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Abstract. L.A. Shepp has posed aild analyzed the problem of optimal random drawinp with Jut 
replacement from an urn containing predetermined numbers of plus and minus balls. ;Here 
Shepp’s results are extended by improving the bounds on value; of penturbeu urns, deriving an 
exact algorithm for the urn values and computing the stopping boundary for urns of u-, tn 200 
balls. 

1. Introduction 

L.A. Shepp has posed the following problem [6, p. 999]: an urn con- 
tains m balls of value - 1 and p balls of value + 1 and one is allowed t(J 

draw balls randomly, without replacement, until one wants to stop. 
Which urns are favorable? That is, for what m and p is there a drawing 
strategy for which the expected total value of balls drawn is positive? 

More generally , what is the maximum expected value obtainable (the 
value V(ni, p) of the urn) and what strategy achieves it? 

The problem was considered by Shepp because of the connections 

he found with the ‘BP problem’ posed by Breiman [2] and studied 

by Chow and Robbins 133, Dvoretzky 143, Shepp [6], and others. It 
also serves as a prototype for a class of ‘random urn’ problems nrhich 
have applications in financial modeling [ 1 ] . 

After stating the problem, Shepp observed that an optimal strategy 
was to stop drawing as soon as the depleted urn had value zero and 
that the value of any specific urn could Se calculated by an easily-de- 
rived forward recursion.Shepp also proved that v(r;r, p + 1) > V(m, I=) 
by a randomi&-strategy argument and he pointed out that similarly 
V(m + J ,p) <, V(m, p)* Thus for each p there is a maximum m for 

* Original version received 12 November 197 I. 
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which V(;rrs, p) > 0, which Shepp denoted fl@). From t&e miiin resu.!ts 
of [ 61, he obtained the asy:mptotic formula 

where CY = 0.83992 .__ is the unique real root OF the integral equation 
(1.3) of [6] . Although for smaller values of p, p@) can be computed 
numerically tlsing the forward recursior:, Shepp noted that for larger p 
round-off would cause numerical &fficulties. 

In this paper, we elaborate on Shepp”s discussion of the problem and 
provide additional results. First ‘we give a table of the values P(m, p) 
for small m and p. Then we prove the three relations about adding balls 
referred to by Shepp, plus additional bounds; ho\Never, instead of a ran? 
donr device we else the recursion formula for a proof bly i;lduction. Next, 
we suhow that based on an interesting numerical property of the values 
V(n!, p), related to Pascal’s triangle, we can construct an efficient in- 
teger algorithm for determining the values and boundary points fl@). 
By using the algorithm to calculate the bour8dar*y for p ‘up to 108, we 
show that wit:!1 a small modification Shepp’s aqymptotic formula be- 
comes very accurate in this irangc::. Another finding is that for p < 100, 

only, the urn with m = 2 and p = I has b&h ‘draw’ and ‘don’t draw’ 
optimal strategies. Finally, we verify a comjectuye of H.C~. Pollak which 
gives an asymptotic jzxpression for V(m, p) for fixed m , 

2, The problem and recursivtr! solntion 

As described in [ 1, pp. 33 -34 1, V(m, p) denotes the value under 
optirGa1 play of an urn with rNz = RQ + p balls, m of value ---Ii and p of 
value + 1. The player is told .the composition (m, p) of the urn; then 
hc can draw from zero to n of the: balls, randomly, one a.t L time, with- 
out replace:ment. Thus he begins with all n in the urn and can stop any 
time, including before draving even one ball. His objective is to draw in 
such a way as to maximize his expected score upon stopping. 

