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The formula

2
p
= 1 − 5 ·

1
2

􏼒 􏼓3

+9 ·
1 · 3
2 · 4

􏼒 􏼓3

− · · ·

was famously included as a discovery in Ramanujan’s first letter to Hardy in 1913, and has been 
referred to as the Bauer–Ramanujan formula, in view of Bauer’s 1859 proof of the above formula. 
There is a rich history associated with this formula and its many and dramatically different 
proofs, including a computer-based proof due to Zeilberger that may be seen as 
groundbreaking in the history of computer-assisted proofs. In addition to a complete survey 
we provide of all known proofs of the Bauer–Ramanujan formula, we introduce historical 
analyses based on these proofs, by arguing that the history of the Bauer–Ramanujan formula 
and our account of this history may be seen as being representative of much broader trends in 
the history of mathematics. In this regard, the earlier proofs tend to rely on one of the oldest 
and most basic tools in classical analysis, namely, interchanging the order of limiting 
operations. In contrast, the more modern proofs tend to rely on computer-related approaches 
toward summation problems, as in with Zeilberger-type and Gosper-type telescoping arguments.

1. Introduction

The importance of Ramanujan’s series for 1
p 

within number theory, special func
tions theory, and other areas motivates a scholarly study concerning what is 
considered as the most basic out of Ramanujan’s series for 1

p 
and how it has 

gone on, over the decades, to be explored in different ways. In this regard, the now 
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famous formula

2
p
= 1 − 5 ·

1
2

􏼒 􏼓3

+9 ·
1 · 3
2 · 4

􏼒 􏼓3

− · · · (1) 

was included in Ramanujan’s first letter to Hardy (Berndt and Rankin 1995, 25; 
Berndt 1989, 23–24), and, with an absolute convergence rate of 1, may be seen as 
the simplest out of Ramanujan’s series for 1

p 
, by comparison with the very fast-con

verging series now referred to as Ramanujan’s 17 series for 1
p 

, with reference to the 
survey article concerning such series by Baruah et al. (2009). As expressed in this 
survey, the formula in (1) was introduced by Bauer (1859), relative to Ramanujan’s 
1913 letter to Hardy (Berndt and Rankin 1995, 21). It is thus appropriate to refer 
to the formula in (1) as the Bauer–Ramanujan formula (Zudilin 2009a), or as the 
Bauer–Ramanujan series formula (Levrie and Campbell 2022). Apart from Bauer’s 
1859 discovery of (1) and Ramanujan’s rediscovery of (1) and Zeilberger’s famous 
computer proof of (1) (Ekhad and Zeilberger 1994) having been mentioned in the 
above survey, the Bauer–Ramanujan series was not otherwise considered there. 
This motivates our survey in Section 2 based on the many remarkably different 
proofs of (1) that have emerged over many decades. We introduce historical analyses 
based on our survey, as in Section 3, to argue that the history of the Bauer–Ramanu
jan formula may be seen as being representative of much broader trends in the history 
of mathematics.

The known proofs of the Bauer–Ramanujan formula were introduced in the follow
ing chronological order, referring to Section 2 below on the attributions listed below: 

. Bauer (1859)

. Glaisher (1905)

. Dougall (1906)

. Hardy (1924)

. Borwein and Borwein (1987)

. Ekhad and Zeilberger (1994)

. Baranov (2006)

. Baruah and Berndt (2010)

. Aycock (2013)

. Cooper (2017)

. Levrie and Nimbran (2018)

. Ojanguren (2018)

. Campbell (to appear)

The older proofs of the Bauer–Ramanujan formula, including that by Bauer and 
that by Hardy, tend to rely on one of the ‘oldest tricks in the book’ in classical analy
sis: namely, interchanging the order of limiting operations. In contrast, the more 
modern proofs, including that by Zeilberger and by Ojanguren, tend to rely on tech
niques related to computer-based summation tools, as in the telescoping-based 
approach required according to the computer proof certificates generated by the 
Wilf–Zeilberger method. We argue, as in Section 3 below, that this is representative 
of a broader trend in the history of mathematics. In a related way, we further argue 
that: out of all of the proofs referenced above, Zeilberger’s computer proof may be 
seen as especially groundbreaking and representative of a paradigm shift.

2                                                     British Journal for the History of Mathematics



2. Survey
Each of the below subsections is devoted to a succinct description of a different proof 
of the Bauer–Ramanujan formula, and these subsections are more-or-less arranged in 
an appropriately chronological order.

2.1. Bauer’s Legendre polynomial-based proof

One of the most basic families of orthogonal polynomials is given by the Legendre 
polynomials, which may be defined according to the generating function expansion 
such that

1
��������������
1 − 2xt+ t2
√ =

􏽘1

n=0

Pn(x)tn. (2) 

The key to Bauer’s 1859 proof (Bauer 1859) of (1) is given by the Fourier–Legendre 
expansion such that

1
��������
1 − x2
√ =

p

2

􏽘1

n=0

(4n+ 1)

2n
n

􏼒 􏼓2

16n P2n(x). (3) 

In particular, the desired result follows from (3) by setting x = 0, according to the 
identity

P2n(0) = ( − 1)n

2n
n

􏼒 􏼓

4n . (4) 

There are many different ways of proving both (3) and (4), which nicely reflect the 
diversity of techniques involved in the subsequent proofs of the Bauer–Ramanujan 
formula, with reference to the below subsections. For example, Almkvist, in 2013, 
applied a different approach relative to Bauer to prove (3) (Almkvist 2013).

Mimicking Bauer’s notation, we write

1
����������
1 − a2x2
√ = A0P0(x)+ A2P2(x)+ · · · (5) 

for a2 ≤ 1 and for undetermined coefficients. As a consequence of the usual recur
rence relation satisfied by Legendre polynomials, referring to Rainville’s classic text 
(Rainville 1960, §10) for details, we have that

x
����������
1 − a2x2
√ =

􏽘1

n=0

2n+ 1
4n+ 1

A2n +
2n+ 2
4n+ 5

A2n+2

􏼒 􏼓

P2n+1(x), 

being consistent with the notation in (5). The desired evaluations for the scalar coeffi
cients in (5) were then obtained by Bauer by comparing the coefficients in Fourier– 
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Legendre expansions of 
�x

1 tf (t) dt and of (1 − a2x2)f (x) for f (x) = 1������
1− a2x2
√ , referring to 

Bauer’s original work and to the second author’s generalization based on Bauer’s 
proof for details (Levrie 2010).

