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ON A SIMPLE OPTIMAL STOPPING PROBLEM
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Abstract. L.A. Shepp has posed and analyzed the problem of optimal random drawing without
replacement from an urn containing predetermined numbers of plus and minus balls. Here
Shepp’s results are extended by improving the bounds on value; of peiturbea urns, deriving an

exact algorithm for the urn values and computing the stopping boundary for umns of up to 200
balls.

1. Introduction

L.A. Shepp has posed the following problem {6, p. 399]: an urn con-
tains m balls of value —1 and p balls of value + 1 and one is allowed to
draw balls randomly, without replacement, until one wants to stop.
Which urns are favorable? That is, for what m and p is there a drawing
strategy for which the expected total value of balls drawn is positive?
More generally , what is the maximum expected value obtainable (the
value V' (m, p) of the urn) and what strategy achieves it?

The probiem was considered by Shepp because of the connections
he found with the ‘ESP pioblem’ posed by Breiman [2] and studied
by Chow and Robbins [3], Dvoretzky [4], Shepp [6], and others. It
also serves as a prototype for a class of ‘random urn’ problems which
have applications in financial modeling {1].

After stating the problem, Shepp observed that an optimal strategy
was to stop drawing as soon as the depleted urn had value zero and
that the value of any specific urn could be calculated by an easily-de-
rived forward recursion.Shepp also proved that V(m, p+ 1) = V(mn, r)
by a randomized-strategy argument and he pointed out that similarly
Vim+1,p) < Vim, p). Thus for each p there is a maximum m for

* Driginal version received 12 November 1971.
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which ¥(m, p) > 0, which Shepp dencted f(»). From the main resu!ts
of [6], he obtained the asymptotic formula

8)) B(p) = prav2p+e(p)/2p, pl_i.".l e(p) =G,

where « = 0.83992 ... is the unique real root of the integral equation
(1.3) of {6]. Although for smaller values of p, f(p) can be computed
numerically using the forward recursion, Shepp noted that for larger p
round-off would cause numerical difficulties.

In this paper, we elaborate on Shepp’s discussion of the prablem and
provide additional results. First we give a table of the values V{(m, p)
for small m and p. Then we prove the three relations about adding balls
referred tc by Shepp, plus additional bounds; however, instead of a ran-
dom device we use the recursion formula for a proof by induction. Next,
we show that based on an interesting numerical property of the values
V(m, p), related to Pascal’s triangle, we can construct an efficient in-
teger algorithmn for determining the values and boundary points 8(p).
By using the algorithm to calculate the bour.dary for p up to 103, we
show that with a smail modification Shepp’s asymptotic formula be-
comes very accurate in this range. Another finding is that for p < 100,
only the urn with m = 2 and p = 1 has both ‘draw’ and ‘don’t draw’
optimal strategies. Finally, we verify a conjecture of H.C. Pollak which
gives an asymptotic expression for V(m, p) for fixed m.

2. The problem and recursive solution

As described in [ 1, pp. 33-34], V(m, p) denotes the value under
optimal play of an urn with i1 = i + p balls, m of value -1 and p of
value + 1. The player is told the composition (m, p) of the urn; then
he can draw from zero to n of the balls, randomly, one at a time, with-
out replacement. Thus he begins with all # in the urn and can stop any
time, including before drav.ing even one ball. His objective is to draw in
such a way as to maximize h's expected score upon stopping.

Shepp’s recursion formula for V(m, p) goes as follows [1, p. 47] . for
the (m, p) urn, we draw a miuus ball with probability m/n. which gives
us —-1 and the opportunity to draw from the (m—1, p) urn. with value
V(m—1,p); while drawing a plus ball with probability p/n gives us + 1



2. The problem and recursive solution 299

and the reduced urn is the (;n, p—1) urn. Thus the total expected value
E(m, p) of drawing from the (m. p) urn is

2) E(m, p) = (m/n)(--1+ V(m-1, p)) + (p/n)(+ 1 + V(m, p—1)).

Then, if E(m, p) > O we draw, so V(n, p) = E(m, p) > 0; and if
E(m, p) < 0 we don’t draw, so V(m, p) = 0. If E(m, p) = 0 (on which
more later) we can either draw or not, and V(m, p) = 0. Thus,

3) V(m, p) = max {0, E(m, p)} = E(m, p) .

