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What is Experimental Mathematics?

Experimental mathematics is an experimental approach to mathematics in
which programming and symbolic computation are used to investigate
mathematical objects, identify properties and patterns, discover facts and
formulas and even automatically prove theorems.
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Four Color Theorem

For example, the proof of four color theorem was assisted by computers to
check the 1,482 reducible configurations. Without computers, the proof
might be impossible.
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Advantages of Experimental Mathematics approaches

Efficient

Easier

Automatic

Powerful

Less error-prone

Tireless

And beyond
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Machine Learning

Machine learning revolutionizes information technology. It can do what
humans can.
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Machine Learning

It can do better than humans. AlphaGo beat human world champions.
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Machine Learning

And it can do what humans can’t do or what takes too long to do.

Detect financial fraud

Recommend system

Online search

Find pattern from big data
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Experimental Mathematics

As machine learning revolutionizes information technology, experimental
mathematics revolutionizes mathematics. It can

Look for a pattern

Test a conjecture

Utilize data to make a discovery

Prove theorems automatically

Provide better tools to maintain and continue building the
mathematical skyscraper
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Parking Functions

Yukun Yao (Rutgers) Experimental Mathematics March 17, 2020 11 / 172



What are parking functions?

In a parallel universe, Frelinghuysen Road is a one-way street (from East to
West). There are several parking spaces, say n, on the southern side of
Hill Center. At the beginning of today, all the spaces are available. Then n
cars come to park one by one, each car i having its favorite parking space
number ai . If all cars can park, we call the preference vector a parking
function.
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Are they parking functions?

978653124
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321

221

222
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Definition of parking functions

Definition

A vector of positive integers (p1, . . . , pn) with 1 ≤ pi ≤ n is a parking
function if its (non-decreasing) sorted version (p(1), . . . , p(n)) satisfies

p(i) ≤ i , (1 ≤ i ≤ n).
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Number of parking functions

Theorem (Pyke, 1959; Konheim and Weiss, 1966)

Let f (n) be the number of parking functions of length n, then
f (n) = (n + 1)n−1.
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Generalization of parking functions: k̂-parking function

Definition

A vector of positive integers (p1, . . . , pn) with 1 ≤ pi ≤ n is a k̂-parking
function if its (non-decreasing) sorted version (p(1), . . . , p(n)) satisfies

1 ≤ p(i) ≤ ki , (1 ≤ i ≤ n).

The number of k̂-parking functions of length n is kn(n + 1)n−1 because
any k̂-parking function can be written as

k(q1, . . . , qn)− (r1, . . . , rn)

where (qi ) is a 1̂-parking function and 0 ≤ ri ≤ k − 1 for each i .
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Generalization of parking functions: ~x-parking function

Definition

A vector of positive integers (p1, . . . , pn) with 1 ≤ pi ≤ n is a ~x-parking
function, where ~x ∈ Nn, if its (non-decreasing) sorted version
(p(1), . . . , p(n)) satisfies

1 ≤ p(i) ≤
i∑

j=1

~x [j ], (1 ≤ i ≤ n).

The number of ~x-parking functions of length n obviously depends on ~x .
When ~x = (a, b, b, . . . , b) ∈ Nn, the number is a(a + nb)n−1.
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Generalization of parking functions: a-parking function

Definition

A vector of positive integers (p1, . . . , pn) with 1 ≤ pi ≤ n is an a-parking
function if its (non-decreasing) sorted version (p(1), . . . , p(n)) satisfies

1 ≤ p(i) ≤ a + i − 1, (1 ≤ i ≤ n).

We will focus on a-parking functions. And from a-parking functions we
can have our experimental mathematics motivated proof of the number of
parking functions.
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Recurrence relation for a-parking functions

Let C (n, a) be the number of sorted a-parking functions of length n.
Consider the number of 1’s. If there are k 1’s, delete them and consider
ak+1 − 1, ..., an − 1. It is an (a + k − 1)-parking function of length n − k .
Hence

C (n, a) =
n∑

k=0

C (n − k, a + k − 1).

Let P(n, a) be the number of a-parking function. With similar argument
we have

P(n, a) =
n∑

k=0

(
n

k

)
P(n − k , a + k − 1).
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P(n, a) = a(a + n)n−1

With experimental mathematics and Maple programming,

immediately we will get the list

[a, a(a + 2), a(a + 3)2, a(a + 4)3, a(a + 5)4]

from [seq(p(i,a), i=1..10)].
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P(n, a) = a(a + n)n−1

First check the initial conditions: when n = 1, the number is a; when
n = 0, the number is 1; when a = 0 and n ≥ 1, the number is 0. By
induction, only need to prove

a(a + n)n−1 =
n∑

k=0

(
n

k

)
(a− 1 + k)(a + n − 1)n−k−1.
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P(n, a) = a(a + n)n−1

Proof.

f (x) :=
n∑

k=0

(
n

k

)
(a + k − 1)xn−k−1.

f (x) =
a− 1

x

n∑
k=0

(
n

k

)
xn−k +

n∑
k=0

k

(
n

k

)
xn−k−1

=
a− 1

x

n∑
k=0

(
n

k

)
xn−k + n

n∑
k=0

(
n

k

)
xn−k−1 −

n∑
k=0

(n − k)

(
n

k

)
xn−k−1

=
a− 1 + n

x

n∑
k=0

(
n

k

)
xn−k −

n∑
k=0

(n − k)

(
n

k

)
xn−k−1

=
a− 1 + n

x
(1 + x)n − n(1 + x)n−1.

P(n, a) = f (a + n − 1) = a(a + n)n−1.
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Labelled rooted forests satisfy the same recurrence

We consider labelled rooted forests with a components where the roots are
1, 2, . . . , a and the total number of vertices are a + n. Let T (n, a) denote
the number of such forests.
If n = 0, T (n, a) = 1. If n ≥ 1 and a = 0, T (n, a) = 0.
Consider the number of neighbors of the vertex 1, remove them with their
subtrees and delete vertex 1. Then there are a + k − 1 components and
n − k non-root vertices. Hence

T (n, a) =
n∑

k=0

(
n

k

)
T (n − k, a + k − 1).
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Bijection between a-parking functions and labelled rooted
forests

Since their numbers are the same for the same n, of course there are lots
of bijections.
We discover or possibly re-discover a bijection.
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Bijection

The bijection can be best demonstrated by examples. Let’s consider a
2-parking function of length 7: 5842121.

vertices : 3 4 5 6 7 8 9

2− parkingfunction : 5 8 4 2 1 2 1

Sort the second line:

vertices : 3 4 5 6 7 8 9

2− parkingfunction : 1 1 2 2 4 5 8
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Bijection