As noted by Almkvist, the determination of the scalar coefficients in (5) for the 
a = 1 case required to prove the Bauer–Ramanujan formula is equivalent to the 
evaluation whereby

􏽚1

− 1

Pn(x)
��������
1 − x2
√ dx =

p

2m
m

􏼒 􏼓2

16m if n is even, with n = 2m,
0 if n is odd,

⎧
⎪⎨

⎪⎩
(6) 

according to the orthogonality relations for Legendre polynomials (Almkvist 2013). 
Almkvist provided an alternative proof of (6) using a manipulation of the generating 
function in (2). Yet another way of proving (6) would be given by rewriting Pn(x) 
within the integrand of (6) according to classically known finite binomial sum expan
sions for Legendre polynomials (Rainville 1960, §10), so as to obtain a finite hypergeo
metric identity that is routinely verifiable with the machinery of Wilf–Zeilberger (WZ) 
proof certificates (Petkovšek et al. 1996). This nicely connects with Zeilberger’s famous 
computer proof of the Bauer–Ramanujan formula, which we review in Section 2.4
below. For further research related to Bauer’s 1859 proof of (1), see Chan and 
Cooper (2012), Chu and Zhang (2014), Guo (2018) and Zudilin (2009b), for example.

Note that the series (1) appeared again in 1869 as Problem 929 in the Nouvelles 
Annales de Mathématiques, as a problem posed by Eugène Catalan, with the words: 
Prove this formula. In 1898 the same journal published Solutions to problems 
posed, and for Problem 929 no solution was given, only a reference to Bauer’s 
paper (Catalan 1869/1898). The series can also be found in the classical treatise by 
Todhunter dating from 1875 (Todhunter 1875), with reference to Bauer. See also 
the work of Glaisher (1905) on series for 1

p 
and 1

p2. Glaisher mentions the series and 
refers to Todhunter. Bauer’s series (1) is also listed in the book of mathematical for
mulas published by the Smithsonian Institute in 1922 (Adams and Hippisley 1922).

2.2. Dougall’s generalization and Hardy’s proof
Dougall’s 1906 research paper concerning Vandermonde’s Theorem (Dougall 1906) 
introduced an identity that provides an infinite family of generalizations of Bauer’s 
1859 formula, but it seems that Dougall was not aware of this. In particular, as 
noted by Ojanguren, with regard to Ojanguren’s 2018 proof of the Bauer–Ramanujan 
formula reviewed below (Ojanguren 2018), Dougall introduced and proved the iden
tity such that

􏽘1

n=0

( − 1)n(2n+ s)
s( )3n
1( )3n
=

sin (ps)
p

, (7) 

with the s = 1
2 case producing an equivalent form of (1).

We let the Pochhammer symbol be such that (x)0 = 1 and such that 
(x)n = x(x+ 1) · · · (x+ n − 1) for n [ N, and we adopt the notational convention 
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such that

a, b, . . . , g
A, B, . . . , C

􏼔 􏼕

n
=

a( )n b
( 􏼁

n· · · g
( 􏼁

n

A( )n B( )n· · · C( )n
. (8) 

By analogy with (8), we make use of the notational shorthand such that

G
a, b, . . . , g
A, B, . . . , C

􏼔 􏼕

=
G a( )G b

( 􏼁
· · ·G g

( 􏼁

G A( )G B( ) · · ·G C( )
, 

recalling the definition of the Γ-function whereby G(x) =
�1

0 ux− 1e− u du for <(x) . 0. 
Dougall’s formula reproduced in (7) was derived by setting z→ 1 and by setting y =  
−c in the identity (Dougall 1906) such that

􏽘1

n=0

( − 1)n c+ 2n
c

􏽑n− 1
i=0 (c+ i)

n!

􏽑n− 1
i=0 (x − i)

􏽑n− 1
i=0 (x+ c+ 1+ i)

×

􏽑n− 1
i=0 (y − i)

􏽑n− 1
i=0 (y+ c+ 1+ i)

􏽑n− 1
i=0 (z − i)

􏽑n− 1
i=0 (z+ c+ 1+ i)

= G
x+ c+ 1, y+ c+ 1, z+ c+ 1, x+ y+ z+ c+ 1

y+ z+ c+ 1, z+ x+ c+ 1, x+ y+ c+ 1, c+ 1

􏼔 􏼕

.

(9) 

An equivalent approach toward proving (1) via Dougall’s identity was given by Hardy. 
In this regard, what we have referred to as the Bauer–Ramanujan formula is high
lighted as Example 14 in Part II of Berndt’s texts on Ramanujan’s Notebooks 
(Berndt 1989, 23). As noted by (Berndt 1989, 24), Hardy introduced a proof of (1) 
as a direct consequence of a hypergeometric identity that may be referred to as Dou
gall’s theorem, with regard to the relevant references given in Berndt (1989, 24), 
including Hardy’s 1924 paper concerning Ramanujan’s discoveries (Hardy 1924).

Generalized hypergeometric series (Bailey 1935) may be seen as being of fundamen
tal importance in the application of special functions and are defined so that

pFq
a1, a2, . . . , a p

b1, b2, . . . , bq

􏼔 􏼌
􏼌
􏼌
􏼌 x
􏼕

=
􏽘1

k=0

a1, a2, . . . , a p

b1, b2, . . . , bq

􏼔 􏼕

k

xk

k!
.

Following Berndt’s text (Berndt 1989, 23–24), the Bauer–Ramanujan formula follows 
in a direct way from the identity such that

4F3

1
2 n+ 1, n, − x, − y

1
2 n, x+ n+ 1, y+ n+ 1

􏼔 􏼌
􏼌
􏼌
􏼌 − 1

􏼕

= G
x+ n+ 1, y+ n+ 1
n+ 1, x+ y+ n+ 1

􏼔 􏼕

(10) 

for <(2x+ 2y+ n+ 2) . 0 (Berndt 1989, 16). The hypergeometric identity in (10), in 
turn, is obtained by setting z→ 1 in the following 5F4-identity due to Dougall. The 
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following 5F4-identity is equivalent to the hypergeometric identity in (9):

5F4

1
2 n+ 1, n, − x, − y, − z

1
2 n, x+ n+ 1, y+ n+ 1, z+ n+ 1

􏼢 􏼌
􏼌
􏼌
􏼌
􏼌

1

􏼣

= G
x+ n+ 1, y+ n+ 1, z+ n+ 1, x+ y+ z+ n+ 1

n+ 1, x+ y+ n+ 1, y+ z+ n+ 1, x+ z+ n+ 1

􏼔 􏼕

.