For the values of urns with z balls, one needs only the vaiues of urns
with n—1 balls, so a table of values for small m and p is easily construct-
ed;see Table 1 [1,p.33]. We see that many urns with m > p have a
positive value. This initially surprising conclusion illustratcs the advan-
tage of the option to quit while ahead.

Table 1
V(m, p)

810 7.20 6.31 5.43 458 3.75 295 221 1.53
711 622 535 449 3.66 2.86 2.11 1.43 0.84
613 525 4.39 356 276 2.01 1.34 0.5 0.30
514 429 345 266 1.91 1.23 066 023 0
4.17 333 254 179 1.12 0.55 015 0
320 240 1.66 1.00 044 007 0
225 1.50 085 034 0 0 0
1.33 06.67 020 O 0
050 0 0 0 0
0 o0 o0 o

(plus)
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Three conclusions about the local relationships of the values are
clearly illustrated by Table 1. These are:

(A) adding a plus ball never hurts: V(m, p+1) 2 V(m, p);

(B) adding a minus ball never helps: V(m+1,p) < V(m, p);

(C) adding both a minus and a plus ball never hurts:

Vim+1,p+1) 2 V(m,p).
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Of the tiree, (C) is the only surprise, since it is not at all intuitive that
‘diluting’ a (5,25) urn (5/6 plus) to a (10,30) urn (3/4 plus) should en-
hance the value. In [6], Shepp cited all these relationships, proved (A)
by a randomized-strategy argument, and observed that (B) could be
handled th: same way. In the next section, we use (2) and (3) to ob-
tain rigorous proofs of (C) and slightly stronger versions of (A) and
(B), which can also be derived by randomizing strategies. (However,
our method of proof generalizes more easily to the cases studied in [1].)
It has been conjectured that increasing the number of balls ir an urn
while maintaining or increasing the proportion of plus balls should in-
crease tire value of the urn. When the urn is at least half plus bails, this
conclusion is a consequence of (A) and (C), since maintaining the pro-
portion may be viewed as adding equal numbers of plus and minus
balls, the adding some extra plus balls. But when m > p, it is possible
to increase the number of balls and maintain proportions, but decrease
the value of the urn. For example, in Table 1 we see that V(3,2) = 0.20,
V(6,4) = 0.07 and V(9,6) = 0.0. The failure of the conjecture when
m > p may be considered as a corcllary to the parabolic shape of the
stopping boundary which is revealcd by (1).

3. Local value relationships

We improve on inequalities (A), (B) and (C) in the following tkeo-
rems.

Thi:eorem 3.1 (a) If E(m, p) > 0, then V(m, p+1) > V(m, p)+ 1/(n+1).
by V(m, p+1)< V(m, p)+ 1.

Proot is by induction on n = m + p. Clearly, the theorem is true

for n = | and we assume that it is true for . Then applying (2) and (3)
to E(m, p+ 1) and multiplying by » + 1 yields

C)) (n+1) Vim, p+1) 2 m(-1+V(m—1,p+ 1))+ @+ 1)1+ V(m, p)).

For part (2), if E(n, p) > 0, then V(m, p) = E(m, p), so multiplying (2)
by n and adding V(r, p) to both sides yields

(5) {nt1) Vm, p) = m(—1+¥(m—1,p))+p(1 + V(m, p—1))+ ¥(m, p).
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Subtracting (5) from (4) gives

(6) (n+1){V(m, pt1)-V(m,p)} 2 m{V(m-1, p+1)-V(m-1,p)}
+p{V(m,p) — V(im,p—1)} + L.

By the induction hypothesis and the fact that values are never negative,
the two expressions in braces on the right-hand side of (6) must be non-
negative. Thus

(m+D{V(im,p+1)-V(m,p)} 2> 1

when E{m, p) > 0, which establishes part {(a). For part (b), consider
that it is trivially true if V(m, p+1) = 0, so we may assume for the proof
that V(m, p+1) = E(m, p+1) and that (4) ic an equality. However, we
don’t known if V(m, p) = 0, so (5) is replac:d by an inequality. Then
subtracting the modified (5) from the modified (4) gives (6) with the .
direction of the inequality reversed. Then the induction hypothesis is
that expressions in braces on the right-hand side do not exceed 1, so

r+D){Vm,p+t1)—-V(im,p)} <m+p+tl=n+],
as claimed in (b).