Interpret the sorted version as follows: the parent of vertices 3 and 4 is 1,
5’s and 6’s parent is 2, etc. Hence we have the following forest.
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Bijection

But we are not done yet, because this forest corresponds to the sorted
version, not the original one. If when we sort the second line, the first
line’s elements move accordingly, then we will have

vertices : 7 9 6 8 5 3 4

2− parkingfunction : 1 1 2 2 4 5 8

Compare the first line with that of the above sorted version, we have a
map:

3 4 5 6 7 8 9

↓ ↓ ↓ ↓ ↓ ↓ ↓
7 9 6 8 5 3 4
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Bijection

So the 2-parking function 5842121 is mapped to the following forest:
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Bijection

One convention is that when we draw the forests, for the same parent, we
always place its children in an increasing order (from left to right).
Conversely, if we already have the above forest and we’d like to map it to
a 2-parking function, then we start with indexing each vertex. The rule is
we start from the first level, i.e. the root and start from the left, then we
index the vertices 1, 2, . . . as follows with indexes in the bracket:
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Bijection

After indexing, we have the forest:
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Bijection

Now let the first line still be 3456789. For each of them in the first line,
the second line number should be the index of its parent. Then we have

vertices : 3 4 5 6 7 8 9

2− parkingfunction : 5 8 4 2 1 2 1
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From enumeration to statistics

Often in enumerative combinatorics, the class of interest has natural
‘statistics’, like height, weight, and IQ for humans, and one is interested
rather than, for a finite set A,

|A| :=
∑
a∈A

1,

called the naive counting, and getting a number (obviously a non-negative
integer), by the so-called weighted counting,

|A|x :=
∑
a∈A

x f (a),

where f := A→ Z is the statistic in question. To go from the weighted
enumeration (a certain Laurent polynomial) to straight enumeration, one
sets x = 1, i.e. |A|1 = |A|.
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From enumeration to statistics

The usual scenario is not just one specific set A, but a sequence of sets
{An}∞n=0, and then the enumeration problem is to have an efficient
description of the numerical sequence an := |An|, ready to be looked-up
(or submitted) to the OEIS, and its corresponding sequence of polynomials
Pn(x) := |An|x .
It often happens that the statistic f , defined on An, has a scaled limiting
distribution. In other words, if you draw a histogram of f on An, and do
the obvious scaling, they get closer and closer to a certain continuous
curve, as n goes to infinity.
The scaling is as follows. Let En(f ) and Varn(f ) the expectation and
variance of the statistic f defined on An, and define the scaled random
variable, for a ∈ An, by

Xn(a) :=
f (a)− En(f )√

Varn(f )
.
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The sum and area statistics of a-parking functions

Let P(n, a) be the set of a-parking functions of length n.
A natural statistic is the sum

Sum(p1, . . . , pn) := p1 + p2 + · · ·+ pn =
n∑

i=1

pi .

Another statistic is

Area(p) :=
n(2a + n − 1)

2
− Sum(p).

Let P(n, a)(x) be the weighted analog of P(n, a), according to Sum, i.e.

P(n, a)(x) :=
∑

p∈P(n,a)

xSum(p).

Analogously, let Q(n, a)(x) be the weighted analog of P(n, a), according
to Area, i.e.

Q(n, a)(x) :=
∑

p∈P(n,a)

xArea(p).
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The sum and area statistics of a-parking functions

Clearly, one can easily go from one to the other

Q(n, a)(x) = x (2a+n−1)n/2P(n, a)(x−1),

P(n, a)(x) = x (2a+n−1)n/2Q(n, a)(x−1).

There are similar recurrence relations

P(n, a)(x) = xn
n∑

k=0

(
n

k

)
P(n − k , a + k − 1)(x),

subject to the initial conditions P(0, a)(x) = 1 and P(n, 0)(x) = 0.
Equivalently,

Q(n, a)(x) =
n∑

k=0

(
n

k

)
xk(k+2a−3)/2Q(n − k , a + k − 1)(x),

subject to the initial conditions Q(0, a)(x) = 1 and Q(n, 0)(x) = 0.
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Finding the expectation

The expectation of the sum statistic, Esum(n, a) is given by

Esum(n, a) =
P ′(n, a)(1)

P(n, a)(1)
=

P ′(n, a)(1)

a(a + n)n−1
,

Esum(n, a) =
n(a + n + 1)

2
− 1

2

n∑
j=1

n!

(n − j)!(a + n)j−1
.

Earea(n, a) =
n (a− 2)

2
+

1

2

n∑
j=1

n!

(n − j)!(a + n)j−1
.

Earea(n, 1) = −n

2
+

1

2

n∑
j=1

n!

(n − j)!(n + 1)j−1
.
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A435

Earea(n, 1) = −n

2
+

1

2
Wn+1,

where Wn is the iconic quantity,

Wn =
n!

nn−1

n−2∑
k=0

nk

k!
,

proved by Riordan and Sloane to be the expectation of another very
important quantity, the sum of the heights on labeled rooted trees on n
vertices.

Wn ∼
√
π/2n

3
2 .

In addition to its considerable mathematical interest, this quantity, Wn,
has great historical significance, it was the first sequence , sequence A435
of the amazing On-Line Encyclopedia of Integer Sequences (OEIS), now
with almost 300000 sequences!
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The limiting distribution

The limiting distribution of

Xn(p) :=
Area(p)− En√

Varn

is Airy distribution as proved by David Aldous, Svante Janson,and
Chassaing and Marcket.
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Histogram of the area of parking Functions of length 60
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Histogram of the area of parking Functions of length 100
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The scaled distribution of the area of parking functions of
length 70
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The scaled distribution of the area of parking functions of
length 100
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The scaled distribution of the area of parking functions of
length 120
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Airy Distribution

The Airy distribution function describes the probability distribution of the
area under a Brownian excursion over a unit interval. Surprisingly, this
function has appeared in a number of seemingly unrelated problems,
mostly in computer science and graph theory.
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Exact expression for the factorial moment

Let E1(n, a) := Earea(n, a) be the expectation of the area statistic on
a-parking functions of length n, given above, and let Ek(n, a) be the k-th
factorial moment

Ek(n, a) :=
Q(k)(n, a)(1)

a(a + n)n−1
,

then there exist polynomials Ak(n, a) and Bk(n, a) such that

Ek(n, a) = Ak(n, a) + Bk(n, a)E1(n, a).
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The second factorial moment

The second factorial moment of the area statistic on parking functions of
length n is

