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This thesis concerns two problems at the intersection of discrete mathematics and

theoretical computer science. Broadly speaking, both of these problems regard the

outcome of a random process on a discrete structure.

It is well known that any graph of maximum degree ∆ can be properly edge

colored with at most ∆ + 1 colors. In the online setting, it has been a matter of some

interest to find an algorithm that can properly edge color any graph on n vertices

with maximum degree ∆ = ω(log n) using at most (1 + o(1))∆ colors. Here we study

the näıve random greedy algorithm, which simply chooses a legal color uniformly at

random for each edge upon arrival. We show that this algorithm can (1 + ε)∆-color a

graph for arbitrary ε in two contexts: first, if the graph is fixed ahead of time and

its edges arrive in a uniformly random order, and second, if the edges of the graph

are selected adaptively by an adversary as the algorithm progresses, but with the

restriction that n = O(∆). A corollary of the second result is that there must exist a

deterministic algorithm to (1 + ε)∆-color dense graphs.

For the second problem, we study probability distributions on a set A with an

associated weight function w : A→ [0, 1]. For any such distribution, µ, we define a

defending distribution to be a distribution on subsets of A of total weight at most

1 that satisfies certain constraints with respect to both µ and linear orderings on A.
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The existence of a defending distribution is relevant to the field of social choice theory,

where it was shown in a paper by Jiang, Munagala, and Wang that it implies the

existence of a stable lottery, a method of selecting committees that is “fair” in some

sense. We will extend a result from that paper to show that under certain restrictions

of the weight function, a defending distribution always exists.
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Chapter 1

Introduction

This thesis is divided primarily into two sections, each of which discusses a problem in

the area of discrete math and theoretical computer science. The first studies a simple

online algorithm for graph edge coloring. The second studies probability distributions

of sets of weighted elements and arises from a problem in computational social choice

theory.

1.1 Greedy Online Edge Coloring

The first problem we consider is related to edge coloring of graphs. A simple argument

shows that any graph with maximum degree ∆ can be deterministically edge colored

with at most 2∆− 1 colors by the simple greedy algorithm. In fact, Vizing’s famous

theorem tells us that any graph with maximum degree ∆ has chromatic index exactly

∆ or ∆+1, and his proof shows that any such graph can be (∆ + 1)-edge colored

deterministically in polynomial time. In contrast, in the online setting Bar-Noy,

Motwani, and Naor showed that no randomized online algorithm using fewer than

2∆−1 colors to color graphs of maximum degree ∆ on n vertices when ∆ = O(
√

log n)

can succeed with probability more than 1− 1
e
. However, in the case that ∆ = ω(log n),

they conjectured that the random greedy algorithm could successfully (1+o(1))∆-color
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graphs of maximum degree ∆ on n vertices. In the second chapter of this thesis, we

study the random greedy algorithm using (1 + ε)∆ colors (for ε an arbitrarily small

constant).

There are many reasons this algorithm in particular is inherently worth studying,

starting with its simplicity. More than that, however, the outcome of this algorithm

is interesting in that each step is very dependent on previous steps. Previous work

utilizing random colorings has often relied on independence or near-independence of

consecutive choices, so the analysis of this algorithm required the development of a

different method of proof. We prove guarantees on the performance of this algorithm

in two different settings. First, we consider the case where the edges arrive in a

uniformly random order. In this case, we obtain the following result:

Theorem 1 (Informal version of Theorem 6). (Random order case) Let ε ∈ (0, 1)

be a constant. The random greedy algorithm using (1 + ε)∆ colors, when given any

simple graph G of maximum degree ∆ = ω(log n) whose edges are presented in a

uniformly random order, successfully edge colors G with high probability.

In the second setting we allow the edges to be chosen by an adaptive adversary.

This means that the graph G is not fixed ahead of time, and the choice of each

successive edge can depend on the colors assigned to previous edges. In this case, we

are also able to show that the algorithm is likely to succeed, but we require that the

resulting graph G be dense.

Theorem 2 (Informal version of Theorem 7). (Dense case) Let ε ∈ (0, 1), M ≥ 1

be constants. Suppose G is an adaptively chosen simple graph with maximum degree

∆ and n ≤M∆. Then, the random greedy algorithm using (1 + ε)∆ colors succeeds in

edge coloring G with high probability.

Allowing the graph G to be adaptively chosen is a very powerful assumption; the

work of Ben-David et. al. in [13] shows that this removes the power of randomization
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altogether. Thus, we obtain the following corollary to Theorem 2:

Corollary 1. Let ε ∈ (0, 1) be a constant. For ∆ sufficiently large and n = O(∆)

there is a deterministic online algorithm that given any simple graph with n vertices

and maximum degree ∆ will produce a valid coloring using (1 + ε)∆ colors.

As mentioned above, the analysis of the random greedy algorithm is difficult due to

the inherent dependencies between choices at each step. Nevertheless, we manage to

show that for each vertex, the set of colors assigned by this algorithm to its adjacent

edges appears random in some sense. More precisely, we devise a measure for the

distance between the coloring produced by this algorithm at a vertex and a coupled,

uniformly random coloring (independent from the coloring on the rest of the graph),

at each point in time. Roughly, this measure can be decomposed into two main parts:

a part that behaves nicely, similar to an independent process, and a part that depends

on the neighbors of the vertex. We bound the first part (for most vertices) using a

novel martingale concentration lemma, and then use an inductive argument to bound

the second part and thus obtain an upper bound in this measure for all vertices. We

are then able to use this similarity to an independent random coloring to deduce that

the algorithm succeeds with high probability at each vertex, and therefore on the

entire graph.

1.2 Existence of Defending Distributions

The second problem discussed in this thesis also studies the outcome of a random

process on a discrete structure. Given a finite set A, associated weight function

w : A→ (0, 1), and probability distribution µ on subsets of A, we define a defending

distribution ν to be a distribution on supported on subsets of total weight at most 1
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that satisfies the following condition: for any total ordering � on A,

Pr
a∼µ,S∼ν

[a � a′ ∀ a′ ∈ S] < E
a∼µ

w(a). (1.1)

It is not difficult to see that if all elements of A have the same weight, then for

any distribution µ on subsets of A, there must exist a defending distribution ν (see

Lemma 39.) The following conjecture is (rephrased) from [45].

Conjecture 1. For any weight function w and any distribution µ on A, there exists

a defending distribution ν for µ.

In the third chapter, we prove this conjecture in the following two restricted

settings:

Theorem 3. Suppose w is supported on any two values {k1, k2}. Then, for any

distribution µ on A, there exists a defending distribution ν for µ.

Theorem 4. Suppose w is supported on any three values { 1
b1
, 1
b1b2

, 1
b1b2b3

}, where

b1, b2, b3 ∈ Z≥2. Then, for any distribution µ on A, there exists a defending distribution

ν for µ.

We are also able to extend the covered cases to include the following, more specific,

setting:

Theorem 5. Suppose w is supported on three weights k1 > k2 > k3 s.t. k1 ∈ (1
2
, 1),

k2 ∈ (1
3
, 1

2
], and k1 + k2 > 1. Then for any distribution µ on A, it is possible to find a

defending distribution.

Our main method of proof is as follows: given a distribution µ, we choose a

distribution ν that selects multiple elements from µ independently at random. Then,

for a weight function supported on ` distinct values, we look at the distributions µi

of elements drawn from µ conditioned on being of the ith highest weight. Given an
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ordering �, we consider quantities of the form fi(x1, x2, ..., x`), the probability that

if we draw xj elements from each µj, all independently, that the first element drawn

from µi is the greatest, according to �. It is not hard to show that for a distribution

ν of the form above, the left hand side of Equation (1.1) can be written in terms of

such quantities. We then use a coupling argument to derive a system of upper bounds

on these terms. As a result, the problem of finding a defending distribution becomes

one of solving a system of linear equations to combine these upper bounds and obtain

Equation (1.1). In the case of Theorem 4, we use the Max Flow Min Cut Theorem

from graph theory to prove the existence of such a solution.

As shown in [45], the existence of a defending distribution ν for all sets A, weight

functions w, and distributions µ has implications in the field of social choice theory,

where it proves that in the committee selection problem, a stable lottery is always

guaranteed to exist.
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Chapter 2

Greedy Online Edge Coloring

This chapter is joint work with Aditi Dudeja and Michael Saks ([33]).

2.1 Introduction

The edge coloring problems for graphs is to assign colors to the edges of a given graph

so that any two edges meeting at a vertex are assigned different colors. Trivially,

the number of colors needed is at least the maximum vertex degree ∆. A theorem

of Vizing’s states that every graph can be properly edge colored using ∆ + 1 colors.

Vizing’s proof is constructive, and gives an algorithm to ∆ + 1 color a graph with n

vertices and m edges in O(mn) time (see [48]).

Our focus is on the edge coloring problem in the online setting, which was first

introduced by Bar-Noy, Motwani and Naor [9]. Starting from the empty graph on

vertex set V , edges of the graph are revealed one at a time, and the algorithm must

irrevocably assign colors to the edges as they arrive. The simplest online edge coloring

algorithms are greedy algorithms, which color each arriving edge by some previously

used color whenever it is possible to do so. Since every arriving edge touches at

most 2∆ − 2 existing edges, any greedy algorithm uses at most 2∆ − 1 colors. In

their paper, [9] showed that for ∆ = O(log n), no deterministic online algorithm can
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guarantee better than 2∆− 1 coloring and thus greedy algorithms are optimal in this

case. They also showed that for ∆ = O(
√

log n), no randomized online algorithm

can achieve a better than 2∆− 1 coloring. Furthermore, when ∆ =
√
n, the results

of [29, 30] combine to show that no randomized online coloring algorithm can color

using ∆ + o(
√

∆) colors. Thus, most of the focus has been designing algorithms for

∆ = ω(log n) using (1+o(1))∆ colors. There has been steady progress on this problem

[1, 15, 54, 46, 20], culminating in a recent work of [19], which presents a randomized

algorithm that edge colors an online graph using ∆ + o(∆) colors.

In this chapter, we investigate the randomized greedy algorithm which is a natural

variation of the greedy algorithm. Given a set Γ of colors, the randomized greedy

algorithm A on input the online graph G chooses the color of each arriving edge

uniformly at random from the currently allowed colors for that edge, and leaves the

edge uncolored if no colors are allowed. The algorithm is said to succeed if every

edge is colored. The example in Figure 2.1 shows that the algorithm will fail if

|Γ| = ∆ + o(
√

∆) (because the set of colors not used by the first ∆− 1 edges is likely

to be disjoint from the set of colors not used by the second ∆− 1 edges.)

...
...

e1

e2

e∆−1

e2∆−1

e∆

e∆+1

e2∆−2

Figure 2.1: A simple example to illustrate that if |Γ| = ∆ + o(
√

∆), then A likely
fails.

In their paper, [9] conjectured that given any online graph G with ∆ = ω(log n)

the randomized greedy algorithm A succeeds in ∆ + o(∆) edge coloring G with high

probability. This algorithm is simple and natural, but subsequent researchers (e.g. [46,

54, 2, 7]) have noted that it seems difficult to analyze. Prior to the present paper, the

analysis was only done for the special case of trees (see Theorem 5 below). Our first

result gives an analysis of this algorithm for the case of random-order arrivals. In this
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setting, an adversary can pick a worst-case graph but the edges of the graph arrive in

a random order. (Recall that a graph with no multiple edges is said to be simple.)

Theorem 1 (Informal version of Theorem 6). (Random order case) Let ε ∈ (0, 1)

be a constant. The algorithm A, when given any simple graph G of maximum degree

∆ = ω(log n), whose edges are presented in a uniformly random order, edge colors G

with (1 + ε)∆ colors with high probability.

Our second result applies to the setting where the adversary is adaptive. This

means that the adversary does not have to decide the graph a priori. They can instead

decide the subsequent edges of graph based on the coloring of the prior edges. We call

such a graph adaptively chosen.

Theorem 2 (Informal version of Theorem 7). (Dense case) Let ε ∈ (0, 1), M ≥ 1

be constants. Suppose G is an adaptively chosen simple graph with maximum degree

∆ and n ≤M∆. Then, A succeeds in (1 + ε)∆-edge coloring G with high probability.

To clarify the setting of Theorem 2, we note that prior results (as far as we know)

assumed an oblivious adversary that chooses the graph G and the edge-arrival order

but must fix both of these before their online algorithm receives any input. In contrast,

an adaptive adversary builds the input as A runs and may choose each edge depending

on the coloring of the graph so far.

For the case of online algorithms, [13] established a connection between randomized

algorithms against an adaptive adversary and deterministic algorithms. Their result

states that for a given online problem, if there is an α-competitive randomized

algorithm against an adaptive adversary, then there exists a α-competitive deterministic

algorithm. Exploiting this connection, we get the following corollary:

Corollary 3. Let ε ∈ (0, 1) be a constant. For ∆ sufficiently large and n = O(∆)

there is a deterministic online algorithm that given any simple graph with n vertices

and maximum degree ∆ will produce a valid coloring using (1 + ε)∆ colors.
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Since the above-mentioned previous algorithms for online edge-coloring were

applicable against an oblivious adversary, they did not have any implications to the

deterministic setting. As far as we know, Corollary 3 is the first result for a general

class of graphs that gives a deterministic online algorithm using fewer than 2∆− 1

colors.

Related Work. The edge coloring problem has been considered in numerous settings.

As mentioned before, Vizing’s proof already lends itself to a polynomial time algorithm.

Additionally, it is NP-hard to distinguish whether a graph is ∆ or ∆ + 1 colorable [43].

Vizing’s upper bound was subsequently improved to O(m ·min
{

∆ · log n,
√
n · log n)

}
by [3, 40] and then to O(m · min {∆ · log n,

√
n)} by [56]. The current best known

bounds are O(n2) for sparse graphs (due to [4]), and O(mn−3) for dense graphs

(due to [17]). There has also been a considerable effort to study edge coloring in

other computational models: such as the dynamic model [10, 16, 32, 28, 18, 27], the

distributed model [ElkinK24, 49, 37, 41, 8, 24, 14, 28, 31], and the streaming model

[12, 11, 25, 42].

Remark 4 (Note about ε). We only consider ε < 1, since for ε ≥ 1, we have ≥ 2∆

colors, and the randomized greedy algorithm must succeed.

2.1.1 Our Approach

We start with describing A in more detail. Fix the color set Γ. The edges of G = (V,E)

arrive in some order e1, e2, ... and so on. At all points during the algorithm, for each

vertex v, the free set at v is the set of colors not yet used to color an edge incident on

v. The free set of v when edge ei arrives is denoted Fi−1(v). When edge ei = (u, v)

arrives, algorithm A uniformly chooses a color c from Fi−1(u) ∩ Fi−1(v) and colors ei

with that color. If Fi−1(u) ∩ Fi−1(v) = ∅ when ei arrives then ei is left uncolored and

the algorithm continues. In this case the algorithm is said to fail on ei. As mentioned
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in the introduction, this algorithm was previously analyzed for trees. We give a proof

of this for completeness, since the tree case gives intuition for our proof strategy for

general graphs.

Theorem 5. [36] Suppose the online graph G is a tree and ∆ = ω(log n). If |Γ| =

∆ + 2
√

∆ · log n, then A succeeds with probability at least 1− 1/n.

Proof. Let |Γ| = (1 + ε) · ∆, where ε ≥ 2
√

logn
∆

. Prior to the arrival of any edge

ei = (u, v), the vertices u and v are in separate components of the tree, and therefore,

Fi−1(u) and Fi−1(v) are independently sampled from Γ, even if we condition on not

having failed in either component before ei arrives. Conditioned on the algorithm

having succeeded thus far, k1 = |Fi−1(u)| and k2 = |Fi−1(v)| are determined by the

order of edges. By symmetry Fi−1(u) and Fi−1(v) are uniformly random from
(

Γ
k1

)
,(

Γ
k2

)
, respectively. Conditioned on not having failed yet,

Pr [Fi−1(u) ∩ Fi−1(v) = ∅] =
∑

S∈( Γ
k1

)

Pr [Fi−1(u) ∩ Fi−1(v) = ∅ | Fi−1(u) = S] · Pr [Fi−1(u) = S]

=
∑

S∈( Γ
k1

)

Pr [Fi−1(v) ∩ S = ∅] · Pr [Fi−1(u) = S]

(Due to independence)

≤
∑

S∈( Γ
k1

)

(
1− k1

|Γ|

)k2

· Pr [Fi−1(u) = S]

≤ exp

(
−k1k2

|Γ|

)
≤ exp

(
− ε2 ·∆

(1 + ε)

)
(

since ε = 2

√
log n

∆

)

= O(n−3)

Taking a union bound over all edges ei, AΓ(G, σ) fails with probability O(n−1).
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In order to analyze A, we consider a modified algorithm, A′ (see Definition 8),

which produces a proper coloring with the same probability as A. We first describe the

intuition for A′. For general graphs, when edge ei = (u, v) the Fi−1(u) and Fi−1(v) are

in general not independent, but intuitively they should be approximately independent.

Taking inspiration from the proof for trees, we aim to show that for any subset S

of colors, the set Fi−1(u) “looks random” with respect to S, i.e., that when edge ei

arrives, for any vertex w

|S ∩ Fi−1(w)| ≈ |S||Fi−1(w)|
(1 + ε)∆

. (2.1)

Note that the right hand side is the expected size of |S ∩ Fi−1(w)| if Fi−1(w) was a

uniformly random subset of Γ. It is fairly obvious that Equation (2.1) does not hold

for every set S and every vertex w (for example, if S = Γ− Fi−1(w)). What we will

show is that for each S, and for all but constantly many vertices v, Equation (2.1)

holds for all time steps i (up to some small error).

The intuition for our proof is as follows. The set Fi(v) evolves over time as

colors are removed one by one. If, at each step j, the color removed was chosen

uniformly from Fj−1(v), then at any time i, the set Fi(v) would be a uniform set from

Γ and would likely satisfy Equation (2.1). In fact, since we are only interested in the

size of Fi(v) ∩ S appearing to be random, and not the set itself, in order to satisfy

Equation (2.1) with high probability, it is enough that the probability the color chosen

at step j is in S is the same as it would be if the color was chosen uniformly from

Fj−1(v). More explicitly, we would like to have

|S ∩ Fj−1(v) ∩ Fj−1(w)|
|Fj−1(v) ∩ Fj−1(w)|

≈ |S ∩ Fj−1(v)|
|Fj−1(v)|

, (2.2)

where the left hand side is the probability that the color selected for ej = (v, wj)

belongs to S. Note that if we set S ′ = S ∩ Fj−1(v) and S ′′ = Fj−1(v), and in addition
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we knew that Equation (2.1) was satisfied for vertex wj and each of the color sets S ′

and S ′′, then the above equation would hold (with a marginal increase in error.) This

idea forms the basis of an inductive proof of our main lemma, Lemma 33.

