led system designers to shun
them.

B.3.2 Karatsuba’s method and multivariate polynomials



Appendix C

Systems

This appendix discusses various computer algebra systems, especially from the
point of view of their internal data structures and algorithms, and how this
relates to the ideas expressed in the body of this book. We do not discuss the
user interfaces as such, nor is this intended to replace any manuals, or specialist
books.

C.1 Maple

C.1.1 History

This system started in the early 1980s, a period when computer power, and
particularly memory, were much less than they are today. It was designed to
support multiple users, particularly classes of students, on what were, by the
standards of the time, relatively modest university resources. Two important
early references are [CGGG83, CFG+84]. These circumstances led to three
design principles.

1. The system had to be small — early hosts systems had limitations of, for
example, 110K words of memory. In particular, users must not pay, in
terms of memory occupancy, for features they were not using, which led
to a ‘kernel plus loadable modules’ design, where the kernel knew basic
algebraic features, and the rest of the system was in loadable modules
written in the Maple langauge itself, and therefore interpreted rather than
compiled. The precise definition of ‘basic’ has changed over time — see
section C.1.3.

2. The system had to be portable — early versions ran on both 32-bit VAX
computers and 36-bit Honeywell computers. Its kernel, originally some
5500 lines of code, was macro-processed into ‘languages of the BCPL fam-
ily’, of which the most successful, and the one used today, is C.

3. Memory was scarce, and hence re-use had to be a priority.

133
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C.1.2 Data structures

These considerations led to an “expression DAG” design (see page 29). The
internal form of an expression is a node of a certain type followed by an arbi-
trary number (hence we talk about an n-ary tree) of operands. If A is a Maple
expression, the construct op(0,A) gives the type of the node, and op(i,A) gives
the i-th operand. This is demonstrated by the session in table C.1, which builds
the DAG shown in figure C.1. It might be assumed from table C.1 that Maple

Table C.1: A small Maple session

> A:=x+y+a*b;

A := x + y + a b

> op(0,A);

+

> op(3,A);

a b

> op(0,op(3,A));

*

> B:=y+b*a+x;

B := x + y + a b

Figure C.1: Tree for A, B corresponding to table C.1

+
↙ ↓ ↘

x y ∗
↓ ↘
a b

had some ‘preferred’ order which A matched but B did not. However, if we look
at table Maple:code2 (run in a fresh session of Maple), we see that B is now the
preferred instance. The point is that, since Maple’s internalising process1 con-

Figure C.2: Tree for A, B corresponding to table C.2

+
↙ ↓ ↘

y ∗ x
↓ ↘
b a
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Table C.2: Another small Maple session

> B:=y+b*a+x;

B := y + b a + x

> op(0,B);

+

> op(2,B);

b a

> op(0,op(2,B));

*

> A:=x+y+a*b;

A := y + b a + x

structs these trees, in which + nodes cannot be children of + nodes, or + nodes
of * nodes (hence implicitly enforcing associativity of these operators), and the
children are unordered (hence implicitly enforcing commutativity2), once the
subtree corresponding to a*b has been built, as in the first line of table C.1, an
equivalent tree, such as that corresponding to b*a, is stored as the same tree.
If it is fundamentall unordered, which way does it print? The answer is given
in [CFG+84, p. 7]

if the expression is found, the one in the table is used, and the [new]
one is discarded.

Hence in table C.1, the presence of a*b means that b*a automatically becomes
a*b. The converse behaviour occurs in table C.2.

In terms of the 10 algebraic rules on pp. 21–22, this structure automatically
follows all except (8), which is implemented only in the weaker form (8’).

The Maple command expand implements (8) fully, therefore producing, for
polynomials, what we referred to (page 27) as a distributed representation3.
This is therefore canonical (definition 3), but in a limited sense: it is canonical
within a given Maple session, but may vary between sessions. This means
that operations such as op(i,A) (i 6= 0) are not necessarily consistent between
sessions.

1Referred to as the ‘simplifier’ in [CGGG83, CFG+84], but we do not use that word to
avoid confusion with Maple’s simplify command.

2We have found an example where this is not the case, but this is explicitly described as a
bug by Maple’s Senior Architect.

