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Abstract

For given positive integers a and b, an [a, b]-parking function of length n is a sequence (x1,x2, ..., Tn)
of positive integers whose order statistics x(;) (the sequence obtained by rearranging the original sequence
in non-decreasing order) satisfy the inequalities ;) < a4 (¢ — 1)b for all 4. Using elementary methods,
we derive explicit formulas for higher moments of sums and reversed sums of parking functions of length
n. These formulas are finite double sums with reasonably simple terms. They are obtained by solving
a recursion based on a combinatorial decomposition which decomposes a sequence of positive integers
into a “maximum” parking function and a subsequence all of whose terms have “high” values. Moments
of reversed sums of ordinary parking functions (the case when a = b = 1) have a surprising connection
with the enumeration of “sparsely-edged” graphs. From this connection, we obtain exact formulas and
derive, using routine methods, asymptotic formulas (due originally to E. M. Wright) for the number of
connected labeled graphs on N vertices and N + k edges. Our method yields a new formula for the
Wright constants in terms of a sequence which satisfies a linear recursion.
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1 Introduction

An ordinary parking function of length n is a sequence (w1, xs,...,x,) of positive integers whose order
statistics (the sequence (2(1y,(2), ..., %(n)) obtained by rearranging the original sequence in non-decreasing
order) satisfy z(;) < 4. Ordinary parking functions arose in the theory of linear probes [7] and they have been
extensively studied (see [5]). In particular, computer scientists are interested in the moments of their sums.
See [1, 2, 4, 6].

In the paper [9], we studied u-parking function, where u is a sequence (uy, us, us,...) of non-decreasing
positive integers. These are sequences of positive integers whose order statistics satisty z ;) < u;. Using
Goncarov polynomials, we obtain Appell relations for generating functions of moments of sums of u-parking
functions and show how, in principle, one can obtain explicit formulas for the moments in terms of Goncarov
polynomials. When specialized to the case u; = i of ordinary parking functions, the formulas for the mean
and second moment are different from (but equivalent to) the known formulas obtained earlier in [1, 2, 6].
In this paper, we use a variation of our method in [9, 10] to obtain higher-moment formulas similar to the
known formulas for the first and second moment.

Higher moments of sums of ordinary parking functions have been studied by Knuth [6] and Flajolet,
Poblete and Viola [1] as part of an cost analysis of linear probing and hashing. In particular, Knuth
obtained exact formulas for mean and second moment of reversed sums of ordinary parking functions. Using
singularity analysis and a functional equation for the “tree function”, Flajolet, Poblete and Viola obtained
asymptotic formulas and the limit distribution for higher moments. They also show, in principle, how one
might obtain exact formulas for any specific higher moment by a “pumping” process. Further work on the
limit distribution can be found in [4].

Our approach is different from these earlier work. We begin with an combinatorial decomposition for
sequences of positive integers. The special case of this decomposition for ordinary parking function appeared
in the paper by Konheim and Weiss [7] which founded the subject. This decomposition yields a linear
recursion for the higher moments. We solve this recursion and obtain exact formulas which are double sums
with terms which are as simple and explicit as one might reasonably expect. From the exact formulas, one
could, with sufficient patience, obtain asymptotic formulas to as high an order as one wishes. Our approach
is deliberately elementary and explicit, with the emphasis on how we discovered the formulas. We expect
that once the formulas are known, it would be possible, as is common in mathematics, to verify them by
other methods.

In addition, we shall work with [a, b]-parking functions, which are u-parking functions where u; equals
a+(i—1)b. We call this the “classical” case. There are at least three reasons for doing this. One is that such
parking functions have come up naturally, for example, in labeling regions in extended Shi arrangements,
and in enumeration of multicolored graphs. See [15, 18]. Another is that although explicit computations are
slightly more complicated than for ordinary parking functions, the proofs are the same. Finally, “parametriz-
ing” the problem clarifies how things work, and, in particular, the effect of the first term a and the difference
b on the moments.

As is well-known [9, 12, 15], there are

a(a +nb)"

[a, b]-parking functions. Let
S, =X1+Xo+...+ X,

be the sum of a random [a, b]-parking function (X3, Xo, ..., X,,) of length n chosen with uniform distribution
from the sample space of all [a, b]-parking functions. Let Ej(n;a,b) be the expected value of the kth (falling)
factorial moment of S,,, that is,

1
Ex(n;a,b) = W( Z )(acl +xo+... 2k,
X1,T2,...,&n

where (N)y, is the falling factorial N(N —1)--- (N —k—+1) and the sum ranges over all [a, b]-parking functions
(.171,&72, ceey xn)



In [10], we prove the following formula for expected sums of [a, b]-parking functions:

E1<n;a’b>=w—%z<7)(ﬂ% (1.1)

=\ a + nb)J

There are similar formulas for the higher moments.

Theorem 1.1. The kth factorial moment Ei(n;a,b) of the sum of a random [a, b]-parking function of length
n equals

s+ 3 | (Yot (3 (1) )| (12

r=1 j=1

where U.(z) is a polynomial of degree 2r derived from the rth factorial moments of the sum of a random
sequence with terms from a discrete interval and 7,.(x) is a polynomial of degree not exceeding 3r — 3. The
polynomials 1.(x) do not depend on k and their coefficients are polynomials in a and b.

The polynomials U,.(x) will be defined in Section 2. A method to calculate the polynomials 7,.(z) recur-
sively will be given implicitly in the proof of Theorem 1.1.