As mentioned, we will show that with high probability, for each set S, the number

of vertices v for which Equation (2.1) fails is bounded by a constant. Ideally, we would

like to use this to show that for all but constantly many ej = (v, wj) adjacent to v,

Equation (2.2) holds. Unfortunately, it could happen that wj is one of the vertices

for which Equation (2.1) fails for S ′ = S ∩ Fj−1(v) or S ′′ = Fj−1(v), and this would

prevent us from reasoning as above. To get around this we note that the sets Fj(v)

cannot be completely independent from each other - Fj(v) will differ from Fj+t(v) by

at most t colors. So for each vertex v, we will partition the time steps into a (large)

constant number of v-phases so that each v-phase contains only a small fraction of

the edges incident on v. Then for each v-phase r we will approximate Fj−1(v) for all

time steps j of that v-phase by the set Aj−1(v) which is defined to be the free set of v

at the beginning of the v-phase that contains j. Since Fj−1(v) will not differ too much

from Aj−1(v), we will argue that if we replace Fj−1(v) with Aj−1(v) in Equation (2.2)

and the new equation holds for all but constantly many ej = (v, wj), then the original

equation must also hold for all but constantly many neighbors wj. This allows us to

carry out the reasoning of the previous paragraph.

To this end, our analysis will consider a modified version of the algorithm which

we denote by A′. This modified version produces the same distribution over colorings

as A but it has the advantage that it explicitly reflects the partition of time steps into

v-phases for each v, and the approximation of Fj−1(v) by Aj−1(v) described above.

The modified algorithm works as follows. When edge ej = (u, v) arrives we first sample

a color uniformly from Aj−1(u) ∩ Aj−1(v) (rather than from Fj−1(u) ∩ Fj−1(v)). If

the selected color is valid (which means that it belongs to Fj−1(u) ∩ Fj−1(v)) then

we use it, otherwise we discard it and then sample uniformly from Fj−1(u) ∩ Fj−1(v).
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We will have the following chain of comparisons: first, that the number of times A′

initially selects an invalid color and resamples is small, and thus the colors chosen for

A are close to the colors initially chosen by A′. Second, the inductive assumption

that Equation (2.2) holds for all but constantly many edges ej = (v, wj) adjacent to

v, and thus the colors initially chosen by A′ hit any given set S about as often as a

uniform choice from Fj−1(v) would. Finally, we show that the uniform choice from

Fj−1(v) would likely satisfy Equation (2.1). Proposition 16 quantifies the error added

in each step of this chain in terms of martingale sums defined in Section 2.3.1.

2.2 Preliminaries

2.2.1 Online Coloring

Online coloring can be described as a two player game between Builder and Colorer.

The game Φ(n,∆, ε) is parameterized by the number of vertices n, degree bound ∆

and ε > 0. The game starts with the empty graph on n vertices and a color set Γ of

size d(1 + ε)∆e. The game lasts for m = b∆n/2c steps. In each time step, Builder

selects an edge to add to the graph, subject to the restriction that all vertex degrees

remain below ∆. Colorer then assigns a color to the edge from Γ so that the overall

coloring remains valid. If this is impossible (i.e. any color choice will invalidate the

coloring) the edge is left uncolored. Colorer wins if every edge is successfully colored.

For convenience, we also allow Builder to add null edges; such edges are not adjacent

to any vertex in the graph and may be assigned any color without affecting whether

or not the coloring is valid. This has the advantage that we can fix the number of

steps to m, and if Builder gets stuck (is unable to add an edge without violating the

degree bound) then he can add null edges for the remaining steps.

The state of the game after i steps, denoted Si, consists of the list of the first i

edges chosen by Builder and the coloring chosen by Colorer. A strategy for Builder is
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a function which given any game state Si determines the next edge to be added or

terminates the game. A strategy for Colorer is a function which given the game state

Si and an additional edge e assigns a color to e (or leaves e uncolored if no color can

be assigned.) When Colorer’s strategy is randomized and Builder’s strategy is fixed,

the game state becomes a random variable. Henceforth, when we discuss the (partial)

“coloring” produced by A′ after step i, we will be referring to the game state Si.

We say that a color c is free for v at step i if among the first i− 1 edges, no edge

that touches v is colored by c. If the ith edge chosen by Builder is (u, v) then the set

of colors that can be used to color (u, v) is the intersection of the free set for v at step

i and the free set for u at step i. If that set is empty then the edge is necessarily left

uncolored.

We are interested in analyzing the behavior of the randomized greedy strategy for

Colorer, denoted A: for each new edge ei = (u, v), if the intersection of the free set for

u and the free set for v is nonempty then choose the color for ei uniformly at random

from that set.

During the game Builder produces a graph G together with an ordering of its

edges which we view as a one-to-one function σ : E(G) −→ [m]. Elements in [m] to

which no edge is in E(G) is mapped are interpreted as null edges. We refer to (G, σ)

as an edge-ordered graph. In general the edge ordered graph produced by Builder may

depend on the coloring of edges chosen by Colorer. A strategy of Builder is oblivious

if the choice of edge to be added at each step depends only on the current edge set

and not on the coloring. An oblivous strategy is fully described by the pair (G, σ)

where the edge selected at step i is σ−1
i (and is a null edge if that is undefined). We

denote this strategy by obl(G, σ). We can now give a more precise formulation of our

first main result.

Theorem 6. (random order case) For any constant ε ∈ (0, 1) there are constants

N = N(ε) (sufficiently large), γ1 = γ1(ε) and γ2 = γ2(ε) (sufficiently small) such that



15

the following holds. Suppose that n is sufficiently large, ∆ > N log(n) and consider

the edge coloring game Φ(n,∆, ε). For any G on n vertices with maximum degree ∆,

for all but at most a 2−γ1∆ fraction of mappings σ of E(G) to [m], A will defeat the

oblivious strategy obl(G, σ) (i.e., produce an edge coloring for G) with probability at

least 1− 2−γ2∆.

Our second main result applies to arbitrary adaptive strategies of Builder. (Here

we use the word adaptive to emphasize that Builder’s choices may depend on the past

coloring.)

Theorem 7. (dense case) For any constant ε ∈ (0, 1) and constant M > 1, there is

a constant γ = γ(ε,M) so that the following holds. For sufficiently large n, and for

∆ > n/M , for any (possibly adaptive) strategy for the online coloring game Φ(n,∆, ε),

A wins (produces an edge coloring of the resulting graph) with probability 1− 2−γ∆.

2.2.2 The Algorithm A′

In order to prove the above theorems we analyze a modified strategy A′ that against

any given Builder strategy produces exactly the same distribution over colorings as A,

but will be easier to analyze.

Phase Counter Functions. For each vertex v, the modified algorithm will keep

track of a partition of the time steps into at most b contiguous v-phases. The

value of b is specified in Section 2.3.2. For each v, the v-phases are numbered

from 1 to b. The partition into v-phases is represented by a phase-partition counter

{φi(v) : i ∈ {1, . . . , t}} where φi(v) is the number of the v-phase that contains time

step i. For each i > 1 we have either φi(v) = φi−1(v) (if i− 1 and i are in the same

phase) or φi(v) = 1 + φi−1(v) (if i starts a new v-phase.) This function is determined

online, so that φi(v) is determined after step i− 1 of the game.
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The phase-partition counters that we use are defined formally in Definition 27. In

the dense case (Theorem 7) for each vertex v, the v-phases are determined by the

number of edges incident to v that have arrived. For r ≥ 2, the rth v-phase starts

with the time step where the number of edges incident on v first exceeds (r − 1)∆/b.

(Thus the number of edges incident on v in each v-phase is within 1 of ∆/b.) The

phase-partition counters in this case are denoted by φD.

In the random case (Theorem 6), the v-phase partition is the same for every vertex.

For r ≥ 2, the rth v-phase starts with the time step where the total number of edges

arrived first exceeds (r− 1)m/b. The phase-partition counters in this case are denoted

φR.

Algorithm Description In A′, Colorer maintains for each vertex v, a color set

Ai(v) that approximates Fi(v) but remains constant during each v-phase. We call

Ai(v) the palette of v at the end of time step i. For vertex v and time i, we define

Ai−1(v) = Γ if i belongs to the first v-phase and otherwise:

Ai−1(v) = Fi′−1(v) where i′ is the first step of the v-phase containing step i.

= the set of available (free) colors v at the start of v-phase φi(v).

Note that Ai(v) ⊃ Fi(v) for all i, and we think of Ai(v) as an (over-)approximation

to Fi(v).

Definition 8 (Algorithm A′). Start with A0(v) = F0(v) = Γ for all v. When edge

ei = (u, v) arrives:

(a) Choose c uniformly at random from Ai−1(u) ∩ Ai−1(v). This is the preliminary

color for ei. If Ai−1(u) ∩ Ai−1(v) = ∅, ei is left uncolored.

(b) Next, choose the final color for ei:

i) If c ∈ Fi−1(u) ∩ Fi−1(v), color edge ei with c.
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ii) Otherwise, c /∈ Fi−1(u) ∩ Fi−1(v). (We refer to this as a collision at e.)

In this case, choose c′ uniformly from Fi−1(u) ∩ Fi−1(v) for edge ei. If

Fi−1(u) ∩ Fi−1(v) = ∅, ei is left uncolored.

(c) For all vertices w, if φi(w) < φi+1(w) (i completes the current w-phase) then

Ai(w) is set to Fi(w), otherwise Ai(w) = Ai−1(w).

It is obvious from the algorithm that the final color selected for e is uniformly

random over Fi−1(u) ∩ Fi−1(v), so the distribution over colorings produced by A′ is

the same as A. To prove Theorems 7 and 6 it suffices to prove the corresponding

statements with A replaced by A′ and this is what we’ll do.

2.2.3 Framework

Here we provide some necessary background information and notation, as well as

an overview of the lens through which we view the algorithm. This framework will

inform much of the notation and intuition in the succeeding sections, and also provide

a foundation for extensions of the main result.

A discrete probability space (Ω,P) consists of a countable set of outcomes, Ω, and

a probability measure P : Ω→ [0, 1] such that
∑
ω∈Ω

P(ω) = 1. In our case, Ω will be

the space of game states resulting from algorithm A′ on G and P is the probability

of each outcome. For a discrete probability space, a filtration, {Fi}mi=0, is a sequence

of partitions of Ω where F0 is the trivial partition with one part, and each Fi+1 is

a refinement of Fi. For analysis purposes we augment Si so that it includes the

preliminary color that A′ chooses for each edge, and let Fi correspond to the set of

possible states for Si, i.e., it is the partition of the probability space into sets that

agree on the ith state. We will say that a random variable Q : Ω→ R depends only

on Fi if, for each set in the partition, Q is constant on that set (so it is determined by
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the state Si.)

Notation. For a step 1 ≤ i ≤ m we define the following random variables depending

only on Fi:

ei+1 = the (i+ 1)th edge to arrive.

For vertex v and time step i, we define the following random variables that are

determined by Fi:

Fi(v) = the set of free colors of v at the end of step i.

φi+1(v) = the v-phase for step i+ 1.

Ai(v) = the palette of free colors of v at the end of step i.

We will track the above variables as the algorithm progresses, and they will form

the basis for the martingale difference sequences we analyze in Section 2.3. Each of

these variables is subscripted by a step i, at which time they are fixed. This is what

allows us to apply our concentration lemmas and make probabilistic claims about such

variables.

In contrast, the variables defined below will be superscripted by a phase number r,

if at all, and are defined only after the last edge in phase r of v arrives and is colored

(or fails to be colored.) However, since the choice of edges is not fixed ahead of time, we

do not know a priori the step i at which they will be defined. Thus, we must be careful

when dealing with such quantities. In the rest of the paper, outside of Section 2.3, we

will assume the algorithm has concluded, and make deterministic statements about

the quantities defined below, conditioned on the results from Section 2.3.
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For a vertex v the following set depends on the entire outcome, Fm:

T (v) = the set of arrival times of edges adjacent to v.

Also for vertex v and v-phase r, we define the following sets depending on Fm:

Ar(v) = the set of free colors of v at the end of the rth v-phase.

U r(v) = Ar−1(v) \ Ar(v)

= the set of colors used to color edges incident on v during the rth v-phase.

T r(v) = {i ∈ T (v) : φi(v) = r}

= the set of arrival times of edges incident on v during the rth v-phase.

T≤r(v) = ∪r′≤rT r
′
(v).

lastr(v) = max {i : i ∈ T r(v)}

= the time at which the last edge of v-phase r that is adjacent to v arrives.

We remark that by this notation, for each time i, Ai−1(v) = Aφi(v)−1(v).

Finally, we define the following quantity, called the error of vertex v with respect to S

after phase r:

δr(v, S) :=
|Ar(v) ∩ S|
|Ar(v)|

− |S|
(1 + ε)∆

. (2.3)

In our inductive arguments, we will be proving statements about quantities of

the form Qr(v) based on the relative ordering of the times lastr(v). Thus, the times

lastr(v) are important to note down. More formally, we define the following partial

order on vertex-phase pairs (v, r) ∈ V × [b].
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Definition 9 (Vertex-Phase and Edge Arrival Ordering, ≺). Given pairs (v, r), (u, s) ∈

V (G)× [b], we say that (v, r) ≺ (u, s) if lastr(v) < lasts(u).

We make one final note about the variables defined in this section. Above we have

defined two families of variables: those indexed by times steps i that are defined at

a known time step i, and those that are not defined until the algorithms concludes.

Note that although the sets in the second family depend on Fm, the indicator variable

for a particular index i belonging to one of these sets only depends on Fi−1, since the

identity of ei and φi(v) are determined at that point. For instance, T r(v) depends on

Fm, but the indicator 1{i∈T r(v)} only depends on Fi−1. Thus, indicator variables of

this form will also belong to the first family of variables and will be used in Section 2.3.

2.2.4 Proof Idea

As mentioned above, for each set S ⊆ Γ and vertex v ∈ V , we would like to track

|Fi(v) ∩ S| as A′ progresses. We will do this indirectly by tracking |A
r(v)∩S|
|Ar(v)| with the

goal of bounding δr(v, S). Observe that δ0(v, S) = 0, so our goal will be to bound

how much δr(v, S) increases in each phase. Note that if U r(v) was chosen uniformly

from Ar−1(v), we would expect that

|U r(v) ∩ S| ≈ |U r(v)| · |A
r−1(v) ∩ S|
|Ar−1(v)|

, (2.4)

which would imply that the error with respect to any set S would not increase too

much when the phase of v changes:

δr−1(v, S)− δr(v, S) =
|Ar−1(v) ∩ S|
|Ar−1(v)|

− |A
r(v) ∩ S|
|Ar(v)|

(2.5)

=
|Ar−1(v) ∩ S|
|Ar−1(v)|

− |A
r−1(v) ∩ S| − |U r(v) ∩ S|

|Ar(v)|

=
1

|Ar(v)|

(
|U r(v) ∩ S|+ |Ar−1(v) ∩ S|

(
|Ar(v)|
|Ar−1(v)|

− 1

))
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=
1

|Ar(v)|

(
|U r(v) ∩ S|+ |Ar−1(v) ∩ S| · |A

r(v)| − |Ar−1(v)|
|Ar−1(v)|

)
=

1

|Ar(v)|

(
|U r(v) ∩ S| − |Ar−1(v) ∩ S| · |U

r(v)|
|Ar−1(v)|

)
. (2.6)

Our goal is to show that Equation (2.4) is never too far from the truth, and

therefore δr(v, S) does not grow too large in any given phase. As we previously noted,

this cannot hold for every set S and every vertex v, but we can show that there exists

a constant C depending on ε such that with high probability, for each set S, for all

but at most C vertices v and all phases r, we have

|δr(v, S)| ≤ ε3∆

10|Ar(v)|
. (2.7)

Proposition 16 allows us to bound the amount δr(v, S) grows during a phase of v in

terms of three main sources of error: the error from the collisions at each phase, the

error inherent to a locally independent algorithm, and the error in the palettes of the

neighbors of v for that phase.

To that end, for all ei = (u, v), we define the indicator variables Xi(S) to track

whether the preliminary color chosen for ei from Ai−1(u) ∩ Ai−1(v) hits S, Yi(S) to

track whether the final color chosen for ei from Ai−1(u) ∩ Ai−1(v) hits S, and the

collision indicator variables Zi to track whether the preliminary color chosen for ei

needs to be resampled. Furthermore, we let

pi(S) :=
|Ai−1(u) ∩ Ai−1(v) ∩ S|
|Ai−1(u) ∩ Ai−1(v)|

(2.8)

be the probability that Xi(S) = 1, conditioned on the partial coloring of edges before

ei arrives, and let

Di(S) = Xi(S)− pi(S). (2.9)



22

Note that,

∣∣∣∣∣∣|U r(v) ∩ S| −
∑

j∈T r(v)

Xj(S)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

j∈T r(v)

Yj(S)−Xj(S)

∣∣∣∣∣∣ ≤
∑

j∈T r(v)

Zj (2.10)

since the colors used in the preliminary coloring and the final coloring differ only in the

edges which experience collisions. This produces the first source of error. Similarly,

∣∣∣∣∣∣
∑

j∈T r(v)

Xj(S)−
∑

j∈T r(v)

pj(S)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

j∈T r(v)

Dj(S)

∣∣∣∣∣∣ (2.11)

models the inherent error of the local algorithm on phase r of v. Therefore, if we can

show that for most i ∈ T r(v),

pi(S) ≈ |A
r−1(v) ∩ S|
|Ar−1(v)|

(2.12)

and bound the quantities on the right hand sides of Equation (2.10) and Equation (2.11),

we will have

|U r+1(v) ∩ S| ≈ |U r+1(v)| · |A
r(v) ∩ S|
|Ar(v)|

, (2.13)

as desired. Our main tool for bounding the sums above will be martingale concentration

inequalities.

2.2.5 Background on Martingales

In this section we review needed definitions and facts about martingales including

Freedman’s concentration inequality. We also use Freedman’s inequality to deduce a

more general concentration lemma.

A martingale with respect to {Fi} is a sequence {Yi} of random variables such
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that Yi depends only on Fi, and

E[Yi | Fi−1] = Yi−1.

Similarly, a supermartingale is a sequence {Yi} such that

E[Yi | Fi−1] ≤ Yi−1

and a submartingale is a sequence {Yi} such that

E[Yi | Fi−1] ≥ Yi−1.

Note that a martingale is both a supermartingale and a submartingale. We can also

consider a martingale difference sequence, which is a sequence {Di} satisfying

E[Di | Fi−1] = 0.

For any difference sequence {Di}, the sums {Yi =
∑i

j=1 Dj} form a martingale and

for any martingale {Yi}, the differences {Di = Yi − Yi−1} form a martingale difference

sequence. We make the following observation about properties of difference sequences

that will be useful later on:

Observation 10. Let {Di} be a martingale difference sequence with respect to {Fi}.

(a) For any ` < i, conditioning on Fi−1 fixes D`, so we have

E[D`Di | Fi−1] = D`(Fi−1) E[Di | Fi−1] = 0.

(b) More generally, let {βi} be a sequence of random variables where βi is determined

by Fi−1. Then the sequence {βiDi} is also a martingale difference sequence with
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respect to {Fi}:

E[βiDi | Fi−1] = βi(Fi−1) E[Di | Fi−1] = 0.