−7

3
(n + 1)E1(n) +

5

12
n3 − 1

12
n2 − 1

3
n,

and asymptotically it equals 5
12 · n

3 + O(n5/2).
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The third factorial moment

The third factorial moment of the area statistic on parking functions of
length n is

−175

192
n4 − 283

192
n3 +

199

192
n2 +

259

192
n

+

(
15

32
n3 +

521

96
n2 +

1219

96
n +

743

96

)
E1(n),

and asymptotically it equals 15
128

√
2π · n9/2 + O(n4).
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The fourth factorial moment

The fourth factorial moment of the area statistic on parking functions of
length n is

221

1008
n6 +

63737

30240
n5 +

101897

15120
n4 +

22217

5040
n3 − 1375

189
n2 − 187463

30240
n

+

(
−35

16
n4 − 449

27
n3 − 130243

2520
n2 − 7409

105
n − 503803

15120

)
E1(n),

and asymptotically it equals 221
1008 · n

6 + O(n11/2).
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The fifth factorial moment

The fifth factorial moment of the area statistic on parking functions of
length n is

−105845

110592
n7− 2170159

290304
n6− 99955651

3870720
n5− 30773609

725760
n4− 94846903

11612160
n3+

24676991

483840
n2 +

392763901

11612160
n

+(
565

2048
n6 +

1005

128
n5 +

9832585

165888
n4 +

1111349

5184
n3 +

826358527

1935360
n2

+
159943787

362880
n +

1024580441

5806080
)E1(n),

and asymptotically it equals 565
8192

√
2π · n15/2 + O(n7).
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The sixth factorial moment

The sixth factorial moment of the area statistic of parking functions of
length n is

82825

576576
n9 +

373340075

110702592
n8 +

9401544029

332107776
n7

+
14473244813

127733760
n6 +

414139396709

1660538880
n5

+
88215445651

332107776
n4−18783816473

332107776
n3−643359542029

1660538880
n2−358936540409

1660538880
n

+(−3955

2048
n7−186349

6144
n6−259283273

1161216
n5−119912501

129024
n4−149860633081

63866880
n3

−601794266581

166053888
n2 − 864000570107

276756480
n − 921390308389

830269440
)E1(n),

and asymptotically it equals 82825
576576 · n

9 + O(n17/2).
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Gordian Knot of C -finite Ansatz
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The Gordian Knot

Once upon a time there was a knot that no one could untangle, it was so
complicated. Then came Alexander the Great and, in one second, cut it
with his sword.
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Methodology

In this part, we will describe two case studies where we know that the
generating functions are rational, and it is easy to bound the degree of the
denominator (alias the order of the recurrence satisfied by the sequence).
Hence a simple-minded, empirical, approach of computing the first few
terms and then ‘fitting’ a recurrence (equivalently rational function) is
possible.
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C -finite

A sequence of numbers {a(n)} (0 ≤ n <∞) is C -finite if it satisfies a
linear recurrence equation with constant coefficients. For example the
Fibonacci sequence that satisfies F (n)− F (n − 1)− F (n − 2) = 0 for
n ≥ 2.
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Generating Function

A sequence {a(n)}∞n=0 is C -finite if and only if its (ordinary) generating
function f (t) :=

∑∞
n=0 a(n) tn is a rational function of t, i.e.

f (t) = P(t)/Q(t) for some polynomials P(t) and Q(t). For example,
famously, the generating function of the Fibonacci sequence is
t/(1− t − t2).
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Grid Graph

Definition

The k × n grid graph Gk(n) is the following graph given in terms of its
vertex set V and edge set E :

V = {vij |1 ≤ i ≤ k , 1 ≤ j ≤ n},

S = {{vij , vi ′j ′}||i − i ′|+ |j − j ′| = 1}.
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A lexicographic ordering on Bk

Let Bk be the collection of all set-partitions of [k]. A lexicographic
ordering on Bk is defined as follows:
Given two partitions P1 and P2 of [k], for i ∈ [k], let Xi be the block of P1

containing i and Yi be the block of P2 containing i . Let j be the minimum
number such that Xi 6= Yi . Then P1 < P2 iff
1. |P1| < |P2| or
2. |P1| = |P2| and Xj ≺ Yj where ≺ denotes the normal lexicographic
order.
For example, here is the ordering for k = 3:

B3 = {{{1, 2, 3}}, {{1}, {2, 3}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2}, {3}}} .

For simplicity, we can rewrite it as follows:

B3 = {123, 1/23, 12/3, 13/2, 1/2/3}.
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Some Definitions

Definition

Given a spanning forest F of Gk(n), the partition induced by F is obtained
from the equivalence relation

i ∼ j ⇐⇒ vn,i , vn,j are in the same component of F .

Definition

Given a spanning forest F of Gk(n) and a set-partition P of [k], we say
that F is consistent with P if:
1. The number of trees in F is precisely |P|.
2. P is the partition induced by F .
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Transfer Matrix

Let En be the set of edges E (Gk(n)\E (Gk(n − 1)), then En has 2k − 1
members.
Given a forest F of Gk(n − 1) and some subset X ⊆ En, we can combine
them to get a forest of Gk(n). We just need to know how many subsets of
En can transfer a forest consistent with some partition to a forest
consistent with another partition.
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Transfer Matrix

Definition

Given two partitions P1 and P2 in Bk , a subset X ⊆ En transfers from P1

to P2 if a forest consistent with P1 becomes a forest consistent with P2

after the addition of X . In this case, we write X � P1 = P2.
With the above definitions, it is natural to define a Bk × Bk transfer
matrix Ak by the following:

Ak(i , j) = |{A ⊆ En+1|A � Pj = Pi}|.
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Examples

A2 =

[
3 1
2 1

]

A3 =


8 3 3 4 1
4 3 2 2 1
4 2 3 2 1
1 0 0 1 0
3 2 2 2 1
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Examples
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Thoughts

With the transfer matrices, the recurrence relation, sequence and
generating function can follow immediately. However, with the famous
theorem on next page, we are able to find initial data easily and guess a
recurrence relation from the data.
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The Matrix Tree Theorem

Theorem (The Matrix Tree Theorem)

If A = (aij) is the adjacency matrix of an arbitrary graph G , then the
number of spanning trees is equal to the determinant of any co-factor of
the Laplacian matrix L of G . Taking the (n, n) co-factor, we have that the
number of spanning trees of G equals∣∣∣∣∣∣∣∣∣

a12 + · · ·+ a1n −a12 . . . −a1,n−1
−a21 a21 + · · ·+ a2n . . . −a2,n−1

...
...

. . .
...