Theorem 3.2. (2) If E(m+1,p) > 0, then V(n, p) 2 V(m+1,p)+1/(n+1).
(b) V(m,p)< V(im+1,p) + 1.

Proof is similar to that of Theorem 1. Again, the theorem is clearly true
for n = 1. For (a), subtracting

(n+1) V(m+1,p) = (n+1)E(m+1,p)

from
(n+1) V(m, p) 2 nE(m, p) + V(. p)
gives
) (n+ 1) {V(m,p)—V(m+1,p)} 2m (V(r—1,p)—V(m, p)}

+p{Vim,p—1)-Vim+l,p—1)} +1.
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aralogous to (6), and so (a) holds by induction. For part (b), we obtain
(7) with the direction of the inequality reversed, as in Theorem 3.1,
and (b) is proved by inJuction.

Corollary 3.3 (Shepp). V(m+1,p3 < V(m, p) < V(m, p+1).

Froof follows from 3.1 (a) and 3.2 (a) if the left-hand sides are positive,
otherwise the nonnegativity of values is all that is required.

Corollary 3.4 [1,p.47]. Under o,'timal play, the last ball drawn is «l-
ways a plus.

Proof. if a minus bail is drawn frcm the (m, p) urn under optimal play,
then we must have had m > 0 anu E(m, p) 2 0. But the reduced ura is
the (m—1,p) urn, and by Theorem 3.2 V(m—1,p) > V(m,p) 2 0, so
another ball wili be drawn. Thus 2 minus ball is never the last drawn.

With both Theorems 3.1 and 3.2 availabie, we can strengthen them so
as to obtain limiting relationships for large p. Somewhat analogously to
A(p), we deline y(m) to be thz lecst p for which E(m, p) 2 0. Then it
follows from Theorem 3.1 {a) thct V(m, p) > 0 for p > y(m), whilc
from Theorem 3.2 (a) we see tha. y(m) is a nondecreasing function of
m.

Theorem 3.1. (c) If p = y(m), then
Vim, p+1) > V(m, p) + (p—y(m)+1)/(n+1).

Proot is by double induction, first on m and then on p. Whenm =0,
then y(in) = 0 and p = n, so the fraction equals 1 and equality holds

for all p. Thus assume that the theorem is true for m—1. When p = y(m),
the theorem reduces to Theorem 3.1 (a). If the theorem is true for

p—1 = 7y(m), ther in (6) we have

Vim—1,p+1)—V(m—1,p) 2 (p—y(m—1)+1)/n> (p—y(m))/n

and

Y, p)—V(m, p—1) 2 ((p—1)—y(m)+1)/n = (p—y(m))/r,
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so sincern =m +p,

(n+D){V(m, p+1)=V(m, p)} = (m+pY(p—y(m))/(n + 1)
= p—y(m)+1

which yields the theorem.
A similar proof, which we omit, givss
Theorem 3.2. <c) If p > y(m+ 1), then
V(m,p) 2 V(im+1,p)+(p—y(m+1)+ D/(n+1).

(If the randomized-strategy proof is used, 3.1 (c¢) and 3.2 (c) hold be-
cause if k draws are guaranteed, the difference in urn values is at least
k/(n+1).) Theorems 3.1 (c) and 3.2 (c) when combined with Theorems
3.1 (b) and 3.2 (b) yield the following corollary.

Corollary 3.5. lim {V(m,p+1)—V(m,p)} = lim {V(m,p)—V(m+1,p)}=1.
preo p-ree

The next lemma and theorem, although perhaps of some interest in
themselves, are primarily directed toward the proof of (C) given in The-
orem 3.8. We omit the procf of the lemma, which is a straightforward
induction based on (2).

Lemma 3.6. V{1,p)=p?/(p+1)>p—1.
Theorem 3.7. {f E(in, p) > 0, then V(m+1,p)+ V(m, p+1)>> 2V(m, p).