The proof of Theorem 1.1 is somewhat complicated. In Section 2, we describe the combinatorial de-
composition underlying the proof. From this decomposition, we derive, in Section 3, linear recursions for
factorial moments of sums of [a, b]-parking functions. These recursions are special cases of recursions for
u-parking functions derived in [9]. We also recast the linear recursions as matrix equations. To solve the
matrix equations, we need results about Stirling numbers, two-way sums, and matrix relations (Section 4).
These three threads are woven together in Section 5 to prove Theorem 1.1. The proof does not yield the
exact degree (almost certainly 3r — 3) of 7,.(z). In Section 6, we show that for infinitely many r the exact
degree of 7,-(x) is 3r — 3 by deriving a recursion for the coefficient t,. of 3”3 in 7,.(z). In Section 7, we use
Theorem 1.1 to obtain formulas for the moments of reversed sums of parking functions. These formulas are
used in the last section to derive asymptotic formulas for the number of “sparsely-edged” graphs and a new
way to calculate the Wright constants occurring in these formulas.

In this paper, we shall work with vectors of dimension N + 1 and (N + 1) x (N + 1) matrices, where the
indices run from 0 to N. If f(z) is a function, then

1@

is the (IV + 1)-dimensional column vector with ith coordinate equal to f(i) and
s
f(@)

is the (N + 1)-dimensional column vector (0, f(1), f(2),..., f(N))T, with the zeroth coordinate equal to 0
and the ith coordinate equal to f(¢) for ¢ > 1. Furthermore, we denote by

D(f(i))

the diagonal matrix whose dith entry is f(i). The matrix P is the lower triangular matrix

[(1)“ (’Z) ala+ ib)"l} .

The matrix Q is lower triangular matrix

(Ol W



2 The underlying combinatorial decomposition
We shall use the following special case of a combinatorial decomposition proved in [9].

Theorem 2.1. There is a bijection between the set [1,z]™ of all length-n integer sequences with terms in the
set {1,2,...,2} and the disjoint union of Cartesian products

U Park(iniz,... im) x [a+mb+1,2]"™,
2
where Park(iq, 2, ..., im) is the set of subsequences indexed by the set {i1,12,...,im} which are [a,b]-parking
functions of length m, and [a + mb + 1,z]|" ™™ is the set of subsequences indexed by the complement of
{i1,42,...,im} which form length-(n — m) integer sequences with terms in {a+mb+1,a + mb+2,...,x}.

To use Theorem 2.1, we need formulas for factorial moments of a sum X1 + X5+ ...+ X, of independent
uniformly distributed random variables X; taking values in the discrete interval {A, A + 1,..., B}, where
A and B are positive integers and A < B. Recall that the probability generating function of a uniformly
distributed random variable X; on {A,A+1,...,B} is

A 1P

B+1-A
and hence, the (exponential) factorial moment generating function of the sum X 4+ Xo + ... + X, is

m((1+t)A+(1+t)A+1—i—...—i—(l—i—t)B)n

In particular, the kth factorial moment Uy (n; A, B) can be obtained by differentiating the generating function
k times and setting ¢ = 0. For example, Uy(n; A, B) = 1 and

Ui(n; A, B) = in(A + B). (2.1)

To calculate Us(n; A, B), we differentiate twice and set ¢ = 0 to obtain

' B A+(A+1)+...+B]? AA-D+A+DA+...+B(B-1)
Us(nyA,B) = n(n—1) Bri_4 } —|—n{ Bri_4
= in(n—1)(A+B)*+in[B(B—1)+ A(A+ B - 2)]. (2.2)
Similarly,
Us(n;A,B) = in(n—1)(n—2)(A+ B)>+ In(n—1)(A+ B)[B(B—1)+ A(A+ B —2)]
+3n[B(B—1)(B—2)+ A[(B—1)(B-2)+ (A—1)(A+ B —4)]. (2.3)

For arbitrary k, consider the function p(¢; A, B) defined by

. _ ; A A41 B
p(t’A’B)_B—|—1—A((l+t) +(1+t) + —|—(1+t) ) (2.4)
Then
pO0:4.8) = Lo
b) b) dts t:0

(B + 1)s+1 - (A)S+1
B+1-A)(s+1)




In particular, p(s)( ; A, B) is a polynomial in the variables A and B of degree s. For example, p© (0;A,B) =1
and p()(0; A, B) = (A + B)/2. If k > 1, then the kth factorial moment Ug(n; A, B) is a linear combination
of terms of the form

(n), (0 (0; A, B))" " (0 (0; A, B))* - - (p)(0; A, B))**
where 1 <r <k,a; >0,a1+---+ar =r, a1 +2az+--- + kay, = k. Hence, Ui(n; A, B) is a polynomial in
the variables n, A and B, with “leading” term

() (PP (0; A, B) =n(n—1)---(n—k+1)(A+ B)¥/2k

when expanded as a linear combination of falling factorials in n.
From the factorial moments Uy(n; A, B), we define the polynomials Ug(n) in the single variable n by

Uk(n) := Ug(n;a +nb+1,0). (2.5)

In particular, Up(n) = 1,
Ui(n) = 3n(a+nb+1) (2.6)
Us(n) in(n—1)(a+nb+1)>+in(a+nb+1)(a+nb—1). (2.7)
Us(n) = in(n—1)(n—2)(a+nb+1)*+ in(n—1)(a+nb+1)*(a+nb—1)] (2.8)
+in(a+nb+1)[2+4 (a + nb)(a + nb — 3)]. (2.9)

In this notation, we can rewrite Eq. (1.1) as
" le
E ,b) ————T7i(j

where 71(j) = —3.
Since the exponential generating function for Uy (n; A, B) is the nth power of a fixed function, the moments
Ui (n; A, B) satisty the following identity of binomial type

k
k
Uk(z+y; A, B) = Z <j>Uj(:v;A,B)Ukj(y; A, B)
j=0

as polynomials in the variables x and y. In particular, we have the following identity.