−an−1,1 −an−1,2 . . . an−1,1 + · · ·+ an−1,n

∣∣∣∣∣∣∣∣∣ .
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GuessRec

GuessRec is a Maple procedure which accepts inputs of a list of numbers
and outputs a conjectured linear recurrence relation.
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CtoR

CtoR is a Maple procedure which accepts inputs of a recurrence relation
and outputs a generating function.
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General Idea

Have a long enough list L (|L| > d + 2) of data of the number of
spanning trees in the k × n grid graph Gk(n) where k is fixed.

Use GuessRec to guess a recurrence relation from the list of data.

Use CtoR to find a generating function for the recurrence relation.

With the generating function, it is easy to get the number of
spanning trees in Gk(n) even for very large n. This is much faster
than calculating the determinant of the co-factor of the Laplacian
matrix for large n.

Since the number of states of a grid graph is finite for fixed k , the
numbers of spanning trees for different n are a C -finite sequence. Its
generating function must be a unique rational function. Hence our
result is rigorous.
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The generating function for G1(n)

F1 =
t

1− t
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The generating function for G2(n)

F2 =
t

t2 − 4 t + 1
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The generating function for G3(n)

F3 =
−t3 + t

t4 − 15 t3 + 32 t2 − 15 t + 1
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The generating function for G4(n)

F4 =
t7 − 49 t5 + 112 t4 − 49 t3 + t

t8 − 56 t7 + 672 t6 − 2632 t5 + 4094 t4 − 2632 t3 + 672 t2 − 56 t + 1
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The generating function for G5(n)
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The generating function for G6(n)
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The generating function for G7(n)
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Remarks

Generally, for an arbitrary graph G , we consider the number of spanning
trees in G × Pn. With the same methodology, a list of data can be
obtained empirically with which a generating function follows.
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The statistic of the number of vertical edges

Let ver(T ) = the number of vertical edges in the spanning tree T , define
the weight w(T ) = v ver(T ), then the weighted counting follows:

Verk,n(v) =
∑

T∈Fk,n

w(T )

where Fk,n is the set of spanning trees of Gk(n).
Define the bivariate generating function

gk(v , t) =
∞∑
n=0

Verk,nt
n.
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General Idea

The main tool for computing VerGF is still the Matrix Tree Theorem and
GuessRec. But we need to modify the Laplacian matrix for the graph.
Instead of letting aij = −1 for i 6= j and {i , j} ∈ E (G × Pn), we should
consider whether the edge {i , j} is a vertical edge. If so, we let
ai ,j = −v , aj ,i = −v . The diagonal elements which are (−1)× (the sum of
the rest entries on the same row) should change accordingly.
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The bivariate generating function for the weighted counting

g2(v , t) =
vt

1− (2 v + 2) t + t2

g3(v , t) =

−t3v2 + v2t

1− (3 v2 + 8 v + 4) t − (−10 v2 − 16 v − 6) t2 − (3 v2 + 8 v + 4) t3 + t4

The rest formulas are too long to display here.
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Almost-diagonal matrices

So far, we have seen applications of the C -finite ansatz methodology for
automatically computing generating functions for enumerating spanning
trees/forests for certain infinite families of graphs.
The second case study is completely different, and in a sense more general,
since the former framework may be subsumed in this new context.
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Almost-diagonal matrices

Definition

Diagonal matrices A are square matrices in which the entries outside the
main diagonal are 0, i.e. aij = 0 if i 6= j .

Definition

An almost-diagonal matrix A is a square matrices in which ai ,j = 0 if
j − i ≥ k1 or i − j ≥ k2 for some fixed positive integers k1, k2 and
∀i1, j1, i2, j2, if i1 − j1 = i2 − j2, then ai1j1 = ai2j2 .
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Data Structure

For simplicity, we use the notation L =[n, [the first k1 entries in the first
row], [the first k2 entries in the first column]] to denote the n × n matrix
with these specifications. Note that this notation already contains all
information we need to reconstruct this matrix. For example, [6, [1,2,3],
[1,4]] is the matrix 

1 2 3 0 0 0
4 1 2 3 0 0
0 4 1 2 3 0
0 0 4 1 2 3
0 0 0 4 1 2
0 0 0 0 4 1

 .

Yukun Yao (Rutgers) Experimental Mathematics March 17, 2020 81 / 172



GFfamilyDet

Here is the Maple procedure GFfamilyDet which takes inputs (i) A: a
name of a Maple procedure that inputs an integer n and outputs an n × n
matrix according to some rule, e.g., the almost-diagonal matrices, (ii) a
variable name t, (iii) two integers m and n which are the lower and upper
bounds of the sequence of determinants we consider. It outputs a rational
function in t, say R(t), which is the generating function of the sequence.
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Example

Similarly we have procedure GFfamilyPer for the permanent. Let’s look
at an example. SampleB is a sample procedure which outputs the n × n
almost-diagonal matrix which the first row is [2, 3] and the first column is
[2, 4, 5].
Then GFfamilyDet(SampleB, t, 10, 50) will return the generating
function

− 1

45 t3 − 12 t2 + 2 t − 1
.
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Symbolic dynamic programming approach

Recall from Linear Algebra 101, the
Cofactor Expansion Let |A| denote the determinant of an n × n matrix
A, then

|A| =
n∑

j=1

(−1)i+jaijMij , ∀i ∈ [n],

where Mij is the (i , j)-minor.
We’d like to consider the Cofactor Expansion for almost-diagonal matrices
along the first row. For simplicity, we assume while ai ,j = 0 if j − i ≥ k1 or
i − j ≥ k2 for some fixed positive integers k1, k2, and if
−k2 < j1 − i1 < j2 − i2 < k1, then ai1j1 6= ai2j2 . Under this assumption, for
any minors we obtain through recursive Cofactor Expansion along the first
row, the dimension, the first row and the first column should provide
enough information to reconstruct the matrix.

Yukun Yao (Rutgers) Experimental Mathematics March 17, 2020 84 / 172



General Idea

For an almost-diagonal matrix represented by L =[Dimension, [the
first k1 entries in the first row], [the first k2 entries in the first
column]], any minor can be represented by [Dimension, [entries in the
first row up to the last nonzero entry], [entries in the first column up
to the last nonzero entry]].

Use ExpandMatrixL to do a one-step cofactor expansion along the
first row.

Use ChildrenMatrixL to find all ”children” of an almost-diagonal
matrix.

After all ”children” are found, we have a scheme S . By the cofactor
expansion of any element in the scheme, a system of algebraic
equation follows.

Use GFMatrixL to solve the system of equations to get the
generating function.
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ExpandMatrixL
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ChildrenMatrixL
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GFMatrixL
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Example

GFMatrixL([20, [2, 3], [2, 4, 5]], t) returns

− 1

45 t3 − 12 t2 + 2 t − 1
.