(11) 

2.3. Pi and the AGM

Let the complete elliptic integrals of the first and second kinds be respectively defined 
so that

K(k) :=

􏽚p/2

0

du
��������������
1 − k2 sin2 u

􏽰 and E(k) :=

􏽚p/2

0

��������������
1 − k2 sin2 u

􏽰
du.

Ramanujan’s series for 1
p 

are intimately associated with elliptic integral singular values, 
i.e. expressions of the forms K(k) and E(k) that admit explicit evaluations in terms of 
the Γ-function for special arguments k. In this regard, the Clausen hypergeometric 
product identity allows us to explicitly evaluate, in terms of K and E, the generating 
function corresponding to the summand in (1). More explicitly, Clausen’s identity 
gives us that

􏽘1

n=0

1
2 , 1

2 , 1
2

1, 1, 1

􏼔 􏼕

n
xn =

4
p2 K2

�������������

1 −
�������
1 − x
√

2

􏽳⎛

⎝

⎞

⎠, (12) 

with the term-by-term derivatives of the summation in (12) yielding a combination of 
expressions involving K and E.

A standard textbook reference concerning Ramanujan’s series for 1
p 

is due to the 
Borwein brothers, as in their 1987 monograph on π and the AGM (Borwein and 
Borwein 1987). There may seem to be something of a ‘gap’ when it comes to the 
time period between Dougall’s/Hardy’s proof covered in Section 2.2 and the 
Borwein brothers’ text; this seems to reflect how all of Ramanujan’s series for 1

p 

were, famously, only formally and rigorously proved decades later by none other 
than the same Borwein brothers.

The Bauer–Ramanujan formula appears in (Borwein and Borwein 1987, 184) as a 
special case of an infinite family

1
p
=
􏽘1

n=0

( − 1)n
1
2 , 1

2 , 1
2

1, 1, 1

􏼔 􏼕

n
bn(N) g− 12

N

( 􏼁2n
, (13) 

writing

bn(N) := a(N)(k′N)− 2 + n
���
N
√ 1+ k2

N

1 − k2
N

􏼒 􏼓

, 
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referring to the Borwein brothers’ text for details. While the derivation of (13) requires 
modular forms associated with Ramanujan’s g-invariant, the N = 2 case of (13) can be 
proved in a much more self-contained way, and provides a remarkably different proof 
compared to Bauer’s proof reviewed in Section 2.1 and compared to Hardy’s proof 
reviewed in Section 2.2.

Let

Ks(k) :=
p

2 2F1

1
2 − s, 1

2+ s
1

􏼔 􏼌
􏼌
􏼌
􏼌 k2

􏼕

denote the generalized complete elliptic integral of the first kind (Borwein and Borwein 
1987, 178). A consequence of the hypergeometric product identity due to Clausen 
then gives us that

2
p

Ks(h)
􏼒 􏼓2

= 3F2

1
2 − s, 1

2+ s, 1
2

1, 1

􏼔 􏼌
􏼌
􏼌
􏼌 2hh′
( 􏼁2

􏼕

, (14) 

writing h′ :=
�������
1 − h2
√

(Borwein and Borwein 1987, 178–179). The s = 0 case of (14) 
then gives us an equivalent version of the power series identity in (12). By applying 
the classical differential relation

dK
dk
=

E − k′( )2K

k k′( )2 

together with term-by-term differentiation applied to (12), we obtain

􏽘1

n=0

1
2 , 1

2 , 1
2

1, 1, 1

􏼢 􏼣

n

n xn =

4E
��������
1−

����
1− x
√

2

􏽱􏼒 􏼓

K
��������
1−

����
1− x
√

2

􏽱􏼒 􏼓

p2
�������
1 − x
√

−

2
�������
1 − x
√

+ 1
( 􏼁

K2
��������
1−

����
1− x
√

2

􏽱􏼒 􏼓

p2
�������
1 − x
√ .

(15) 

By setting x = −1 in both (12) and (15), and by then applying the classically known 
modular relations

K i
k
k′

􏼒 􏼓

= k′K(k) and E i
k
k′

􏼒 􏼓

=
1
k′

E(k), 

along with a known singular value for K(
��
2
√
− 1) (Borwein and Borwein 1987, 139, 

298) together with a known relationship between singular values for K and singular 
values for E given by the elliptic alpha function (Borwein and Borwein 1987), this pro
vides another proof of the Bauer–Ramanujan formula.
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2.4. Zeilberger’s computer proof
WZ theory is of great importance in terms of what is meant by a computer proof or a 
computer-assisted proof, with the development of WZ theory having been of a ground
breaking nature in the history of automated reasoning, in the history of experimental 
mathematics, and with respect to many other fields. For a comprehensive treatment as 
to background material concerning WZ theory and its applications, we refer the inter
ested reader to the classic A = B text (Petkovšek et al. 1996), and we proceed to con
sider how WZ theory has been applied in relation to Ramanujan’s series for 1

p
. 

Notably, Zeilberger applied his EKHAD computer system to prove (1) via the WZ 
method in 1994 (Ekhad and Zeilberger 1994), and we review this WZ proof below.

A Ramanujan-type series is of the form

1
p
=
􏽘1

n=0

1
2

( 􏼁

n
1
s

( 􏼁

n 1 − 1
s

( 􏼁

n

1( )3n
zn(a+ bn), (16) 

for s [ {2, 3, 4, 6} and for parameters a, b, and z that are real and algebraic. 
Especially notable developments in the study of Ramanujan-type series and related 
series via WZ theory are due to Guillera, again with reference to the survey on Rama
nujan’s series for 1

p 
given by Baruah et al. (2009). In this regard, many of Guillera’s 

research contributions (Guillera 2006, 2016, 2010, 2013) may be seen as influenced 
by or otherwise closely related to Zeilberger’s WZ proof of (1). This is representative 
of the importance of Zeilberger’s WZ proof in the history of computer proofs, and 
motivates our review of it below.