Proof is again by induction, and again, the theor=m holds fci n = (. The
case m = 0 is special and is disposed of by the lemma. since (1, p) +
V0, pt1)> (p—1) + (p+ 1) = 2p = 2V(0, p). Thus for the rest of the
proof we may assume that m > 0. For the induction step, we subtract
twice (n+1) V(m, p) = nE(m, p)+V(m, p) from the sum of

(n+D) V(m+1, p) 2 (n+1) E(m+1, p) and (n+1) V(. p+1) 2 (n+DE(m, p+t)
to obtain
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(n+1)(V(m+1,p)+V(m, p+1)—2V(m, p)}
> m{V(m, p)+ V(m-1,p+1)-2V(m—1,p)}
+ p{V(m+1,p-1)+ V(m, p)—2V(m, p—-1)} .

By the induction hypothesis or the nonnegativity of values, the last ex-
pression in braces is nonnegative, and by Theorem 3.2, V(m—1,p)

> V(m, p) 2 0, so the middle braced term is positive by the induction
hypothesis. Since m > 0, the left-hand s'de must be positive, which is
the content of the theorem.

Theorem 3.8. If E(m, p) 2 O, then V(m+1,p+1) > V(m, p).

Proof is by induction, as usual, and as u: ual the theorem is trivial for
n = 1. For the induction step, we subtract (n+2) V(m, p) = nE(in, p)
+2V(m, p) from (n+2) V(im+1,p+1) > (n+2)E(x+1,p+1) io obtain

(n+2){V(m+1,p+1)-V(m,p)} =2 m{V(m, p+1)—V(m—1,p)}
+p{V(m+1,p)-V(m, p—1)}
+ {V(m+1,p)+V(m.r+1)
—~2V(m, p)} .

By the induciion hypothesis or nonnegativity of values, the two raiddle
traced expressions are nonnegative, and by Thecrem 3.7 the last <..pres-
sion is positive, so the left-hand side must be positive also, which proves
the theorem.

In [1], we discuss the generalized probiem of optimal drawing with-
out replacement from a ‘random urn’, o1e for which the number of balls
n is known, but the division of the # bal s between plus and minus ones
is specified by daly a probability distributicn. Analogs of (A), (B) and
(C) can be stated in terms of the effect ¢n the vaiue of adding a plus ba'l,
a minus ball, or both to such a random urn. It is curious that, for the
analogs, the truth of (B) is virtually & coroliary to Shepp’s proof of (B)
in the known-urn case, (A) is still true but is much more difficult to
prove, and (C) is false in general.
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4. An integer algorithm for V(m, p)

Consider now the problem of evaluating numerically the functions
V(m, p) and B(p) for large values of m and p. The use of floating-point
arithmetic not only leads to the accumulation of round-off error, but
since the forward recursion involves subtraction there is great danger of
losing accuracy through canceilation of significant digits. This is parti-
cularly serious in the case of f(p) since it is precisely at f(p) that the
subtracted quantities will be nearly the same. To aggravate matters, the
‘principle of smoot fit’ [5, 6] assures us that V(m, p) will be nearly
zero and hence numerically sensitive in a wide area around the bound-
ary as well as at boundary itself. Thus floating-point arithmetic is most
inappropriate for investigating B(p).

Other methods are available, however, since it is obvious that all the
arithmetic is rational and that V(m, p) is always rational. In fuct,
(m+p)! V(m, p) = V' (m, p) is always an integer, since multiplying (2)
and (3) by n! = (m+p)! yields

(8) V'(m,p)=max{0,(rtp--1)! (p—mytm V' (m—1 pypV (m,p—1}.

Thus we could compute v (#, p) using only integer arithmetic and divide
by (m+p)! if V(m, p) itself were desired. For 8(p) we would only need
V'(m, p), since V'(m, p) and V(n, p) are zero simultan.ously, and know-
ing where V(m, p) is zero is all that is needed for B(p). But using V'(m, p;
to calculate B(p) for large p would still be very difficuit due to the rapid
growth of r!; for instance, ¥'(5,5) already exceeds 4,000,000. The
necessity of doing multinlication of large integers is another complication.

What we are leading up to is a much more efficient integer ulgorithm
related to and using Pascal’s triangle, or the binomial coefficients. To
point up the parallelism we adopt the nonstandard notation

+p)!
Com,py = (nrey = TP
" m'p!