Yukun Yao (Rutgers) Experimental Mathematics March 17, 2020 89 / 172



Analysis of Quicksort Algorithms
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Sorting Algorithms

Sorting algorithms are very important in computer science and technology
industry. There are many different sorting algorithms.

Quicksort: average complexity O(n log n)

Merge sort: average complexity O(n log n)

Bubble sort: average complexity O(n2)

Insertion sort: average complexity O(n2)

Selection sort: average complexity O(n2)
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Quicksort

Quicksort is the most widely used sorting algorithm.
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Human Approach

Little research has been focusing on the explicit formula of the
performance and higher moments of Quicksort algorithms.

It seems that only the explicit formulas of the expectation and
variance are previously known via very complicated human approach.

Higher moments seem to be inaccessible via human approach.
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The number of comparisons

The number of comparisons of Quicksort is independent of the
implementation. Let Cn be the random variable: the number of
comparisons and cn = E (Cn), then

cn =
1

n

n∑
k=1

((n − 1) + ck−1 + cn−k) = (n − 1) +
1

n

n∑
k=1

(ck−1 + cn−k)

= (n − 1) +
2

n

n∑
k=1

ck−1.
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Methodology

Let

Hk(n) :=
n∑

i=1

1

ik
.

Our educated guess is that the moments should be a multivariate
polynomial involving n, H1(n), . . . ,Hm(n) for some m. m depends on the
order of the moment.
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Expectation

Theorem

E [Cn] = 2(n + 1)H1(n)− 4n.
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Variance

Theorem (Knuth)

var [Cn] = n(7 n + 13) − 2 (n + 1)H1(n)− 4 (n + 1)2H2(n).
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The third moment

Theorem (Zeilberger)

The third moment about the mean of Cn is

−n(19 n2+81 n+104)+H1(n)(14 n+14)+12 (n+1)2H2(n)+16 (n+1)3H3(n).
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The fourth moment

Theorem (Zeilberger)

The fourth moment about the mean of Cn is

1

9
n(2260 n3+9658 n2+15497 n+11357)−2 (n+1)(42 n2+78 n+77)H1(n)

+12 (n+1)2(H1(n))2+(−4 (42 n2+78 n+31)(n+1)2+48 (n+1)3H1(n))H2(n)

+48 (n + 1)4(H2(n))2 − 96 (n + 1)3H3(n)− 96 (n + 1)4H4(n).
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The number of swaps

The number of swaps is much more complicated than the number of
comparisons since it is dependent on the specific variant. It might be also
more significant since a swap usually takes more computing resources than
a comparison.

Variant Nulla

Variant I

Variant II

Variant III

Variant IV

Variant V
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Variant Nulla

In Variant Nulla, we have the original list L. Every time when a pivot is
chosen and the comparisons are done, we will have two new lists L1 and L2
where elements in L1 are less than the pivot and elements in L2 are greater
than the pivot. So there is really no swap involved in this variant. But it is
not space-efficient. It is also not time-efficient because we need to
generate so many new lists and merge them.
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Variant I

Choose the first (or equivalently, the last) element in the list of length
n as the pivot, then we compare the other elements with the pivot.

We compare the second element with the pivot first. If it is greater
than the pivot, it stays where it is, otherwise we insert it before the
pivot.

Though this is somewhat different from the “traditional swap,” we
define this operation as a swap.

Generally, every time we find an element smaller than the pivot, we
insert it before the pivot.

Yukun Yao (Rutgers) Experimental Mathematics March 17, 2020 102 / 172



Variant I

Let Pn(t) be the probability generating function for the number of swaps
Xn, i.e.,

Pn(t) =
∞∑
k=0

P(Xn = k) tk ,

where for only finitely many integers k , we have that P(Xn = k) is
nonzero.
We have the recurrence relation

Pn(t) =
1

n

n∑
k=1

Pk−1(t)Pn−k(t)tk−1,

with the initial condition P0(t) = P1(t) = 1 because for any fixed
k ∈ {1, 2, . . . , n}, the probability that the pivot is the k-th smallest is 1

n
and there are exactly k − 1 swaps when the pivot is the k-th smallest.
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Variant I

Theorem

The expectation of the number of swaps of Quicksort for a list of length n
under Variant I is

E [Xn] = (n + 1)H1(n)− 2n.
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Variant I

Theorem

The variance of Xn is

2n(n + 2)− (n + 1)H1(n)− (n + 1)2H2(n).
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Variant I

Theorem

The third moment about the mean of Xn is

−9

4
n(n + 3)2 + (4n + 4)H1(n) + 3(n + 1)2H2(n) + 2(n + 1)3H3(n).
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Variant I

Theorem

The fourth moment about the mean of Xn is

1

18
n(335n3 + 1568n2 + 3067n + 2770)− 3(n + 1)(4n2 + 8n + 9)H1(n)

+3(n + 1)2H1(n)2 + (−(12n2 + 24n + 19)(n + 1)2 + 6(n + 1)3H1(n))H2(n)

+3(n + 1)4H2(n)2 − 12(n + 1)3H3(n)− 6(n + 1)4H4(n).
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Variant II

The second variant is similar to the first one. One tiny difference is
that instead of choosing the first or last element as the pivot, the
index of the pivot is chosen uniformly at random.

For example, we choose the i-th element, which is the k-th smallest,
as the pivot. Then we compare those non-pivot elements with the
pivot.

If i 6= 1, the first element will be compared with the pivot first. If it is
smaller than the pivot, it stays there, otherwise it is moved to the end
of the list.

After comparing all the left-side elements with the pivot, we look at
those elements whose indexes are originally greater than i . If they are
greater than the pivot, no swap occurs; otherwise insert them before
the pivot.
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Variant II

Let Q(n, k , i , t) be the probability generating function of the number
of swap in the first partition step when the length of the list is n, the
pivot is the i-th element and is the k-th smallest.

The number of swaps equals to the number of elements which are
before k and greater than k or after k and smaller than k .

If there are j elements which are before k and smaller than k , the
number of swaps is i + k − 2− 2j .

The range of j is [ max(k − 1− n + i , 0), min(i − 1, k − 1) ].
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Variant II

Q(n, k, i , t) =

min(i−1,k−1)∑
j=max(k−1−n+i ,0)

(
i − 1

j

) j−1∏
s=0

k − 1− s

n − 1− s

i−j−2∏
s=0

n − k − s

n − 1− j − s
t i+k−2−2j ,

Pn(t) =
1

n2

n∑
k=1

n∑
i=1

Pk−1(t)Pn−k(t)Q(n, k , i , t),
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Variant II

Theorem

The expectation of the number of swaps of Quicksort for a list of length n
under Variant II is

E [Xn] = (n + 1)H1(n)− 2n.

