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Abstract

The approach uses a singularity analysis of generating functions for particular sets of maps,
and Tutte’s enumerative and asymptotic work on planar maps and their chromatic polynomials.

1 Background and the approach.

A planar map or, more briefly, a map, is a 2-cell embedding of a connected graph in the plane.
Determining the least number of colours required for colouring the vertices of a/ map so that no
edge joins vertices of the same colour has a history extending over some 160 years [11]. The Four
Colour Conjecture (in its dual form) asserted that every planar map is vertex 4-colourable. The
first proof, by Appel and Haken [1, 2] in 1977, is heavily case-analytic, through the graph-theoretic
operations of discharging and reducibility. A shorter such proof was given by Robertson et al. [9] in
1997. These proofs are constructive, giving a polynomial-time algorithm for a vertex 4-colouring.

Chromatic polynomials were introduced by Birkhoff and Lewis [3] who, with Tutte, believed
they should assist in a proof. This insight and Tutte’s work on map enumeration are shown to have
been justified.

1.1 The chromatic polynomial.
The chromatic polynomial P (G,λ), in λ, of a graph G has the property that if λ = k, where k
is a positive integer, then P (G,λ) is the number of colourings of G with k colours such that no
edge of G has vertices of the same colour. The colourings are called proper colourings, but since no
other type of colouring will be considered, the usage here is unambiguous. Further material on the
chromatic polynomial may be found in Bondy and Murty [4]. The Four Colour Theorem, restated
in terms of P (G,λ), is the following:

Theorem 1. If G is planar then P (G,λ) > 0 for λ = 4.

Birkhoff and Lewis [3] proved that P (G,λ) > 0 for all real λ ≥ 5. It is noted that this excludes
the case λ = 4, namely, the Four Colour Problem. See also Appendix A. Royle’s paper [10] explains
why the condition λ ≥ 4 is required in the inductive hypothesis in Section 4.2. He constructed a
family R of 3-connected near-triangulations (all but one face is a triangle) with the property that
for each real number t > 0 there is an element Rt ∈ R such that the chromatic polynomial P (Rt, λ)
has a chromatic zero λ in the range 4 − t < λ < 4. The number of edges in Rt goes to infinity as
t → 0. However, from Royle [10], there is a planar map M for each t > 0 with n(t) edges such that
P (M,λ) = 0 for some λ in the above range. That is, for each t, there is a sequence of planar maps
Mi, where Mi has nt edges and nt → ∞ as t → 0, such that P (Mi, λ) = 0 for λ in the above range
for each constant t > 0. Nevertheless, it will be proved that P (M, 4) > 0 for all M .
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Remark 2. The value λ = 4 is exceptional with respect to the plane in that for no other known
value of λ > 3 does P (M,λ) = 0 hold for λ approaching some fixed value λ0, yet P (M,λ0) > 0.
Thomassen [12] showed that there are chromatic zeros approaching any λ0 ∈ (227 , 3). He conjectured
that this 3 may be replaced by 4. See also Appendix A.

1.2 Rooted maps.
Several results of Tutte’s on the enumeration of rooted planar maps will be required, especially
those in [15] and an earlier paper [14], so an outline of these is included. Tutte [15] rooted a map
M in the plane by choosing an edge as the root edge, a direction on the root edge directed away
from the root vertex, and a face incident with the root edge (on the left hand side of the root edge)
as the root face. Let E(M) denote the number of edges of M . If the map is asymmetrical with
E(M) edges it will have 4E(M) rootings. (If it is known that almost all of the maps with E(M)
edges in some family are asymmetrical then, given an asymptotic estimate for the number of rooted
maps with E(M) edges, an asymptotic formula for the number of unrooted maps with E(M) edges
may be obtained by dividing this asymptotic estimate by 4E(M)). A rooted map satisfies the
Four Colour Theorem if and only if the corresponding unrooted map does also, so the rooting is
not important in the present context. However, the root is crucial in those enumerative results of
Tutte’s that are used here.