Lemma 2.2.

k
Uk (n;a+ib+1,0) :Z( )U,c j(n—isa+ib+1,0)U;(i)
J=

3 The linear recursion

In this section, we begin the proof of Theorem 1.1. For brevity’s sake, we shall use the notation To(n) = 1,
and for n > 1,

B " /n 516 )
T:(n) = Z (]) Wﬁ(])- (3.1)

Jj=1

The proof of Theorem 1.1 is by induction on k. The case k = 0 is obviously true. We assume that k£ > 1 and
that FE,(n;a,b) is given by the formula in Theorem 1.1 for 0 <r <k — 1.



Using the combinatorial decomposition given in Theorem 2.1, we can calculate the kth factorial moment
of a sum of a random sequence in [1,z]™ in two different ways (see Theorem 7.1 in [9]). This yields the
following linear recursion for E(n;a,b):

a"Uy(n; 1, 2) = i (:L) (z —a—bi)" "a(a +bi)"

=0
" [k
li ( )Es(i;a,b)UkS(n—i;a—l—ib—i—l,x)
s
s=0

This is an identity holding for all sufficiently large positive integers « and hence, it holds as a polynomial
identity in the variable x. Setting = 0, we obtain the linear recursion

i(—l)’”’ (”> a(a + bi)" " E(i; a,b) (3.2)

i=0
$ n—i n —
= —Z(—l) \; a(a+ bi)" Es(i;a,b)Uk_s(n —i5a+ib+ 1,0)
=0 s=0

For example, when k = 2, this linear recursion is
Yo (’})a(a + )" By (is a,b) (3.3)

= _Z ( ) (a4 ib)" Y [Ey(i;a,b)(n —i)(a+ib+ 1)
—I&(n —i)(n—i—1)(a+ib+1)*>+ 2(n—1i)(a+ib+1)(a+ib—1)].
The left hand side of the recursion (3.2) is the nth coordinate of the vector
e
PEk(i;a,b).

We shall put the right hand side into a similar form. Using the induction hypothesis that for 0 < s <k —1,
the sth factorial moments F,(i;a,b) are given by formula (1.2), we write the inner sum on the right hand

side of (3.2) as -
2 (i) Up_s(n —i;a+ib+1,0) <Z (i) Usr(i)TT(i)> .

s=0 r=0
Changing the order of summation, this can be rewritten as

i: (2 <Iz) (i) Uk—s(n —i;a+ib+1, O)Usr(i)> T, (i).

The coefficient of T,.(i) can be further simplified. Changing the index of summation from s to [ = s — r and
using the binomial coefficient identity

k I+r\ _ (k\ (k-7
l+r r ) \r 1)’
the coefficient of T;.(7) equals

(f) > (k | T) Uh—ry—1(n — isa + ib+ 1,0)U; ().



By Lemma 2.2, this equals
k
()[Uk r() Up_ T(n a+1ib+1, 0)]

r

Thus, the right hand side of (3.2) consists of two sums.

The first sum is . -
> ( ) (a+ ib)™ <Z (’“) Uk_m)Tr(z')) .

=0 r=0
Since the inner sum depends only on i, the first sum is the nth coordinate of the vector

PZ( )Uk - (D)T(3).

The second sum,

_Zn:(_l)n*i (?) (a +1ib)" (ICZI( )Uk +(nya+ib+1,0)T,.(i )) , (3.4)

=0 s
is more complicated. To handle it, observe that Uj_,(n;a + ib+ 1,0) is a linear combination of products
nn—1)...(n—m+1)f(a+ ib)

of a falling factorial in n and a polynomial in a + ib, where 1 < m < k — r and the degree of the polynomial
f(x) does not exceed k — r. Hence, the second sum is a linear combination of sums of the form

naf: ( ) (a +bi)" BT (4).

i=

When r = 0, such a sum is the nth coordinate of the vector

Y

D(i*)P(a +ib)P.
When r > 0, such a sum is the nth coordinate of the vector
D(i%)PD((a + ib)?) Q. (1)*.

Inallcases, 0<a<k—7r0<pB<k—rand0<r<k-—1.
Putting all the previous calculations together, we conclude that the linear recursion can be written as
the matrix equation

PELi;a0,b) = P§<T>U;€T T,(i) + C + D, (3.5)

=

P ——
where C'is the linear combination of all vectors of the form D(i%)P(a + ib)? and D is the linear combination
—_—
of all vectors of the form D(i®)PD((a + ib)?)Q7,(i)*, where r > 1. In both C' and D, the coefficients are
constants.
For example, in the case k = 2, we can use the formula for F1(i;a,b) given in Eq. (1.1) and obtain the
following explicit matrix equation

N

PFEy(i;a,b) = PUQ(')+2U1(') (‘)—i (I*)P(a+ib+1)* — D(i)P[L(a +ib)* — L(a+1ib) — &
LD(i)PD(a + ib+1)Q 1~

We shall solve the matrix equation by applying P! to both sides. Before we can do this, we need tools
to simplify the linear combinations C' and D. These tools will be developed in Section 4.