Two simpl’d PROD DAGs containing the same entries but in a different order
is a kernel bug by definition. [Vor10]

3But we should note that there are no guaranteed mathematical properties of the ordering.
Good properties are provided by the MonomialOrders of the Groebner package.
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C.1.3 Heuristic GCD

[CGG84, CGG89].

C.1.4 Conclusion

There are many books written on Maple, particularly in the educational context.
A comprehensive list would be out-of-date before it was printed, but we should
mention [Cor02].
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[Her72] E. Hermite. Sur l’intégration des fractions rationelles. Nouvelles
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[Hur12] A. Hurwitz. Über den Satz von Budan-Fourier. Math. Annalen,
71:584–591, 1912.

[IEE85] IEEE. IEEE Standard 754 for Binary Floating-Point Arithmetic.
IEEE, 1985.

[IL80] O.H. Ibarra and B.S. Leininger. The Complexity of the Equivalence
Problem for Straight-line Programs. In Proceedings ACM STOC
1980, pages 273–280, 1980.



144 BIBLIOGRAPHY

[Isa85] I.M. Isaacs. Solution of polynomials by real radicals. Amer. Math.
Monthly, 92:571–575, 1985.

[Joh71] S.C. Johnson. On the Problem of Recognizing Zero. J. ACM,
18:559–565, 1971.

[Joh74] S.C. Johnson. Sparse Polynomial Arithmetic. In Proceedings EU-
ROSAM 74, pages 63–71, 1974.

[JR10] D.J. Jeffrey and A.D. Rich. Reducing Expression Size Using Rule-
Based Integration. In S. Autexier et al., editor, Proceedings CICM
2010, pages 234–246, 2010.

[JS92] R.D. Jenks and R.S. Sutor. AXIOM: The Scientific Computation
System. Springer-Verlag, 1992.

[Kah53] H.G. Kahrimanian. Analytic differentiation by a digital computer.
M.A. Thesis, 1953.

[Kal88] E. Kaltofen. Greatest Common Divisors of Polynomials given by
Straight-line Programs. J. ACM, 35:231–264, 1988.

[Kal89] M. Kalkbrener. Solving systems of algebraic equations by using
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[Tri78] W. Trinks. Über B. Buchbergers Verfahren, Systeme algebraischer
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set, 74
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indefinite, 106
Inverse

matrix, 52

Knuth
bound, 121

Landau Inequality, 119
Landau notation, 18
Landau–Mignotte Inequality, 92
Laurent

Polynomial, 112
Least common multiple, 33
Lioville’s Principle, 111
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Set
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Shape basis, 73
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Subresultant algorithm, 37
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Maple, 133
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Algorithm, 110
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Unique factorisation domain, 33
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Wilkinson Polynomial, 120