Theorem

The variance of Xn is

1

6
n(11n + 17)− 1

3
(n + 1)H1(n)− (n + 1)2H2(n).
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Variant II

Theorem

The third moment about the mean of Xn is

−1

6
n(14n2 + 57n + 73) + (2n + 2)H1(n) + (n + 1)2H2(n) + 2(n + 1)3H3(n).
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Variant II

Theorem

The fourth moment about the mean of Xn is

1

90
n(1496n3 +5531n2 +8527n+6922)− 1

15
(n+1)(55n2 +85n+173)H1(n)

+
1

3
(n + 1)2H1(n)2

(−1

3
(33n2 + 51n + 25)(n + 1)2 + 2(n + 1)3H1(n))H2(n) + 3(n + 1)4H2(n)2

−4(n + 1)3H3(n)− 6(n + 1)4H4(n).
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Variant III

The third variant is the most used version: the in-place Quicksort.
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Variant III

Pn(t) =
1

n

n∑
k=1

Pk−1(t)Pn−k(t)tk

Theorem

The expectation of the number of swaps of Quicksort for a list of length n
under Variant III

E [Xn] = (n + 1)H1(n)− 4

3
n − 1

3
.

Theorem

The variance of the number of swaps of Quicksort for a list of length n
under Variant III

var [Xn] = 2n2 +
187

45
n +

7

45
− 2

3n
− (n2 + 2n + 1)H2(n)− (n + 1)H1(n).
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Variant IV

In Variant III, every time when A[j] ≤ pivot, we swap A[i] with A[j].
However, it is a waste to swap them when i = j . If we modify the
algorithm such that a swap is performed only when the indexes i 6= j , the
expected cost will be reduced.
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Variant IV

Lemma

Let Yn(k) be the number of swaps needed in the first partition step in an
in-place Quicksort without swapping the same index for a list L of length n
when the pivot is the k-th smallest element, then

Yn(k) =

{
| {i ∈ [n] | L[i ] ≤ pivot ∧ ∃j < i , L[j ] > pivot} | k < n

0 k = n
.
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Variant IV

When k < n, the probability that there are s swaps is(
k − 1

k − s

)
(k − s)!(n − k)(n − k − 2 + s)!

(n − 1)!
=

n − k

n − 1

(k−1
k−s
)(n−2

k−s
) .

Therefore the probability generating function

Q(n, k , t) =
k∑

s=1

n − k

n − 1

(k−1
k−s
)(n−2

k−s
) ts .

Pn(t) =
1

n

n∑
k=1

Pk−1(t)Pn−k(t)Q(n, k , t)
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Variant IV

Theorem

The expectation of the number of swaps of Quicksort for a list of length n
under Variant IV

E [Xn] = (n + 2)H1(n)− 5

2
n − 1

2
.

Theorem

The variance of the number of swaps of Quicksort for a list of length n
under Variant IV

var [Xn] = 2n2 − 215

12
n +

1

12
+ (11n + 14)H1(n)− (n2 − 2n − 2)H2(n)

−(2n + 2)H1(n)2

Yukun Yao (Rutgers) Experimental Mathematics March 17, 2020 119 / 172



Variant V

This variant might not be practical, but we find that it is interesting
as a combinatorial model.

As is well-known, if a close-to-median element is chosen as a pivot,
the Quicksort algorithm will have better performance than average in
this case. Hence if additional information is available so that the
probability distribution of chosen pivots is no longer a uniform
distribution but something Gaussian-like, it is to our advantage.

Assume that the list is a permutation of [n] and we are trying to sort
it, pretending that we do not know the sorted list must be
[1, 2, . . . , n]. Now the rule is that we choose the first and last number
in the list, look at the numbers and choose the one which is closer to
the median. If the two numbers are equally close to the median, then
choose one at random.
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Variant V

Considering symmetry, Pr (n)(pivot = k) = Pr (n)(pivot = n + 1− k), so we
only need to consider 1 ≤ k ≤ (n + 1)/2. When n is even, let n = 2m.
Then Pr (n)(pivot = k) = 4k−3

(2m−1)2m . When n is odd, let n = 2m − 1, then

Pr (n)(pivot = k) = 4k−3
(2m−1)(2m−2) when k < m and

Pr (n)(pivot = m) = 2
2m−1 .

With this minor modification, the recurrence relation for Pn(t) follows.

Pn(t) =
n∑

k=1

Pk−1(t)Pn−k(t)Q(n, k , t)Pr (n)(pivot = k)

with the initial condition P0(t) = P1(t) = 1.
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Variant V

We obtain the following recurrence relation for the expectation of the
number of swaps:
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Dual-pivot Quicksort

The probability generating function Pn(t) of the total number of
comparisons Cn of dual-pivot Quicksort is

Pn(t) =
1(n
2

) n∑
j=2

j−1∑
i=1

Pi−1(t)Pj−i−1(t)Pn−j(t)t2n−i−2

with the initial condition P0(t) = P1(t) = 1 and P2(t) = t.
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Dual-pivot Quicksort

Theorem

The expectation of the number of comparisons in dual-pivot Quicksort
algorithms is

E [Cn] = 2(n + 1)H1(n)− 4n.

Theorem

The variance of the number of comparisons in dual-pivot Quicksort
algorithms is

var [Cn] = n(7 n + 13) − 2 (n + 1)H1(n)− 4 (n + 1)2H2(n).

Theorem

The third moment about the mean of Cn is

−n(19 n2+81 n+104)+H1(n)(14 n+14)+12 (n+1)2H2(n)+16 (n+1)3H3(n).
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Dual-pivot Quicksort

Theorem

The fourth moment about the mean of Cn is

1

9
n(2260 n3+9658 n2+15497 n+11357)−2 (n+1)(42 n2+78 n+77)H1(n)

+12 (n+1)2(H1(n))2+(−4 (42 n2+78 n+31)(n+1)2+48 (n+1)3H1(n))H2(n)

+48 (n + 1)4(H2(n))2 − 96 (n + 1)3H3(n)− 96 (n + 1)4H4(n).