We say that {βiDi} is derived from the martingale {Di} and refer to βi as the

coefficient sequence for the derived martingale. We emphasize that the coefficients

here are themselves random variables. In this chapter, the difference sequences that

we consider are indexed by the time steps of the process (corresponding to the edges

of the graph) and we will associate a β sequence to each vertex, where the β-sequence

associated to v is nonzero only on the edges that touch v.

A key property of martingales is that if the elements of the difference sequence of

a martingale are bounded, then with high probability, the martingale does not deviate

too far from its starting value. This theorem is formally stated below.

Lemma 11 (Azuma-Hoeffding Bounds). Suppose {Yi} is a supermartingale relative

to some difference sequence {Di}i≥1, whose increments Di = Yi−Yi−1 satisfy |Di| ≤ σi.

Then,

Pr [Yn ≥ Y0 + δ] ≤ exp

(
−δ2

2
∑n

i=1 σ
2
i

)
.

Similarly, suppose {Yi} is a submartingale relative to some sequence {Di}i≥1 whose

increments Di = Yi − Yi−1 satisfy |Di| ≤ σi. Then,

Pr [Yn ≤ Y0 − δ] ≤ exp

(
−δ2

2
∑n

i=1 σ
2
i

)
.

Unfortunately, such a bound will not be sufficient for our purposes, since random-

ness in the choice of edges renders us unable to bound any particular difference Di,

despite knowing that most of these values will be zero. Instead we use a variant of
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Azuma-Hoeffding due to Freedman that is well-suited for analyzing processes whose

evolution is partially controlled by an adversary (which for us is Builder). In Freed-

man’s theorem one considers the auxiliary sequence Vi = Var(Di | Fi−1), which is the

variance of Di conditioned on Fi−1).

Lemma 12. [39, Theorem 4.1] Suppose {Yi} is a supermartingale with respect to

{Fi} and its corresponding difference sequence {Di} satisfies |Di| ≤ D for all i. Let

Vi = Var(Di | Fi−1) and Wi =
∑

j≤i Vj , and suppose Wm ≤ b with probability 1. Then

Pr [Ym ≥ Y0 + δ] ≤ exp

(
− δ2

2(D · δ/3 + b)

)
.

In the next section we will use Lemma 12 to bound the probability that the

derived supermartingale associated to a vertex gets too large. This bound is stated

in the first part of the Lemma below. Additionally, there will be times we want to

show that for a set of C vertices, v1, ..., vC , the derived supermartingales associated

to each of those vertices cannot all become too large at once. In particular, we

would like to show that the probability of this occurring decays exponentially in

C. Note that if we were guaranteed that the edges adjacent to each of the vk

were disjoint and arrived contiguously - that is, if we could partition the difference

sequence {Di}mi=1 into C sequences {Di}m1
i=1, ..., {Di}mCi=mC−1+1 such that the derived

supermartingale associated to vk was nonzero only on {Di}mki=mk−1+1 - then we could

get this result by iteratively applying Lemma 12, since conditioned on the value of

{Di}mk−1

i=1 , the sequence {Di}mki=mk−1+1 is still a difference sequence. However, in our

case, the arrival times of the edges for the different vertices can be interleaved, and

even intersect. Nevertheless, we manage to provide a general sufficient condition for a

similar conclusion to hold.

Lemma 13. Suppose {Di}ti=1 is a martingale difference sequence with respect to

{Fi} such that |Di| ≤ 1 for all i and let α, a,∆ be positive real numbers where ∆ is
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sufficiently large (depending on a and α).

(a) Suppose {βi}ti=1 is a coefficient sequence where βi depends only on Fi−1 and

such that with probability 1,
∑t

i=1 |βi| ≤ ∆ and |βi| ≤ a for all i. Then:

Pr

[∑
i

βiDi ≥ α∆

]
≤ exp

(
−α

4∆

128a

)
.

(b) Suppose that for each k ∈ {1, . . . , C}, {βki }ti=1 is a coefficient sequence where βki

depends only on Fi−1 and such that with probability 1,
∑t

i=1 |βki | ≤ ∆ for all

k. Suppose further that with probability 1, for all i ∈ {1, . . . , t},
∑C

k=1 |βki | ≤ a.

Then:

Pr

[
∀k,
∑
i

βkiDi ≥ α∆

]
≤ exp

(
−Cα

4∆

128a

)
.

The key thing to note about the conclusion is that for α, ∆ and a fixed, the

probability upper bound shrinks exponentially with C. The first part of the Lemma

is just the case C = 1 of the second part; we stated it separately to help the reader to

digest the lemma statement, and also because the special case C = 1 will be applied

twice in what follows.

Proof of Lemma 13. The proof is obtained by applying Lemma 12 to a single random

sequence {Yj} that is constructed from {Di} and all C coefficient sequences. Let

Y0 = 0, and j ∈ {1, . . . , t} let:

Yj =
C∑
k=1

(∑
i≤j

βkiDi

)2

−
∑
i≤j

(βki )2

 .
If it is the case that for all k, |

∑t
i=1 β

k
iDi| ≥ α∆ then:

Yt =
C∑
k=1

(∑
i≤t

βkiDi

)2

−
∑
i≤t

(βki )2

 ≥ Cα2∆2 − C∆a ≥ Cα2∆2

2
,
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for ∆ sufficiently large and therefore:

Pr

[
∀k,
∑
i

βkiDi ≥ α∆

]
≤ Pr

[
Yt ≥

Cα2∆2

2

]
,

so it suffices to bound the probability on the right. We first show that {Yj} is a

supermartingale. Defining {Zj} to be the difference sequence associated to {Yj}, we

have

Zj =
C∑
k=1

[
(βkj )2D2

j + 2(βkj )Dj

∑
i<j

βkiDi − (βkj )2

]
.

To see that {Yj} is a supermartingale, note that by Observation 10, for any ` < i,

E[D`Di | Fi−1] = D` E[Di | Fi−1] = 0.

Furthermore, since |Di| ≤ 1 for all i, we have E[D2
i | Fi−1] ≤ 1. Therefore, for any

1 ≤ j ≤ t, we have

E[Yj − Yj−1 | Fj−1] = E[Zj | Fj−1] =
C∑
k=1

[
(βkj )2 E[D2

j | Fj−1] + 2βkj
∑
i<j

βki E[DjDi | Fj−1]− (βkj )2

]

=
C∑
k=1

(βkj )2
(
E[D2

j | Fj−1]− 1
)

≤ 0,

which shows that {Yj} is indeed a supermartingale. We now will use Lemma 12 to

upper bound the indicated probability. For this, we must bound the variance sums

{Wj} of {Yj} and the absolute values of the associated difference sequences {Zi}.

Note:

|Zj| ≤
C∑
k=1

∣∣∣∣∣(βkj )2D2
j + 2βkjDj

∑
i<j

βkiDi − (βkj )2

∣∣∣∣∣
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≤
C∑
k=1

(
2|βkj |2 + 2|βkj |

∑
i<j

|βki |

)
(since |Di| ≤ 1)

=
C∑
k=1

2|βkj |

(∑
i≤j

|βki |

)

≤ 2∆
C∑
k=1

|βkj | (since
∑
i

|βki | ≤ ∆)

≤ 2∆a (since
∑
k

|βki | ≤ a)

Thus,

Vj = Var(Zj | Fj−1) ≤ E[Z2
j | Fj−1] ≤ 2∆a

C∑
k=1

4∆|βkj | = 8∆2a
C∑
k=1

|βkj |

which tells us

Wt ≤
∑
j

Vj ≤
∑
j

8∆2a
C∑
k=1

|βkj | = 8∆2a
C∑
k=1

∑
j

|βkj | ≤ 8∆2a
C∑
k=1

∆ ≤ 8aC∆3

Then Lemma 12 tells us that,

Pr

[
Yt ≥

Cα2∆2

2

]
≤ exp

(
− C2α4∆4

4 · (Cα2a∆3 + 16aC∆3)

)
≤ exp

(
−Cα

4∆

128a

)
.

2.3 Well-Behaved Colorings

2.3.1 Some Martingales Difference Sequences

Our main goal in this section will be to define the martingale difference sequences we

will be considering. Recall that we are viewing the progression of the algorithm as
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a filtered probability space with Fi representing the space of partial colorings of the

first i edges to arrive. We first introduce the random variables which will form the

basis for the difference sequences we track throughout the course of the algorithm. All

of the quantities defined below for an edge ei will be set to 0 by default if ei is null or

we are unable to color ei.

Definition 14 (Collision Variables). The following random variables relate to the

collisions experienced by algorithm A′. For a non-null edge ei = (u, v)

• Zi is defined to be 1 if ei is in a collision and then successfully colored, and

is 0 otherwise. Thus Zi = 1 provided that there is a collision at ei (i.e., the

preliminary color is not valid) and Fi−1(u) ∩ Fi−1(v) 6= ∅.

• qi = E[Zi | Fi−1]. If Fi−1(u) ∩ Fi−1(v) = ∅ this is 0. Otherwise:

qi := 1− |Fi−1(u) ∩ Fi−1(v)|
|Ai−1(u) ∩ Ai−1(v)|

=
|(Ai−1(u) ∩ Ai−1(v)) \ (Fi−1(u) ∩ Fi−1(v))|

|Ai−1(u) ∩ Ai−1(v)|
.

• {Zi − qi}mi=1 is a martingale difference sequence with respect to {Fi}, since

E[Zi − qi | Fi−1] = 0. Additionally, since Zi, qi ∈ [0, 1], we have for all i,

|Zi − qi| ≤ 1.

The significance of the next set of variables is little more subtle. Recall that our

goal is to bound

δr(v, S) :=
|Ar(v) ∩ S|
|Ar(v)|

− |S|
(1 + ε)∆

,

the error of vertex v with respect to color set S after its rth phase. A natural way to

do this would be to track how often the colors chosen for edges incident to v hit S.

However, the probability that the color of an edge (u, v) hits S is highly dependent

on the palette of u, which makes it difficult to control δr(v, S) on its own. Instead
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we consider a related, and easier to control, quantity: the difference between the

probability of the color of an edge (u, v) hitting S and the indicator for the event.

This doesn’t directly bound δr(v, S), but it does allow us to approximate |Ar(v) ∩ S|

in terms of intersections of the form |Ar′(v′)∩S ′| for neighbors v′ of v which - crucially

- complete their phase r′ before v completes its phase r. This will allow us to use an

inductive argument to bound δr(v, S) in terms of such δr
′
(v′, S ′).

Definition 15 (Difference Variables). Let ei = (u, v) be a non-null edge and S ⊆ Γ.

• Xi(S) is 1 if the preliminary color for ei belongs to S and 0 otherwise.

• Yi(S) is 1 if the final color chosen for ei belongs to S and is 0 otherwise. Note

that

|Xi(S)− Yi(S)| ≤ Zi,

since the final color chosen for ei differs from the preliminary color only if there

is a collision.

• pi(S) is the probability that the preliminary color chosen for edge ei is in S,

conditioned on the coloring of all previous edges:

pi(S) := E[Xi(S) | Fi−1] =
|Ai−1(u) ∩ Ai−1(v) ∩ S|
|Ai−1(u) ∩ Ai−1(v)|

.

• Di(S) = Xi(S)− pi(S). This is a martingale difference sequence with respect to

Fi since:

E[Di(S) | Fi−1] = E[Xi(S)− pi(S) | Fi−1] = 0,

• Furthermore if S1, S2, . . . is a sequence of color sets where Si is determined by

Fi−1 then {Di(Si)} is also a martingale difference sequence, satisfying

|Di(Si)| = |Xi(Si)− pi(Si)| ≤ 1



31

for all i.

The following proposition relates the variables above to the error δr(v, S) and

motivates the difference sequences we will define. For a vertex v and phase `, let

T̃ `(v) = {j | j ∈ T `(v) and ej is successfully colored}.

Note that |T̃ `(v)| = |U `(v)|. Furthermore, recall that if ei was not colored, then by

definition Zi = Yi(S) = Xi(S) = Di(S) = pi(S) = 0 for all S.

Proposition 16. For any vertex v, subset of colors S, and phase r of v,

|δr(v, S)| ≤ 1

|Ar(v)|
∑

i∈T≤r(v)

Zi +

∣∣∣∣∣∣
r∑
`=1

1

|A`(v)|
∑

i∈T `(v)

Di(S)

∣∣∣∣∣∣ +
r∑
`=1

1

|A`(v)|
∑

i∈T̃ `(v)

∣∣∣∣pi(S)− |A
`−1(v) ∩ S|
|A`−1(v)|

∣∣∣∣
Proof. From Equation (2.6),

δ`(v, S)− δ`+1(v, S) =
1

|A`+1(v)|

(
|U `+1(v) ∩ S| − |A`(v) ∩ S| · |U

`+1(v)|
|A`(v)|

)
.

By definition δ0(v, S) = 0 and so:

|δr(v, S)|

=

∣∣∣∣∣
r∑
`=1

δ`−1(v, S)− δ`(v, S)

∣∣∣∣∣
=

∣∣∣∣∣
r∑
`=1

1

|A`(v)|

(
|U `(v) ∩ S| − |U `(v)| · |A

`−1(v) ∩ S|
|A`−1(v)|

)∣∣∣∣∣
=

∣∣∣∣∣∣
r∑
`=1

1

|A`(v)|

 ∑
i∈T `(v)

Yi(S)− |U `(v)| · |A
`−1(v) ∩ S|
|A`−1(v)|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
r∑
`=1

1

|A`(v)|

 ∑
i∈T `(v)

(Yi(S)−Xi(S)) +
∑

i∈T `(v)

Xi(S)− |U `(v)| · |A
`−1(v) ∩ S|
|A`−1(v)|

∣∣∣∣∣∣
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≤
r∑
`=1

1

|A`(v)|
∑

i∈T `(v)

|Yi(S)−Xi(S)|+

∣∣∣∣∣∣
r∑
`=1

1

|A`(v)|

 ∑
i∈T `(v)

Xi(S)− |U `(v)| · |A
`−1(v) ∩ S|
|A`−1(v)|

∣∣∣∣∣∣
≤

r∑
`=1

1

|A`(v)|
∑

i∈T `(v)

Zi

+

∣∣∣∣∣∣
r∑
`=1

1

|A`(v)|

 ∑
i∈T `(v)

(Xi(S)− pi(S)) +
∑

i∈T `(v)

pi(S)− |U `(v)| · |A
`−1(v) ∩ S|
|A`−1(v)|

∣∣∣∣∣∣
=

r∑
`=1

1

|A`(v)|
∑

i∈T `(v)

Zi +

∣∣∣∣∣∣
r∑
`=1

1

|A`(v)|

 ∑
i∈T `(v)

Di(S) +
∑

i∈Ẽ`(v)

(
pi(S)− |A

`−1(v) ∩ S|
|A`−1(v)|

)∣∣∣∣∣∣
≤ 1

|Ar(v)|
∑

i∈T≤r(v)

Zi +

∣∣∣∣∣∣
r∑
`=1

1

|A`(v)|
∑

i∈T `(v)

Di(S)

∣∣∣∣∣∣+
r∑
`=1

1

|A`(v)|
∑

i∈Ẽ`(v)

∣∣∣∣pi(S)− |A
`−1(v) ∩ S|
|A`−1(v)|

∣∣∣∣

2.3.2 Technical parameters

Here we collect the parameters that are used in the next section. The margin of

error for all of our bad events will be α∆, where α is a constant depending only

on ε and a constant M (specified below.) Given α, we will choose a value of b (the

number of phases) that suits our purposes. We will also allow a constant number, C,

of exceptions (see Definition 19), where C depends only on α. Finally, we will use

these constants to define the constant N s.t. n ≤ 2
∆
N in the random order case.

Definition 17 (Technical parameters).

• ε ∈ (0, 1) is the parameter appearing in the statements of Theorem 7 and

Theorem 6.

• n always represents the number of vertices in the graph.

• m = bn∆/2c is the total number of time steps.
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In the dense case, there is a density parameter M > 1 that is an upper bound on n/∆.

For notational convenience we will say that M = 0 in the random-order case.

There are several parameters given below that arise in the analysis. All of the

parameters depend on ε and on M . As indicated above, the value M = 0 is used to

refer to the random case.

• ζ = ζ(ε,M) is the scaling coefficient. In the random-order case, ζ(ε, 0) =

e−20/ε2 ε3

10
. In the dense case, for M > 1, ζ(ε,M) = ε5

100M
e−(5M/ε2)2

.

• α = α(ε,M) = ζ ε
3

5
.

• b = b(ε,M) = 40
αε2

. This is the number of phases in the phase-partition for each

vertex.

• C = C(ε,M) = 2000
α4 . For each subset S of colors we say that a vertex v is

S-atypical (Definition 19) if (very roughly) at some point in the algorithm the

fraction of free colors at v that belong to S differs significantly from, |S|
(1+ε)∆

, the

overall fraction of colors that belong to S. One of the bad events is that for

some color set S, the number of S-atypical vertices is at least C.

The final parameter is only relevant for the random case:

• N = N(ε) = max(400C(ε, 0), 50b(ε, 0)). The theorem for the random case

requires that ∆ = Ω(log n). The parameter N is the lower bound on ∆/ log(n)

for which the result holds.

2.3.3 Bad Events

In this section, we will define certain bad events for the run of the algorithm. These

bad events are that some “error quantities” associated with the algorithm grow too

large. These bad events, and their likelihood of occurring will be defined in terms
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of parameters in Definition 17. Note that our parameters vary depending on the

random-order or dense case. In particular, in the dense case they depend on M .

We now identify three bad events, each associated with one of the three summands

in Proposition 16. If none of them occur, we say that the resulting coloring is well-

behaved. In this section we show that the coloring is very likely to be well-behaved.

In the next section we show that in the two situations (an oblivious strategy that

uses an arbitrary graph and random order, or an adaptively chosen dense graph) a

well-behaved coloring will not have any uncolored edges.

The reader is reminded that various technical parameters are collected in Defini-

tion 17. The key parameter in this section is α.

The first type of bad event will occur if there are too many collisions at a particular

vertex. This event corresponds directly to the first summand in Proposition 16.

Definition 18 (Too Many Collisions, W(v)). Given a vertex v, the bad event W(v)

occurs if there exists a j ∈ {1, . . . ,m} such that:

∑
i∈T (v),i≤j

(Zi − qi) > α∆.

The second type of bad event relates to the second summation in Proposition 16.

As mentioned earlier, we can’t hope to say that the summation is suitably small for all

choices of S and v but it will be enough that for all S it is small for all but constantly

many v.

Definition 19 (Too many S-atypical vertices, B(S)). For a vertex v and color set S,

we say that v is S-atypical if there is a v-phase 1 ≤ r ≤ b such that:

∣∣∣∣∣∣
r∑
`=1

1

|A`(v)|
∑

i∈T `(v)

Di(S)

∣∣∣∣∣∣ > α

ε

Let B(S) be the set of S-atypical vertices. We say that the bad event B(S) occurs
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if |B(S)| ≥ C. (Here α and C are as given in Definition 17.)

The final family of bad events helps track |Fi(u) ∩ Fi(v)| for an edge e = (u, v).

This will ultimately be used to show that no edge runs out of colors.