The ‘Pascal’s triangle’ recurrence then becomes

(9) C(m, p) = C(m—1,p) + C(m, p—1) .
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The following observation is the key to the algorithm.

DR ;
Theorem 4.1. B(in, p) = C(n, p) V(m, p) is an integer.

Proof is by induction on » = m + p. The case n = 1 is trivial since V(0,1)
and ¥(1,0) are integral. Assuming validity for n—1, we multiply (2) and
{2y % n) ta nhtal

n
R’ ) U.’ U'(.lﬁi,.y] W U VAL

B(m, p) = max {0,C(m, p3in/m(—1+V(m—1,p))
+ C(m, p)(p/n)(1+ V(m, p—1))} .

Then, since C(m, p)(m/n} = C(m—1, p) and C{m. p){p/n) = C(m, p—1),
we have

(10) B(m,p) = max{0,[C(m,p—1)—C(m—1,p)] +B(m—1,p)+8(m,p—1)}.
Thus by induction B(m, p) is integral.

Equations {9) and (10) form the bLasis of a multiplication-free integer
algorithm for computing V(m, p) and f(p), and the size of the integers is
considerably less than those appearing in (8); for example, B(5.5) is
cly 282.

‘The discovery of Theorem 4.1 was much more round-about than is
indicaied by the brief proof. Logically, it is derived from Theorem 4
of [ 1], which described an algorithm for computing the value of the
‘random urns’ referred to earlier. In the algorithm, for each m between
0 and n the probability P(m) of m is divided by (], ) = C(m, n-—-m), and
then the value is computed from the quotients by a succession of sub-
tractions, additions and applications of the ‘max {0, x}’ operator. When
P(r2*) = 1 for one m* and the rest are zero, it is immediate that the re-
sulting value must be a fraction with denominator C(m*, n—m™).

To emphasize the connections with Theorem 4 of [1] and Pascal's
triangle, we define

A(m, p) = C(m, p—1)-C(m—1, p) .
Then A(m, p) inherits the Pascal recurrence (9,

A(m,p)=A(m—-? >+ A(m,p-1)
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Table 2
A(m, p)
9{1 8 35 110 275 572 1001 1430 143C 2
8/1 7 27 75 165 297 429 429 0 —1430
7|1 6 20 48 0 132 132 0 429 -1430
6|1 5 14 28 42 42 0 -132 —429 100
p 5|1 4 9 14 0 -42 -132 -297 -572
) 41y 3 5 5 0 -14 42 90 -165 -275
301 2 2 0 -5 -14 -28 —48 -75 -110
201 1 0 2 -5 -9 -4 20 =27 35
1/t 0 -1 -2 -3 4 -5 -6 -7 -8
00 -1 -1 -1 -1 -1 -1 -1 -1 -
o1 2 3 4 5 6 1 8 )
m (minus)

but has initial vaiues A(1,0) = —1, A(0,1) = 1 instead of the binomial

307

C(1,0) = C(0,1) = 1. Our integer algorithm is then described by the foi-

lowing theorem.

Theorem 4.2. Set A(m, p) = B(m, p) = 0 whenever m or‘p is negative,

and set A(0,0)=0,A4(1,0)=—1and A(0,1)=1.If A(m,p) =
Am—1,p)+ A(m,p—1) when m + p > 1 and B(m, p) = max {0, A(m, p)
+ B(m—1,p) + B(m, p—1)}, ther B(m, p) = C(m, p) V(m, p).

Table 3

B(m, p)
9|9 81 396 1388 3885 9165 18760 33796 53683 74131
8|8 64 280 882 2222 4708 8594 13606 18457 20448
707 49 189 527 1175 2189 3457 4583 4851 3421
5|6 36 120 290 558 882 1136 1126 697 0
P 5|5 25 70 142 226 282 254 122 0 0
Py 414 16 36 58 70 56 14 0 0 0
313 9 15 17 12 o0 0 0 0 0
22 04 4 2 0o o0 0 0 0 0
1/t 1 0 o 0o o0 0 0 0 0
olo o 0o 0o 0 0 0 0 0 0
01 2 3 4 5 6 7 8 9

m (minus)
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Proof foiiows from Theorem 4.1 and the fact that
A(m, p) = C(m, p 1) - Cm-1,p).