Zeilberger proved, via the WZ method, the following infinite family of generaliz
ations of the Bauer–Ramanujan formula, with the n = − 1

2 case yielding the Bauer– 
Ramanujan formula:

G
n+ 3

2
3
2 , n+ 1

􏼔 􏼕

=
􏽘1

k=0

( − 1)k(4k+ 1)
1
2 , 1

2 , − n
1, 1, n+ 3

2

􏼔 􏼕

k
. (17) 

For the time being, we let n [ N0. For such values, the purported infinite series iden
tity in (17) is equivalent to the corresponding identity obtained by restricting the 
indices of the series in (17) so that k [ {0, 1, . . . , n}. By letting F(n, k) denote the 
summand of (17) divided by the left-hand side of (17), Zeilberger, using the 
EKHAD computer system, produced the computer-generated function

G(n, k) :=
(2k+ 1)2

(2n+ 2k+ 3)(4k+ 1)
F(n, k) 

according to the WZ method, so as to form the difference equation

F(n+ 1, k) − F(n, k) = G(n, k) − G(n, k − 1). (18) 

We find that the right-hand side of (18) telescopes under the application of summation 
operators with respect to k, so that 

􏽐
k F(n, k) is constant, with 

􏽐
k F(n, k) = 1 from 

the n = 0 case. By rewriting 
􏽐

k F(n, k) = 1 as 
􏽐n

k=0 F(n, k) = 1, and by rewriting this 
latter equality as 

􏽐1
k=0 F(n, k) = 1, an application of Carlson’s theorem (Almkvist 
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2013, 20–21) gives us that this final equality also holds for real values. So, by setting 
n = − 1

2, we obtain the desired result.

2.5. An FL-based method due to Baranov
What appears to be an overlooked or forgotten FL-based proof of the Bauer–Rama
nujan formula was given in a 2006 article by Baranov (2006). An incorrect version of 
Baranov’s formula

􏽘1

n=0

( − 1)n(4n+ 1)((2n − 1)!!)3

23n(n!)3 P2n( cos u) =
4K( sin u)

p2 (19) 

was given in Gradshtein and Ryzhik’s classic text (Gradshtein and Ryzhik 1994, 
1043), referring via (Adams and Hippisley 1922) to a paper by Hargreaves (1898, 
91). We find that the FL expansion in (19) provides an infinite family of generaliz
ations of the Bauer–Ramanujan formula, by considering the u = 0 case.

As described by Baranov, the FL expansion in (19) may be derived by integrating 
both sides of the equality

p
􏽘1

k=0

(2k+ 1)Pk(x)Pk(y)Pk(z)

= 2 cos (w − c) − cos l
( 􏼁− 1/2 cos l − cos (w+ c)

( 􏼁− 1/2

(20) 

for w − c , l , min {w+ c, 2p − w − c}, writing x = cosl and y = cosw and 
z = cosc. As noted by Baranov, the x = y = 0 case of (20) yields an equivalent 
version of the classical FL expansion in (3), recalling that (3) was the key to Bauer’s 
original proof of what we refer to as the Bauer–Ramanujan formula. This is represen
tative of ‘bookends’ that are formed in the course of the history of proofs of the Bauer– 
Ramanujan formula, and seems to touch upon an interdisciplinarity suggested by the 
dramatically different proofs of this formula that we review.

The triple Legendre polynomial identity in (20) was obtained by Baranov by 
setting m = l in

T(m) =
2
p

sin ((l+ m)/2)
������������������������������������������������
( cos (w − c) − cosm)( cosm − cos (w+ c))

􏽰

�������

sinm

sin3 l

􏽳

, 

where the operator T satisfies

􏽚w+c

w− c

sin ((n+ 1)(m − l))
m − l

T(m) dm = T(l)
􏽚w+c

w− c

sin ((n+ 1)(m − l))
m − l

dm, 

referring to Baranov’s work (Baranov 2006) for details.

2.6. An Eisenstein series-based proof due to Baruah and Berndt

Baruah and Berndt, in 2010, introduced and proved a remarkable variety of Ramanu
jan-type series for 1

p 
(Baruah and Berndt 2010). Baruah and Berndt’s Eisenstein-based 
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techniques (Baruah and Berndt 2010) may be seen as providing an historically notable 
advancement in the study of Ramanujan-type series. The foregoing considerations 
motivate the historical interest surrounding the Eisenstein series-based techniques 
applied (Baruah and Berndt 2010) to prove the Bauer–Ramanujan formula.

A key to Baruah and Berndt’s derivation of the Bauer–Ramanujan formula is 
given by the equalities

P e− 2p
�
2
√􏼐 􏼑
=

3

p
��
2
√ +

��
2
√
− 1

��
2
√

(1 − x2)

􏽘1

k=0

( − 1)k
1
2

( 􏼁3
k

1( )3k
Yk

2

=
3

p
��
2
√ +

1

2
��
2
√

􏽘1

k=0

( − 1)k
1
2

( 􏼁3
k

1( )3k
,

(21) 

where Eisenstein series-related notation involved in (21) may be given as follows 
(Baruah and Berndt 2010). Ramanujan’s Eisenstein series may be defined so that

P(q) := 1 − 24
􏽘1

k=1

kqk

1 − qk 

for |q| , 1. Singular moduli are denoted so that xn := x(e− p
�
n
√

), where x = x(q) is 
related to q according to one of the most important relationships in the study of ellip
tic functions, namely:

f2(q) = 2F1

1
2 , 1

2
1

􏼔 􏼌
􏼌
􏼌
􏼌 x
􏼕

, (22) 

where

f(q) :=
􏽘1

n=− 1

qn2
.

With regard to the notation in (21), we also set Yn := 4xn

(1− xn)2.