1.3 The approach.
The following assertion is to be proved. If there is a set of maps Q that can be 4-coloured and if the
number of these maps with n edges is a positive fraction of the number of all maps with n edges,
then there is no map that cannot be 4-coloured. (Q is constructed in Section 4.1.)

2 The map series A(x) and B(x).

2.1 Preliminaries.
Two map series, A(x) and B(x), that are fundamental to the approach may be expressed in terms

of the hypergeometric series 2F1[a, b; c;x] := 1+ ab
c

x
1!+

a(a+1)b(b+1)
c(c+1)

x2

2! +
a(a+1)(a+2)b(b+1)(b+2)

c(c+1)(c+2)
x3

3! + · · · .
This satisfies the differential equation

x(1− x)
d2y

dx2
+ (c− (1 + a+ b)x)

dy

dx
− aby = 0. (1)

Its evaluation at x = 1 is

2F1[a, b; c; 1] =
Γ(c) Γ(c−a−b)
Γ(c−a) Γ(c−b) . (2)

The following are recalled Γ(−1
2) = −2

√
π, Γ(−3

2) =
4
√
π

3 , Γ(1 + x) = xΓ(x), Γ(1) = 1 for later
calculations. From Theorem VI.1 [5], ([xn] denotes the coefficient extraction operator)

[xn](1− x)−α = nα−1

Γ(α) (1 +O( 1n)). (3)

2.2 A(x) - the generating function for rooted maps.
Let A(x) =

∑∞
n=1 anx

n where an denotes the number of rooted maps with n edges. Tutte [15]

showed that an = gn
3n

n! , where gn = 2 (2n)!
(n+2)! . Thus

gn+1

gn
= 4 · (n+1)(n+ 1

2
)

n+3 , so

A(x) = 2F1[
1
2 , 1; 3; 12x] − 1 = 2x+ 9x2 + · · · . (4)

Also, from Stirling’s formula,
an ∼ 2√

π
n−5/212n. (5)

From the theory of linear differential equations, and (1), the only singularities of A(x) in the finite
complex plane are the zeros of x(1 − x), namely 0 or 1. Thus, singularities can occur only at
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roots of the leading coefficient of a linear ordinary differential equation ([5], Regular Singularities,
para.1, p. 519). It follows from (5) that A′′(x) diverges at x = 1

12 , and therefore A(x) has a unique
singularity in the finite complex plane at x = 1

12 . Equ. 17.6.24 of Hille [6] states that

2F1[a, b; c; 12z] =
Γ(c)

Γ(a) · Γ(c− a)

∫ 1

0
ta−1(1− t)c−a−1(1− 12 z t)−bdt, (6)

which is valid in the plane cut along [1,∞) if R(a) > 0, R(c − a) > 0. Following Hille [6], if
these conditions are satisfied and |z| < 1

12 then (1 − 12 z t)−b may be expanded as a binomial
series, and the integration in (6) then carried out termwise. The resulting integrals are of the form
∫ 1
0 tα−1(1 − t)β−1dt = Γ(α)·Γ(β)

Γ(α+β) for R(α) > 0 and R(β) > 0. The integral exists in the real plane
and gives the analytic continuation of the hypergeometric series outside the unit circle. This gives
a representation of A(x) in the form

A(x) = A1(x) + (1− 12x)3/2A2(x) (7)

where A1(x) and A2(x) are analytic in the complex plane. This explains why A(x) has precisely
one singularity in the complex plane, as observed earlier. Thus the singularity analysis of Flajolet
et al. described in [5] is applicable, and gives a complete asymptotic expansion of an.

2.3 B(x) - The generating function for non-separable rooted maps.
Definition 3. (Tutte [15]) A rooted map M is said to be separable if its edge-set can be partitioned
into two disjoint non-null subsets S and T with just one vertex v incident with both a member of
S and a member of T . The vertex v is called a cut vertex of M . Note that S and T each must
have at least one edge. S and T are called the constituents of M under this partitioning. This is
indicated through the notation M = S • T where • denotes a cut vertex.