4 Technical Lemmas

4.1 Stirling numbers

Stirling numbers play an unexpected role in our calculations. This is because of the following lemma, which
is stated in a redundant, but more useful, form.

Lemma 4.1.

m

ZH)H (’Z) ala+ib)mit =nt (’Z) a™ RS (k + ¢, n),

k=max(0,n—¢)

where S(r,n) is a Stirling number of the second kind and equals the number of partitions of an r-element set
into n non-empty blocks. In particular, if 0 < m <n —1, then

;(71)"4 C‘) ala +ib)™ = 0, (4.1)
and

i(—l)"i (:‘) a(a +ib)™ = nlab™ nin ( " )wnkbksm +k,n). (4.2)

= n+k

Proof. Expand (a+ bi)™ with the binomial theorem, use the identity of Stirling ([17]; see, for example, [16],
page 34),

Zn:(_w—i (7;) i =nlS(r,n),

=0

and observe that S(m,n) =0 if m < n. O
Simple counting arguments yield the following result.
Lemma 4.2.
2k
n+k
S(n = r .
b= 30 = ("), (4.3
r=k+1

where m, is the number of ways of partitioning a set of size r into r — k parts, with each part containing at
least two elements. In particular, S(n + k,n) is a polynomial in n of degree 2k and the coefficient of n2* is
7ok / (2k)!, which equals 1/(k!2F).

For example,
S(TL,TL) = 1,
S(n+1,n) = (;
n—+ 2 n 4+ 2
2 =
S(n+2,n) < 3 >+3( A ),
+ n
4

S(n+3,n) =



and
i(l)"i(’;>a(a+ib)” = ab™n),

(—1)" (n> a(a+ib)" = ab™n! [3bn® + (3b+a)n +a] .
(3

H'M:
(e}

Lemmas 4.1 and 4.2 yield information about how the matrix P acts on vectors.

Lemma 4.3. Let f(x) be a polynomial of degree §. Then

P i) = ig(i),
where g(x) is a polynomial of degree 2(6 — 1). In particular,

_—

D(E)Pf(a +ib) = abilg(i),

where g(z) = z®*h(x) is a polynomial of degree o + 2(6 — 1) with coefficients polynomials in a and b.

4.2 Two-way Sums
We shall need the following elementary lemmas.

Lemma 4.4. Let p(z) be a polynomial of degree o, q(x) a polynomial of degree 3, and ¢ be a non-negative
integer. Then the sum

> plidatn i)

is a polynomial in n of degree o+ 3 + 1.
Proof. Expanding the product p(x)q(y), it suffices to consider the sums

However,
@ o . n .
Tos(n) = (-1)° (j)na_J (Z zﬂﬂ) :
j=0 i=c

Since the sum
n

Z Bt

is a polynomial in n of degree 3+ j + 1, the lemma follows. O

Another elementary result about two-way sums is the following lemma.

Lemma 4.5. The leading coefficient L(e, 3), that is, the coefficient of n®TF+1 of the two-way sum

n

> (n—i)*i”

i=c
as a polynomial in n equals

1
/ (1— x)*2Pd.
0



Proof. The leading coefficient is the limit

lim —Z?:c(n _ i)aiﬁ
— 00 notB+1 :

This equals the beta-function integral fol(l — )% d.

Using Lemma 4.5 and integration by parts, we have, for « > 1,

1
L(a,8) = Bil/o(l—x)aflx[”ldx.
e
= 5+1L(a—1,ﬂ+1).

Since L(0,3) = 1/(8 + 1), this yields

al

B+1)(B+2)...(6+a+1)

L(a, ) =
when « is an non-negative integer.

4.3 Matrix relations

In this subsection, we prove several relations among the matrices P, Q, and D((a + ib)<).

Lemma 4.6.

PD((a +ib)*)Q = NK(a),

where N is the diagonal matriz D(ab'i!) and K(«) is the lower triangular matriz with njth entry equal to

~(n—j+a aNa—tpt : ;
D) S (n — j +t,n — j).
t_0<nj+t>(a+y) (n—j+tn—j)

if n > 7 and zero otherwise.

Proof. The njth entry of the product PD((a + ib)*)Q equals

S (= (”) (’.)j!bja(a +ab)nite,

— ? J

i=j

Changing indices from i to ¢ — j and regrouping terms, this can be simplified to

n—j

where A = a + jb. Applying Lemma 4.1, we obtain

(?) abji(n — )9S (” o “) A S (n = j +t,n - j)
t=0

n—7j+t
which equals

@ .

, n—j+a« _ . .

nlab™ E < ) )Aa 0WtS(n—j+t,n—j).
—\n—J +t

10



For example, the njth entry of PD((a + ib)?)Q is ab™n! times

B2S(n—j+2,n— )+ (n—j+2)(a+jb)bS(n—j+1,n—75) + (n ;‘L )(a+jb)2.

By Lemma 4.2, S(n—j+2,n— j) is a polynomial of degree 4 in n— j and S(n—j+1,n—j) is a polynomial
of degree 2 in n— j. Hence, the njth entry of PD((a+ib)?)Q is a polynomial of total degree 4 in the variables

j and n — j. This degree-counting argument works in general. Noting that the coefficients of the polynomial
are polynomials in a and b, we have the following corollary.