Baruah and Berndt’s derivation of the Bauer–Ramanujan formula is given by a 
combination of (21) and the n = 2 case of

P e− 2p
�
n
√􏼐 􏼑
=

1+ xn

1 − xn

􏽘1

k=0

(3k+ 1)( − 1)k
1
2

( 􏼁3
k

1( )3k
Yk

n . (23) 

Both (21) and (23) are derived via the relation

z2 =
1

1 − x

􏽘1

k=0

( − 1)k
1
2

( 􏼁3
k

1( )3k
Yk 

for 0 ≤ x ≤ 3 − 2
��
2
√

, writing z := z(q) = f2(q), Y := 4x
(1− x)2 and referring to Baruah 

and Berndt’s work (Baruah and Berndt 2010) for details.
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2.7. A translation method due to Aycock
In a 2013 paper, Aycock applied a so-called translation method via Pfaff’s classical 
transform

2F1
a, b
g

􏼔 􏼌
􏼌
􏼌
􏼌 x
􏼕

= (1 − x)− b 2F1
g − a, b

g

􏼔 􏼌
􏼌
􏼌
􏼌

x
x − 1

􏼕

(24) 

to formulate a new proof of the Bauer–Ramanujan formula (Aycock, unpublished). 
The classical identity in (24) together with the above referenced Clausen hypergeo
metric product identity give us that

2F1

1
4 , 3

4
1

􏼔 􏼌
􏼌
􏼌
􏼌 x
􏼕􏼒 􏼓2

= (1 − x)−
1
2 2F1

1
2 , 1

2 , 1
2

1, 1

􏼔 􏼌
􏼌
􏼌
􏼌

x
x − 1

􏼕

. (25) 

By applying the operator x x
dx · to both sides of the equality in (25), we obtain

􏽘1

n=0

n
􏽘n

k=0

1
4

( 􏼁

k
3
4

( 􏼁

k

1( )k

1
4

( 􏼁

n− k
3
4

( 􏼁

n− k

1( )n− k

xn

n!(n − k)!

= (1 − x)−
3
2

x
2

􏽘1

n=0

an
x

x − 1

􏼐 􏼑n
+
􏽘1

n=0

nan
x

x − 1

􏼐 􏼑2
􏼠 􏼡

, 

adopting Aycock’s notation whereby an =
(1
2)

3
n

(1)3
n
. Setting x = 1

2 and s = 1
4, we obtain

2 sin p
4

p
=

��
2
√

2

􏽘1

n=0

1
2

( 􏼁3
n

1( )3n
(4n+ 1)( − 1)n, 

according to the ‘translation’ identity

􏽘1

n=0

􏽘n

k=0

s( )k 1 − s( )k s( )n− k 1 − s( )n− k

1( )k 1( )n− k

n 1
2

( 􏼁n

n!(n − k)!
=

2 sin sp
p 

proved by Aycock, where, informally, the notion of ‘translation’ comes from the appli
cation of x d

dx · to a classical hypergeometric identity, with the effect of x d
dx · yielding a 

reindexing shift.

2.8. A translation method due to Cooper

In Cooper’s 2017 text (Cooper 2017) on Ramanujan’s theta functions, Cooper pro
vided a ‘translation’ method to obtain another original proof of the Bauer–Ramanu
jan formula. Starting with the hypergeometric transform such that

3F2

1
4 , 1

2 , 3
4

1, 1

􏼔 􏼌
􏼌
􏼌
􏼌 X

􏼕

=
�������
1 − x
√

3F2

1
2 , 1

2 , 1
2

1, 1

􏼔 􏼌
􏼌
􏼌
􏼌 x
􏼕

(26) 

for X = − 4x
(1− x)2, the application of the operator X

�������
1 − X
√

d
dX · = x d

dx · to both sides of 
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(26) yields the following (Cooper 2017, 626):

�������
1 − X
√ 􏽘1

n=0

1
4

( 􏼁

n
1
2

( 􏼁

n
3
4

( 􏼁

n

1( )3n
nXn

=
�������
1 − x
√ 􏽘1

n=0

1
2

( 􏼁3
n

1( )3n
nxn −

x

2
�������
1 − x
√

􏽘1

n=0

1
2

( 􏼁3
n

1( )3n
xn.

Following Cooper, we then set x→ − 1+ so that X → 1− , so that the left-hand limit 
can be explicitly determined using Cooper’s translation method given by the following 
result:

lim
x→1−

�������
1 − x
√ 􏽘1

n=0

1
2

( 􏼁

n s( )n 1 − s( )n

1( )3n
nxn =

sinps
p

.

The required right-hand limit can be evaluated in a direct way, yielding an equivalent 
version of the Bauer–Ramanujan formula (Cooper 2017, 627).

2.9. A telescoping approach
A 2018 research paper by Nimbran and the second author provided a new proof of the 
Bauer–Ramanujan formula as a main result (Levrie and Nimbran 2018). In this paper 
the authors show that the Bauer–Ramanujan formula is an immediate consequence of 
the Wallis product formula for π which can be rewritten as a series:

2
p
=

1 · 3
2 · 2
·

3 · 5
4 · 4
·

5 · 7
6 · 6
· · · = 1 −

1
4

􏽘1

n=0

1
2

( 􏼁

n
3
2

( 􏼁

n

(2)2
n

. (27) 

Using a telescoping technique, the Bauer–Ramanujan result follows.
We define

v(a, b) =
􏽘1

n=0

a( )n b( )n
a+ b( )2n

. (28) 

To use the telescoping effect, we note that the general term of the series at the RHS 
satisfies:

(a+ b − 1)
a( )n b( )n
a+ b( )2n

=
a( )n− 1 b( )n
a+ b( )2n− 1􏽼����􏽻􏽺����􏽽
=An− 1

−
a( )n b( )n+1

a+ b( )2n􏽼����􏽻􏽺����􏽽
=An

− b2 a( )n− 1 b( )n
a+ b( )2n 
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as can easily be verified. Using this and telescoping we can now rewrite (28) as:

v(a, b) = 1+
􏽘1

n=1

a( )n b( )n
a+ b( )2n

= 1+
1

a+ b − 1
A0 − b2

􏽘1

n=1

a( )n− 1 b( )n
a+ b( )2n

􏼠 􏼡

with A0 = b

=
a+ 2b − 1
a+ b − 1

−
b2

a+ b − 1

􏽘1

n=0

a( )n b( )n+1

a+ b( )2n+1 

or, since (b)n+1 = b · (b+ 1)n and (a+ b)n+1 = (a+ b) · (a+ b+ 1)n, as:

v(a, b) =
a+ 2b − 1
a+ b − 1

−
b3

(a+ b)2(a+ b − 1)
v(a, b+ 1).

Through the repeated application of this recurrence, starting with a = 1
2 and b = 3

2 
(Levrie and Nimbran 2018), we obtain the Bauer–Ramanujan formula as an immedi
ate consequence of (27):

2
p
= 1 −

1
4

v
1
2

,
3
2

􏼒 􏼓

.

2.10. Gosper’s acceleration method
A series acceleration method due to Gosper (1974) was applied by Ojanguren (2018) 
to obtain another proof of the Bauer–Ramanujan formula. Informally, Gosper’s 
method is given by ‘splitting’ every term in a series into two new terms and by then 
joining the latter term derived from the nth term in the original series with the 
former term derived from the (n+ 1)th term from the original series.