Let B(x) =
∑

n≥1 bnx
n, where bn denotes the number of non-separable rooted maps with n

edges. Tutte [15] showed that bn = hn

n! , where hn = 2 (3n−3)!
(2n−1)! . Now

hn+1

hn
= 27

4

(n− 1

3
)(n− 2

3
)

n+ 1

2

, so

B(x) = 2F1

[

−2
3 ,−1

3 ;
1
2 ;

27
4 x

]

− 1 = 2x+ x2 + · · · and (8)

bn ∼
√
3

27
√
π
n−5/2

(

27

4

)n

(9)

from Stirling’s formula. Thus B(x) has only one singularity in the finite complex plane, and this is
at x = 4

27 . In addition, the generating series for separable maps is

A(x)−B(x). (10)

2.4 Maps with a submap L that is not 4-colourable.
Tutte [15] showed that any rooted planar map M has a uniquely determined rooted non-separable
map N from which it may be constructed. The following sketches a proof of this using splitting
of edges in N in the terminology of Section 6 of Tutte [15]. Given an edge E = {u, v} in N , first
replace it with two edges joining u and v, one on each side of E, and then insert a rooted map
attached to each new edge by identifying the root edge of each inserted map with one of the new
edges. If the inserted maps have n1 and n2 edges, this may be done in an1

an2
ways. To create a

map with n edges requires that n1 + n2 = n − 1 since the edge E must also be counted precisely
once. Thus

A(x) = B(x(1 +A(x))2). (11)

The ‘1’ in this is required since an insertion may not be made on one of the new edges.

Theorem IX.27 of Tutte [13] states that if G is the union of two subgraphs H and K whose
intersection is the complete graph on n vertices, then

(λ)n · P (G,λ) = P (H,λ) · P (K,λ), (12)

where (λ)n = λ(λ− 1) . . . (λ− n+ 1) if n > 0, and is 1 otherwise.
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Definition 4. If the root edge of a rooted map L is attached to one of the new edges obtained by
splitting an edge in N then the map M constructed from N is said to contain a copy of L, a
submap isomorphic to L.

It is recalled from the above that every planar map may be derived (by edge splitting) from a
unique non-separable map N . Here, L and the rest of the map M intersect in an edge (the complete
graph with two vertices and one edge). The rest of the map is denoted by M −L. Then, from (12),
λ(λ− 1) · λP (M,λ) = P (L, λ) · P (M − L, λ). The next result follows immediately.

Lemma 5. If L denotes a map that is a counterexample to the 4-Colour Theorem then P (M, 4) = 0
for any map M containing a copy of L.

Remark 6. The strategy of this proof of the Four Colour Theorem is to show that such a map L
does not exist. This will require: (a) for any rooted map L, properties of the generating function
AL(x) for rooted maps not containing a copy of L; (b) a construction of a set of maps Q (see
Subsection 1.3).

3 A singularity analysis for A(x), B(x), and AL(x).

3.1 A relation between the radii of convergence rA, rB and rL of A(x), B(x), AL(x).
Pringsheim’s Theorem states that there is a smallest singularity, in absolute value, of an analytic
function with non-negative coefficients on the positive real axis. Since A(x) and B(x) have only one
singularity in the finite complex plane, this smallest singularity will be the smallest finite singularity
of A(x) and B(x). Let rA and rB denote the radii of convergence of A(x) and B(x), respectively.
From (5) and (9),

rA = 1
12 and rB = 4

27 . (13)

Next, for rB: from (11), B(x(1+A(x))2) = A(x) is analytic for |x| < rA. Thus rB ≥ rA(1+A(rA))
2,

recalling that A(rA) is convergent. Suppose B(x) is analytic at x = rA(1 +A(rA))
2. This implies

that, from (11), B(x(1 +A(x))2) = A(x) so A(x) is analytic at x = rA. However, A
′′