Shepp’s ~:cursiofl formula for v&z, pj goes as follows [ 1, p. 473 . for 
the (m, p) urn, we draw a miprus Q3lf with probability m/n., which &es 
us -4 ajnd the opportunity to draw from the (m-1 ,p) urn, with value 
v(m- 1 ,p); whik drawing a plus ball with probability pit;r gives us + 1 
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and the reduced urn is the (m, p- 1) urn. Thus the total expected value 

E(m, p) of drawing from the (m, p) urn is 

(2) E(m, p) = (m/n)(-- 1 + V(m-- 1, p)) + (p/n) (+ 1 + V(m, ,p- 1)). 

Then, if E(m, p) > 0 we draw, so V(m, p) = E(m, p) > 0; and if 
E(m, p) < 0 we don’t draw, so V(m, p) = 0. If E(m, p) = 0 (on which 

more later) we can either draw or not, and V(m, p) = 0. Thus, 

(3) V(m, p) = max (0, E(m, p)) 2 E(m, p) . 

For the values of urns with n balls, one needs only thle values of urns 
with n-1 balls, so a table of values for small m and p is easily construct- 
ed; see Table I [ 1, p. 331. We see that many urns with m > p have a 

positive value. This initially surprising conclusion illustrates the advan- 
tage of the option TV quit while ahead. 

Table 1 
I’(m p) 

-- --.--_ 

9 9 8 10 7.20 6.31 

4 5 1 4 5 4.17 3.20 3.33 2.40 2.54 1.66 

5.43 4.58 3.75 2.95 :!.21 1.53 -- 
8 8 7.11 6.22 5.35 4.49 3.66 2.86 2.11 1.43 0.841 

7 7 6.13 5.25 4.39 3.56 2.76 2.01 1.34 0.75 0.30 

6 6 5.14 4.29 3.45 2.66 1.91 1.23 0.66 0.23 0 

&us) 1.00 1.79 0.44 ---- 1.12 0.55 0.07 0.15 0 0 0 0 0 

3 3 2.25 1.50 0.85 0.34 0 0 0 0 0 

2 2 1.33 __ 0.67 0.20 ; 0 0 0 0 0 0 

1 1 0.50 0 0 0 0 0 0 0 0 

000 0 0 0 0 0 0 0 0 

I _----- - 

01 2 3 4 5 6 7 8 3 

m(minus) 

Three conclusions about the local rela cionships of the values are 

clearly illustrated by Table 1. These are: 

(A) adding a plus ball never hurts: V(m, p+l) 2 V(m, p); 
(B) adding 3 minus ball never helps: V(m+l ,p) 5 V(m, p); 
(C) adding both a minus and a plus ball1 never Ihurts: 

V(m+ 1, p+ 1) *L Y(m, p) l 
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Of the threk, (C) is the only surprise, since it is not at al1 intuitive that 
‘diluting’ a ($25) urn (S/6 plus) to a (1 Q,30) urn (3/4 plus) should. en- 
hance the walue. In [ 61, Shepp cited all these relationships, proved (A) 
by a randoinized-strategy argument, and observed that (B) would be 
handled th,: same way. In the next section, we use (2) and (3) t> ob- 
tain rigorous proofs of (C) and slipktly stronger versions of (A) and 
(B), which can also be derived by randomizing strategies. (However, 
our method of proof generalizes more easily to the cases studied in [ 11.) 

It has been conjectured that increasing the number of balls ir an urn 
while maintaining or increasing the proportion of plus balls should in- 
crease tire value of the urn. When the urn is at least half plus bails, this 
conclusion is a consequence of (A) and (C), since maintaining the pro- 
portion may be viewed as adding equal numbers of plus and minus 
balls, the aldd!ing some extra plus balls. But when m > p, it is possible 
to increase the number of balls and maintain proportions, but decrease 
the value of the urn. For +exa.mple, in Table 1 we see that V(3,2) = 0.20, 
V(6,4) I= 0.0’7 and V(9,6) = 0.0. The failure of the conjecture when 
m > p may be considered as a corollary to the parabolic shape of the 
stopping boundary which is revealed by (1). 

13. Local. value rella tionships 

We improve on inequalities (A), (B) and (C) in the following theo- 
rems. 