Definition 20 (Too Much Drift at a pair of vertices, D(u, v)). Given a pair of vertices

u, v, let Si = Fi(u) ∩ Fi(v) be the set of colors free at both u and v at time i. Then,

the bad event D(u, v) occurs if,

∣∣∣∣∣∣∣∣
∑

i∈T (u)∪T (v)
j1≤i≤j2

Di(Si)

∣∣∣∣∣∣∣∣ > α∆

for any 1 ≤ j1 ≤ j2 ≤ m.

Next we will bound the probability of too many bad events occurring to show that

the algorithm succeeds with high probability.

Definition 21 (Well-behaved Coloring). We say that a coloring is well-behaved

if:

(a) There are no vertices v such that W(v) occurs.

(b) There are no sets S such that B(S) occurs.

(c) There are no pairs of vertices u, v such that D(u, v) occurs.

Lemma 22. If n ≤ 2
∆
N , then with probability at least 1 − exp

(
−α4∆

1000

)
, the events

Definition 21(a)-(c) do not occur, and consequently, the coloring is well-behaved.

We emphasize that this Lemma applies even for adaptive adversaries, and to sparse

graphs, provided that ∆ ≥ N log(n).

Proof. We show that the coloring is well-behaved by enumerating over each of the

conditions (a)-(c), and bounding the probability they fail.
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(a) Fix a vertex v and time 1 ≤ j ≤ m. Apply the first part of Lemma 13 with

βi =


1 i ∈ T (v), i ≤ j

0 otherwise

.

Since the event that i ∈ T (v) depends only on Fi−1, the same holds for βi. We

have |βi| ≤ 1 and
∑
|βi| ≤ |T (v)| ≤ ∆, Applying the first part of Lemma 13 we

obtain:

Pr

 ∑
i∈T (v),i≤j

(Zi − qi) > α∆

 = Pr

[
m∑
i=1

βi(Zi − qi) > α∆

]
≤ exp

(
−α

4∆

128

)
.

Taking a union bound over at most m ≤ n∆ ≤ ∆ · 2 ∆
N choices for j, we see that

Pr [W(v) occurs] ≤ ∆ · 2
∆
N · exp

(
−α

4∆

128

)

for any vertex v. Then taking a union bound over at most 2
∆
N vertices, we get

Pr [∃v s.t. W(v) occurs] ≤ ∆ · 2
2∆
N · exp

(
−α

4∆

128

)
≤ exp

(
−α

4∆

128
+

2∆

N
+ ln ∆

)
≤ exp

(
−α

4∆

500

)
,

for ∆ sufficiently large, using N ≥ C = 2000
α4 in the last line.

(b) Fix a set S of colors and set v1, ..., vC of C vertices. By definition if v1, ..., vC are

all S-atypical, then for each k ∈ {1, . . . , C} there is a vk-phase rk ∈ {1, . . . , b}
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such that: ∣∣∣∣∣∣
rk∑
`=1

1

|A`(vk)|
∑

i∈T `(vk)

Di(S)

∣∣∣∣∣∣ > α

ε

We can think of this sum as having the form
∑

i≥1 β
k
iDi(S) where

βki =


1

|Aφi(vk)(vk)| if i ∈ T≤rk(vk)

0 otherwise,

and then we might hope to apply Lemma 13. However, the lemma requires

that βki be determined by Fi−1 and that is not the case here because |Aφi(v)(v)|

depends on the number of edges incident on v through the end of v-phase φi(v)

(and whether they are colored or not) and this is not determined by Fi−1.

We address this by constructing a family of fixed coefficient sequences which is

large enough that one of them agrees with the above coefficient sequence. Now

for each choice of C fixed coefficient sequences (one for each vertex) we will

apply Lemma 13, and then take a union bound over all such choices.

We note that all of the above coefficients are of the form 1/|A`(v)| where |A`(v)|

is an integer between ε∆ and (1 + ε)∆. Thus if v1, ..., vC are all S-atypical, then

for each k ∈ {1, . . . , C} there is a vk-phase 1 ≤ rk ≤ b and for each ` between 1

and b there is an integer s`k ∈ [ε∆, (1 + ε)∆] such that:

∣∣∣∣∣∣
rk∑
`=1

∆ε

s`k

∑
i∈T `(vk)

Di(S)

∣∣∣∣∣∣ > α∆

Consider a fixed choice of rk and s`k : 1 ≤ ` ≤ b, k ∈ {1, . . . , C}.
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For each k ∈ {1, . . . , C}, define the coefficient sequence βk by

βki =


ε∆
s`k

i ∈ T `(vk) with ` ≤ rk

0 otherwise

.

As before, {i ∈ T `(vk)} is determined by φi(v), which is determined by Fi−1,

so the same holds for βki . Then, since for all `, k,
∣∣∣ ε∆
s`k

∣∣∣ ≤ 1, for all i,
∑

k |βki | ≤

|{vk : i ∈ T (vk)}| ≤ 2, and for all k,
∑

i |βki | ≤ |T (vk)| ≤ ∆, taking a = 2 in

Lemma 13 gives us

Pr

[
∀k ∈ {1, . . . , C}

∑
i

βkiDi > α∆

]
≤ exp

(
−Cα

4∆

256

)
.

This time we take a union bound over at most bC choices of rk for each vertex

and at most (∆ + 1)bC ≤ 2bC∆bC choices of {s`k} to get

Pr [For all k, vk is S-atypical] ≤ bC ·∆bC · 2bC · exp

(
−Cα

4∆

256

)
.

Taking another union bound over at most
(
n
C

)
≤ 2

C∆
N sets of C vertices and

2(1+ε)∆ sets S gives us

Pr [∃S, v1, ..., vC s.t. vk is S-atypical ∀k] ≤ 2(1+ε)∆ · 2
C∆
N

+bC · bC ·∆bC · exp

(
−Cα

4∆

256

)
≤ exp

(
−Cα

4∆

128
+ 2∆ +

C∆

N
+ bC + bC ln ∆ + C ln b

)
≤ exp (−∆) ,

for ∆ sufficiently large, since C = 2000
α4 and N ≥ 400C.
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(c) Fix u, v ∈ V and 1 ≤ j1 ≤ j2 ≤ m. Define the sequence β by:

βi =


1 i ∈ T (u) ∪ T (v), j1 ≤ i ≤ j2

0 otherwise

.

Then, since the event {i ∈ T (u) ∪ T (v)} depends only on Fi−1, |βi| ≤ 1, and∑
|βi| ≤ |T (u) ∪ T (v)| ≤ 2∆, the first part of Lemma 13 with a = 1 gives us:

Pr


∣∣∣∣∣∣∣∣

∑
i∈T (u)∪T (v)
j1≤i≤j2

Di(Si)

∣∣∣∣∣∣∣∣ > α∆

 ≤ exp

(
−(α/2)4∆

128

)
.

Taking a union bound over at most (n∆)2 ≤ n4 ≤ 2
4∆
N choices for j1, j2 gives us

Pr [D(u, v) occurs] ≤ 2
4∆
N · exp

(
−α

4∆

512

)
.

Taking another union bound over at most n2 ≤ 2
2∆
N vertex pairs gives us

Pr [∃u, v s.t. D(u, v) occurs] ≤ 2
6∆
N · exp

(
−α

4∆

512

)
≤ exp

(
−α

4∆

512
+

4∆

N

)
≤ exp

(
−α

2∆

800

)

for ∆ sufficiently large, where in the last line we used N ≥ 400C = 800000
α4 .

Thus, for ∆ sufficiently large, our total probability of a bad event occurring is at

most

exp

(
−α

2∆

500

)
+ exp (−∆) + exp

(
−α

4∆

800

)
≤ exp

(
−α

4∆

1000

)
.
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2.4 Error Bounds

Our goal is to show that if the coloring is well-behaved, then no edge has gone

uncolored. A key part of this proof is to upper bound δr(v, S) =
∣∣∣ |Ar(v)∩S|
|Ar(v)| −

|S|
(1+ε)∆

∣∣∣
for any set S and any vertex v that is S-typical. Recall this is the error at the end

of phase r of v. The upper bound will be expressed in terms of ε̂r(v), which we will

define below. For edge e incident on v, we will us e − v to denote the other vertex

incident on e.

Definition 23 (Error Bounds). For each vertex-phase pair (v, r), ε̂ r(v) is defined

inductively as follows:

ε̂ 0(v) = 0

ε̂ r(v) = ζ +
5

∆ε2

∑
j∈T≤r(v)
u=ej−v

ε̂ φj(u)−1(u),

The above inductive definition is well-defined since for ej = (u, v), j ∈ T≤r(v),

lastφj(u)−1(u) < j ≤ lastr(v), so ε̂ r(v) depends only on ε̂ s(u) s.t. (v, r) ≺ (u, s).

Definition 24. A phase partition counter φ is useful for the ordered graph (G, σ)

provided that:

(a) For each vertex v, and each phase j ∈ [b], phase j of v has at most 2∆/b edges

incident on v. In this case, we will say that φ is balanced with respect to (G, σ).

(b) For all vertices v phases r:

ε̂ r(v) ≤ ε3

10
.

The proof in Section 2.5 that algorithm A′ succeeds with high probability relies

on the existence of a phase partition function that is useful for (G, σ). In the rest of

this section we show that such a partition exists (1) for any edge ordering σ provided
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that the graph is sufficiently dense, and (2) for a random edge ordering σ, with high

probability. We start with:

Definition 25 (Valid Paths from v). Let Pr(v) be the set of paths (x0, x1, · · · , xt) =

(ei1 , ei2 , · · · , eit) such that, x0 = v, i1 ∈ T≤r(v), and for all 1 ≤ k < t, edge φik+1
(xk) <

φik(xk). That is, eik+1
arrives in an earlier phase of xi than edge eik . We also include

the empty path of length 0 in this set.

Proposition 26.

ε̂ r(v) ≤ ζ
∑

P∈Pr(v)

(
5

∆ε2

)l(P )

where l(P ) is the length of the path P .

Proof. Order the terms ε̂ r(v) according to Definition 9. We will prove this by strong

induction on the error terms in this partial order. The base case is trivial since ε̂ 0(v) = 0

for all v. Now, note that for any j ∈ T≤r(v), the term ε̂ φj(u)−1(u) where u = ej − v

comes before ε̂ r(v) according to the partial order in Definition 9. Furthermore, for

ei0 = (v, u), i0 ∈ T≤r(v) with s = φi0(u) and given any valid path (ei1 , · · · , eit) ∈

Ps−1(u) with s > φi1(u), the path (ei0 , ei1 , · · · , eit) ∈ Pr(v). Thus, we have

ε̂ r(v) = ζ +
5

∆ε2

∑
j∈T≤r(v)
u=ej−v

ε̂ φj(u)−1(u)

≤ ζ + ζ · 5

∆ε2

∑
j∈T≤r(v)
u=ej−v

∑
P∈Pφj(u)−1(u)

(
5

∆ε2

)l(P )

≤ ζ
∑

P∈Pr(v)

(
5

∆ε2

)l(P )

where we include the path of length 0 starting at v.

Using this upper bound, we now finally describe the phase partition functions we

use in our two different settings, and show that under these phase partition functions,
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the corresponding error bounds don’t grow too quickly.The parameters m and b are

as in Definition 17.

Definition 27 (Phase Partition Counters). We use the following phase partition

counter sequences:

(a) Phase Partition Counters φD =
{
φDi
}
i∈[m]

for the dense case: For each

vertex v, φD0 (v) = 0, and for i ∈ [m]

φDi (v) =

⌈
|T (v) ∩ {1, · · · , i}| · b

∆

⌉

Less formally, the counter is the number of edges so far incident to v times b/∆

rounded up to the nearest integer.

(b) Phase Partition Counters φR =
{
φRi
}
i∈[m]

for the random-order case:

For every vertex v, φRi (v) =
⌈
i·b
m

⌉
for i ∈ [m].

The definition of φD immediately gives that it is balanced with respect to (G, σ)

for any graph G of maximum degree ∆ and ordering σ. On the other hand, φR may

not always be balanced with respect to (G, σ). However, under a uniformly random

choice of σ, this will hold with high probability. In order to show this, we will need

the following concentration bounds.

Lemma 28. [44, Theorem 2.10] Let X be a hypergeometric random variable with

parameters m, d and k, where µ = E [X] = kd
m

, then,

Pr [X ≥ µ+ t] ≤ exp

(
− t2

2(µ+ t
3
)

)
.

The following lemma shows that for a random ordering, φR is almost certainly

balanced.
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Lemma 29 (Probability that φR is unbalanced). Let ∆ be sufficiently large and

suppose G is a graph on n ≤ 2∆/N vertices, where N is given in Definition 17, and m

edges, where some of the edges may be null edges. Then the fraction of orderings σ of

edges of G such that φR is not balanced with respect to (G, σ) is at most exp
(
− ∆

20b

)
.

Proof. Consider σ chosen uniformly at random from all orderings. Let Er be the

(multi)-set of edges in phase r (which is the same for all v by the definition of φR). We

say that Er is a multi-set because many of the edges can be multi-edges. Let Er(v)

be the set of edges in Er that are incident to v. Our goal is to show that for all v ∈ V

and r ∈ [b], |Er(v)| ≤ 2∆
b

with high probability. Er is a uniformly random subset of

the edges of size kr ∈ {bmb c, d
m
b
e} and therefore |Er(v)| is a hypergeometric random

variable with expectation deg(v) · kr
m
≤ ∆

b
·
(
1 + b

m

)
≤ ∆

b
· 3

2
, for ∆ sufficiently large.

Thus, by Lemma 28, we have

Pr

[
|Er(v)| ≥ 2∆

b

]
≤ exp

(
− (∆/b)2/4

3(∆/b) + (∆/b)/3

)
≤ exp

(
−3∆

40b

)
.

Taking a union bound over all choices of v ∈ V and r ∈ [b] gives us that the probability

that φR is not balanced is at most

b · 2
∆
N · exp

(
−3∆

40b

)
≤ exp

(
−3∆

40b
+

∆

50b
+ log(b)

)
≤ exp

(
− ∆

20b

)

by Definition 17 for ∆ sufficiently large.

We now show that the given phase counter functions give us sufficiently slow

growth for the error bounds in each of their respective contexts.

Proposition 30 (Bound on ε̂: Dense Case). If n ≤ M∆ for some constant M ≥ 1,
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then under the phase partition function φD, we have

ε̂ r(v) ≤ ε3

10

for all v ∈ V and 1 ≤ r ≤ b. Thus, for any graph G on n ≤ M∆ vertices and any

ordering σ of its edges, the phase partition counter φD is useful for (G, σ).

Proof. Consider any such graph G and ordering σ. We first show that there are at

most nt

(bt/2c)! valid paths of length t starting from v. Note that it is enough to show this

for t even since if there are at most r valid paths of length t, then there are at most rn

valid paths of length t+ 1. Let P = (ei1 , ..., eit) be any valid path where v ∈ ei1 . Note

that the edges in even positions ei2 , ei4 , ..., et determine the path. Furthermore, these

edges can only be placed in reverse arrival order for the path to be valid, so choosing

the set of edges determines the path. Therefore, there can be at most
(
n2

bt/2c

)
≤ nt

bt/2c!

such paths. Thus, if n ≤M∆, then, by Proposition 26,

ε̂ r(v) ≤ ζ
∞∑
t=0

(
5

∆ε2

)t(
nt

(bt/2c)!

)
≤ ζ

∞∑
t′=0

2(5M/ε2)2t′+1

t′!

≤ 10M

ε2
· ζ

∞∑
t′=0

((5M/ε2)2)t
′

t′!

≤ 10M

ε2
· ζe(5M/ε2)2 ≤ ε3

10

by our choice of ζ = ζ(ε,M) from Definition 17.

Proposition 31 (Bound on ε̂: Random Order Setting). If σ is an ordering such that

the phase partition counter φR is balanced with respect to (G, σ), then for ζ = ζ(ε, 0),

φR satisfies:

ε̂ r(v) ≤ ε3

10
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for all v ∈ V and 1 ≤ r ≤ b. Thus, for any graph G on n ≤ 2
∆
N vertices and any such

ordering σ, φR is useful for (G, σ).

Proof. Let G be a graph on N ≤ 2
∆
N vertices and σ be an ordering such that φR is

balanced with respect to (G, σ). Recall that under φR, the phase counters φRi (v) for all

v ∈ V are updated in lockstep. Consequently, for any edge ej = (u, v), φRj (u) = φRj (v).

As before, we bound ε̂ r(v) by bounding |Pr(v)| in Proposition 26. Consider a valid

path P ∈ Pr(v), where P = (ei1 , · · · , eit). Let (x0, x1, · · · , xt) be the sequence of

vertices such that eij = (xj−1, xj). Recall P has the property that v = x0 and

ei1 ∈ T≤r(v) and for all 1 ≤ k < t, we have, φRik(xik) > φRik+1
(xik). In other words,

each eik+1
arrives in an earlier phase of xk than eik . Under φR the phase-partition for

all vertices is the same so there is an associated unique phase, rk associated to eik and

r1 > r2 > · · · > rt. So, we count the number of paths by first picking ri’s and then

fixing the edges themselves. The number of ways of picking ri’s is at most
(
b
t

)
. Now

we show how to inductively choose eik ’s. The number of ways of choosing ei1 after

one has fixed r1, is 2∆
b

(by the definition of balance property in ??). Having fixed

edge eij and rj+1 the number of ways of picking eij+1
is at most 2∆

b
. Thus, we have,

by Proposition 26,

ε̂ r(v) ≤ ζ
b∑
t=0

(
5

∆ε2

)t(
b

t

)(
2∆

b

)t
≤ ζ

b∑
t=0

(
b

t

)(
10

bε2

)t
= ζ

(
1 +

10

bε2

)b
≤ ζe(

10
ε2

)

≤ ε3

10

where the last inequality follows from our choice of ζ = ζ(ε, 0) in Definition 17.
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2.5 Main Lemma

We begin with a brief summary of what we’ve shown so far and what remains to be

shown. For the dense case with a fixed adaptive adversary, we are given a constant M

such that n ≤ ∆
M

and define ζ = ζ(ε,M). We run the game A′ using the phase-counter

φD on n vertices. Since n ≤ ∆
M
≤ 2∆/N (for ∆ sufficiently large), Lemma 22 implies

that the coloring produced by A′ is well-behaved with high probability. Furthermore,

by Proposition 30, φD is useful for the resulting graph G and ordering σ of edges.

Similarly, in the random case, we set ζ = ζ(ε, 0) and assume n ≤ 2
∆
N (where

N = N(ε).) By Lemma 29, for a graph G on n vertices and a uniformly chosen

ordering σ of its edges, with high probability, φR is balanced with respect to (G, σ).

Conditioned on φR being balanced for (G, σ), Proposition 31 guarantees us that φR

is useful for (G, σ). Finally, in this case also Lemma 22 tells us that the coloring

produced by A′ is well-behaved with high probability.

In this final section, we will show that if the coloring produced by A′ is well-behaved

and φ is a useful phase partition counter for the final ordered graph (G, σ), then A′

must have successfully produced a proper coloring of G. We do this by inductively

showing that vertices are good according to the following definition. In this definition,

and all following definitions in this section, we will assume that we are given (G, σ)

with its corresponding parameter ζ and useful phase counter φ, as defined above.