Ojanguren obtained a proof of Dougall’s generalization in (7) using a version of 
Gosper’s series rearrangement method. A slight modification of the method used sim
plifies the proof. Adapting Ojanguren’s work, we set E0 = 1 and

En =
s(1 − s)(1+ s)(2 − s) · · · (n − 1+ s)(n − s)(n+ s)

n!2 

for positive integers n, so that

lim
n→1

En =
sinps
p

(29) 

using Euler’s product formula for sin. Gosper’s method is as follows. We start with a 
series of the form

A(0)
0 + A(0)

1 + A(0)
2 + A(0)

3 + · · · + A(0)
n + · · · .
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Note that we can rewrite this series as a new series in the following manner:

􏽘1

n=0

A(0)
n = A0S(0)

0􏽼��􏽻􏽺��􏽽
=B0

+ (1 − S(0)
0 )A(0)

0 + S(0)
1 A(0)

1

􏽨 􏽩

􏽼���������������􏽻􏽺���������������􏽽
=A(1)

0

+ (1 − S(0)
1 )A(0)

1 + S(0)
2 A(0)

2

􏽨 􏽩

􏽼���������������􏽻􏽺���������������􏽽
=A(1)

1

+ · · · + (1 − S(0)
n )A(0)

n + S(0)
n+1A(0)

n+1

􏽨 􏽩

􏽼�����������������􏽻􏽺�����������������􏽽
=A(1)

n

+ · · ·

and this new series will converge faster than the original one if we choose the sequence 
of numbers S(0)

n in such a way that

lim
n→1

A(1)
n

A(0)
n

= lim
n→1

(1 − S(0)
n )A(0)

n + S(0)
n+1A(0)

n+1

A(0)
n

= 0.

We can then repeat the process, accelerating in a similar way the new series

A(1)
0 + A(1)

1 + A(1)
2 + A(1)

3 + · · · + A(1)
n + · · ·

using a sequence of well chosen numbers S(1)
n leading to

􏽘1

n=0

A(0)
n = B0 +

􏽘1

n=0

A(1)
n = B0 + B1 +

􏽘1

n=0

A(2)
n = · · · =

􏽘1

n=0

Bn.

Defining

R(k)
n =

A(k)
n+1

A(k)
n

and U (k)
n = 1 − S(k)

n + S(k)
n+1R(k)

n 

we have to choose S(k)
n in such a way that limn→1 U (k)

n = 0, if we want to accelerate the 
convergence of the series. Note that by the choices made we have that

U (k)
n =

A(k+1)
n

A(k)
n

and R(k+1)
n =

U (k)
n+1

U (k)
n

R(k)
n .

Furthermore

B0 = A(0)
0 S(0)

0 , Bn = A(0)
0 U (0)

0 · · ·U
(n− 1)
0 S(n)

0 (n ≥ 1).

Now, following Ojanguren, we start with (29) and make it into a series:

sinps
p
= E0 + (E1 − E0)

􏽼����􏽻􏽺����􏽽
=A(0)

0

+ (E2 − E1)
􏽼����􏽻􏽺����􏽽
=A(0)

1

+ · · · + (En+1 − En)
􏽼������􏽻􏽺������􏽽

=A(0)
n

+ · · ·
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with E0 = s and general term

En+1 − En = − s2 ·
(s)n+1(1 − s)n

(2)2
n

.

Note that

R(0)
n =

(n+ 1+ s)(n+ 1 − s)

(n+ 2)2 .

If we choose, as in the work of Ojanguren (2018), the value S(k)
n = an+ b, with a and b 

depending on k, and

R(k)
n =

(n+ 1+ s+ k)(n+ 1 − s)

(n+ 2+ k)2 (k ≥ 1), 

we have to take a = 1
k+1 and b = 2k+s+2

k+1 , and hence

S(n)
k =

n
k+ 1

+
2k+ s+ 2

k+ 1
.

This means that

U (k)
n = −

(k+ s+ 1)2(n+ 1+ s+ k)

(k+ 1)(n+ 2+ k)2 

and

Bn− 1 = ( − 1)n (s)3
n(2n+ s)

n!3 (n ≥ 1).

We conclude that Dougall’s formula (7) holds true:

sinps
p
= s+

􏽘1

n=1

Bn− 1 ⇒
sinps
p
=
􏽘1

n=0

( − 1)n (s)3
n(2n+ s)

n!3 .

Taking s = 1
2, we obtain the Bauer–Ramanujan series.

2.11. An inverse series relation due to Mishev

The first author has applied an inverse series-based identity due to Mishev (2018) so as 
to obtain a new proof of the Bauer–Ramanujan identity (Campbell to appear). A key 
to Mishev’s inverse series relation identity is given by Dixon’s theorem. More specifi
cally, the following terminating version of Dixon’s theorem (Bailey 1935, 13) is 
required to obtain Mishev’s expansion for the operator La:

3F2
a, b, − n

1+ a − b, 1+ a+ n

􏼔 􏼌
􏼌
􏼌
􏼌 1
􏼕

=
1+ a, 1+ a

2 − b
1+ a

2 , 1+ a − b

􏼔 􏼕

n
.
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Mishev’s inverse series relation may be formulated in the following way (Campbell to 
appear).

Theorem 2.1 (Mishev 2018) Let (xn:n [ N0) be a sequence of complex numbers, and 
let a [ C \ {0, − 1, − 2, . . . }. The equality

xn =
1

n!(a+ 1)n

􏽘n

k=0

a, 1+ a
2 , − n

1, a
2 , 1+ a+ n

􏼔 􏼕

k

􏽘k

ℓ=0

− k( )ℓ k+ a( )ℓxℓ (30) 

holds true.

We set xℓ = 1
(ℓ!)2 in Theorem 2.1, so that Gauss’ 2F1(1)-identity

2F1
a, b

c

􏼔 􏼌
􏼌
􏼌
􏼌 1
􏼕

= G
c, c − a − b
c − a, c − b

􏼔 􏼕

gives us that

4F3
a, a, − n, 1+ a

2
1, a

2 , n+ a+ 1

􏼔 􏼌
􏼌
􏼌
􏼌 − 1

􏼕

=
a+ 1( )n

n!
(31) 

for the cases whereby n is a nonnegative integer (Campbell to appear). Through an 
application of Carlson’s theorem, we find that (31) holds for complex values including 
n = − 1

2. So, by setting a = 1
2 and n = − 1

2, we obtain an equivalent form of the Bauer– 
Ramanujan formula.