Tbeorern 3.1 (a) If E(m, p) 2 0, then V(m, pi-l) >_ V(m, I;) -k l/(n + 1). 
ib‘j V(m,p+l)i V(m,p)+ 1. 

Proof is by induction on IZ =: m + p. Clearly, the theorem is true 
fo?; n = II and we assume that it is true for r:. Then applying (2) and (3) 
to E(na, ,p + 1) and multiplying by n f 1 yields 

(4) 

For part (G), if E(=, p) 2: 0, then V(m, p) = E(m, p), so multiplying (2) 
by ~1 and adding V(,r?z, p) to both sides yklds 

(5) (n,+l) V(m, p) = m(-1 + V(m- 1, p))+p(l C V(m, p--l))+ Y(m, p). 
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Subtracting (5) from (4) gives 

(6) (n+l){V(m,p+l)-V(m,p)) 2 m{V(m-l,p+l)-V(m-B,p)} 

+pIV(md - V(m,p-1)) + 1. 

By the induction hypothesis and the fact that values are never negative, 
the two expressions in braces on the right-hand side of (6) must be non- 
negative. Thus 

(fl+lHV(m,p+l)- V(m,p)} >, 1 

when l$m, p) 2 0, which establishes part (a). For part t(b), consider 
that it is trivially true if V(m, p+ 1) = 0, so we may assume for the pr~f 

that V(m, p+ 1) = E(m, p+ 1) and that (4) i: an equality. However, we 
don’t known if V(m, p) = 0, so (5) is replacl:d by an inequality. Then 
subtracting the modified (5) from the modified (4) gives (6) with the 
direction of the inequality reversed. Then tae induction hypothesis is 
that expressions in braces on the right-hand side do not exceed 1, so 

WlHV(m,p+l)-V(nz,p)} <M+p+ 1 =n+l, 

as claimed in (b). 

Theorem3.2.(3) !fE(m+l,p)> 0, then V(w,p)> V(m+l,p)+l/(,n+l). 

(b) V(m,p)<_ V(m+l,p)+ 1. 

Proof is similar to that of Theorem 1. Again, the theorem is clearly true 

for n = 1. For (a), subtracting 

(n+l) V(m+l,p) = (n+l)E(m+1,p) 

from 

(it+ 1) V(m, p) 2 nE(m, ,p) + VW p) 

gives 

(‘7) (n+l){V(m,p)-V(m+l,p)) 2~ Mm-l,p)-V(m,p)} 
+p{V(m,p-1)-V(m+l,p-1)) 4 1, 
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adogcws to (69, and so (a) hold2 by induction. For part (b), we obtain 
(7) with the direction of the ineqxality reversed, as in Theorem 3.1 3 

and (bj is proved by inJwct:ion. 

Corollary 3.3 (Sheppj. V(m+ 1 ,p:i 2 V(h, p) < V(m, p+ 1). 

Proof follows from 3.1 (a) and 3.2 (a) if the left-hand sides 
otherwise the nonnegativity of values is all that is required. 

are positive, 

Corollary 3.4 [ 1, p. 471. Under o! ltimab play, the last baU drawn is i$ 
wuys a plus. 

Proof. df a minus ball is drawn from the (m, p) urn under optimal play, 
then we must have had m > 0 anu E(m, p) 2 0. But the reduced ur;I is 
tIhe (m-- 1 ,p) urn, and by Theorem 3.2 V(m- 1, p) .> V(m, p) 2 0, so 
another ball wih be drawn. Thus a minus ball is never the last drawn. 

With both Theorems 3.1 and 3.2 availabie, we can strengthen them so 
as to obtain Limiting relationship? for large p. Somewhat an;tlogousfy to 
$@j, we define r(m) to be thz /ec:rt p for which E(m, p) Z 0. Then it 
follows from Theorem 3.1 (a) th: t V(m, pJ > 0 for p :> r(m), whiic 
from Theorem 3.2 (a) we see that T(m) is s nondecreasing function of 
m. 