Definition 32 (Good Vertices). A vertex v is good for set S during its rth phase if

|δr−1(v, S)| ≤ ε̂ r−1(v) ·∆
|Ar−1(v)|

.

Note that in this definition we say v is good with respect to S during phase r

rather than r − 1, because the palette for v used during phase r is Ar−1(v).

Lemma 33 (Main Lemma). Let phase partition counter φ be useful for the ordered

graph (G, σ). If the coloring is well-behaved, then for all vertex phase pairs (v, r), for



47

all color sets S, if v is an S-typical vertex, then v is good for S during its rth phase.

We will prove this lemma by induction on the pairs (v, r) according to the order

≺ and by bounding each of the three summands in Proposition 16. The next two

propositions relate these terms to the error terms.

Proposition 34. For any set S ⊆ Γ, and any i with ei = (u, v), φi(u) = s, and

φi(v) = r, the preliminary color set Ai−1(u) ∩ Ai−1(v) = As−1(u) ∩ Ar−1(v), satisfies

∣∣As−1(u) ∩ Ar−1(v)
∣∣ ≥ ε2∆

1 + ε
−
∣∣δs−1(u,Ar−1(v))

∣∣ |As−1(u)|.

Proof. By the definition of δs−1(u) in (2.3) and the fact that |Ar−1(v)| is always at

least ε∆,

|As−1(u) ∩ Ar−1(v)| = |A
s−1(u)||Ar−1(v)|

(1 + ε)∆
+ δs−1(u,Ar−1(v)) · |As−1(u)|

≥ ε2∆

1 + ε
− |δs−1(u,Ar−1(v))||As−1(u)|,

Note that this bounds the preliminary colors available to ei = (u, v) in terms of

δs−1(u, S). Next we establish bounds on qi and pi(S) if we know that u is good with

respect to Ar−1(v) and Ar−1(v) ∩ S during its phase s.

Proposition 35. Let phase partition counter φ be useful for the ordered graph (G, σ)

and let ei = (u, v), φi(u) = s, and φi(v) = r. For any set S, if u is good for Ar−1(v)

during its sth phase, then:

(a) The number of colors available to edge ei is not too low, that is,

|As−1(u) ∩ Ar−1(v)| ≥ 2ε2∆

5
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(b) The probability of a collision is low:

qi ≤
α

4

(c) If additionally, u is good for Ar−1(v) ∩ S during its sth phase, the probability

that the preliminary color chosen for edge ei hits S is close to what we would

expect if the color was chosen randomly from Ar−1(v):

∣∣∣∣pi(S)− |A
r−1(v) ∩ S|
|Ar−1(v)|

∣∣∣∣ ≤ 5ε̂ s−1(u)

ε2
.

Proof. For the first part:

|As−1(u) ∩ Ar−1(v)|
(i)

≥ ε2∆

1 + ε
− |δs−1(u,Ar−1(v))||As−1(u)|

(ii)

≥ ε2∆

1 + ε
− ε̂ s−1(u)∆

(iii)

≥ ε2∆

1 + ε
− ε3∆

10
(iv)

≥ 2ε2∆

5

Here, (i) follows from Proposition 34, (ii) is using the fact that u is good for Ar−1(v)

during phase s, (iii) is by Definition 24 since φ is useful, and (iv) is because ε < 1.

Now, recall from Definition 14 that

qi := 1− |Fi−1(u) ∩ Fi−1(v)|
|Ai−1(u) ∩ Ai−1(v)|

=
|(Ai−1(u) ∩ Ai−1(v)) \ (Fi−1(u) ∩ Fi−1(v))|

|Ai−1(u) ∩ Ai−1(v)|
.

Since by assumption φ is balanced, at most 4∆
b

colors from Ai−1(u) ∩ Ai−1(v) could

have been used by the time we color (u, v), which gives us:

qi ≤
|(Ai−1(u) \ Fi−1(u)) ∪ (Ai−1(v) \ Fi−1(v))|

|Ai−1(u) ∩ Ai−1(v)|
≤ 4∆

b · |Ai−1(u) ∩ Ai−1(v)|
. (2.14)
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Using this and the definition of b from Definition 17, we have:

qi ≤
4∆

b · |As−1(u) ∩ Ar−1(v)|
≤ 10

bε2
≤ α

4
,

For the last part, again by (2.3), for any color set T :

|As−1(u) ∩ T | = δs−1(u, T ) · |As−1(u)|+ |A
s−1(u)||T |
(1 + ε)∆

, (2.15)

so

pi(S)− |A
r−1(v) ∩ S|
|Ar−1(v)|

=
|As−1(u) ∩ Ar−1(v) ∩ S|
|As−1(u) ∩ Ar−1(v)|

− |A
r−1(v) ∩ S|
|Ar−1(v)|

=

(a)︷ ︸︸ ︷
|As−1(u) ∩ Ar−1(v) ∩ S||Ar−1(v)| −

(b)︷ ︸︸ ︷
|Ar−1(v) ∩ S||As−1(u) ∩ Ar−1(v)|

|As−1(u) ∩ Ar−1(v)||Ar−1(v)|

We first expand (a), by letting T = Ar−1(v) ∩ S in Equation (2.15),

|As−1(u) ∩ Ar−1(v) ∩ S||Ar−1(v)| = |As−1(u)|
(
|Ar−1(v) ∩ S|

(1 + ε)∆
+ δs−1(u,Ar−1(v) ∩ S)

)
|Ar−1(v)|

Similarly, expanding (b) by letting T = Ar−1(v) in Equation (2.15), we have,

|Ar−1(v) ∩ S||As−1(u) ∩ Ar−1(v)| = |As−1(u)|
(
|Ar−1(v)|
(1 + ε)∆

+ δs−1(u,Ar−1(v))

)
|Ar−1(v) ∩ S|

Substituting these terms back, and taking absolute value, we can upper bound∣∣∣pi(S)− |A
r−1(v)∩S|
|Ar−1(v)|

∣∣∣ as follows:

=

∣∣∣∣ |As−1(u)| (δs−1(u,Ar−1(v) ∩ S) · |Ar−1(v)| − |Ar−1(v) ∩ S| · δs−1(u,Ar−1(v)))

|As−1(u) ∩ Ar−1(v)||Ar−1(v)|

∣∣∣∣
≤ |A

s−1(u)| (|δs−1(u,Ar−1(v) ∩ S)| · |Ar−1(v)|+ |Ar−1(v) ∩ S| · |δs−1(u,Ar−1(v))|)
|As−1(u) ∩ Ar−1(v)| · |Ar−1(v)|

≤ |A
s−1(u)| (|δs−1(u,Ar−1(v) ∩ S)|+ |δs−1(u,Ar−1(v))|)

|As−1(u) ∩ Ar−1(v)|
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≤ 2ε̂ s−1(u)∆

2ε2∆/5
=

5ε̂ s−1(u)

ε2
,

where the final inequality uses the first part and the assumption that u is good for

Ar−1(v) and Ar−1(v) ∩ S during phase r.

We now turn to the proof of the main lemma.

Proof of Main Lemma. Assume the coloring is well-behaved. We proceed by induction

on vertex-phase pairs. First note that since δ0(v, S) = 0 by definition, we know that

for all vertices v and sets S, v is good for S during its 1st phase. Now, for any pair

(v, r) with 1 ≤ r < b, we would like to show that for any set S such that v is S-typical,

v is good for S during its (r + 1)th phase.

Since we proceed to by strong induction on the vertex-phase pair, we fix (v, r)

and suppose that for any (u, s) ≺ (v, r) and any set S ′ such that u is S ′-typical, u

is good for S ′ during its (s + 1)th phase. Consider any S such that v is S-typical.

Since we know the coloring is well-behaved, we know that for any phase ` ≤ r of v,

|B(A`−1(v))|, |B(A`−1(v) ∩ S)| ≤ C (recall Definition 19). Let

T `B(v) = {i ∈ T `(v) : ei − v ∈ B(A`−1(v)) ∪B(A`−1(v) ∩ S)},

so that |T `B(v)| ≤ 2C. Then, for any i ∈ T `(v)\T `B(v), with u = ei−v and φi(u) = s+1,

lasts(u) < i ≤ lastr(v), so (u, s) ≺ (v, r). Thus, by the inductive hypothesis, since u

is both A`−1(v)-typical and (A`−1(v) ∩ S)-typical, u must be good for both A`−1(v)

and A`−1(v) ∩ S during its (s+ 1)th phase.

Recall that by Proposition 16, |δr(v, S)| is upper bound by

1

|Ar(v)|
∑

i∈T≤r(v)

Zi +

∣∣∣∣∣∣
r∑
`=1

1

|A`(v)|
∑

i∈T `(v)

Di(S)

∣∣∣∣∣∣ +
r∑
`=1

1

|A`(v)|
∑

i∈T̃ `(v)

∣∣∣∣pi(S)− |A
`−1(v) ∩ S|
|A`−1(v)|

∣∣∣∣ .
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Since the coloring is well-behaved, we know that W(v) does not occur, and therefore,

∑
i∈T≤r(v)

Zi − qi ≤ α∆.

By Proposition 35,

∑
i∈T≤r(v)

Zi ≤ α∆ +
∑
`≤r

∑
i∈T `(v)\T `B(v)

qi +
∑
`≤r

∑
i∈T `B(v)

qi

≤ α∆ +
∑
`≤r

∑
i∈T `(v)\T `B(v)

α

4
+
∑
`≤r

∑
i∈T `B(v)

1

≤ α∆ +
α∆

4
+ 2bC

≤ 2α∆. (2.16)

Furthermore, since v is S-typical, we are guaranteed that

∣∣∣∣∣∣
r∑
`=1

1

|A`(v)|
∑

i∈T `(v)

Di(S)

∣∣∣∣∣∣ ≤ α

ε
≤ α∆(1 + ε)

ε · |Ar(v)|
.

Finally, again by Proposition 35,

r∑
`=1

1

|A`(v)|
∑

i∈T̃ `(v)

∣∣∣∣pi(S)− |A
`−1(v) ∩ S|
|A`−1(v)|

∣∣∣∣
=

r∑
`=1

1

|A`(v)|
∑

i∈T̃ `(v)\T `B(v)

∣∣∣∣pi(S)− |A
`−1(v) ∩ S|
|A`−1(v)|

∣∣∣∣+
r∑
`=1

1

|A`(v)|
∑

i∈T̃ `(v)∩T `B(v)

∣∣∣∣pi(S)− |A
`−1(v) ∩ S|
|A`−1(v)|

∣∣∣∣
=

r∑
`=1

1

|A`(v)|
∑

i∈T̃ `(v)\T `B(v)
s=φ(ei−v)−1

5ε̂ s(ei − v)

ε2
+

r∑
`=1

1

|A`(v)|
∑

i∈T̃ `(v)∩T `B(v)

1

≤ 1

|Ar(v)|

2bC +
∑

i∈T≤r(v)
s=φ(ei−v)−1

5ε̂ s(ei − v)

ε2


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Combining this gives us

|δr(v, S)| ≤ 1

|Ar(v)|

2α∆ +
1 + ε

ε
α∆ + 2bC +

5

ε2

∑
i∈T≤r(v)

s=φ(ei−v)−1

ε̂ s(ei − v)



≤ ∆

|Ar(v)|

ζ +
5

ε2∆

∑
i∈T≤r(v)

s=φ(ei−v)−1

ε̂ s(ei − v)

 =
ε̂ r(v)∆

|Ar(v)|
,

where the second inequality holds because 2α+ 1+ε
ε
α+ 2bC

∆
≤ 5

ε
α ≤ ζ, for ∆ sufficiently

large.

Finally, we use the main lemma to show that in a well-behaved coloring, no edge

could have been left uncolored.

Corollary 36. Let phase partition counter φ be useful with respect to the ordered

graph (G, σ). If the coloring produced by the A′ is well-behaved, then for every edge

e = (u, v), at all times i ∈ [m], we have |Fi−1(u) ∩ Fi−1(v)| ≥ ε2∆
2h+1 , where h = d8/ε2e.

Thus, no edge is left uncolored.

Proof. Suppose for contradiction that there is an edge e = (u, v) and time i such that

|Fi(u) ∩ Fi(v)| < ε2∆
2h+1 . Let Sj = Fj−1(u) ∩ Fj−1(v) and et be the edge adjacent to u

or v that uses up the last color so that |St| ≥ ε2∆
2h+1 and |St+1| < ε2∆

2h+1 . This gives us

|S1| ≥ |S2| ≥ · · · ≥ |St| ≥ ε2∆
2h+1 and |St+1| < ε2∆

2h+1 . Let R = {k ∈ T (u) ∪ T (v) : k ≤ t}

be the set of arrival times of edges adjacent to either u or v and define the partition

{Rj} of R to be R0 = {k ∈ R : |Sk| ≥ ε2∆
2
} and for h ≥ j ≥ 1,

Rj =

{
k ∈ R :

ε2∆

2j+1
≤ |Sk| <

ε2∆

2j

}

Note that {Rj}hj≥0 are disjoint intervals, and therefore, |
⋃
j Rj| ≤ |T (u) ∪ T (v)| ≤

2∆. We will derive a contradiction by establishing lower bounds on the size of each



53

Rj, and show their sum exceeds 2∆. Since S1 = (1 + ε)∆, |Si| can drop below ε2∆/2

only after at least (1 + ε− ε2/2)∆ edges incident on u or v have arrived, so we have

|R0| ≥ (1 + ε− ε2/2)∆. (2.17)

Claim 37. For each h ≥ j ≥ 1, |Rj| ≥ ε2∆
8
− 7α∆2j−2.

Proof. Since the coloring is well-behaved, for each 1 ≤ r ≤ b, |B(Ar(u))|, |B(Ar(v))| ≤

C, so if we let

RB =

{
k ∈ R : k ∈

b⋃
r=1

(B(Ar(u)) ∪B(Ar(v)))

}
,

we have |RB| ≤ 2bC. Furthermore, for any i ∈ R \ RB, we know that ei = (u,w)

or ei = (v, w) for some vertex w. Since w is Ar(u)-typical and Ar(v)-typical for all

1 ≤ r ≤ b, by Lemma 33, we know that w is good for Ar(u) and Ar(v) for all 1 ≤ r ≤ b,

during all of its phases. Then, since 0 ≤ Zi, qi ≤ 1 for all i and W(v),W(u) didn’t

occur (because the coloring is well-behaved), we have by Proposition 35

∑
i∈R

Zi ≤
∑

i∈T (u),i≤t

Zi +
∑

i∈T (v),i≤t

Zi

≤ 2α∆ +
∑

i∈T (u),i≤t

qi +
∑

i∈T (v),i≤t

qi (From Definition 21(a) and Lemma 22)

≤ 2α∆ + 2
∑
i∈R

qi (From definition of R)

≤ 2α∆ + 2
∑

i∈R\RB
qi + 2

∑
i∈RB

qi

≤ 2α∆ + 4∆ · α
4

+ 4bC (From Proposition 35(b))

≤ 4α∆.

Note that since Zi ∈ [0, 1] for all i, this means that for any R′ ⊆ R,
∑

i∈R′ Zi ≤ 4α∆.
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Similarly, sinceD(u, v) did not occur, and the sets Rj are intersections of T (u)∪T (v)

with intervals we have for all j,

∑
i∈Rj

Xi(Si) ≤

∣∣∣∣∣∣
∑
i∈Rj

pi(Si)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
i∈Rj

Di(Si)

∣∣∣∣∣∣ ≤
∑
i∈Rj

pi(Si) + 2α∆

≤
∑

i∈Rj\RB
pi(Si) + 2α∆ + 2bC

≤
∑

i∈Rj\RB
pi(Si) + 3α∆

for all j. Finally, for i ∈ Rj \ RB, suppose without loss of generality that i ∈ T r(v),

with x = ei − v and φi(x) = s. Then by Proposition 35(a),

pi(Si) =
|Si|

|Ar−1(v) ∩ As−1(x)|
<
ε2∆/2j

2ε2∆/5
≤ 5 · 2−j−1 ≤ 2−j+2,

so ∑
i∈Rj

Xi(Si) ≤ |Rj \RB|2−j+2 + 3α∆.

On the other hand, since the colors of at least ε2∆
2j+1 edges ei with i ∈ Rj must hit Si

for i ≤ h, we have

ε2∆

2j+1
≤
∑
i∈Rj

Yi(Si) ≤
∑
i∈Rj

Xi(Si) +
∑
i∈Rj

Zi ≤
∑
i∈Rj

Xi(Si) + 4α∆.

Therefore,

ε2∆

2j+1
− 4α∆ ≤

∑
i∈Rj

Xi(Si) ≤ |Rj \RB| · 2−j+2 + 3α∆

so

|Rj| ≥ |Rj \RB| ≥
ε2∆

8
− 7α∆ · 2j−2,

to complete the proof of the claim.
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Summing the lower bounds on Rj for 1 ≤ j ≤ h yields:

∣∣∣∣∣
h⋃
j=1

Rj

∣∣∣∣∣ ≥ ∆− 7α∆ · 2h ≥
(

1− ε3

10

)
∆

since 7α28/ε2+1 < 14αe8/ε2 ≤ 14ζe8/ε2 ≤ ε3

10
by our choice of ζ from Definition 17. Com-

bining with (Equation (2.17)) and the fact that ε ≤ 1, yields the desired contradiction:

∣∣∣∣∣
h⋃
j=0

Rj

∣∣∣∣∣ > 2∆.

We can now complete the proofs of Theorem 7 and Theorem 6. According to

Corollary 36, A′ succeeds provided the partition function is useful with respect to

(G, σ) and the coloring is well-behaved.

In the dense case of Theorem 7, Proposition 30 ensures that there is a partition

function φD that is useful for (G, σ). Note that for any M , if ∆ is sufficiently large,

then n ≤M∆ implies n ≤ 2
∆
N . Thus, in this case Lemma 22 implies that the coloring

is well-behaved with probability at least 1 − 2−α
4∆/1000, so this upper bounds the

probability that A′ (and also A) fails to color (G, σ). Thus, letting γ = α4

1000
, we have

our proof for Theorem 7.

In the random case of Theorem 6, from Lemma 29, the phase counter φR is

balanced with respect to (G, σ) with probability at least 1− 2−∆/(20b), and combined

with Proposition 31 this ensures that the partition function is useful (G, σ). As in the

dense case the probability that the coloring is not well behaved is at most 2−α
4∆/1000.

Therefore for all but at most a 2−
∆

20b fraction of edge orderings, the probability that

A succeeds against obl(G, σ) is at least 1 − 2−α
4∆/1000. Thus, letting γ1 = 1

20b
and

γ2 = α4

1000
, we have our claim.



56

Proof of Corollary 3. Corollary 3 now follows from [13]. We give a brief sketch

of the argument here. As mentioned above, the outcome of A against an adaptive

adversary can be seen as a two player game between a Builder and Colorer. Note

that this is a finite two player game with perfect information and no draws, so either

Builder or Colorer must have a deterministic winning strategy. Our result above

gives a random strategy for Colorer that ensures a win with high probability, which

implies that Colorer must be the one with the deterministic winning strategy. This

corresponds to a deterministic online coloring algorithm that succeeds on all graphs.
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Chapter 3

Existence of Defending

Distributions

This chapter is joint work with Michael Saks.