3. Historical analyses and perspectives

One of the ‘oldest tricks in the book’ in the field of classical analysis is given by the 
interchange of limiting operations, and we argue, as below, that the history of the 
Bauer–Ramanujan formula is representative of this and of how modern and compu
ter-based approaches toward summation problems differ in a paradigmatic way. We 
argue that the history of the Bauer–Ramanujan formula may be used to illustrate a 
paradigm shift in the history of mathematics given by the advent of computer proofs.

The study of Legendre polynomials and expansions in terms of Legendre poly
nomials may be regarded as having been a popular topic within areas of mathematical 
analysis in the 19th century, and Bauer’s proof reviewed above is representative of this. 
Another popular topic in this time period and in the early 20th century is given by the 
development of generalized hypergeometric functions, and the proof chronologically 
following Bauer’s original proof, as reviewed above, is representative of this. Another 
popular topic, again in the history of mathematical analysis in the time periods under 
consideration, was given by the acceleration of the convergence of series, with particu
lar reference to the work of Kummer (1837) and of Markov in 1890 (Kondratieva and 
Sadov 2002). The advent of computers triggered Bill Gosper to write his paper about 
convergence acceleration (Gosper 1974). The Borwein brothers’ text on Pi and the 
AGM (Borwein and Borwein 1987) brought Ramanujan-type series back to attention. 
The WZ proof by Zeilberger of the Bauer–Ramanujan formula then paved the way 
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toward the modern era development of Ramanujan-type series, as in the work of Guil
lera considered below.

The proofs in our history can be divided into different types: 

. Legendre-related: Sections 2.1/2.5;

. Generalized hypergeometric functions: Sections 2.2/2.3/2.6/2.7/2.8/2.11;

. Convergence acceleration of series: Sections 2.9/2.10; and

. WZ: Section 2.4.

Recall the key to Bauer’s original 1859 proof, as given by the identity in (3). When 
dealing with identities involving infinite sums of orthogonal polynomials, the inter
changing of limiting operations is typically involved in a meaningful way, even at 
an implicit or ‘hidden’ level. In this regard, an interchange of this form is implicit 
in the derivation of (3).

We see that (3) is equivalent to

Pm(x)
��������
1 − x2
√ =

p

2

􏽘1

n=0

(4n+ 1)

􏼐
2n
n

􏼑2

16n P2n(x)Pm(x) 

for a given Legendre polynomial Pm(x). So, as suggested in (6), the derivation of the 
key to Bauer’s original 1859 proof relies on determining scalar coefficients an such that

Pm(x)
��������
1 − x2
√ =

􏽘1

n=0

anPn(x)Pm(x), (32) 

and thus an interchange of limiting operations naturally arises, in the following 
manner. To ‘isolate’ the coefficient an for the m = n case, we apply the integral operator �1
− 1 · dx to both sides of (32), yielding

􏽚1

− 1

Pm(x)
��������
1 − x2
√ dx =

􏽚1

− 1

􏽘1

n=0

anPn(x)Pm(x)

􏼠 􏼡

dx, (33) 

and we would proceed to argue that the limiting operators 
�1
− 1 · dx and 

􏽐1
n=0 ·may be 

reversed, so as to apply the orthogonality relations for Legendre polynomials to 
isolate am and to use known formulas for Pm(x) to evaluate the integral on the left 
of (33). The interchange of integration and infinite summation operations may be 
seen as being of even central importance within classical analysis, real analysis, and 
related areas such as measure theory, and this is evidenced by the importance of 
the Dominated Convergence Theorem and the Monotone Convergence Theorem in 
these disciplines. If we compare this to much later proofs of the Bauer–Ramanujan 
formula as in Zeilberger’s computer proof, then this supports our argument that 
the history of the Bauer–Ramanujan formula is representative of historical trends 
in the history of mathematics more broadly.

We see that the interchange of limiting operations again plays a key role in the next 
classical proof of the Bauer–Ramanujan formula covered in our survey. In Hardy’s 
proof via Dougall’s 5F4-identity, the interchange of limz→1 · and an infinite sum
mation operator corresponding to the 5F4-series in (11) provides the key step. 
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Jumping ahead in history to the Borwein brothers’ work on Ramanujan-type series, 
we again find that the interchange of limiting operations plays a key role, as in the 
term-by-term application of a differential operator to an infinite series indicated in 
(15). This leads us to the subsequent proof covered in Section 2.4, which, as con
sidered below, is in stark contrast to the preceding proofs, due to its innovative use 
of telescoping and due to its computer-based nature.

The history surrounding the Bauer–Ramanujan formula and how the proofs of 
this formula relate to one another both mathematically and historically may be 
seen as being indicative of important aspects of and developments within both classi
cal analysis and experimental mathematics. With regard to this former area, the inter
change of limiting operations may be seen as being central within virtually every area 
of mathematical analysis. Our above account of the history of the earlier proofs of the 
Bauer–Ramanujan formula shows how interchanging limiting operations is of basic 
usefulness throughout the history of analysis. Indeed, it is difficult to produce an 
analysis-based proof of the Bauer–Ramanujan formula without the use of the 
interchange of limiting operations. This reflects the radically different nature of 
Zeilberger’s computer proof relying on a discrete and telescoping-based approach, 
and this also reflects how the history of the Bauer–Ramanujan formula may be 
seen as ‘capturing’ broader aspects in the history of mathematics, as in a microcosm.

Observe the many different limiting processes being switched in the classical 
proofs of the Bauer–Ramanujan formula, reflecting the fundamentality and versatility 
of the interchange of limiting processes as a tool in the discipline of mathematical 
analysis and how the history of the Bauer–Ramanujan identity is representative of 
this. In our formulation of Bauer’s 1859 proof, an operator of the form 

�1
− 1 · dx is 

interchanged with an operator of the form 
􏽐1

n=0 · with the use of orthogonal poly
nomials, so that the Bauer–Ramanujan formula may be seen as an instantiation of 
the historically important role of orthogonal polynomials within areas of mathematics 
such as special functions theory. As above, the exchange of the order of limz→1 and an 
infinite summation operator is of key importance in Hardy’s proof, and the exchange 
of the differential operator d

dx · and 
􏽐1

n=0 · is required in our formulation of the 
Borwein brothers’ proof. So, for the three cases we have considered, an infinite sum
mation operator is interchanged with three different limiting operators: an integration 
operator, a limiting operation given by setting a variable to approach ∞, and a differ
ential operator. Again, this shows how the history of the Bauer–Ramanujan formula 
may be seen as a microcosm of the variety of techniques arising in classical analysis.