Theorem 3.1. (c) Ifp 2 r(m), ther 

V(m,p+lJ)_ V(m,p)+ (p-~(m)+l)/(n+l). 

F’ro~f‘ is by double inductio:n, first on m and then on ‘0. When m = 0, 
then r@) = 0 and p = n, so the fraction equals 1 and equality holtis 
far all p. Thus assume that the theorem is true for m- I. When p = r(m), 
Elk theorem reduces to Theorem 3.1 (a). If the theorem is true for 
~-1 2 Pv(m), then in (61 we have 

V@z, p)- V(m, p-l ) 2 ((p- 1 j--T(m)+ 1)/n = @-~(m))f~2, 
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sosincen=m+p, 

(n+l){V(m,P+l)-V(m,p)} 2 (m+p)@-Y(m))J(ri + 1;) 
= p-~(m)+ 1 

which yields the theorem. 

A similar proof, which we omit, gives 

Theorem 3.2. +) If p 2 r(m+ I), then 

Um,P)2 V(m+l,p)+@+m+l)+ l)/(n+l). 

(If the randomized-strategy proof is used, 3.1 (c) and 3.2 (c) hold be- 

cause if k draws are guaranteed, the difference in urn values is at least ’ 

k/(n+ I).) Theorems 3.1 (c) and 3.2 (c) when combined with Theorems 

3.1 (b) and 3.2 (b) yield the following corollary. 

Corollairy 3.5. lim { V(m, p+ I)- V(m,p)3 = lim { V(m,p)- Wn+ 1 ,p)l = I!_. 
P3” P-+w 

The next lemma and theorem, although Iperhaps of some interest in 
themselves, are primarily directed toward the proof of (C) given in The- 
orem 3.8. We omit the procff of the lemma:, which is a straightforward 
induction based on (2). 

Lemml3.6. V(l,p)=p2/@+l)>p-1. 

Theorcjm 3.7. if E(m, p) 2 0, then V(m+ 1 ,p) + V(m, p+ 1) > 2V(m, p). 

hoof is again by induction, and again, the theorem holds for n = ;. The 
case m = 0 is sF ecial and is dispos,ed of by the lemma. since V( 1, p) + 

V(0, p-H) > (p- 1) + (p + 1) = 2p = 2 V(0, p). Thus for the rest of the 
proof we may assume that 112 > 0. For the induction step, we subtract 
twice (n+l) V(in, p) = r&m, p) + V(m, p) from the sum of 
(n+I) V(m+l, p) 2 (n+l)E(m+l , p) and (rz+l) V(m, p+l) ? (n-1-1 !E(m, P+I) 

to obtain 
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(rZ+l)[V(m+l,p)+V(m,p+1)--2V(m,p)) 
12 m{V(m,p)+ V@n- l,p+l)-2V(m-1,p)) 

+ p{V(m+l,p-1)+ V(m,p)-2V(m,p-1)) I 

By the induction hypothesis or the nonnegativity of values, the last ex- 
pression in braces is nonnegative, and by Theorem 3.2, V(m- l? p) 
> V(m, a) 2 0, SD the middle braced term is positive by the induction 
hypothesis. Since m I> 0, the left-hand side: must be positive, which is 
the corltent of th.e th,eorem. 

Theorem 3.8. Ij‘lE(m, p) 2 Oj then V(m+ l,p+ 1) > V(m, p). 

Proof is by induction, as usual, and as u: ual the theorem is trivial for 
n = 1. For the induction step, we subtract (n -+ 2) V(m, p) = nE(i Y, p) 
+2V(m,p)from(n-+2)V(nt+l,p+l)> (n+2)E(.~+l,p+lj 53 obtain 

(n-t_2>CV(m+l,p+l)-V(m,p)) iL m{V(m,p+l)-ir(,-l,p)} 
+ p { V(m+ 1 ?p)- V(n2, p- 1)) 
+ (V(m+l,p)+V(m.,~:+l) 

- 2V(m,p)I . 