Corollary 4.7. Let f(x) be a polynomial of degree «o. Then, the njth entry of PD(f(a + ib))Q is ab™n!
times a polynomial in the variables j and n — j of total degree 2c if n > j and zero otherwise. Furthermore,
the coefficients of the polynomial are polynomials in a and b.

An important special case of Lemma 4.6 is when o = 0.

Corollary 4.8.
PQ=NL

where N is the diagonal matriz whose iith entry is ab¥i! and L is the lower triangular matriz with all ijth
entry equal to 1 if i > j and zero otherwise. In particular,

Pl=0L N

The action of £7'N ! on a vector can be explicitly described. Multiplying a column vector a; on the
left by N'=1 divides the ith coordinate a; by abi!. The matrix £ is the summation matrix and sends a;
to the vector whose ith coordinate is ag + a1 + ... + a;. Hence, the inverse £ 1 is the backward difference
matrix, with all diagonal entries 1, all sub-diagonal entries —1, and all other entries zero. Multiplying the
vector a; on the left by £~ results in the vector a; — a;—1, obtained by taking the backward difference of
the coordinates a;, with the convention that a_; = 0.

Lemma 4.9. Let f(x) be a polynomial of degree o and g(x) be a polynomial of degree e. Then,

-

PD(f(a+1ib))Qg(i)* = ilab*h(i)*
where h(x) is a polynomial of degree 2a.+ € + 1 with coefficients polynomials in a and b.

Proof. By Lemma 4.6, for any § > 0, the vector

= —

PD((a+ib)°)Qg(i)* = NK(6)g(i)*

Hence, the zeroth coordinate of the left hand vector is zero. Now let K,,;() be njth entry of matrix /C(9).
Then, if n > 1, the nth coordinate of the above vector equals

ab”n!ZKnj((S)g(j). (4.5)

By Corollary 4.7, K,,;(6) is a polynomial in the variables j and n — j of total degree 26. Hence the sum in
(4.5) is a two-way sum with summand having total degree 26 + ¢ and, by Lemma 4.4, it is a polynomial in
n of degree 20 + € + 1. O

11



5 Finishing the proof of Theorem 1.1

We continue the proof of Theorem 1.1. The aim is to put the expression P~1(C + D) into a simple form.
The vectors in the linear combination C' has the form

D(i*)P f(a + ib),

where 0 < a < k and the polynomial f(z) has degree at most k. By Lemma. 4.3, this vector equals
T ——

abili®g(i),

where g(z) is a polynomial of degree at most 2k — 2.
From Cor. 4.8, the inverse matrix P ~* equals QL 1N 1. Hence, applying P! removes the factor of ab’i!,
—

_— N
takes the difference of the vector i“¢(i), and applies Q. Since the zero coordinate of the vector ab'ili%g(i) is

0, this results in the vector
——

Qha(1)*,
where hi(x) is the difference polynomial 2®g(z) — (x — 1)*g(z — 1) and has degree at most 3k — 3.

Vectors in the linear combination D has the form
—_—

D(i“)PD(f(a +ib)) Q1 (i)*,
where 1 < a < k —r and the polynomial f(z) has degree 3 at most k — r. By Lemma 6.4, this vector equals
-
ab'ili“h(i)*.
Using the induction hypothesis that 7.(z) has degree 3r — 3, it follows from Lemma 6.4 that the degree of
x®h(x) is at most
a+26+3r—3)+1.
This expression is maximized by taking o = = k — r and the maximum equals 3k — 2. As in the earlier
—_

case, applying P! yields a vector of the form Qhy(i)*, where ha(z) is a polynomial of degree at most 3k — 3.
Summarizing, we conclude that

=

—
PHC) = Qhy(i)* and P YD) = Qha(i)*,
where hq(z) and ha(x) are polynomials of degree at most 3k —3. We can now conclude the proof of Theorem
1.1 by setting 7% (z) = hi(z) + ha(z).
For example, when k = 2,
() = —3°+ (G- +(E-H- o+l
hg (IL‘) 3Ta

I
wlg
8

w
+
—~

and

This yields the case k = 2 of Theorem 1.1.

Theorem 5.1. The second factorial moment of the sum of a random [a,b]-parking function of length n
equals

in(n—1)(a+nb+1)>+in(a+nb+1)(a+nb—1)
nla+nb+1) < (n i " /n il bo a. 1
2 Z; (]) (a+nbyi—T +; i)armyi\s 6 T2)

j=
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One can, with some patience, work out 74 () explicitly for any given k. For example,

m3(z) = —gesb?a® 4+ (—25b? + 35ab)2® + (——ab— 307zt + (—me Hab—1b— 1a?)2®

+(1—6ab 1201)2 — %a )x? + (1 + ﬁa + §a — %ab 1;Obz)

6 Leading coefficients

In this section, we derive a linear recursion for the degree-(3k — 3) coefficients of 7 (z). This recursion implies
that for infinitely many k, the degree of 7i(x) is exactly 3k — 3.
The highest possible power of z in hy(z) originates from the leading term

nn—1)...(n—k+1)(a+ib+1)k/2k

in Ug(n;a + ib + 1,0). The leading monomial in the variables n and i in this term is n*(a + ib)*/2%. By

—
Lemma 4.1, the nth coordinate of (1/2%)D(i¥)P(a + ib)* is a linear combination of Stirling numbers, with
the “leading” term (ab**"n!/2%)S(n + k — 1,n). By Lemma 4.5, the highest power of n in the expansion of
S(n+ k — 1,n) has exponent 2k — 2 and coefficient 1/2¥~1(k — 1)!. Hence, taking into account the effect of
N1 and £71, as well as the negative sign in the recursion, the leading term of h1(x) has exponent 3k — 3
and coeflicient

(3k —2)bk—1

S22k — 1) (6.1)

We note that the factor of 3k — 2 comes from taking the backward difference of 23%—2.