The values of A(m, p) and B(m, p) for m,p < 10 are glven in Tables
2 and 3.

5. Numerical results on the boundary
As described in the introduction, Shepp’s original question was,
“Which uns are favorable?” That is, what is f{p)?
Ann R, Mart'n has calculated f(p) for p < 100 on a Honeywell
635 computer, using the algorithm of Theorem 4.2 and extended-vreci-
sion integer operations. We find that for 2 < p < 100, an urn is favor-
able if and only if
an m < p+0.83992\/2p—0.1427.
A less “digital’ form of the right-hand side of (11) is
12) ptav2p—c,
where a = 0.83992 ... is the same as in (1), and ¢ must satisfy
a2 T -3<c<av2-88 - 11
to insure the correctness of (11) and (12) for p = 7 and p = 88. The con-
stant ¢ exists by only a narrow margin since x /2-88 —11 exceeds
x v/2+7-3 only for
i x > 0.839909,
and the aﬁ';?lc»wable range of ¢ is but 10-4.
We ma?% put (11) and (12) in terms of f(p) to obtain a remarkable

sequel to ’ahepp s formula (1). The complication is that B(p) is integral
while (12} is not. Thus our numerical finding is that for 2< p < 100,

(13) Bp)=Ip+avp—cl.
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where [x] denotes the integral part of x. If the fractional part of {12)
is denoted by f(p), then setting e(p) = —(c+f(p))/\/2p gives a periect
matchwith (1). |

~ The only exception found for (13), namely p = 1, may reaily not be
an exception at all, since (13) ‘fails’ there in a noteworthy way. The
validity of (13) for p = 1 would indicate that (m, p) = (2,1) is a favorable
urn, whereas no strategy for this urn gives a positive pay-off; that is,
V(2,1) = 0. Thus not drawing at all is an optimal strategy for the (2,1)
urn, as it is for all urns with value zero. But since E(2,1) = 0, an expect-
ed value of zero may be obtained by drawing as well as not drawing; in
fact, ‘draw until you get a plus’ is also an optimal strategy for the (2,1)
urn. We will call an urn with E(m, p) = 0 a neutral urn, since drawing
from it may included or omitted from an optimal strategy as one
chooses. In the integer algorithm, it is easy to check for E(m, p) =0,

so our calculation of B(p) yielded another finding: for p < 100, there

is no neutral urn other than the (2,1) urn. (In fact, we conjecture, but
are unable to prove, that the (2,1) urn is the only one.) Thus if a ‘favor-
able’ urn is redefined as one from which it is optimal to draw, or equiv-
alently one for which E(m, p) > 0, then (13) describes favorable urns
for all p < 100.

Our calculations extended only to p = 100 because that was a con-
venient goal, not because of any problems with the algorithm:. The
largest integer encountered at that point was only about 70 decimal
digits, and the cost of the computer run was less than 10 dollars.

6. B(m, p) as.a polynomial

In Table 3, H.O. Pollak noted that for each m the positive values of '
B(m, p) match an (m+1)* degrec polynomial in p which differs from

P(m, p) = p(p—m + 13 C(m, p){(p + 1),
only in the terms of lowest degree. (In Table 3, B(m, p) = P(m, p) for

m = 0,1,2 and for m = 3 is off by only 2.) If true in general, as con-
jectured by Pollak, V(m, p) would asymptotically equal

P(m, p)/C(m, p) = (p—m)+m/(p+1) .
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The following theorems verify these conjectures.
First, we note that C(m, p) is an,m“? degree polynomial in p, thus
A(m, p) = C(m, p—1)—C(m—1, p) is also. Furthermore, if p = y(m), then

(14)  B(m,p)—B(m, p—1)= A(m, p) + B(m—1,p) .

Theorem 6.1. B(m, p) is a polynomial of (im+1)% degree in p for
pZy(m)—1.

Proof. Obviously, B(0,p) = p and by Lemma 3.6 B(1,p) = p%. Thus

we assume that B(m—1,p) is a polynomial of degree m in p for

p 2 v(m—1)—1. Then (14) holds when p > y(m) 2 y(m--1), so for

p 2 y(m) the right-hand side of (14) is a polynoinial of degree m in p.
Thus the first differences of B(m, p) follow an m™ degree polynomial,
hence B(m, ) itself must be an (m +1)** degree polynomial, determined
by its first disferences up to the constant term. The constant we establ-
ish by setting 8(m, y(m)—1) = 0. Thus B(m, p) is given by the polynom-
ial when p 2 y(m)—1.