Zariski closure, 76
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The total-degree Gröbner base from page 72.
{42 c4+555+293 a3+1153 a2b−3054 ab2+323 b3+2035 a2c+1642 abc−1211 b2c+
2253 ac2−1252 bc2−31 c3+1347 a2−3495 ab+1544 b2−1100 ac+2574 bc−368 c2+
2849 a+ 281 b+ 4799 c, 21 bc3 − 57− 10 a3 − 41 a2b+ 183 ab2 − 25 b3 − 104 a2c−
65 abc+91 b2c−129 ac2 +59 bc2−16 c3−33 a2 +225 ab−142 b2 +67 ac−174 bc−
5 c2−154 a−46 b−310 c, 21 ac3−75−29 a3−121 a2b+369 ab2−41 b3−226 a2c−
178 abc+ 161 b2c− 267 ac2 + 148 bc2 + 4 c3 − 123 a2 + 411 ab− 206 b2 + 146 ac−
324 bc+ 38 c2−329 a−62 b−584 c, 14 b2c2 + 5 +a3 + 9 a2b+ 2 ab2− b3 + 23 a2c+
10 abc−21 b2c+15 ac2−8 bc2+3 c3−3 a2−19 ab−4 b2−6 ac−26 bc−10 c2+7 a−b+
3 c, 21 abc2+30−a3−2 a2b−51 ab2+8 b3+40 a2c+25 abc−56 b2c+69 ac2−13 bc2+
11 c3−18 a2−72 ab+53 b2−8 ac+54 bc+10 c2+56 a+29 b+116 c, 14 a2c2+11+
5 a3+31 a2b−74 ab2+9 b3+45 a2c+22 abc−35 b2c+61 ac2−40 bc2+c3+13 a2−
95 ab+ 50 b2−44 ac+ 66 bc+ 6 c2 + 63 a+ 23 b+ 127 c, 21 b3c−6−4 a3 + 13 a2b+
48 ab2−10 b3−8 a2c−5 abc−14 b2c+3 ac2−10 bc2 +2 c3−30 a2 +27 ab−40 b2 +
10 ac−57 bc−2 c2−7 a−10 b−40 c, 6 ab2c−3−a3−5 a2b+12 ab2−b3−11 a2c−
2 abc+7 b2c−9 ac2 +2 bc2− c3−3 a2 +15 ab−4 b2 +4 ac−6 bc−2 c2−13 a− b−
19 c, 14 a2bc−13+3 a3+13 a2b+6 ab2−3 b3−a2c+2 abc+21 b2c−25 ac2+4 bc2−
5 c3 +19 a2 +27 ab−26 b2 +10 ac−8 bc−2 c2−7 a−17 b−33 c, 7 a3c+3−5 a3−
24 a2b+ 25 ab2−2 b3−17 a2c−8 abc+ 7 b2c−19 ac2 + 12 bc2− c3−6 a2 + 32 ab−
8 b2 +23 ac−17 bc−6 c2−21 a−2 b−36 c, 42 b4−3−121 a3−557 a2b+570 ab2 +
275 b3−515 a2c−608 abc−77 b2c−555 ac2+2 bc2−55 c3−645 a2+633 ab−160 b2+
82 ac−690 bc−302 c2−679 a+65 b−1147 c, 42 ab3 +15−11 a3−85 a2b+6 ab2 +
25 b3−43 a2c−40 abc−49 b2c−39 ac2+4 bc2−5 c3−51 a2−15 ab+58 b2−4 ac+
6 bc−16 c2−35 a+ 25 b−5 c, 21 a2b2 + 3 + 2 a3 + 25 a2b−45 ab2 + 5 b3 + 25 a2c−
29 abc−14 b2c+9 ac2−16 bc2−c3−6 a2−45 ab+20 b2−47 ac+18 bc+c2+14 a+
5 b+41 c, 21 a3b+18−16 a3−74 a2b+24 ab2+2 b3−53 a2c+abc−35 b2c+12 ac2+
23 bc2+8 c3−36 a2+24 ab+29 b2+40 ac+3 bc−8 c2−28 a+23 b−13 c, 42 a4−57+
431 a3 + 757 a2b−804 ab2 + 59 b3 + 799 a2c−2 abc−119 b2c+ 417 ac2−340 bc2 +
5 c3 + 303 a2− 1203 ab+ 194 b2− 752 ac+ 246 bc+ 184 c2 + 581 a− 67 b+ 1013 c}.

The equivalent lexicographic base.
{1 − 6 c − 41 c2 + 71 c3 − 41 c18 + 197 c14 + 106 c16 − 6 c19 + 106 c4 + 71 c17 +
c20 + 92 c5 + 197 c6 + 145 c7 + 257 c8 + 278 c9 + 201 c10 + 278 c11 + 257 c12 +
145 c13+92 c15, 9741532+39671190 c−96977172 c2−140671876 c3+7007106 c18−
120781728 c14−79900378 c16−1184459 c19−131742078 c4+49142070 c17−253979379 c5−
204237390 c6 − 337505020 c7 − 356354619 c8 − 271667666 c9 − 358660781 c10 −
323810244 c11−193381378 c12−244307826 c13−131861787 c15+1645371 b,−487915 c18+
705159 a + 4406102 c + 16292173 c14 + 17206178 c2 + 3830961 c16 + 91729 c19 −
377534 + 21640797 c3 + 26686318 c4− 4114333 c17 + 34893715 c5 + 37340389 c6 +
47961810 c7+46227230 c8+42839310 c9+46349985 c10+37678046 c11+28185846 c12+
26536060 c13 + 13243117 c15}.
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