By the induciion hypothesis or nonnegativity of values, the two r:riddle 
?raced exprc4ons are nonnegative, and by Theorem 3.7 the last c,.p:es- 
sion is positive + so the left-hand side must be positive also, wh+h z)roves 
the theorem. 

In [ 1 I 9 we discuss the generalized problem of optimal drawing with- 
out replacement from a ‘random urn’, o+re for which the number of balls 
n is known, butI the division of the n bal s ‘between plus and minus ones 
is specified by dnly a probability distrib~It.ion.. Analogs of (.A): (B) and 
(C) can be state41 ijra terms of the effect CE? the vaSuc of adding a plus ba!l, 
a minus ball, or both to such a random urn, It is curious that, for the 
analogs, the truth of (B) is virtually I cosollary to Shepp’s proof of (B) 
in the ‘known-urn case, (A) is still true but is much more difficult to 
prove, and (C) is false in general. 
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4. An integer ailgorithm for V(m, p) 

Consider now the problem of evaluating numerically the functions 
v(m, p) and p(p) for large values of m and p. The: use of floating-point 
arithmetic not only leads to the accumulation of round-off error, but 
since the forward recursion involves subtraction ithere is great danger of 
losing accuracy through cancellation of significant digits. This is parti- 
cularly serious in the case of /3@) since it is precisely at p(p) that the 
subtracted quantities will be nearly the same. To aggravate matters, the 
‘principle of smooth fit’ [ 5,6] assures us that V(WZ, p) will be nearly 
zero and hence numerically sensitive in a wide area around the bound- 
ary as well as at boundary itself. Thus floating-point arithmetic is most 
inappropriate for investigating &J). 

Other methods are available, however, since it is obvious that all the 
arithmetic is rational and that V(m, p) is always rational. In fitct, 
(nl+p)! V(wz, p) = V(m, p) is always an integer, since multiplying (2) 
and (3) by n ! = (m +p)! yields 

(8) ~(m,p)=max(0,(r,;z+p--h.)!@-m)+m~(m-l,p)+pli”(m,p-! )I. 

THUS we could compute Y (uzz, F) using only integer arithmetic and divide 
by (m+p)! if V(m, p) itself were desired. For (3(p) we would only need 
v(m, p), since V’(m, p) and V(m, p) are zero simultaaf,ously, aind know- 
ing where v(m, p) is zero is all that is needed for &Y). But using V’(m, p4 
to calculate p(p) for large p would still be very difficult due to the rapid 
growtth of n !; for instance, V’( 5,s) already exceeds 4,0(20,000. The 
necessity cf doing multiplication of large integers is another complication. 

What we are leading up to is a .much more efficient integer :Jgorithm 
related to and using Pascal’s triangle, or the binomial coefficients. To 
point up the parallelism we adopt the nonstandard notation 

(m+p)! 
C(m, p) = (m,‘p) = -p 

m!sp! l 

The ‘Pascal’s triangle’ recurrence then becomes 

w C(m, p) = C(m- 19 p) + UrJl* p- 1) ’ 
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The following observation is the key to the sllgorithm. 
? 

, 
l’?reorern 4.1.. B(m, p) = tY(m, p) V(m, p) is aa integer. 

Proof is by induction on 3 = m + p. The case n = 1 is trivial since V(O,l) 
and V( 1,O) are integral. Assuming validity for n- 1, we multiply 62) and 
(3) by C<m, p) to obtain 

B(m,p) = max{O,C(m,y~i(,~J.n)(-l+V(m-1,~)) 
+ C(m, pl4pln)(l+ VW4 p- 1))l . 