An historically significant aspect about the proof reviewed in Section 2.4 is given 
by its inherently ‘finite’ or discrete nature given by how this proof can be thought of as 
reducing the Bauer–Ramanujan formula to a finite sum proved via a computer-gen
erated discrete difference equation. Although Carlson’s theorem is required to gener
alize the discrete identity 

􏽐n
k=0 F(n, k) so as to allow for a non-integer argument n, 

this may be seen as something of a formality: Zeilberger’s proof is non-analytic in 
the sense that interchanges of limiting operations are not required and in the sense 
that it ultimately relies on the use of telescoping via a discrete difference equation. 
We argue, as below, that Zeilberger’s proof is representative of broader or ‘bigger 
picture’ changes when it comes to a paradigm shift in the nature of mathematical 
proofs over the centuries: Notably, this is representative of the importance of the 
advent of computer proofs and computer-based proofs and computer-assisted 
proofs in the history of mathematics.
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If we consider the time span covering the history of proofs of the Bauer–Ramanu
jan formula, dating from 1859 to the present as reviewed in Sections 1 and 2, the his
torical ‘gap’ suggested above between the classical analysis-based proofs from 1859– 
1924 and Zeilberger’s computer proof in 1994 may be seen as indicative of a paradigm 
shift in the history of mathematical proofs if we consider the given time periods in 
relation to what is usually considered as the first major result to have been initially 
proved via a computer-assisted proof, namely, the famous four colour theorem, as 
proved in 1976 by Kenneth Appel and Wolfgang Haken. The famous controversy 
resulting from the publication of this computer-assisted proof (Swart 1980) is in con
trast to how this proof is now widely accepted by the mathematical, scientific, and phi
losophical communities (Gonthier 2008), and this is representative of its innovative 
and groundbreaking nature. The foregoing considerations illustrate how Zeilberger’s 
computer proof may be seen as being of a similarly groundbreaking nature in the 
history of computer proofs.

Another way of illustrating how Zeilberger’s computer proof is representative of a 
paradigm shift is given by how this computer proof is closely related to an important 
development in the legacy of Ramanujan’s discoveries: The application of computer- 
based methods, especially Wilf–Zeilberger-based methods, in the determination of 
Ramanujan-type series. In this regard, the computer-based discoveries due to Guil
lera, via the Wilf–Zeilberger method, concerning Ramanujan-type series may be 
seen as especially notable in the history of Ramanujan-type series, and this is evi
denced by numerous mainstream news items concerning Guillera’s discoveries on π 
formulas (Ansede 2015; Cotera 2015; Población 2019; Sacristán 2016). Zeilberger’s 
computer proof of the Bauer–Ramanujan formula appears to be the first ‘purely’ 
computer proof or computer-generated proof of a Ramanujan-type series expansion 
for 1

p
, and hence its groundbreaking nature, in view of the subsequent history of com

puter-based derivations of Ramanujan-type series formulas.
Computer-assisted discoveries and computer-assisted proofs may be seen as being 

at the core of what is meant by the discipline of experimental mathematics, with refer
ence to a standard text on experimental mathematics (Borwein et al. 2004). The 
primary author of this textbook, Jonathan Borwein, has been described as a Renais
sance Mathematician in a Special Issue of a journal of the Mathematical Association 
of America (Bailey 2021), with explicit reference to the pioneering nature of Jonathan 
Borwein’s development of the field of experimental mathematics:

…Borwein did notable research in a wide range of fields, ranging from experimen
tal mathematics (in which he can rightly be regarded as a pioneer and leading 
exponent) and optimization to biomedical imaging, mathematical finance, and 
computer science (Bailey 2021, 773).

In a presentation on Computer-assisted Discovery and Proof by Jonathan Borwein, the 
‘Wilf–Zeilberger algorithm for proving summation identities’ was highlighted as one 
of the main instances of an algorithm involved in experimental mathematics (Borwein 
2006). This provides a further way of arguing based on the historical significance of 
Zeilberger’s WZ proof of the Bauer–Ramanujan formula, since this 1994 proof is 
one of the first published WZ proofs in history, and since the WZ method is regarded 
as a main instance of a method involved in the burgeoning field of experimental math
ematics. The renaissance-like nature associated with the period in the history of math
ematics involving the development of experimental mathematics is representative of 
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how computer-assisted proofs provide a foundation for a paradigm shift in mathemat
ics and beyond (Zeilberger 2005). More generally, Artificial Intelligence is widely 
recognized as being a basis of a paradigm shift (Cristianini 2014).

4. Conclusion

The historical analyses given above concerning the Bauer–Ramanujan formula may 
be seen as forming something of a foundation for a future study based on variants 
and generalizations of the Bauer–Ramanujan formula. In this regard, our explora
tions based on Mishev’s theorem, as reproduced in Theorem 2.1, have led us to dis
cover the following Bauer–Ramanujan-type formula:

5
6

3 �2
√ =

􏽘1

n=0

( − 1)n −
1
3 , 1

6 , 1
2

1, 4
3 , 11

6

􏼔 􏼕

n

4n+ 1( ). (34) 

The mysterious nature of the series in (34) is evidenced by how its partial sums are not 
evaluable in closed form. With regard to the classical proof of the Bauer–Ramanujan 
formula via Fourier–Legendre (FL) expansions reviewed in Section 2.1, it seems that 
it would not be possible to use a similar approach in the hope of proving (34), since 
there do not seem to be any known elementary functions that admit FL expansions 
with combinations of Pochhammer symbols as in (34). Remarkably, the Maple Com
puter Algebra System (CAS) actually is able to evaluate the series in (34), and this 
adds to the mystery of the evaluation in (34), since it is not at all clear how the speci
fied CAS software was able to determine a closed form for the series (34), noting that 
the Mathematica CAS is not able to evaluate this same series. This motivates a full 
exploration of (34) and its relation to the history of the Bauer–Ramanujan 
formula. We leave this to a separate project.
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