Let b" ¢, be the coefficient of 23"~ in 7,(z). By Eq. (1.1), t; = —1. The highest possible power of z in
ha(x) comes from the vectors

DEFYPD((a + b)) O (i)*.

By Lemma 4.6, the njth entry of the matrix PD((a+ib)* ")Q is a polynomial in the variables n—j and j of
total degree 2(k — r). It follows from Lemma 4.2 that when expanded as a linear combination of monomials
in n — j and j, the part of the njth entry of total degree 2(k — r) equals ab™n! times

k—r

1 bkfr
k—r 2(k—r)—s ;s _ 2 _ 2\k—r
b z—:o 2k—r=s(f —p — s)!s'( —J) 7= 2k=r(f —r)! (n” =59 (6:2)

For example, when k& — r = 2, the part with total degree 4 is ab™n! times

B [§n =) + 4 = )% + Hn = 9)%7) = (= )

Thus, for n > 1, the nth coordinate of PD((a + ib)* ") Qr,.(i)* equals ab™n! Z 1 K(k —7)7.(5), where the
part of highest power of n is ab™n! times

bk 175 Y s,
DL r—] E n? — jHF e (6.3)
By Lemma 4.4, the highest power of n in (6.3) is n2¥*7~2 and the coefficient of the highest power is
bt ! A | 3r—4
— T 11— 83y = —— " " [(k—r, =—2). 6.4
9h—r(k —1)! /0 (1=a®)" " a™ " de 2=k — 1)1 2 (k=r——) (6-4)
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Using Eq. (4.4), the above formula equals

bkfltr
Gr—2)Br)(Br+2)...2k+r_2)

(6.5)

Hence, taking into account the effects of D(i*~"), N1, and £, we derive from Eq. (3.4) that the coefficient
of 23#73 of hy(x) equals

B =1 ¢
~ (k-2 TZ:l <r> 2k (3r —2)(3r)(3r +2) ... 2k +1 —2)’ (6.6)

Since 7% (x) = h1(z) + ha(x), we obtain the following recursion for the coefficients ¢,.:

1 =k t
th=—0Bk—2) | =——— - .
e )<22’“<’<=—1>!+,;(r) 2er§:§“<37»+2]'—4>>

Rewriting the recursion, we have the following result.

Theorem 6.1. Let b 't), be the coefficient of x°*~3 in 7, (z). Thent; = —3, and {t;} satisfies the recursion
k
1 k ty
=i oo T ( ) y— - =0. (6.7)
2261k — 1)! ; r) 2k [ B+ 25— 4)
From the starting point t; = f%, the recursion yields 5 = %, t3 = —9—20,
R ( o 13
R T A TR T P T
and
31
te =

29.35.5.72.11-13°
We remark that since t5 > 0, the sequence ¢, does not alternate in sign. However, Theorem (6.1) implies
that there are infinitely many indices k for which ¢; # 0, and hence, the degree of 7 (z) is exactly 3k — 3 for
infinitely many k. We conjecture that the degree of 7i(x) is always 3k — 3.
7 Reversed Sums
The reversed sum R,, for a u-parking functions is defined by
R,=ui+us+--+u, —S,.

The reversed sum is needed in many applications. For example, for ordinary parking functions, the statistics
of reversed sums match the statistics of inversions of labeled trees [15].
In the classical case when u; = a + (i — 1)b,

R, = an—i—b(n) —S,.
2
We will use the notation

Ry, =cn— 5y, (7.1)

14



where ¢ = a+b(n —1)/2 (and is a function of n). Let Fj(n;a,b) be the kth falling factorial moment of R,,.
From Eq. (7.1) and the binomial theorem for falling factorials, we have

k

Aot = 3107 (4 fenhe a0,

r=0

Using the notation given in Eq. (3.1) and Theorem 1.1, and changing order of summation, we obtain

Fmab) = 1y (5 s [Z () mto Tt

r=0 m=0
k k
k k—m
= Z:O <m> T (n) [Z(q)r(r B m)} (cn)k—rUr—¢(n).
Changing the index from r to s = r — ¢, the inner sum becomes
k—t (ki
DD ) emdkesUs(n), (7.2)
s=0

which is a polynomial in n. Let

For example, Wo(n) =1, Wi(n) = in(a — b — 1),
Wa(n) = in(n —1)(a—b—3)> + En(b’n® + (2ab — 12b)n + 4a® — 6ab + 3b*> — 24a + 12b — 4).

Theorem 7.1. The kth factorial moment Fj.(n;a,b) of the reversed sum of a random [a, b]-parking function
of length n equals

mmné o ()it |3 (1) ) (7.4

=1 M

where T,.(x) is the polynomial of degree not exceeding 3r — 3 in Theoremn 1.1 and Wi(x) is a polynomial of

degree 3k/2 if k is even, and (3k —1)/2 if k is odd.