T’hen, since C(m, p)(m/n ) = C(m- 1, p) and C(m, p)(p/n) = C(m, p- I), 

we have 

(10) B(m#) = nrax{O,,[C~(m,p- l)--C’(m- l,p)] +B(m- l,p)+B(m,p-1)). 

Thus by induction B(m, ~2) is integral. 

Equations (9) and (10:) form the basis of a multiplication-free integer 
algorithm for computing V(m, p) and p(p), and the size of the integm is 
considerably less t,han those appearing in (8); for example, B(S,S) is 
c:ly 282!. 

Zhe discovery of Theorem 4.1 was much more round-about than is 
indicaj ccl by the :brief‘ proof. Logically, it is derived from Theorem 4 
of [ l] :, which described an algorithm for computing the value of the 
‘random urns’ referred to earlier. In the algorithm, for each aall between 
0 and YB the probability P(m) of m is divided by (i) := C(m, n--m), and 
then the value is computed from the quotients by a succession of sub- 
tractions, additions and applications of the ‘max {0,x}’ operator. When 
P(r;r*) ,4 1 for one m* and the rest are zero, it is immediate that the re- 
sulting value must be a fr,actioz with denominator C(m*, n-m*)i. 

To ennphasize the connections with Theorem 4 of [ 1 ] and Pascal’s 
triangle, we define 

A@% p) = C(m, p- 1)--C(m- 1, p) . 

Then &w, p) inherits the Pascal recurrence (9), 

.A(m, p) =A(m,-1 \ + A(m, p-l) 
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Table 2 
Ah p) 

9 

8 

7 

6 

5 
(p%s) 4 

3 

2 

1 

0 

1 8 35 110 275 572 1001 1430 1430 0 

1 7 27 75 165 297 429 429 0 -I 43;o 

1 6 20 48 90 132 132 0 429 --143iD 

1 5 14 28 42 42 0 -13: -429 -1001 

1 4 9 14 14 0 -42 -132 -297 -572 

135 5 0 --14 -42 -90 -165 -:275 

1 2 2 0 -5 -14 -28 -48 -75 -110 

1 1 0 _2 -5 -9 -14 -20 -27 -35 

1 0 -1 -2 --3 -4 -5 -6 -7 -8 

0 -1 -1 -1 -1 -1 -1 -1 -1 -1 
L -. - 

012 345 6 7 8 9 

m (minus) 

but has initial. vakes A( 1,O) = - 1, A(0, 3 ) = 1 instead I.~,f the bjinomial 

C( 1 ,O) = C(O,l) = 1. Our integer algorithm is then described by the fol- 
lowing theorem. 

Theorem 41.2. Set A(m, p) = B(m, p) = 0 whenever m or p is negutive, 
andsetA(O,O)=O,A(l,O)=-landA(O,l]= l.IfA(m,p)= 
A(m-1,~) + A(m, p-l) when m + p > 1 and B(m, p) = max (0, A(m,, p) 
+ B(m- 1, p) + B(m, p- 1 )}, then B(m, p) = C(m, p) V(m, p). 

9 

8 

7 

16 

5 
(PPUS) ,a 

.3 

2 

1 

0 

Table 3 
B(w P) 

~- 

9 81 396 1388 3885 9165 18760 33796 53683 74131 

8 64 280 882 2222 4708 8594 13606 18457 20448 

7 49 189 527 1175 2189 3457 4583 4851 3421 

6 36 120 290 558 882 1136 1126 69’7 0 

5 25 70 142 226 282 254 122 0 0 

4 16 36 58 70 -G 14 0 0 0 

3 9 15 17 12 0 0 0 0 0 

3 4 4 <L < 0 0 0 0 0 0 

1 r 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 cl 0 
-. -_-- 

012 3 4 5 6 7 8 9 

m (minms) 

-i 
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Proof foii uws from Theorem 4.1 ,and the fact that 

.&I, p) == C(m, p- 1) - C(m-1 ,p). 