It 1coks like we might need to know vy(in) beforehand in order to de-
termine B(m, p), but we do not, for the next theorem shows that y(m)
is simply the least p for which the right-hand side of (14) is nonnegative.

Theorem 6.2. p > v(m) if and only if A(m, p)+~B(m-1,p) > 0.

Proof. If p > «y(in), then E(m, p—1) > 0 and so ¥(m, p) > V(m, p—1)

by Theorem 3.1. But B(m, p) = C(m, p) V(m, p) and C(m, p)> C(m,p—1)
> 0, hence E(m, p) > B(m, p—1). Since (14) applies, both sides must be
positive. If p = y(m) then E(m, p—1) < 0, and soc B(m, p—1) = ¥(m,p—1)
= 0. But (14) holds, and B(m, p) > 0, hence both sides of (14) are non-
negative.

If A(m, p)+ B(m—1,p) > 0 then since B{m, p--1) > 0 we have
C(m, p) E(m, p) = A(m, p)+B(m—1,p)+B(m,p—1) > 0.
Since C(m, p) > 0, we have E(m, p) > 0 and thus p > y(m).
Next we ver«fy Pollak’s conjectured asymptotic form for B(m, p).

P(m, p) is an (m+1)* degree polynomial in p since p+1 is always a fac-
tor of C(m, p).



References 311
Theorem 6.3. For p > y(m)— 1, B(m, p) = P(m, p)+ Q(m, p), where
Q(m, p) = 0 for m = 0,1,2 and Q(m, p) is 1n (m—3)" degree polynom-
ialin p form 2 3.
Proof. We use the identity

P(m, p) = A(m, p) + P(m—1, p) -+ P(m, p—1).

Substituting the formula for A(m, p) and the hypothesized formula for
B(m, p) into (14) yields the condition

(15) Q(m, p) — Q(m, p—1) = Q(m—1, p) .

The proof that Q(m, p) = 0 for m = 0,1,2 is obtained from a comparison
of Table 3 with P(m, p), since k! degree polynomials which agree at

k + 1 places are identical. We find that Q(3,p) =2 and Q(4,p) = 22 +6,
so @(m, p) is an (m-3)d degree polynomial for m = 3,4. The proof for
higher values of m follows by induction from (15) as in the proof of
Theorem 6.1.

Corollary 6.4. For fixed m, V(m, p) = (p—m) + m/(p+1) + O(p—3).
Finally we note that for each i
Q;(m, p) = C(m—i, p)
is an (m—i)th degree polynomial in p which satisfies (15). Thus, if we

define C(l, p) = 0 for! < 0, we may expand Q in a Q; series with the
ith coefficient set at m =i as follows:

Q=203 +40Q, +6Q5 +22Q¢ + ...
The 2-4-6 sequence is merely fortuitous, as nc overall pattern emerges
from the coefficients..
References

[1] W.M. Boyce, Stopping rules fo1 selling bonds, Bell J. Econ. Mgmt. Sci. 1 {1970) 27--53.
[2] L. Breiman, Stopping rule problems, in: E.F. Beckenbach, ed., Applied combinatoriai ma-
thematics (Wiley. New York, 1964).



312 : "W.M. Boyce, On a simple ‘dptx'mal sz‘opping problem

~[31 Y.8.Chow and H. Robbms, On opm' al stoppmg rules for Sn- n, lllinms J Math 9 (1965)
. 444-454, S
\[4] A. Dvoretzky, Exlstence and propert 2§ of certam optnmal stoppmg rules, Proc. Flt'th Berke-

ley Symp. Math. Statist. Prob. 1 (196 /) (Univ. of California Press) 441-452. :
51 B.L Grigelionis and A.N. Shiryaev, O Stefan’s problem and optimal stoppmg rules for
Markov processes, Teor. Verojatnost. } Primemen 11 (1966) 611-631,
[6] L.A. Shepp, Explxclt solutions to soms problems of optimal stopping, Ann. Math. Statist. 40
(1969) 993-1010.