To prove Theorem 7.1, we just need to determine the degree of Wy(¢t). The proof is contained in the
following three lemmas (Lemma 7.2, 7.3 and 7.4) in which we also determine the leading coefficient of Wi(¢).
This information will be needed in the next section.

Since .
(~1)"Ualn) = - (p(~t:a+ b +1,0))" g
where p(t, A, B) is as defined in Eq. (2.4), and
k—s
(en)es = G 40|
we have, by Liebniz’s rule of differentiation,
dk
Wi (n) = pr 1+ (p(—t;a+nb+1,0)™) .

15



Let A, B, and C be positive integers such that A < B < C. Let

(1+1t)°

. G A2 RN Y _ pAF1 B
q(t; A,B,C) = B+1_A((1 HD+A -+ +(1-1)7),
ds -
dts 0
S . s
= Z (—1) (m> () s—m (Y)m;
m=0
and
dk
Wi(n; A, B,C) = ——(q¢(t; A, B,C))" (7.5)
dt =0
Note that
Wi(n) = Wi(n;a +nb+1,0,a+ b(n —1)/2).
Lemma 7.2. For s a non-negative integer,
K;1(C,B+1) — Kg1(C, A)
()(0; A, B,C) = - == =i 7.6
In particular, ¢® (0; A, B, C) is a polynomial in the variables A, B, and C of total degree s.
Proof. By Liebniz’s rule,
) (0. — - s -1 r(A)r++(B)r
O0:a8.0) = 3 (1)Cr |1 BT
1 - r($ (B+Drg1 = (A)r1
= — Y (-1 _
B+1—A;( )(r)(c)57{ r+1
Using
- rfS (x)r+1
> () o
1 & s+1
= — —1) _
DI () [GRAIES
_ _K5+1(C,m) — (C)s+1
s+1 ’
we obtain Ko(C.B 4 1) — Koia(CA)
(5) OA B C - _ s+1 ) + - s+1 )
¢7(0;4,B,C) (B+1- A)(s+1)
O

For k > 1, the function Wy (n; A, B,C) is a linear combination of terms of the form

(m)r(a?(0; 4, B,C))" " (g (0; A, B,C))* -+ (4™ (0; A, B, C)) ™,
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where 1 < r < k,a; > 0,and ay +az2+ ... +ar =1, a; + 2as + ...+ kap = k. Hence, by Lemma 7.2,
Wi(n; A, B, C) is a polynomial in the variables n, A, B, and C of total degree 2k, with the variable n having
degree at most k.
Next, define ¢s(n) by the formula
gs(n) = ¢ (0;a +nb+1,0,a + b(n —1)/2).

For example, qo(n) =1, ¢1(n) = %a —-b—1,

g2(n) = 5 [b*n* + (2ab — 12b)n + 4a® — 6ab + 3b* — 24a + 12b — 4].
Lemma 7.3. The degree of qs(n) is s if s is even, and less than or equal to s — 1 if s is odd.
Proof. By Lemma 7.2,

Ksi1(a+b(n—1)/2,1) — Ksp1(a+b(n—1)/2,a+nb+ 1)
(s +1)(a+ nb)

qs(n) = (7.7)

When s is even, the leading term in the numerator is 2(bn/2)**! and hence, the leading term in gs(n) is
bS
—F—n’
25(s+1)

and ¢s(n) has degree s.
When s is odd, the coefficients of n*+! in the two terms cancel in the numerator, and hence, the numerator
has degree at most s. Therefore, gs(n) has degree at most s — 1 in this case. o

Lemma 7.4. The polynomial Wi(n) has degree 3k/2 if k is even, and degree (3k — 1)/2 if k is odd. When
k is even, the leading coefficient is

(k — )bk /12K/2,
where m!l = m(m —2)---3-1 for an odd positive integer m and (—1)!! is defined to be 1.

Proof. A typical term in Wy(n) is of the form

(n)r(go(n))" " (g1 (n))™ (g2(1))** - - - (i (n))**

where 1 <r <k,ay >0,a1+as+...+ar =7 and a; + 2as + ... + kax = k. By Lemma 7.3, the degree of
such a term is at most
r 4 2as + 2a3 + 4aq + das + -+ - + 2| k/2]ay.

The maximum degree occurs exactly when a3 = a4 = ... = ax = 0 and a2 = L%J In other words, if k is
even, the maximum degree 3k/2 is achieved at r = az = k/2 and a3 = a3 = --- = a, = 0; if k is odd, the
maximum degree (3k — 1)/2 is achieved at a1 = 1, aa = (k—1)/2, r=(k+1)/2, and a3 = --- = a, = 0.

For k = 2m, the leading term is contained in

(n)m (go(n))" ™ (g2(n))™.

One way to compute the leading coefficient is to consider terms of the form

Qi ()Qs, () -+ Qs QP HQP (1) --- QP (1)
in
dk

TEQUOQAD) -+ Qul).
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When one differentiate the product Q1(t)Q2(t)---Qn(t) k times using the product rule, such a term is
obtained by choosing m indices ji, j2,. .., jm and differentiating @);(¢) twice if j is one of the chosen indices.