The vah.ws of A(m, p) and B(n2, p) for m, p < 10 are given in Table3 
. 

2 and 3. 

5. Numerical results on the boundary 

As described in the introduction, Shepp’s original question was, 
“Which urns are fatrora’ble?” That is, what is p(p)? 

Ann R, Martrn has calculated 13(p) for p <, 100 on a Honeywell 
635 computer, using the algorithm of Theorem 4.2 and extende.d-:>reci- 
sion integer operations. We find that for 2 5 p <, 100, an urn is favor- 
able if and only if 

(11) m C p + 0.83992&&0.1427. 

A less ‘diljtal’ form of the right-hand side of (11) is 

where a = 0.83992 . . . is the same as in (l)., and c: must satisfy 

to insure the correctness of (11) and (12) for 1~ = 7 and p = 88. The con- 
stant c exists by only a narrow margin since x &F@! - 11 exceeds 

, 
x 4207-3 only for 

i x > 0.839909, 
_ 

and the a:Sbwable range of c is but 1 O-4. 
We mai put (11) and (12) in terms of p’(p) to obtain a remarkable 

sequel to phepp’s formula (1). The: comp:lication is that &P) is integral 
while (12% is not. Thus our numerical finding is that Tar 2 I p 5 100, 
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where [x] denotes the integral part of X. If the fractional part of ‘; E 2) 
is denoted by fo1), then setting e(p) = -(c+~@))/$@ gives a pzritct 
match with (1). 

The only exception found for (13), namely p = 1, may really not be 
an exception at all, since (13) ‘fails’ there in a noteworthy way. The 
validity of ( 13) for p = 1 would indicate that (m, p) = (2,l) is a favorable 
urn, whereas no strategy for this urn gives a positive pay-off; that is, 
V(2,l) = 0. Thus not drawing at all is an optimal strategy for the (2,1) 
urn, as it is for all urns with value zero. But since E(2,l) = 0, an expect- 
ed value of zero may be obtained by drawing as well as not drawing; in 
fact, ‘draw until you get a plus’ is also an optimal strategy for the (2,1) 
urn. We will call an urn with E(m, p) = 0 a neutral urn, since drawing 
from it may included or omitted from an optim>al strategy as one 
chooses. In the integer algorithm, it is easy to check for E(m, p) = 0, 
so our calculation of p(p) yielded another finding: for p <, 100, there 
is no neutral urn other than the (2,l) urn. (In fact, we conjecture, but 
are unable to prove, that the (2,1) urn is the only one.) Thus if a ‘favor- 
able’ urn is redefined as one from which it is optimal to draw, or equh- 
alently one for which E(m, p) 2 0, then (13) describes favorable urns 
for all p <, 100. 

Our calculations extended only to p = 100 because that was a con 
venient goal, not because of any problems with the algorithm The 
largest integer encountered at that point was only about 70 decimal 
digits, and the cost of the computer run was less than 10 dollars. 

6. B(m, p) asa polynomial 

In Table 3, H.O. Pollak noted that for each m the positive vakues of 
B(m, p) match an (m+ l)st degree polynomial in p which diffe,rs from 

P(m, p) = p(p-m + 0 C(m, P)l(P + 0, 

only in the terms of lowest degree. (In Table 3, B(m, p) = P(m, p) for 
m = 0,1,2 and for m = 3 is off by only 2.) If true in general, as con- 
jectured by PoBlak, V(m, p) would asymptotically equal 

Rm, pW(m, p) = (p-m) + m/@ + 1) . 
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The following theorems verify thes’e conjectures 
First, we no’ie that C(m, p) is an lnth degree polynomial in p, thus 

A@,p) =C(m,p-l)-C(m-1,~) is also. Furthermore, if p 2 r(m), then 

(142 B(m,p)-B(m,p-l)=A(m,p) +B(m-1,~). 