( 1
12 ) diverges,

from (5), giving a contradiction if rB > rA(1 +A(rA))
2. Thus

rB = rA(1 +A(rA))
2. (14)

Then, from (2) and (4),

A(rA) = A( 1
12 ) = 2F1[

1
2 , 1; 3; 1] − 1 =

Γ(3) Γ(32)

Γ(52 ) Γ(2)
− 1 = 1

3 . (15)

The argument used to establish (11) may be applied, in turn, to AL(x) and B(x) to show that
AL(x) = B(x(1 +AL(x))

2) and, with rL denoting the radius of convergence of AL, that

rB = rL(1 +AL(rL))
2. (16)

The coefficients of AL(x) are less than or equal to those of A(x) since every map counted by
AL(x) is also counted by A(x), so rL ≥ rA. Also AL(x) must converge at x = rL since, from (9),
B(x) converges at x = rB . Hence B(rB) is defined. The lim sup definition of the radius of
convergence, gives rL = 1

αL
where αL = lim supn→∞ |an,L|1/n. Suppose rL = rA. To show that

this leads to a contradiction, consider rB = rA(1 + A(rA))
2 = rL(1 + A(rL))

2 = rB from (14) and
(16) so, if rA = rL, then (1 + A(rA))

2 = (1 + AL(rL))
2 so A(rA) = AL(rA). If L has ℓ edges then

[xℓ]AL(x) ≤ aL − 1 so A(rA) > AL(rA), and it cannot be that (1+A(rA))
2 = (1+AL(rA))

2. Thus
to avoid a contradiction requires that

rL > rA. (17)
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3.2 Estimating the number of rooted maps with no copy of L.
Consider the maps which do not contain a copy of L (it is assumed that these maps and L
are rooted). An estimate may be given for all n. Recall from Cauchy’s coefficient formula ([5],

Thm. IV.4, p. 237) that [xn]AL(x) =
1
2πi

∫ π
−π

AL(re
iθ)

(reiθ)n+1d(re
iθ) = 1

2π

∫ π
−π

AL(re
iθ)

rn e−niθdθ, where x =

reiθ. The coefficients of AL(x) are non-negative so |AL(re
iθ)| ≤ AL(r) for −π ≤ θ ≤ π. Thus

|[xn]AL(x)| ≤ 1
2π

∣

∣

∣

∫ π
−π r

−nAL(r)dθ
∣

∣

∣
≤ AL(r)r

−n for every r < rL. Also [xn]AL(x) ≤ [xn]A(x) since

every map counted by AL(x) is counted by A(x). Now rB = rL(1 + A(rL))
2 = rA(1 + A(rA))

2,

from (14) and (16), so taking the quotient of the two expressions for rB gives 1 = rA(1+A(rA))2

rL(1+AL(rL))2
<

(1+A(rA))2

(1+AL(rL))2
. Thus A(rA) > AL(rL). Then, from (15), AL(rL) < 1

3 . Choosing r = (rA + rL)/2

gives r = rA + δ where δ > 0. Since rA = 1
12 from (13) then [xn]AL(x) ≤ 1

3

(

1
12 + δ

)−n
=

1
312

n(1 + 12δ)−n (see (19) in Prop. IV.1, p. 246 [5]). Also an ∼ 2√
π
n−5/212n (from (5)). Then

dividing the left hand side of the above by an and the right hand side by 2√
π
n−5/212n gives

[xn]AL(x) <
√
π
6 n5/2(1 + 12δ)−nan(1 + o(1)) as n → ∞. From Lemma 5, if there is a map L

which cannot be 4-coloured then no map containing L as a copy can be 4-coloured. In other words,
replacing δ by any δ1 where 0 < δ1 < δ and dropping the

√
πn5/2, gives the following.

Theorem 7. If there is a map L which cannot be 4-coloured then only an exponentially small
fraction of the maps with n edges can be 4-coloured. (L may be separable or non-separable.)