3.1 Introduction

Let A be a finite set of n elements and w : A→ (0, 1) be an associated weight function.

Furthermore, let

S =

{
S ⊆ A

∣∣∣∣∣ ∑
a∈S

w(a) ≤ 1

}

be the set of subsets of weight at most 1. We study probability distributions on S. In

particular, given any distribution µ on A, we would like to find a distribution ν on S

s.t. for any total ordering � on A,

Pr
a∼µ,S∼ν

[a � a′ ∀ a′ ∈ S] < E
a∼µ

w(a). (3.1)

We will call the distribution ν a defending distribution for µ. The following conjecture

is (rephrased) from [45].
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Conjecture 2. For any weight function w and any distribution µ on A, there exists

a defending distribution ν for µ.

The focus of this chapter is on our attempts to make progress on this conjecture.

3.1.1 Background

Note: the technical results of this chapter do not depend on the contents of this section.

A reader mainly interested in the former can skip to Section 3.1.2.

In this section we give a brief overview of the origin of this problem and its

implications in the field of social choice theory. At its most general, social choice

theory attempts to quantify concepts such as fairness, efficiency, and utility in the

realm of societal decision making. Although it originates with problems regarding

voting schemes and resource allocation (such as the cake cutting problem) it has since

evolved to include a broader ranger of collective decision making problems, including

multi-winner elections [34, 6, 52, 26] and participatory budgeting [35, 50]. A recent

paper by Jiang, Munagala, and Wang ([45]) defines a committee selection problem

that encapsulates both of the above types of problems, as well as many others. In

their model, there is a set N = [n] of voters and a set C = [m] of candidates, and

the goal is to select a committee of candidates in a manner that is fair to the voters.

Each candidate i has a weight si ≥ 0, and there is a limit K on the total weight of

the selected committee (we will use t(C) to denote the total weight of a committee C,

which will be the sum of the weights of the candidates it contains.) Furthermore, each

voter v has a preference order �v over committees. Our only assumption on these

preference orderings is that they are monotone: if committee C ⊆ C ′, then for any

voter v, C �v C ′.

There are different notions of what a fair selection might mean in this scenario,

and much work has been done on identifying desirable properties of and methods of
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selecting committees under different models for eliciting voter preferences, including

approval ballots [47, 6, 51, 50, 26], candidate rankings [50, 34, 26], and types of utility

functions [5, 52] (see [53] for a survey of such results in the area of participatory

budgeting.) A line of work by Munagala, et. al. ([35, 26, 45]) aims to adapt the

game theoretic notion of the core, first defined in [55], to the domain of public goods

allocation. In [45], a committee is said to be in the core (or equivalently, to be stable)

under the following condition:

Definition 1 (Stable Committee). Given committees C,C ′, let

V (C,C ′) := {v ∈ [n] | C ≺v C ′}

denote the number of voters who strictly prefer C ′ to C. Then a committee C ′ blocks

committee C if

V (C,C ′) ≥ n · t(C
′)

K
,

and C is stable (or in the core) iff there is no other committee C ′ that blocks it.

They justify this definition with a fair taxation argument [38]: each voter can be

said to control K
n

of the budget, and a committee C is stable if no subset of voters are

able to take their share of the overall budget to select a committee C ′ which they all

strictly prefer and pay its cost, t(C ′). Unfortunately, it is not hard to see that a stable

committee does not always exist. Consider the following example, given in [26]:

Example 38. Let n = m = 6 · `, K = 3, and si = 1 for all i ∈ [m]. The voters have

the following preferences over candidates:
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Voter Candidate Preference Order

v1 c1 � c2 � c3 � c4 � c5 � c6

v2 c2 � c3 � c1 � c4 � c5 � c6

v3 c3 � c1 � c2 � c4 � c5 � c6

v4 c4 � c5 � c6 � c1 � c2 � c3

v5 c5 � c6 � c4 � c1 � c2 � c3

v6 c6 � c4 � c5 � c1 � c2 � c3

Finally, a voter (strictly) prefers committee C to C ′ if they (strictly) prefer their

highest ranked candidate in C to their highest ranked candidate in C ′. Note that in

this scenario, a committee of weight at most K must exclude at least 2 candidates

from either {1, 2, 3} or {4, 5, 6}. In either case, the two voters who rank those two

candidates most highly can take their share of the budget and choose a candidate

they both strictly prefer. Thus, a stable committee cannot exist.

A standard method for circumventing such difficulties is to randomize [23, 5, 21].

We can select, instead of a single committee, a distribution of committees. Such a

distribution will be called a lottery, and we will say a lottery is stable if it satisfies the

following condition:

Definition 2 (Stable Lottery). A distribution ∆ over committees of weight at most

K is a stable lottery if, for all committees C ′,

E
C∼∆

[V (C,C ′)] < n · t(C
′)

K
.

It was shown in [26] that under certain restrictions on the voter preferences, a

stable lottery always exists, but it is not known whether this holds in general. The

following argument, given in [45], shows that an affirmative answer to Conjecture 2

implies the existence of a stable lottery for all possible weight assignments and voter

preferences.
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We begin by applying von Neumann’s minimax theorem. By definition, a stable

lottery exists iff

min
∆

max
C′

E
C∼∆

[
V (C,C ′)− n · t(C

′)

K

]
< 0,

where ∆ is taken from all distributions of committees of weight at most K and C ′ is

taken from the set of all committees. Thus, by duality, it is enough to show that

max
∆′

min
∆

E
C∼∆,C′∼∆′

[
V (C,C ′)− n · t(C

′)

K

]
< 0,

where ∆ is again taken from all distributions of committees of weight at most K and

∆′ is taken from all distributions of committees. Note that we can trivially assume µ

consists only of committees of weight at most K, since adding committees of greater

weights only decreases the left hand side. Now, suppose Conjecture 2 is true. We will

show that in this case, for any distribution ∆′, there exists a distribution ∆ such that

E
C∼∆,C′∼∆′

[
V (C,C ′)− n · t(C

′)

K

]
< 0.

Let A be the set of all committees of weight at most K, and let w be the normalized

associated weight function so that w(C) = t(C)
K

. Then a distribution ∆′ on commit-

tees of weight at most K corresponds exactly to a distribution µ on A. Assuming

Conjecture 2 is true, there exists a defending distribution, ν, for µ. Then we can

get ∆ from ν by taking, for each S ∼ ν, the union of committees in S, C = ∪a∈Sa,

whose combined total normalized weight must be at most t(C) ≤
∑

a∈S t(a) ≤ K (by

our definition of a defending distribution.) By monotonocity, for any voter v, a′ ∼ µ,

S ∼ ν, and C = ∪a∈Sa, if there is any a ∈ S s.t. a �v a′, then it must be the case

that C �v a′. Thus, since ν is a defending distribution for µ, we must have, for all
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voters v,

Pr
C′∼∆′,C∼∆

[C ′ �v C] ≤ Pr
a′∼µ,S∼v

[a′ �v a ∀ a ∈ S] < E
a′∼µ

w(a′) = E
C′∼∆′

t(C ′)

K
.

Summing over all voters v, we get

E
C′∼∆′,C∼∆

[V (C,C ′)] < n · EC′∼∆′ t(C
′)

K
.

3.1.2 Our Results

The following lemma, rephrased from [45] gives some intuition for why a defending

distribution might exist:

Lemma 39. Suppose the weight function w is supported on a single value (i.e., every

element has the same weight.) Then, for any distribution µ on A, there exists a

defending distribution ν for µ.

Proof. Let k ∈ (0, 1) be the weight of every element of A. In this case, for any

distribution µ on A, we have Ea∼µw(a) = k. We will construct the defending

distribution ν as follows: let b = b 1
k
c, and let ν independently draw elements a1, ..., ab ∼

µ and take S to be the set of all selected elements. Clearly S ∈ S, since
∑

a∈S w(a) =

kb ≤ 1. However, by symmetry, for any total ordering � on A,

Pr
a∼µ,S∼ν

[a � a′ ∀ a′ ∈ S] = Pr
a∼µ,a1,...,ab∼µ

[a � ai, 1 ≤ i ≤ b] =
1

b+ 1
< k.

They also prove the following theorem, rephrased below:

Theorem 6. Suppose w is supported on {1
3
, 2

3
}. Then, for any distribution µ on A,

there exists a defending distribution ν for µ.
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We extend this result to the following two theorems.

Theorem 7. Suppose w is supported on any two values {k1, k2}. Then, for any

distribution µ on A, there exists a defending distribution ν for µ.

Theorem 8. Suppose w is supported on any three values { 1
b1
, 1
b1b2

, 1
b1b2b3

}, where

b1, b2, b3 ∈ Z≥2. Then, for any distribution µ on A, there exists a defending distribution

ν for µ.

In our efforts to generalize the above two results, we found instances where our

methods no longer applied. However, this appeared to be more a limit of our methods

than an inherent property of the problem. With more specific restrictions, we were

able to show the existence of stable lotteries even in cases where our primary methods

were insufficient. The result below summarizes this work.

Theorem 9. Suppose w is supported on three weights k1 > k2 > k3 s.t. k1 ∈ (1
2
, 1),

k2 ∈ (1
3
, 1

2
], and k1 + k2 > 1. Then for any distribution µ on A, it is possible to find a

defending distribution.

Unfortunately, it is not clear how to extend this proof in order to generalize the

two main theorems above. A more detailed analysis of this issue is given in Section 3.4

3.2 Weight Functions Supported on Two Distinct

Weights

In this section we will prove Theorem 7. We begin by proposing a class of defending

distributions against any distribution µ. We then analyze some properties of these

distributions that generalize the symmetry utilized in the proof of Lemma 39. Finally,

we use the desired properties to select a defending distribution from the proposed

class that satisfies our requirements.
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First, given the ground set A and weight function w : A→ {k1, k2} with k1 > k2 ∈

(0, 1), let Ai = {a ∈ A | w(a) = ki} for i = 1, 2. Given any distribution µ on A with

µ(Ai) = pi > 0 for i = 1, 2, we can decompose it into the conditional distributions µi

on Ai so that µ = p1µ1 + p2µ2. Now, let b = b 1
k1
c, and for 0 ≤ r ≤ b, let cr = b1−rk1

k2
c

be the maximum number of elements from A2 that can be contained in a set S ∈ S

already containing r elements from A1. From this, we can define distributions νr on

S, for 0 ≤ r ≤ b, which independently draw r elements from A1 and cr elements from

A2 and take their union. Finally, for any distribution λ on {0, 1, ..., b}, we get a valid

distribution ν =
∑
λrνr on S, where λr = λ(r). Our goal in this section will be to

choose the distribution λ so that ν is a defending distribution for µ.

For i ∈ {1, 2}, any total ordering �, and 0 ≤ r ≤ b let

qi(r) = Pr
a∼µi,S∼νr

[a � a′ ∀ a′ ∈ S] = Pr
a∼µi,a1,...,ar∼µ1,ar+1,...,ar+cr∼µ2

[a � aj 1 ≤ j ≤ r + cr]

(3.2)

be the probability that an element a independently selected from µi is ranked strictly

higher than all elements in a set S selected from νr. Using this notation, our goal is

to find λ s.t. for all possible orderings �,

b∑
r=0

2∑
i=1

λrpiqi(r) < p1k1 + p2k2. (3.3)

As before, symmetry guarantees us that

(b+ 1)q1(b) ≤ 1 < (b+ 1)k1 (3.4)

and

(c0 + 1)q2(0) ≤ 1 <

(⌊
1

k2

⌋
+ 1

)
k2 = (c0 + 1)k2. (3.5)
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However, we have no such bounds on the other terms in our sum. For instance, if our

ordering ranked all elements in A1 above all elements in A2, we would have q1(0) = 1,

but if the ordering was reversed, the best the previous symmetry argument could

guarantee us would be q2(b) ≤ 1
cb+1

, where 1
cb+1
≥ k2. However, we observe that it is

not possible for both of these to occur at once. The following claim leverages this

observation to extend the symmetry properties from Lemma 39 to all terms qi(r) in

Equation (3.3).

Claim 1. For any total ordering � and 1 ≤ r ≤ b, we have:

rq1(r − 1) + (cr + 1)q2(r) ≤ 1 < rk1 + (cr + 1)k2. (3.6)

Proof. Fix an ordering � and let

f1(x, y) = Pr
a1,...,ax∼µ1,ax+1,...,ax+y∼µ2

[a1 � ai 1 < i ≤ x+ y],

f2(x, y) = Pr
a1,...,ax∼µ1,ax+1,...,ax+y∼µ2

[ax+1 � ai 1 ≤ i < x+ y]

be the probabilities that when x elements are chosen from µ1 and y elements are

chosen from µ2, the unique highest ranked element (if one exists) is the first element

from µ1 (repectively, µ2.) Note that by symmetry, since at most one element can be

the unique highest ranked element and all elements from the same distribution are

equally likely to be highest ranked, we have

xf1(x, y) + yf2(x, y) ≤ 1.

It is also clear by definition that

q1(r) = f1(r + 1, cr) and q2(r) = f2(r, cr + 1).
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Moreover, since increasing the total number of elements drawn only decreases the

probability of any particular element being the highest ranked, we have, for any

x′ ≥ x, y′ ≥ y,

fi(x
′, y′) ≤ fi(x, y).

Finally, we note that for any 1 ≤ r ≤ b

cr−1 =

⌊
1− (r − 1)k1

k2

⌋
≥
⌊

1− rk1

k2

+ 1

⌋
= cr + 1,

since removing an element of weight k1 from a subset allows you to add at least one

element of weight k2 without increasing the total weight past 1. Combining these

observations, we see that

rq1(r − 1) + (cr + 1)q2(r) ≤ rf1(r, cr−1) + (cr + 1)f2(r, cr + 1)

≤ rf1(r, cr + 1) + (cr + 1)f2(r, cr + 1)

≤ 1.

Finally, we note that by our choice of cr,

rk1 + (cr + 1)k2 = rk1 +

(⌊
1− rk1

k2

⌋
+ 1

)
k2 > rk1 +

1− rk1

k2

· k2 = 1.

Given this claim, the proof of Theorem 7 follows fairly easily. We provide the proof

in full detail below, along with additional explanation in order to lay the groundwork

for the proof of Theorem 8.

We begin with a diagram that summarizes the claim above. Each square in the

illustration represents a value of r and contains two nodes corresponding to the terms
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r = 0

q2(0)

q1(0)

1

q2(1)

q1(1)

2

q2(2)

q1(2)

3

q2(3)

q1(3)

· · ·

· · ·
b− 1

q2(b− 1)

q1(b− 1)

b

q2(b)

q1(b)

Figure 3.1: Relationships between failure probabilities of defending distributions νr
in the case of two distinct weights.

q1(r), q2(r) from the sum in Equation (3.3). For every inequality I of the form

LI = m1q1(r) +m2q2(r′) ≤ 1 < m1k1 +m2k2 = RI

given in Claim 1, Equation (3.4), or Equation (3.5), we say that q1(r), q2(r′) ∈ LI if

m1,m2, respectively are nonzero, and group these terms together in the diagram.

Note that every term is in at least one inequality. This suggests the following

approach to a proof: let I be the set of inequalities shown above. We would like to

find nonnegative weights {βI | I ∈ I} and a distribution λ s.t.

b∑
r=0

2∑
i=1

λrpiqi(r) =
∑
I

βILI , (3.7)

where the two sides are seen as linear functions of the qi terms that are algebraically

equivalent. This would give us

b∑
r=0

2∑
i=1

λrpiqi(r) =
∑
I

βILI <
∑
I

βIRI =
b∑

r=0

2∑
i=1

λrpiki = p1k1 + p2k2,

where the last part follows from the fact that the coefficient of qi(r) in any LI is the

coefficient of ki in the corresponding RI , and that
∑

r λr = 1. This will be our starting

point in the proof below.

Proof of Theorem 7. As discussed above, given a weight function w supported on two

values k1 < k2 and a distribution µ on A, in order to show that there is a distribution
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ν of the proposed form which is a defending distribution, we need only show there

exists a distribution λ s.t. Equation (3.7) holds. In this case, since every term appears

in exactly one inequality, we only need to satisfy, for each inequality I of the form

rq1(r − 1) + (cr + 1)q2(r) ≤ 1 < rk1 + (cr + 1)k2

that

βILI = βIrq1(r − 1) + βI(cr + 1)q2(r) = λr−1p1q1(r − 1) + λrp2q2(r),

or equivalently that for all 1 ≤ r ≤ b,

λr−1p1

r
= βI =

λrp2

cr + 1
.

In this setting, we can easily accomplish this by choosing λ s.t.

λr ∝
pr1

pr2 · r!
·

r∏
j=1

(cj + 1).

3.3 Weight Functions Supported on Three Distinct

Divisible Weights

In this section we consider weight functions supported on 3 weights of the form

k1 = 1
b1
, k2 = 1

b1b2
, and k3 = 1

b1b2b3
, where b1, b2, b3 ∈ Z≥2. In this case, the sets in S

have a nice structure that allows us to extend the symmetry arguments of the previous

section to this setting. We begin by considering an analogue of Equation (3.3).

As before, we can let Ai = {a ∈ A | w(a) = ki} and, for any distribution µ on A,
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let pi = µ(Ai) and µi be the conditional distribution of µ on Ai so that µ =
∑
piµi.

Then, let

R = {(r, t) | 0 ≤ r ≤ b1, 0 ≤ t ≤ (b1 − r)b2}.

For any (r, t) ∈ R, we can let cr,t = ((b1 − r)b2 − t)b3 = b1b2b3 − rb2b3 − tb3 be the

maximum number of elements from A3 that can be contained in a set S ∈ S already

containing r elements from A1 and t elements from A2. We can then once again define

distributions νr,t on S that independently draw r elements from A1, t elements from

A2, and cr,t elements from A3 and take the union. Our family of possible defending

distributions will now be parameterized by distributions λ on R, where λr,t = λ(r, t).

Let ν =
∑

(r,t)∈R
λr,tνr,t and for any ordering �, (r, t) ∈ R, let

qi(r, t) = Pr
a∼µi,S∼νr,t

[a � a′ ∀ a′ ∈ S].

Then our goal in this case is to find λ s.t. for all possible orderings �,

∑
(r,t)∈R

3∑
i=1

λr,tpiqi(r, t) <
3∑
i=1

piki. (3.8)

As in the two weight case, we have a set of inequalities between weighted sums of

the terms qi(r, t) and sums of the terms ki with identical coefficients. Before formally

stating the full set of such inequalities, we first provide a diagram analogous to that of

the two weight case that illustrates which terms belong in an inequality together for

the special case that b1 = b2 = b3 = 2. Different colors are used to denote inequalities

with different forms.
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t =

r =

0 1 2 3 4

0

1

2

q3(2, 0)

q2(2, 0)

q1(2, 0)

q3(1, 0)

q2(1, 0)

q1(1, 0)

q3(1, 1)

q2(1, 1)

q1(1, 1)

q3(1, 2)

q2(1, 2)

q1(1, 2)

q3(0, 0)

q2(0, 0)

q1(0, 0)

q3(0, 1)

q2(0, 1)

q1(0, 1)

q3(0, 2)

q2(0, 2)

q1(0, 2)

q3(0, 3)

q2(0, 3)

q1(0, 3)

q3(0, 4)

q2(0, 4)

q1(0, 4)

Figure 3.2: Relationships between failure probabilities of defending distributions νr
in the case of three divisible weights.