Observation: They are exactly the same with the 1-pivot Quicksort!
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Dual-pivot Quicksort

How about the number of swaps?
As a toy model, we do an analogue of Variant I. The first and last
elements are chosen as the pivot. Let’s say they are i and j . If i > j then
we swap them and still call the smaller pivot i . For each element less than
i , we move it to the left of i , and for each element greater than j , we
move it to the right of j and call this kind of operations a swap.
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Dual-pivot Quicksort

Pn(t) =
1(n
2

)(
1

2
+

1

2
t)

n∑
j=2

j−1∑
i=1

Pi−1(t)Pj−i−1(t)Pn−j(t)tn−1+i−j

with the initial conditions P0(t) = P1(t) = 1 and P2(t) = 1
2 + 1

2 t.

Theorem

The expectation of the number of swaps in the above dual-pivot Quicksort
variant is

E [Xn] =
4

5
(n + 1)H1(n)− 39

25
n − 1

100
.
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Three-pivot Quicksort

How to sort the pivots? 1-pivot Quicksort.

How to partition the list? Binary search.

How to sort a list or sublist containing less than three elements?
1-pivot Quicksort.
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Three-pivot Quicksort

The recurrence relation for the probability generating function Pn(t) of the
total number of comparisons for 3-pivot Quicksort of a list of length n is

Pn(t) =

1(n
3

) n∑
k=3

k−1∑
j=2

j−1∑
i=1

Pi−1(t)Pj−i−1(t)Pk−j−1(t)Pn−k(t)(
2

3
t2n−3 +

1

3
t2n−4)

with initial conditions P0(t) = P1(t) = 1,P2(t) = t and
P3(t) = 2

3 t
3 + 1

3 t
2.
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Three-pivot Quicksort

Theorem

The expected number of comparisons Cn of 3-pivot Quicksort for a list of
length n satisfies the following recurrence relation:

Cn+4 =
(n + 1) (12 n + 7)

(n + 4) (3 n + 1)
Cn+3 − 3

(n + 1) (6 n + 5) n

(n + 4) (n + 3) (3 n + 1)
Cn+2

+

(
12 n4 + 13 n3 − 12 n2 + 59 n + 24

)
(3 n + 1) (n + 4) (n + 3) (n + 2)

Cn+1 −
(3 n + 4)

(
n2 − 5 n + 12

)
(n + 4) (n + 3) (3 n + 1)

Cn.
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k-pivot Quicksort and remarks

Generally for a long enough list (the length n→∞), the more pivots
the better.

For a real-world application, the best strategy would be that we
adjust the number of pivots when the length of its sublists varies.

For 1-pivot Quicksort, it might be interesting to see whether there is
any sampling method for the pivot which can significantly improve
the efficiency.
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Peaceable Queens Problem
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What is the peaceable queens problem?

What is the maximal number, m, such that it is possible to place m white
queens and m black queens on an n × n chess board, so that no queen
attacks a queen of the opposite color?
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One of three solutions on 5 × 5 board

The following nice pictures are from
https://www.ams.org/journals/notices/201809/rnoti-p1062.pdf By Dr.
Neil Sloane.
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A solution on 8 × 8 board
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A conjectured solution on 20 × 20 board
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A general construction by Jubin
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Known terms in the sequence

Currently only fifteen terms are known:

n : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a(n) : 0 0 1 2 4 5 7 9 12 14 17 21 24 28 32
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Strategy

Consider this peaceable queens problem as a continuous problem by
normalizing the chess board to be the unit square
U := [0, 1]2 = {(x , y) | 0 ≤ x , y ≤ 1}. Let W ⊆ U be the region where
white queens are located. Then the non-attacking region B of W can be
defined as

B = {(x , y) ∈ U | ∀(u, v) ∈W , x 6= u, y 6= v , x +y 6= u+v , y−x 6= v−u}.

So the continuous version of the peaceable queens problem is to find

max
W∈Borel(U)

(min(Area(W ),Area(B))).
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Observation

The queen is able to move any number of squares vertically,
horizontally and diagonally

W should be a convex polygon or a disjoint union of convex polygons
whose boundary consists of vertical, horizontal and slope ±1 line
segments.

Otherwise we can increase the area of white queens without
decreasing the area of black queens.

Each component is at most an octagon.
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Jubin’s construction
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Jubin’s construction

We would like to prove this is at least a local optimum. By assuming that
the white queens are placed in the union of the interiors of the following
two pentagons

[ [0, 0] , [a, a] , [a, a + b − e] , [a− e, a + b − e] , [0, b] ],

and

[ [g , 0] , [g + c, 0] , [g + c , c − 2 f + d ] , [g + c − f , c − f + d ] , [g , d ] ],

it’s not hard to find the region of black queens, and the areas of them.
Then by setting the two areas equal and using Lagrange multiplier, we can
find all the extreme points.
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Jubin’s construction

The white queens are located inside the pentagons

[ [0, 0] , [
1

4
,

1

4
] , [

1

4
,

1

2
] , [

1

6
,

1

2
] , [0,

1

3
] ],

and

[ [
1

2
, 0] , [

3

4
, 0] , [

3

4
,

1

4
] , [

2

3
,

1

3
] , [

1

2
,

1

6
] ].
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Jubin’s construction

The black queens reside inside the pentagons

[ [
1

2
, 1] , [

1

4
, 1] , [

1

4
,

3

4
] , [

1

3
,

2

3
] , [

1

2
,

5

6
] ],

and

[ [1, 1] , [
3

4
,

3

4
] , [

3

4
,

1

2
] , [

5

6
,

1

2
] , [1,

2

3
] ].
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Jubin’s construction

The maximum area of this configuration is

7

48
.
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A single rectangle on 120 × 120 board
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A single rectangle

Let the rectangle for white queens be [ [0, 0] , [a, 0] , [a, b] , [0, b] ]. We’d
like to find the maximum of ab under the condition

ab = (max(1− a− b, 0))2, 0 ≤ a, b ≤ 1.

We get

a = b =
1

3

and the largest area for peaceable queens when the configuration for white
queens is a rectangle is 1

9 .
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A single parallelogram on 120 × 120 board
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A single parallelogram

Let the parallelogram for white queens be [ [0, 0] , [a, a] , [a, a + b] , [0, b] ].
In this case the formulas of the areas of white and black queens are exactly
the same as the previous case. Hence the when

a = b =
1

3

we have the maximum area 1
9 .
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A single triangle on 120 × 120 board
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A single triangle

Let the white queens reside in the region [ [0, 0] , [0, a] , [a, a] ], then its
area is

1

2
a2.

The area of black queens is 1
2(1− a)2. When a = 1

2 , the area is maximized
at 1

8 .
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The largest area for a single component

What could the largest area of white queens be when they have only one
component?

It is at most an octagon.

It should be placed at some corner, e.g. lower left corner.

Then it is at most a hexagon.