Corollary 1 of Richmond et al. [7] states: if there is one 3-connected triangulation which cannot
be 4-coloured then the radius of convergence of the generating function for 4-colourable 3-connected
triangulations is strictly greater than that for 3-connected triangulations.

The above Theorem 7 is similar, the difference being that it concerns maps with at least one
edge, whereas Corollary 1 of Richmond et al.[7] concerns 3-connected triangulations. It is this
latter observation that allows the present approach, outlined in Section 1.3, to be carried out to
completion.

4 Constructing a set, Q, of maps.

4.1 Preliminaries
Let G be a map with submaps S and T which have only a cut vertex in common. Moreover,
let S have constituents S1 and T1, and let T have constituents S2 and T2 (so S = S1 • T1 and
T = S2 •T2). These decompose G into four maps, S1, T1, S2 and T2. Moreover, S1 and T1 have only
one cut vertex in common, as do S2 and T2 . Moreover, the number of edges, E(G), in G satisfies
E(G) = E(S1)+E(T1)+E(S2)+E(T2). Since each constituent has at least one edge, the following
inequalities hold: E(S1), E(T1), E(S2), E(T2) < E(G). Then Q is defined as follows.

Definition 8. Q is the set of all maps (S1 • T1) • (S2 • T2) with E(S1), E(S2), E(T1), E(T2) ≥ 1
where ‘•’ indicates a cut vertex.

It follows that
∑

n1,n2≥1,n1+n2=n(an1
− bn1

)(an2
− bn2

) = [xn](A(x) − B(x))2 is the number of
maps of the form S1 • T1 with n edges since, from (10), the generating function for separable maps
is A(x)−B(x). Thus the generating function for Q is

(A(x) −B(x))4. (18)

4.2 The 4-colourability of the maps of Q.
In view of Theorem 7, to prove that the maps of Q it suffices to prove that the maps of a particular
subset Q, defined below, are 4-colourable. Let Q ∈ Q (see Def. 8). Then, from (12), λP (Q,λ) =
P (S1 • T1, λ) · P (S2 • T2, λ) so

λ3P (Q,λ) = P (S1, λ) · P (T1, λ) · P (S2, λ) · P (T2, λ). (19)
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Let Q be the set of all maps of the form Q = (S1 • e1) • (e2 • e3) where e1, e2 and e3 are edges. The
following Induction Hypothesis for λ ≥ 4 will be used. All maps in Q with at most n−1 edges are 4-
colourable. This induction hypothesis also applies to Q since Q ⊂ Q, and places no condition upon
S1, T1, S2 or T2. From (19), λ3P (Q) = P (S1, λ) ·P (e1, λ) ·P (e2, λ) ·P (e3, λ) = λ3(λ−1)3P (S1, λ) so
P (Q) = (λ−1)3P (S1, λ). In addition, E(Q) = E(S1)+E(S2)+E(T1)+E(T2) and E(Q) = E(S1)+3.
Since E(Si) ≥ 1 and E(Ti) ≥ 1 for i = 1, 2 then E(S1) = E(Q)−E(S2)−E(T1)−E(T2) < E(Q). It
follows from the Induction Hypothesis that S1 is 4-colourable, so P (S1, λ) > 0. Similarly, P (T1, λ) >
0, P (S2, λ) > 0 and P (T2, λ) > 0. Thus, from (19), so Q is 4-colourable.