We have the following analogue to Claim 1.

Claim 2. For any total ordering �, the following inequalities hold:

(a) Single-weight inequalities (circled in green above):

(b1 + 1)q1(b1, 0) ≤ 1 < (b1 + 1)k1 (3.9)

(b1b2 + 1)q2(0, b1b2) ≤ 1 < (b1b2 + 1)k2 (3.10)

(c0,0 + 1)q3(0, 0) ≤ 1 < (c0,0 + 1)k3 (3.11)

(b) Furthermore, for any 0 < t ≤ b1b2 we have the following inequalities (circled in

red above):

tq2(0, t− 1) + (c0,t + 1)q3(0, t) ≤ 1 < tk2 + (c0,t + 1)k3 (3.12)

(c) Similarly, for any 0 < r ≤ b1, 0 ≤ j < b2 we have the following inequalities

(circled in dark blue above):

rq1(r − 1, j) + (cr,0 + 1)q3(r, 0) ≤ 1 < rk1 + (cr,0 + 1)k3 (3.13)
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(d) For any 0 < r ≤ b1, 0 ≤ j < b2 we have the following inequalities (circled in

light blue above):

rq1(r − 1, b1b2 − rb2 + 1 + j) + (b1b2 − rb2 + 1)q2(r, b1b2 − rb2) ≤ 1 < rk1 + (b1b2 − rb2 + 1)k2

(3.14)

(e) Finally, for any 0 < r ≤ b1, 0 < t ≤ b1b2 − rb2, and 0 ≤ j < b2 we have the

following inequalities (circled in purple above):

rq1(r − 1, t+ j) + tq2(r, t− 1) + (cr,t + 1)q3(r, t) ≤ 1 < rk1 + tk2 + (cr,t + 1)k3

(3.15)

Proof. This can be proved similarly to Claim 1. First note that the second half of

each of the above inequalities follows from simple computation and the definition of

cr,t, so we only need to show the first half for each type.

Now, fix an ordering �. For the sake of convenience, we introduce the following

notation. For any pair of integers (x, y) /∈ R, let qi(x, y) = 0 and cx,y = 0. Then the

claim for the first half of all of the above inequalities is encapsulated by the following

statement: for any integers x, y ≥ 0, and any integer 0 ≤ j < b2,

xq1(x− 1, y + j) + yq2(x, y − 1) + (cx,y + 1)q3(x, y) ≤ 1.

Note that, as before, we have

cx,y−1 = b1b2b3 − xb2b3 − (y − 1)b3 ≥ b1b2b3 − xb2b3 − yb3 + 1 = cx,y + 1, (3.16)

since removing an element of weight k2 reduces the total weight of a subset by more

than k3, allowing you to add at least one such element without increasing the total
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weight past 1. Furthermore, we have

cx−1,y+b2 = cx,y, (3.17)

since removing an element of weight k1 changes the weight of the subset by the same

amount as removing b2 elements of weight k2, so for 0 ≤ j < b2,

cx−1,y+j ≥ cx−1,y+b2−1 ≥ cx−1,y+b2 + 1 = cx,y + 1. (3.18)

For any i ∈ {1, 2, 3} and integers x1, x2, x3 ≥ 0, let fj(x1, x2, x3) be the probability

that when we independently choose xi elements from µi, the first element chosen from

µj is the unique highest ranked out of them all. As in the previous case, by symmetry,

we have

x1f1(x1, x2, x3) + x2f2(x1, x2, x3) + x3f3(x1, x2, x3) ≤ 1,

and for x′ ≥ x, y′ ≥ y, z′ ≥ z,

fi(x
′
1, x
′
2, x
′
3) ≤ fi(x1, x2, x3).

Moreover, for any x, y ≥ 0 and any integer j, we have by definition that

q1(x− 1, y + j) ≤ f1(x, y + j, cx−1,y+j),

q2(x, y − 1) ≤ f2(x, y, cx,y−1),

q3(x, y) ≤ f3(x, y, cx,y + 1).

Putting this all together, we see that for any integers x, y ≥ 0, and any integer

0 ≤ j < b2,

xq1(x− 1, y + j) + yq2(x, y − 1) + (cx,y + 1)q3(x, y)
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≤ xf1(x, y + j, cx−1,y+j) + yf2(x, y, cx,y−1) + (cx,y + 1)f3(x, y, cx,y + 1)

≤ xf1(x, y + j, cx,y + 1) + yf2(x, y, cx,y + 1) + (cx,y + 1)f3(x, y, cx,y + 1) ≤ 1.

Let I be the set of inequalities given in Claim 2, and note that each I ∈ I has the

form

LI = m1q1(r, t) +m2q2(r, t) +m3q3(r, t) ≤ 1 < m1k1 +m2k2 +m3k3 = RI .

In order to prove Theorem 8, we would once again like to find weights {βI} and a

distribution λ such that

∑
(r,t)∈R

3∑
i=1

λr,tpiqi(r, t) =
∑
I

βILI . (3.19)

as linear functions of the qi terms so that

∑
(r,t)∈R

3∑
i=1

λr,tpiqi(r, t) =
∑
I

βILI <
∑
I

βIRI =
∑

(r,t)∈R

3∑
i=1

λr,tpiki =
3∑
i=1

piki.

Unfortunately, we no longer have a unique inequality containing each term qi(r, t),

so it is more difficult to solve for this set of weights. However, we can show that a

solution exists. Before we prove Theorem 8, we first solve for the values of λr,t that

will make ν a valid defending distribution. It turns out that if Equation (3.19) is

solvable, it determines a unique choice of λ.

Lemma 40. For any solution (λ, β) to Equation (3.19), λ must satisfy the following:

for all (r, t) ∈ R, λr,t = αrγr,t, where

γr,t =
pt2

pt3 · t!
·

t∏
j=1

(cr,j + 1) (3.20)
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and the αr’s satisfy

αr−1

 ∑
(r−1,t)∈R

γr−1p1

r

 = αr

 γr,b1b2−rb2p2

b1b2 − rb2 + 1
+
∑

(r,t)∈R

γr,tp3

cr.t + 1

 . (3.21)

These conditions uniquely determine the distribution λ.

Proof. We first solve for the relative values of λr,t for a fixed r (across a row of the

diagram.) Fix r and let d = b1b2−rb2. Note that given r, for 0 ≤ t < d, any inequality

I containing q2(r, t) also contains q3(r, t + 1), and vice versa (these are exactly the

inequalities given in Equation (3.12) or Equation (3.15), colored in red or purple

in Figure 3.2.) Furthermore, in any such I, q2(r, t) always has coefficient t + 1 and

q3(r, t+ 1) always has coefficient cr,t+1 + 1. Therefore, if we let Ir,t be the set of such

I and sum the weighted coefficients of these terms across all I ∈ Ir,t, Equation (3.19)

gives us

λr,tp2q2(r, t) =
∑
I∈Ir,t

βI(t+ 1)q2(r, t) and λr,tp3q3(r, t) =
∑
I∈Ir,t

βI(cr,t + 1)q3(r, t)

which in turn gives us

λr,tp2

t+ 1
=
∑
I∈Ir,t

βI =
λr,t+1p3

cr,t+1 + 1
(3.22)

. This tells us that for a fixed r and 0 ≤ t < d, we must have λr,t+1 = λr,t · p2(cr,t+1+1)

p3(t+1)
.

From this we conclude that the coefficients {λr,t} satisfy that for t > 0, λr,t = γr,tλr,0

and we can let αr = γr,t.

Next we need to determine the relative values of the αr’s. This time, for 0 < r ≤ b,

we again let d = b1b2 − rb2 and let Ir be the set of inequalities containing terms of

the form q1(r − 1, t) for 0 ≤ t ≤ d, given by Equation (3.13), Equation (3.14), and

Equation (3.15) (colored in dark blue, purple, and light blue, in Figure 3.2.) Note
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that these are exactly the inequalities which contain terms of the form q2(r, t) or

q3(r, t). Let I3
r ⊆ Ir be the subset of inequalities which contain terms of the form

q3(r, t) (given by Equation (3.13) and Equation (3.15), in dark blue or purple), and

I2
r = Ir \ I3

r be the remaining inequalities (which are all of the inequalities containing

the term q2(r, d), given by Equation (3.14), in light blue.) For a fixed r, we must have

∑
(r−1,t)∈R

λr−1,tp1

r
=
∑
I∈Ir

βI =
∑
I∈I2

r

βI +
∑
I∈I3

r

βI =
λr,dp2

d+ 1
+
∑

(r,t)∈R

λr,tp3

cr,t + 1
(3.23)

which implies Equation (3.21). This determines αr relative to αr−1 and thus

determines λr,t up to the choice of α0. Finally, α0 must be chosen so that the {λr,t}

sum to 1, so there is a unique choice.

Proof of Theorem 8. Finally, given the above values of λr,t, we need to show that we

can find corresponding nonnegative weights βI for each of the inequalities. In other

words, we need to find weights {βI} satisfying, for all r, t,

λr,tp1

r + 1
=

∑
I3q1(r,t)

βI , (3.24)

λr,tp2

t+ 1
=

∑
I3q2(r,t)

βI , (3.25)

and

λr,tp3

cr,t + 1
=

∑
I3q3(r,t)

βI , (3.26)

so that Equation (3.19) holds. Note that if there is only one term on the right hand

side of these equations for the inequalities given by Equation (3.9), Equation (3.10),

Equation (3.11), and Equation (3.12) (colored in green and red in Figure 3.2) since
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the terms they contain are not contained by any other inequalities. In the case of

the first three (green), this trivially determines the values of βI for such I, since they

each correspond to one unique term and their weights are determined by the weight

of that term in the left hand side of the above equations. The weights on inequalities

given in Equation (3.12) (red) depend on two terms and thus each correspond to two

equations above, but by our choice of λr,t (in particular Equation (3.22)), the weights

induced by both are consistent. It only remains to determine weight for inequalities

in Ir for 0 < r ≤ b (given by Equation (3.13), Equation (3.14), Equation (3.15) and

colored in dark blue, light blue, and purple, respectively.)

Fix r s.t. 0 < r ≤ b, d = b1b2 − rb1 with the aim of solving for the weights of the

inequalities in Ir. We first observe that each of these inequalities contains a term

q1(r − 1, t) for 0 ≤ t ≤ d+ b2 in row r − 1 and contains exactly one of q3(r, 0) (dark

blue), q2(r, d) (light blue), or the pair q2(r, t − 1), q3(r, t) (purple) for 1 ≤ t ≤ d in

row r. For those inequalities containing a pair q2(r, t− 1), q3(r, t), we again have by

Equation (3.22) that the corresponding equations of the form 3.25 and 3.26 are the

same (since the left hand sides are equal, and the right hand sides are summing over

the same sets of inequalities.) Thus, each inequality in Ir belongs to only two distinct

equations, one corresponding to terms in row r − 1, and one to terms in row r.

We can think of this as a flow problem, where each distinct equation corresponds

to a vertex with capacity equivalent to the left hand side of that equation and

each βI indicates some amount of flow going through an edge between the vertices

corresponding to the equations involving I. More precisely, we can construct a bipartite

graph Gr with a source x, a sink y, and two sets V, U corresponding to terms in row

r − 1 and r, respectively. On one side, adjacent to x, we will have vertices vt in V

representing the terms q1(r − 1, t) for 0 ≤ t ≤ d+ b2, each with capacity

g(vt) =
λr−1,tp1

r
.
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On the other side, adjacent to y, we have vertices ut representing the pair of terms

q3(r, t) and q2(r, t− 1) for 1 ≤ t ≤ d, each with capacity

g(ut) =
λr,tp3

cr,t + 1
=
λr,t−1p2

t
.

Finally, we will add a vertex ud+1 adjacent to y representing the term q2(r, d), with

capacity

g(ud+1) =
λr,dp2

d+ 1

and a vertex u0 adjacent to y representing the term q3(r, 0), with capacity

g(u0) =
λr,0p3

cr,0 + 1
.

Given these vertices, we will draw an edge for any inequality in Ir from the vertex

vi corresponding to its q1 term to the vertex uj corresponding to its q2 and q3 terms.

Thus, we have an edge to each uj from vj, vj+1, ..., vj+b2−1. Looking at Figure 3.2 and

considering the blue and purple inequalities between rows 0 and 1, we can see the

structure of the corresponding graph Gr for the case that b1 = b2 = b3 = 2 and r = 1.

We explicitly draw this graph Gr below:

x

y

v0 v1 v2 v3 v4

u0 u1 u2 u3

Figure 3.3: Example of a graph G modelling the relationships between terms in
Equation (3.19)

Note that
∑d+b2

t=0 g(vi) =
∑d+1

t=0 g(ui) by our choice of λr,t (see Equation (3.23).)
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Thus, if we let

κr :=

d+b2∑
t=0

g(vi) =
d+1∑
t=0

g(ui)

and show that there is a flow of value κ in this graph (filling all vertices to their

capacity), we can take the value of the flow on each edge (vj, ui) to be the weight of

the corresponding inequality, and we will have weights that satisfy equations 3.24,

3.25, and 3.26. The following lemma completes our argument.

Lemma 41. There exists a flow of value κr from x to y in Gr.

In order to prove the lemma, we will use certain properties of the capacities of the

vertices of Gr, summarized in the claim below.

Claim 3. In graph Gr, for any 0 ≤ t < d, we have

g(vt+1)

g(vt)
≥ g(ut+1)

g(ut)
.

Furthermore, for any b2 − 1 ≤ t < d+ b2, we have

g(vt+1)

g(vt)
≤ g(ut−b2+2)

g(ut−b2)
.

Proof of Claim 3. For any 0 ≤ t ≤ d, we have

g(vt+1)

g(vt)
=
λr−1,t+1

λr−1,t

=
γr−1,t+1

γr−1,t

=
p2(cr−1,t+1 + 1)

p3(t+ 1)
.

For 0 ≤ t < d,

g(ut+1)

g(ut)
=
λr,t+1(cr,t + 1)

λr,t(cr,t+1 + 1)
=
γr,t+1

γr,t
· cr,t + 1

cr,t+1 + 1
=
p2(cr,t+1 + 1)

p3(t+ 1)
· cr,t + 1

cr,t+1 + 1
=
p2(cr,t + 1)

p3(t+ 1)
≤ g(vt+1)

g(vt)
,

where the last line follows from the fact that cr,t ≤ cr−1,t+1 + 1 by Equation (3.18). If
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t = d, then

g(ut+1)

g(ut)
=
λr,dp2(cr,d + 1)

λr,dp3(d+ 1)
=
γr,dp2(cr,d + 1)

γr,dp3(d+ 1)
=
p2(cr,d + 1)

p3(d+ 1)
≤ g(vd+1)

g(vd)
,

again since cr,d ≤ cr−1,d+1 by Equation (3.18).

On the other hand, if b2 − 1 ≤ t < d+ b2 − 1, then

g(ut−b2+2)

g(ut−b2+1)
=
λr,t−b2+2(cr,t−b2+1 + 1)

λr,t−b2+1(cr,t−b2+2 + 1)
=
γr,t−b2+2

γr,t−b2+1

· cr,t−b2+1 + 1

cr,t−b2+2 + 1

=
p2(cr.t−b2+2 + 1)

p3(t− b2 + 1)
· cr,t−b2+1 + 1

cr,t−b2+2 + 1
=
p2(cr,t−b2+1 + 1)

p3(t− b2 + 1)
≥ p2(cr−1,t+1 + 1)

p3(t+ 1)
=
g(vt+1)

g(vt)
,

since t− b2 + 1 ≤ t+ 1 and cr,t−b2+1 = cr−1,t+1 by Equation (3.17).

Finally, if t = d+ b2 − 1, then

g(ut−b2+2)

g(ut−b2)
=
λr,dp2(cr,d + 1)

λr,dp3(d+ 1)
=
p2(cr,d + 1)

p3(d+ 1)
≥ p2(cr−1,d+b2 + 1)

p3(d+ b2)
=
g(vt+1)

g(vt)
,

by the same reasoning as above.

Proof of Lemma 41. We will use the Max-Flow-Min-Cut theorem 1 to show there is

a flow of value κ for G, by showing that any xy vertex cut has at least this value.

Consider any such cut S on G. Let V ′ = V \ S. Then we must have the non-x

neighbors N(V ′) \ {x} = U ′ ⊆ U all contained in S. Thus, the total weight of the cut

is at least
∑

v∈V ∩S g(v) +
∑

u∈U ′ g(u). We will show that
∑

u∈U ′ g(u) ≥
∑

v∈V ′ g(v),

which proves the result, since it implies

∑
v∈V ∩S

g(v)+
∑

u∈U∩S

g(u) ≥
∑
v∈V ∩S

g(v)+
∑
u∈U ′

g(u) ≥
∑
v∈V ∩S

g(v)+
∑
v∈V ′

g(v) =
∑
v∈V

g(v) = κ.

We do this by proving the equivalent statement κ
∑

u∈U ′ g(u) ≥ κ
∑

v∈V ′ g(v)

as follows. First, we’ll define a function φ : V ′ × U → V × U ′. We’ll then show

1See [22] for a reference.
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that φ is injective and furthermore, for any (v′, u) ∈ V ′ × U with φ(v′, u) = (v, u′),

g(v′)g(u) ≤ g(v)g(u′). This will allow us to conclude that

κ
∑
v′∈V ′

g(v′) =
∑

u∈U,v′∈V ′
g(u)g(v′) ≤

∑
u∈U,v′∈V,(v,u′)=φ(v′,u)

g(u′)g(v) ≤
∑

u′∈U ′,v∈V

g(u′)g(v) = κ
∑
u′∈U ′

g(u′).

We give the definition of φ below:

φ(vi, uj) :=


(vi, uj) uj ∈ U ′

(vj, ui) uj /∈ U ′, j > i

(vb2−1+j, ui−b2+1) uj /∈ U ′, j ≤ i− b2

.

Note that if vi is in V ′, then for any i− b2 + 1 ≤ j ≤ i, uj ∈ U ′, so this function is well

defined. This also implies that in the latter two cases, since uj /∈ U ′, vj, vj+b1−1 /∈ V ′,

so φ maps V ′ × U ′ to itself (acting as the identity in this case) and V ′ × (U \ U ′) to

(V \ V ′)× U ′.