Theorem 6.1. B(m, p) k: a polynomial of (:m+ l)St degree in p fiw 
p 2 r(m)- 1. 

Proof. ObGously, B (0,~) = p and by Leinma 3.6 B( 1 ,p) = p2. Thus 
we assume that B(m- 1 ,p) is a polynomial of degree m in p for 
p 2 y(m-l)- 1. Then (14) holds when p 2 y(m) 2 rim--1) so for 
p 2 y(m) the right-hand side of ( 14) is a polynomial of degree m in p. 
Thus the first differences of B(m, p) follo~w an mth degree polynomial, 
hence B(m, 2) itself must be an (m + l)st degree polynomial, determined 
by its first differences up to the constant term. The constant we establ- 
ish by setting B(m, y(m) - 1) = 0. Thus B(nr, p) is given by the polynom- 
ial when F 2 r(m) - 1. 

It looks like we might need to know r(m) beforehand in order to de- 
termine B(m, p), but we do not, for the next theorem shows that r(m) 
is simply the least p for which the right-hand side of (14) is nonnegative. 

Theorem 6.2.. p 2 y(m) if and only if Aim, p) -$- B(m- 1 ,p) 2 0. 

hof. Ifp > y(m), then E(lr, p-l :I> 0 and so Vim, p) > V(m, p- 1) 
by Theorem 3.1 a But B(m, p) = C(m, p) Vim, p) and C(m, p) > C(m,p- 1) 
> 0, hence l?(m, p) > B(m, p-l). She (14) applies, both sides must be 
positive. If p = y(m!) then E(m, p-l) < 0, ,and so B(m, p-l) = V(m,p-1) 
= 0. But i 14) holds, and B(m, p) 2 0, hence both sides of (14) are non- 
negative. 

If Aim, p) + B!m- 1, p) 2 0 then since B’(m, p-- 1) 2 0 we have 

C(m, p) E(m, p) = Aim, p)+B(m--1 ,p)+B(m, p-l) 2 0. 

Since C(m p) > 0, we have E(m, p) 2 0 and thus 12 2 y(m). 

Next we vercfy Pollak’s conjectured asymptotic form for B(m, p). 
P(m, p) is an (m+ 1 jst degree polynomial in p she p+ 1 is always a fac- 
tor of C(m, p). 
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Theorem 6.3. For p 2 r(m)- 1, B(m, p) = p(m, p)+ Q(m, p), where 
Q(m, pj = 0 for m = 0,1,2 and Q(m, p) is zn (m-3jrd degree polynom- 
ialinpform> 3. 

Proof. We use the identitv . 

P(m, p) = A(m, p) + P(m- 1, p) .t- P(m, p- 1). 

Substituting the formula for A(m, p) and the hypothesized formula for 
B(m, p) into (14) yields the condition 

(15) Q(m, PI - Q(m, p- 1) = Q(m--- 1, p) l 

The proof that Q(m, p) = 0 for m = 0,1,2 is obtained from a comparison 
of Table 3 with P(m, p), since kth degree polynomials which agree at 
k + 1 places are identical. We find that Q(3, p) = 2 and Q(4, p) = ‘& + 4, 
so Q(m, p) is an (m-3 jrd degree polynomial for m = 3,4. The proof for 
higher values of m follows by induction from (15) as in the proof of 
Theorem 6.1. 

Corollary 6.4. For fixed m, V(m, p) = (p-m) + m/(p+ 1) + O(p-3)a 

Finally we note that for each i 

Qi(m, p) = C(m-i, p) 

is an (m-i)fh degree polynomial in p which satisfies ( 15). Thus, if we 
define C(Z, p) = 0 for I < 0, we may expand Q in a Qi series with the 
ifh coefficient set at m = i as follows: 

Q = ‘EQ3 + 4Q4 + 6Q, + 22Q, + . . . 

The 2-4-6 sequence is merely fortuitous, as no overall pattern emerges 
from the coefficients., 
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