Hence, there are
n 2m
m/\2,2,...,2/)"

such terms. Setting Q;(t) = q(¢; A, B, C) for all i, we conclude that the coefficient of
q(0; 4, B,C)" ") (0; 4, B.C)™

in Wi(n; A, B,C) is (n)m(2m — 1)!, which equals (n);/2(k — 1)!!. Since go(n) = 1 and the leading term in
q2(n) is b*n?/12, we conclude that the leading term of Wj(n) is

(k — 1)!pkn3k/2 /(12)k/2,

8 The Wright Constants

We end this paper with an application to graphical enumeration. Let ¢(n + 1, k) be the number of labeled
connected graphs on n + 1 vertices with exactly n + k edges. For example, c¢(n + 1,0) = (n + 1)"! by
Cayley’s formula. Let Cy,(q) = Y., c(n + 1,k)¢" be the enumerator by the number of “excess” edges for
connected labelled graphs. Kreweras [8] proved that

Culg)= Y (1+gq")-Ta (8.1)

(aly---ya/n)

where the sum ranges over ordinary parking functions of length n. Hence
J
Cln+1,k) = ;pj (k)

where p; is the number of ordinary parking functions that have reversed sum (
with the definition of Fi(n;a,b), we have

";rl) — 3" a; = j. Comparing

Theorem 8.1.

(n+1)" !

c(n+1,k) = o

Fi(n;1,1). (8.2)
An alternative proof of Theorem 8.1 can be obtained by combining results in [13] and [18]. In [13],

Spencer proved that
cn+1,k) B M
c(n+1,0) k)|’

where M is a certain random variable defined on all labeled trees on n+1 vertices with uniform distribution.
In [18] it is proved that M is equivalent to the reversed sum under a combinatorial bijection from the set of
labeled trees to the set of ordinary parking functions. Combining these, we obtain Theorem 8.1.

In his 1977 paper [19], Wright found the following asymptotic formula: for fixed k¥ and n tending to
infinity,

e(n+1,k) = pp_1(n+ 1) 1C2 11 L O(n=1/2)}, (8.3)

where the Wright constants py, are defined by a second order recursion. (The notation pj_1 is Wright’s; pi_1
equals ¢ in Spencer’s notation [13].)
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With the explicit formulas for moments of reversed sums given in Theorem 7.1, we will derive Wright’s
formula using routine methods in asymptotic analysis (see, for example, [3]). This derivation yields a formula
for the Wright constants in terms of the leading coefficients tj, of the polynomial 74 (x), which satisfy a linear
recursion.

We begin by noting that

n . n+1 n).
2 (1 i”i;jljk =(1+n)) %J’WHOU‘W (8.4)

From the inequality

j=1
k—1 .
j 1 k
< — — _
= jl;[leXp( 1) = o n—|—1(2>)
(which gives an upper bound on the initial terms), and the asymptotic formula, for k = o(n?/3),
k—1 . 3
J _ 2 k
H (l— n+1) = exp(—k~/2n) [1—1—0 (ﬁ)] ;
j=1
we obtain, for large n,
n+1 +1
(n+1); 4 /n e 2 ~
— ~ —7°/2 1))d
;(HH)JJ | e 2n + 1))d)

~<n+nM*”/ J* exp(—12/2)dj
0

_ (n+ 1)(k+1)/22(k71)/21—\(%)

)

where I'(z) is the Gamma function. From this and Eq. (8.4), it follows that

T,(n) ~ 6,207 D032 (0 4 )72, (r 2 1),

where t,. is the coefficient of 373 in 7,.(x). Combining this with Lemma 7.4 and Theorem 7.1, and observing

that the dominant term (n+1)3%/2 in Fi(n;1,1) can only occur in the product of Wy,_,.(n) and T.(n), where
k — r is a positive even integer, we conclude that when £ is even,

-1 k—r —1)1120r—4)/2p(3r=2y;
Fi(n;1,1) ~ u + Z (k> ( r ) (*57) (n+ 1)3k/2

k/2 k—r)/2
12 / 0<r<k,r even 12( )/

and when k is odd,

E\ (k—r — 1)1206r=4/2p(3c=2)y
Fi(n;1,1) ~ Z < ) TIC=Ys 2 /)'r (n+ 1)3k/2‘

0<r<k,r even

The corresponding formulas for ¢(n + 1, k) follow immediately. Similar computation shows that the second
term in the asymptotic expansion of ¢(n + 1, k) is O((n +1)"t% ~2).
Our approach yields another formula for the Wright constants.
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Theorem 8.2. If k is even and k = 2l, then

l
_ 20\ 25235721 (35 — 1)(20 — 2s — 1)!!
Vo1 = (21 — 1) ! 25

Klpe—1 = (20— N2+ (23) DR ,

s=1

and if K is odd and k = 20 + 1, then

l 35— 2 1
20+ 1\ t2s412°°72'(3s + 5) (2l — 2s — 1)
s =3 212 A0+ ) 1
2s + 1 (12)—=
s=0
where t,. satisfy the linear recursion (6.7).

Using the formulas I'(z + 1) = 2I'(z) and I'(3) = /7, and the values for ¢, calculated in Section 6, we
obtain pg = v/27w/4, p1 = 5/24, and py = 5v/27/28. These values were first obtained by Wright [19] using a
different method. Spencer observed in [13] that k!ps_; is also the kth power moment E[L*] of the Brownian
excursion area L, which was studied numerically by Louchard [11]. Hence Theorem 8.2 also gives a formula
for these moments.
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