Now suppose there was some (i, j) 6= (k, `) s.t. φ(vi, uj) = φ(vk, u`). Clearly in

this case we could not have u` or uj ∈ U ′, since that would mean (vi, uj), φ(vi, uj) =

φ(vk, u`), (vk, u`) would all have to be in V ′×U ′ by the discussion above, and therefore

would all be equal. We also can’t have both j > i and ` > k, since that would give

us (vj, ui) = φ(vi, uj) = φ(vk, u`) = (v`, uk), or both j ≤ i− b2, ` ≤ k − b2, since that

would give us (vb2−1+j, ui−b2+1) = φ(vi, uj) = φ(vk, u`) = (vb2−1+`, uk−b2+1). Therefore

it would have to be the case that uj, u` /∈ U ′, and WLOG j > i and ` ≤ k − b2. Then

i = k − b2 + 1 < j and j = b2 − 1 + ` ≤ k − 1. But this would mean that uj ∈ N(vk)

and vk ∈ V ′, so uj ∈ U ′, a contradiction. Thus, φ must be injective.

Finally, we verify that if φ(v′, u) = (v, u′), then g(v′)g(u) ≤ g(v)g(u′) in all three

cases. If uj ∈ U ′ we obviously get equality. If j > i, then this is equivalent to showing
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that
g(vj)

g(vi)
≥ g(uj)

g(ui)
, which is given to us by Claim 3, since

g(vj)

g(vi)
=
g(vi+1)

g(vi)
· ... · g(vj)

g(vj−1)
≤ g(ui+1)

g(ui)
· ... · g(uj)

g(uj−1)
=
g(uj)

g(ui)
.

On the other hand, if j ≤ i − b2, then we’d like to show that g(vi)
g(vb2−1+j)

≤ g(ui−b2+1)

g(uj)
,

which again follows from Claim 3, since

g(vi)

g(vb2−1+j)
=

g(vb2+j)

g(vb2−1+j)
· ... · g(vi)

g(vi−1)
≤ g(uj+1)

g(uj)
· ... · g(ui−b2+1)

g(ui−b2)
=
g(ui−b2+1)

g(uj)
.

3.4 Further Directions

There are two clear further directions following from these results:

(a) Is it possible to extend the three divisible weights case to three general weights?

(b) Is it possible to extend the three divisible weights case to more than three

divisible weights?

Here we take some space to address the former. Unfortunately, it is not possible

to extend our method of inequalities to address the case of 3 general weights, as

illustrated by the following counterexample.

Let k1 = 2
3
, k2 = 1

2
, and k3 = 1

3
. In this case we have the following inequalities:

2q1(1, 0) ≤ 1 < 2k1

3q2(0, 2) ≤ 1 < 3k2

4q3(0, 0) ≤ 1 < 4k3

q2(0, 0) + 2q3(0, 1) ≤ 1 < k2 + 2k3

2q2(0, 1) + q3(0, 2) ≤ 1 < 2k2 + k3



82

q1(0, 0) + 2q3(1, 0) ≤ 1 < k1 + 2k3

q1(0, 1) + q2(1, 0) ≤ 1 < k1 + k2

q1(0, 2) + q2(1, 0) ≤ 1 < k1 + k2

If we were to try and use these to find weights βI such that Equation (3.19) holds, we

would find that λ0,1 = 2p2

p3
· λ0,0 and λ0,2 = p2

2p3
· λ0,1 =

p2
2

p2
3
· λ0,0, but also

λ1,0 =
2p1

p3

· λ0,0

and

λ1,0 =
p1

p2

· λ0,1 +
p1

p2

· λ0,2 =

(
2p1

p3

+
p1p2

p2
3

)
λ0,0

which are inconsistent equations for most values of {pi}.

However, this is not a counterexample to Conjecture 2, since it is still possible to

find a defending distribution in this case. Although this particular set of inequalities

does not have a solution (λ, β) that satisfies Equation (3.19), it is possible to find

additional inequalities that allow us to find a solution. In fact, we prove a more general

result, Theorem 9, in the next section. Unfortunately, the set of possible inequalities

becomes more complicated, and the solution often depends on that values pi, which

prevented us from generalizing further along these lines.

3.5 Proof of Theorem 9

Here we prove of Theorem 9, restated below:

Theorem 9. Suppose w is supported on three weights k1 > k2 > k3 s.t. k1 ∈ (1
2
, 1),

k2 ∈ (1
3
, 1

2
], and k1 + k2 > 1. Then for any distribution µ on A, it is possible to find a

defending distribution.

Proof. Once again let Ai = {a ∈ A | w(a) = ki) and for any distribution µ on A,
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let pi = µ(Ai) and µi be the conditional distribution of µ on Ai. As in the proof of

Theorem 8, we consider pairs (r, t) such that rk1 + tk2 ≤ 1 and let cr,t = b1−rk1−tk2

k3
c be

the maximum number of elements from A3 we can add to a set S already containing

r elements from A1 and t elements from A2 without increasing the weight of the set

to be greater than 1. In this case, we can define the set

R = {(0, 0), (0, 1), (0, 2), (1, 0)}

and construct a defending distribution ν =
∑

(r,t)∈R λr,tνr,t as we did previously. Then

qi(r, t) and fi(x1, x2, x3) will again be defined as before.

Our proof will be split into 4 cases. Each case will use a subset of the following

inequalities:

I1 : (c0,0 + 1)q3(0, 0) ≤ 1 < (c0,0 + 1)k3

I2 : 3q2(0, 2) ≤ 1 < 3k2

I3 : 2q1(1, 0) ≤ 1 < 2k1

I4 : 2q2(0, 1) + (c0,2 + 1)q3(0, 2) ≤ 1 < 2k2 + (c0,2 + 1)k3

I5 : q2(0, 0) + (c0,1 + 1)q3(0, 1) ≤ 1 < k2 + (c0,1 + 1)k3

I6 : q1(0, 0) + (c1,0 + 1)q3(1, 0) ≤ 1 < k1 + (c1,0 + 1)k3

I7 : q1(0, 1) + q2(1, 0) ≤ 1 < k1 + k2

I8 : q1(0, 2) + q2(1, 0) ≤ 1 < k1 + k2

If it is the case that c1,0 < c0,1, then we have

I9 : q1(0, 1) + (c1,0 + 1)q3(1, 0) ≤ 1 < k1 + (c1,0 + 1)k3

If it is additionally the case that c1,0 < c0,2, then we also have

I10 : q1(0, 2) + (c1,0 + 1)q3(1, 0) ≤ 1 < k1 + (c1,0 + 1)k3

On the other hand, if c1,0 = c0,1, then we have
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I11 : q1(0, 1) + c0,1 · q3(1, 0) + 2q2(0, 1) + q3(0, 2) ≤ 2 < (k1 + k2) + (k2 + (c0,1 + 1)k3)

I12 : q2(0, 0) + q3(0, 2) + c0,1 · (2q1(1, 0) + 2q2(0, 1) + q3(0, 2)) ≤ 2 · c0,1 + 1

< 2 · c0,1(k1 + k2) + (k2 + (c0,1 + 1)k3)

We first describe each case and its corresponding inequalities. For each case j with

corresponding inequalities Ij, we explicitly provide weights βjI and (non-normalized)

values of λjr,t satisfying

∑
(r,t)∈R

3∑
i=1

λjr,tpiqi(r, t) =
∑
Ij

βjILI . (3.27)

We then provide a quick derivation of these inequalities under the conditions given by

their corresponding cases, completing the proof.

The cases are as follows:

(a) c0,2−1

2
≤ c1,0 < c0,1

• In this case we use inequalities I1, I2, I3, I4, I5, I6, I7, I8, and I9.

• The (non-normalized) weights are:

λ0,0 =
2p2

3

(c0,2+1)(c0,1+1)
β1 =

2p3
3

(c0,2+1)(c0,1+1)(c0,0+1)
β6 =

2p1p2
3

(c0,2+1)(c0,1+1)

λ0,1 = 2p2p3

c0,2+1
β2 =

p3
2

3
β7 = (1− δ) · 2p1p2p3

c0,2+1

λ0,2 = p2
2 β3 =

(1−δ)p2
1p3

2(c0,2+1)
+

p2
1p2

2
β8 = p1p

2
2

λ1,0 = 2(1−δ)p1p3

c0,2+1
+ p1p2 β4 =

p2
2p3

c0,2+1
β9 = δ · 2p1p2p3

c0,2+1

β5 =
2p2p2

3

(c0,2+1)(c0,1+1)

where δ is a parameter satisfying

(c1,0 + 1)(λ0,0p1 + δλ0,1p1)

p3

=
(1− δ)λ0,1p1 + λ0,2p1

p2

.

• We know such a δ exists, because g(x) = (c1,0+1)(λ0,0+xλ0,1)

p3
and h(x) =
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(1−x)λ0,1+λ0,2

p2
are continuous functions on [0, 1] with

g(0) =
(c1,0 + 1)λ0,0

p3

=
2p3(c1,0 + 1)

(c0,2 + 1)(c0,1 + 1)
<

2p3

c0,2 + 1
+p2 =

λ0,1 + λ0,2

p2

= h(0)

and

g(1) =
(c1,0 + 1)(λ0,0 + λ0,1)

p3

=
2p3(c1,0 + 1)

(c0,2 + 1)(c0,1 + 1)
+

2p2(c1,0 + 1)

c0,2 + 1
≥ p2 =

λ0,2

p2

= h(1),

since in this case c0,2+1

2
≤ c1,0 + 1 < c0,1 + 1.

(b) c1,0 <
c0,2−1

2
< c0,2 ≤ c0,1

• In this case we use inequalities I1, I2, I3, I4, I5, I6, I7, I8, I9, and I10.

• The (non-normalized) weights are:

λ0,0 =
2p2

3

(c0,2+1)(c0,1+1)
β1 =

2p3
3

(c0,2+1)(c0,1+1)(c0,0+1)
β6 =

2p1p2
3

(c0,2+1)(c0,1+1)

λ0,1 = 2p2p3

c0,2+1
β2 =

p3
2

3
β7 = (1− δ) · 2p1p2p3

c0,2+1

λ0,2 = p2
2 β3 = 1−δ

2

(
2p2

1p3

c0,2+1
+ p2

1p2

)
β8 = (1− δ) · p1p

2
2

λ1,0 = (1− δ)
(

2p1p3

c0,2+1
+ p1p2

)
β4 =

p2
2p3

c0,2+1
β9 = δ · 2p1p2p3

c0,2+1

β5 =
2p2p2

3

(c0,2+1)(c0,1+1)
β10 = δ · p1p

2
2

where δ is a parameter satisfying

(c1,0 + 1)(λ0,0p1 + δ(λ0,1p1 + λ0,2p1))

p3

=
(1− δ)(λ0,1p1 + λ0,2p1)

p2

.

• We know such a δ exists, because g(x) = (c1,0+1)(λ0,0+x(λ0,1+λ0,2))

p3
and h(x) =

(1−x)(λ0,1+λ0,2)

p2
are continuous functions on [0, 1] with

g(0) =
(c1,0 + 1)λ0,0

p3

=
2p3(c1,0 + 1)

(c0,2 + 1)(c0,1 + 1)
<

2p3

c0,2 + 1
+2p2 =

λ0,1 + λ0,2

p2

= h(0)

and g(1) ≥ 0 = h(1).

(c) c1,0 = c0,1 = c and either p2 ≥ p1 or p3 ≥ p1
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• In this case we use inequalities I1, I2, I3, I4, I5, I6, I7, I8, and I11.

• The (non-normalized) weights are:

λ0,0 =
2p2

3

(c+1)
β1 =

2p3
3

(c+1)(c0,0+1)
β6 =

2p1p2
3

(c+1)

λ0,1 = 2p2p3 β2 =
p3

2

3
β7 = 2(1− δ)p1p2p3

λ0,2 = p2
2 β3 = (1− δ)p2

1p3 +
p2

1p2

2
β8 = p1p

2
2

λ1,0 = 2(1− δ)p1p3 + p1p2 β4 = p2
2p3 − 2δp1p2p3 β11 = 2δp1p2p3

β5 =
2p2p2

3

(c+1)

where δ = p2

2cp2+2p3
satisfies

(c+ 1)λ0,0p1 + cδλ0,1p1

p3

= λ1,0 =
(1− δ)λ0,1p1 + λ0,2p1

p2

.

• Note that since δ ≤ 1
2c
≤ 1

2
and δ ≤ p2

2p3
, we know 2δp1p2p3 ≤ p1p2p3, p1p

2
2.

Since either p2 ≥ p1 or p3 ≥ p1, this guarantees that β4 ≥ 0.

(d) c1,0 = c0,1 = c and p2, p3 < p1

• In this case we use inequalities I1, I2, I3, I5, I6, I7, I8, and I12.

• The (non-normalized) weights are:

λ0,0 =
2(1−δ)p2

3

(c+1)
+ δp2p3 β1 =

2(1−δ)p3
3

(c+1)(c0,0+1)
+ δ · p2p2

3

c0,0+1
β6 =

2(1−δ)p1p2
3

(c+1)
+ δp1p2p3

λ0,1 = 2(1− δ)p2p3 β2 =
p3

2

3
β7 = 2(1− δ)p1p2p3

λ0,2 = p2
2 β3 = (1− δ)p2

1p3 +
p2

1p2

2
− cδp2

2p3 β8 = p1p
2
2

λ1,0 = 2(1− δ)p1p3 + p1p2 β5 =
2(1−δ)p2p2

3

c+1
β12 = δp2

2p3

where δ = 1
c+1

satisfies

2(1− δ)p1p3 + p1p2 = 2(1− δ)p1p3 + δp1p2(c+ 1).

• Note that since p1 > p2, p3 and 1 − δ = 1 − 1
c+1

= c
c+1

= cδ, we have

β3 > (1− δ)p2
2p3 − cδp2

2p3 = 0.
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[47] Tomáš Masař́ık, Grzegorz Pierczyński, and Piotr Skowron. “A Generalised

Theory of Proportionality in Collective Decision Making”. In: (2023). arXiv:

2307.06077 [cs.GT]. url: https://arxiv.org/abs/2307.06077.

[48] Jayadev Misra and David Gries. “A Constructive Proof of Vizing’s Theorem”.

In: Inf. Process. Lett. 41.3 (1992). Available at: https://www.cs.utexas.edu/

~misra/psp.dir/vizing.pdf, pp. 131–133. doi: 10.1016/0020-0190(92)

90041-S. url: https://doi.org/10.1016/0020-0190(92)90041-S.

[49] Alessandro Panconesi and Romeo Rizzi. “Some simple distributed algorithms for

sparse networks”. In: Distributed computing 14.2 (2001). Available at: https:

//link.springer.com/article/10.1007/PL00008932, pp. 97–100.

https://doi.org/10.1002/9781118032718
https://doi.org/10.1002/9781118032718
https://doi.org/10.1002/9781118032718
https://doi.org/10.1002/9781118032718
https://doi.org/10.1145/3357713.3384238
https://doi.org/10.1145/3357713.3384238
https://arxiv.org/abs/2111.00721
https://doi.org/10.1145/3519935.3519986
https://doi.org/10.1145/3519935.3519986
https://doi.org/10.1145/3519935.3519986
https://arxiv.org/abs/2307.06077
https://arxiv.org/abs/2307.06077
https://www.cs.utexas.edu/~misra/psp.dir/vizing.pdf
https://www.cs.utexas.edu/~misra/psp.dir/vizing.pdf
https://doi.org/10.1016/0020-0190(92)90041-S
https://doi.org/10.1016/0020-0190(92)90041-S
https://doi.org/10.1016/0020-0190(92)90041-S
https://link.springer.com/article/10.1007/PL00008932
https://link.springer.com/article/10.1007/PL00008932


95

[50] Dominik Peters and Piotr Skowron. “Proportionality and the limits of welfarism”.

In: Proceedings of the 21st ACM Conference on Economics and Computation.

Available at: https://arxiv.org/pdf/1911.11747. 2020, pp. 793–794.

[51] Grzegorz Pierczyński and Piotr Skowron. “Core-stable committees under re-

stricted domains”. In: International Conference on Web and Internet Economics.

Available at: https://arxiv.org/pdf/2108.01987. Springer. 2022, pp. 311–

329.

[52] Ariel D. Procaccia, Jeffrey S. Rosenschein, and Aviv Zohar. “On the complexity

of achieving proportional representation”. In: Social Choice and Welfare 30

(2008). Available at: https://doi.org/10.1007/s00355- 007- 0235- 2,

pp. 353–362.

[53] Simon Rey and Jan Maly. “The (Computational) Social Choice Take on Indi-

visible Participatory Budgeting”. In: arXiv preprint arXiv:2303.00621 (2023).

Available at: https://arxiv.org/abs/2303.00621.

[54] Amin Saberi and David Wajc. “The Greedy Algorithm Is not Optimal for On-

Line Edge Coloring”. In: 48th International Colloquium on Automata, Languages,

and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual

Conference). Ed. by Nikhil Bansal, Emanuela Merelli, and James Worrell. Vol. 198.

LIPIcs. Available at: https://arxiv.org/abs/2105.06944. Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2021, 109:1–109:18. doi: 10.4230/LIPICS.

ICALP.2021.109. url: https://doi.org/10.4230/LIPIcs.ICALP.2021.109.

[55] Herbert E. Scarf. “The core of an N person game”. In: Econometrica: Journal

of the Econometric Society 35 (1967). Available at: https://elischolar.

library.yale.edu/cgi/viewcontent.cgi?article=1411&context=cowles-

discussion-paper-series, pp. 50–69.

https://arxiv.org/pdf/1911.11747
https://arxiv.org/pdf/2108.01987
 https://doi.org/10.1007/s00355-007-0235-2
https://arxiv.org/abs/2303.00621
https://arxiv.org/abs/2105.06944
https://doi.org/10.4230/LIPICS.ICALP.2021.109
https://doi.org/10.4230/LIPICS.ICALP.2021.109
https://doi.org/10.4230/LIPIcs.ICALP.2021.109
https://elischolar.library.yale.edu/cgi/viewcontent.cgi?article=1411&context=cowles-discussion-paper-series
https://elischolar.library.yale.edu/cgi/viewcontent.cgi?article=1411&context=cowles-discussion-paper-series
https://elischolar.library.yale.edu/cgi/viewcontent.cgi?article=1411&context=cowles-discussion-paper-series


96

[56] Corwin Sinnamon. “A Randomized Algorithm for Edge-Colouring Graphs in

O(m
√

n) Time”. In: CoRR abs/1907.03201 (2019). Available at: https://arxiv.

org/pdf/1907.03201. arXiv: 1907.03201. url: http://arxiv.org/abs/1907.

03201.

https://arxiv.org/pdf/1907.03201
https://arxiv.org/pdf/1907.03201
https://arxiv.org/abs/1907.03201
http://arxiv.org/abs/1907.03201
http://arxiv.org/abs/1907.03201

	Abstract of the Dissertation
	Acknowledgments
	Introduction
	Greedy Online Edge Coloring
	Existence of Defending Distributions

	Greedy Online Edge Coloring
	Introduction
	Our Approach

	Preliminaries
	Online Coloring
	The Algorithm A'
	Framework
	Proof Idea
	Background on Martingales

	Well-Behaved Colorings
	Some Martingales Difference Sequences
	Technical parameters
	Bad Events

	Error Bounds
	Main Lemma

	Existence of Defending Distributions
	Introduction
	Background
	Our Results

	Weight Functions Supported on Two Distinct Weights
	Weight Functions Supported on Three Distinct Divisible Weights
	Further Directions
	Proof of thm:tinycase