Let’s find out the maximum when it is a hexagon.
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A single hexagon on 100 × 100 board
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A single hexagon

The general shape is a hexagon

[ [0, 0] , [a, 0] , [a + b, b] , [a + b, b + c] , [d , b + c] , [0, b + c − d ] ]

with four parameters. Then the area for white queens is

(a + b)(b + c)− 1

2
(b2 + d2),

and the area for black queens is

1

2
(1− a− b − c)2 +

1

2
(1− a− 2b − c + d)2.
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A single hexagon

One of the local maximums found using Lagrange multipliers is when

a = c = d =
1

2
, b = 0.

However, actually this is the optimal triangle with an area of 1
8 .
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A single hexagon

Another local maximum is when a = b = c = d . In that case, we have

3a2 = (1− 3a)2.

Hence when

a =
3−
√

3

6
≈ 0.2113248654,

the area of white queens is maximized at

3a2 =
2−
√

3

2
≈ 0.1339745962.
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Cylindrical algebraic decomposition

Given a set S of polynomials in Rn, a cylindrical algebraic
decomposition is a decomposition of Rn into semi-algebraic connected
sets called cells, on which each polynomial has constant sign, either
+, - or 0. With such a decomposition it is easy to give a solution of a
system of inequalities and equations defined by the polynomials, i.e. a
real polynomial system.

The cylindrical algebraic decomposition algorithm in quantifier
elimination is applied to find out the exact optimal parameters and
the maximum areas.
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Two identical squares on 200 × 200 board
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Two identical squares

The two squares are

[ [0, 0] , [a, 0] , [a, a] , [0, a] ]

and
[ [s, 0] , [s + a, 0] , [s + a, a] , [s, a] ].

Based on this configuration, the domain is

0 ≤ a ≤ 1

2
, a ≤ s ≤ 1− a.

The area of white queens is
2a2.
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Two identical squares

Actually the formula for black queens is very complicated, especially when
a is small there may be a lot of components for B. However, by
experimentation (procedure FindM2Square), we found that for all
mid-range s ∈ [0.24, 0.76], a around 0.23 will always maximize the area.
Then we just need to focus on the shape of B when a is not far from its
optimum.
The area of black queens is

(s−a)(1−s−a)+
1

4
(s−a)2+(max(1−s−2a, 0))2+max(s−2a, 0)(1−s−a).
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Two identical squares

The domain for a and s is a triangle. The area formula for black queens
shows that the two lines s = 2a and s = 1− 2a separate the domain into 4
regions. In each region, we have a polynomial formula for the area of black
queens. Since the area of white queens W is just a simple formula of a, we
need to maximize a with the condition W = B.
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Two identical squares

When s ≥ 2a and s ≥ 1− 2a, by cylindrical algebraic decomposition we
obtained

1
2(−1 +

√
2) ≤ a < 1

27(1 + 2
√

7) s = 4+a
7 + 2

7

√
4− 19a + 9a2

1
27(1 + 2

√
7) ≤ a < 1

18(19−
√

217) s = 4+a
7 ±

2
7

√
4− 19a + 9a2

a = 1
18(19−

√
217) s = 4+a

7 −
2
7

√
4− 19a + 9a2

.

When s ≤ 2a and s ≥ 1− 2a, the result is an empty set.
When s ≤ 2a and s ≤ 1− 2a, we obtained

2

9
≤ a ≤ 1

7
(3−

√
2), s = 2− 7a− 2

√
−2a + 9a2.

When s ≥ 2a and s ≤ 1− 2a, we obtained

2

9
≤ a ≤ 1

27
(1 + 2

√
7), s = 3a− 2√

3

√
1− 7a + 12a2.
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Two identical squares

Comparing the four cases, we found that the largest area occurred in case
1, when

a =
1

18
(19−

√
217) ≈ 0.2371711193,

s =
13

18
− 1

126

√
217 ≈ 0.6053101598.

The largest area is 289
81 −

19
√
217

81 ≈ 0.112500281.
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Two identical isosceles right triangles on 200 × 200 board

With the same orientation
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Two identical isosceles right triangles with the same
orientation

Similarly, also By CAD, when s ≥ 1− 2a
1
2(2−

√
2) ≤ a < 1

4(−1 +
√

5) s = 1
2 + 1

2

√
3− 12a + 8a2

1
4(−1 +

√
5) ≤ a < 1

4(3−
√

3) s = 1
2 ±

1
2

√
3− 12a + 8a2

a = 1
4(3−

√
3) s = 1

2 −
1
2

√
3− 12a + 8a2

.

When s ≤ 1− 2a, we obtained

1

11
(5−

√
3) ≤ a ≤ 1

4
(−1 +

√
5), s = 2a−

√
2− 10a + 12a2.

Hence the area is maximized when

a =
1

4
(3−

√
3) ≈ 0.316987298,

s =
1

2
.

The largest area is 3
4 −

3
8

√
3 ≈ 0.1004809470.
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Two identical isosceles right triangles on 200 × 200 board

With the opposite orientations
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Two identical isosceles right triangles with the opposite
orientations

If we take the two triangles to be

[ [0, 0] , [a, 0] , [a, a] ]

and
[ [1− a, 0] , [1, 0] , [1− a, a] ],

then the area of black queens is

a(1− 2a) + (
1

2
− a)2 = −a2 +

1

4
.

Equalizing the areas of white queens and black queens, we get

Area(W ) = a2 =
1

8
,

which is greater than the optimal case of two identical isosceles right
triangles with the same orientation.
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One square and one triangle with the same side length on
200 × 200 board
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One square and one triangle with the same side length

It is obtained that when s ≥ 1− 2a
1
2(−2 +

√
6) ≤ a < 1

21(1 +
√

22) s = 4−a
7 + 1

7

√
16− 64a + 22a2

1
21(1 +

√
22) ≤ a < 2

11(8−
√

42) s = 4−a
7 ±

1
7

√
16− 64a + 22a2

a = 2
11(8−

√
42) s = 4−a

7 −
1
7

√
16− 64a + 22a2

,

and when s ≤ 1− 2a

1

15
(6−

√
6) ≤ a ≤ 1

21
(1 +

√
22), s =

7a

3
− 1

3

√
12− 72a + 106a2.

Consequently, we have the maximized area when

a =
2

11
(8−

√
42) ≈ 0.276228965,

s =
112

33
− 14

33

√
42− 50

33

√
7 +

52

33

√
6 ≈ 0.495622162.

The largest area is 636
121 −

96
121

√
42 ≈ 0.1144536616.
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Summary
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Summary

“I Love Experimental Mathematics”, from π-day homework of
Experimental Mathematics class in Spring 2018.
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Thanks for Your Attention!
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