4.3 Non-existence of the map L.
From (5) and (9), the generating function A(x)−B(x) for separable maps has radius of convergence

rA = 1
12 . Note that an−bn = an

(

1− bn
an

)

= an
(

1 +O( 9
16 )

n
)

= an+O
(

n−5/2(274 )
n
)

. The fraction of

the maps with n edges which are non-separable is O
(

( 9
16 )

n
)

. Hence, almost all maps are separable.
From (4) and (8), A(x)−B(x) = 8x2 +

∑

n≥3(an − bn)x
n. Thus, since an − bn ≥ 0 for n ≥ 1, then

A( 1
12 )−B( 1

12) =
8

144 +
∑

n≥3

(an − bn)(
1
12 )

n > 1
18 > 0. (20)

Following Remark 6, it remains to show that a map L does not exist. Let Q(x) denote the
generating series (A(x)−B(x))4 for the number of maps in Q with respect to the number of edges.
To estimate the number [xn]Q(x) of maps in Q with n edges note that the only singularities of
A(x) − B(x) are at x = 1

12 and x = 4
27 . Then, with (7), where A1(x) and A2(x) are analytic in

the complex plane, and recalling that B(x) is analytic in |x| < 4
27 and has only one singularity in

the complex plane, it follows from (18) that Q(x) =
(

A1(x)−B(x) + (1− 12x)3/2A2(x)
)4
. Near

x = 1
12 , the right hand side may be rewritten as (A1(x) − B(x))4 + 4(A1(x) − B(x))3A2(x)(1 −

12x)3/2+ · · ·+
(

(1− 12x)3/2A2(x)
)4
. The smallest power of 1−12x in the above expression, i.e. the

term containing (1 − 12x)3/2, determines the asymptotic behaviour of [xn]Q(x). Thus, as n → ∞,
from (3) and singularity analysis,

[xn]Q(x) = [xn] 4A2(
1
12 )

(

A1(
1
12 )−B( 1

12 )
)3

(1− 12x)3/2(1 +O( 1n))

= 4A2(
1
12)

(

A1(
1
12 )−B( 1

12)
)3

12n
(

Γ(−3
2)
)−1

n−5/2(1 +O( 1n)).

Now A( 1
12 )−B( 1

12) >
1
18 from (20). Also, from (5) and (7), it follows from singularity analysis that

an = 2√
π
n−5/212n(1 +O( 1n)) = A2(

1
12 ) · [xn](1− 12x)3/2 = A2(

1
12 )n

−5/2
(

Γ(−3
2)
)−1

12n(1 +O( 1n)).

Also, from (7), A1(
1
12 ) = A( 1

12 ). Thus, [xn]Q(x) = 8√
π

(

A( 1
12 )−B( 1

12 )
)3

n−5/212n(1 + O( 1n)) =

4
(

A( 1
12 )−B( 1

12)
)3

an(1 +O( 1n)) >
4

183
an(1 +O( 1n)) from (5) and (20).

Thus the number of maps in Q with n edges is greater than the positive fraction 1
1458 times the

number, an, of maps with n edges. So a map L posited in Theorem 7 does not exist. It therefore
follows that all planar maps are 4-colourable, completing a proof of Theorem 1.

Appendices

A Observations

Two tantalising results on the chromatic polynomial: (a) Thomassen [12] showed that the zeros of
chromatic polynomials of planar maps contain a dense subset of (3227 , 3) and conjectured that 3 can
be replaced by 4; (b) Royle [10] described families of planar near-triangulations with real chromatic
roots arbitrarily close to 4, approached from below. This was mentioned in Section 1.
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B Tutte’s rooting convention for maps in the plane.

The reason this convention is not necessary (i.e. the result is independent of this convention) is
that every planar map may be embedded on the sphere. The stereographic projection projects any
spherical map onto the plane (or any planar map onto the sphere). A spherical map may be rotated
so that the north pole of the sphere is inside a face of the spherical map. Every point of a spherical
map may be projected from the north pole of the sphere onto a plane tangent to the south pole of
the sphere. The face of the spherical map containing the north pole is projected onto the external
face of the planar map in this way. Any face of a planar map may also be projected onto a face of
the spherical map. This face may be rotated to contain the north pole and projected back onto a
plane tangential to the south pole where it will be an external face. Since any edge of the external
face may be chosen as the root edge, it follows that any edge of a planar map may be chosen as
the root edge.
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