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ABSTRACT OF THE DISSERTATION

Automated Discovery and Proof in Three Combinatorial

Problems

by Paul Raff

Dissertation Director: Professor Doron Zeilberger

In this Ph.D. disseration, I will go over advances I have made in three combinatorial

problems. The running theme throughout these three problems is the novel use of

computers to aid not only in the discovery of the theorems proved, but also in the proofs

themselves. The first problem involves the enumeration of spanning trees in grid graphs

- graphs of the form G×Pn (or Cn) for arbitrary G. An enumeration scheme is developed

based on the partitions of [n], yielding an algorithmic method to completely solve

the sequence for any G. These techniques yield a surprising consequence: sequences

obtained in this manner are divisibility sequences. The second problem concerns the

quantity f∆(n), defined as the size of the largest subset of [n] avoiding differences in ∆.

Originally motivated by the Triangle Conjecture of Schützenberger and Perrin, we again

define an enumeration scheme that will find, and prove automatically, the sequence

f∆(n)∞n=1 for any prescribed ∆. Although the Triangle Conjecture has long been refuted,

we present an asymptotic version of it and prove it. The final problem is the firefighter

problem, a dynamic graph theory problem modeling the spread of diseases, information,

etc. We will present the problem as it applies on the two-dimensional grid and prove

new upper and lower bounds, found mainly through computer experimentation.
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Chapter 1

Introduction

It is no coincidence that ENIAC, the first electronic computer built, was frequently

described as a “giant” or “electronic” brain [32]. The evolution of computers’ brains,

mathematically speaking, has followed that of humans, although the timeline has been

compressed considerably. In human evolution, mathematics has broadly evolved from

the concept of number to the concept of computation to the concept of mathematical

proof and rigor. Similarly, the evolution for the computer is the same, being that the

basic element for a computer is bit, or binary digit. All constructs that are used by

computers are built up from the bit, whether it be the unsigned int or float or

the array. Manipulation of these and other basic computer constructs were obtained

through the basic operations and extended through computer methods. Finally, in a

body of work that is only about 20 years old, these concepts have been abstracted inside

the computer to allow the ability to prove.

The abstraction away from number and computation in a computer has generally

been of two distinct forms. First, there is the notion of formal proof, which seeks to

harness the computational power of the computer to provide strict proofs of mathe-

matical statements, given in a predefined axiomatic system (usually ZFC or PA). The

motivation leading to formal proof is manyfold, but its usefulness is seen when one

considers that all proofs read in mathematical journals or explained on the board are

not actual proofs in the axiomatic framework, but digests of those that can be read,

and more importantly, understood by a human. However, Kempe’s flawed proof of the

Four-Color Theorem is one of numerous shortcomings of the informal proof method

that is widely employed today. This is one of the issues that Formal Proof seeks to

remedy. In the near future, according to the belief, mathematicians will be able to
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include formalized proofs, with the assistance of computer programs like Isabelle or

HOL-Light, with their paper submissions to journals (see [25]).

For the time being, formal proof purveyors spend most of their time finding formal

proofs for popular and important theorems, such as the The Prime Number Theorem

(for which the author was a contributing member of - see [2]), the Quadratic Reciprocity

Theorem, and the Fundamental Theorems of Algebra and Arithmetic. It is a venture

the author deems worthwhile and productive for the long-term future of mathematics,

not least because he was a participant of the progress at one point, and hopes to be again

in the future. This pursuit is worthwhile because it is futile to believe that computers

can be separated from mathematics in and real form for any real benefit. One of the

main complaints that is given about proof assistants like Isabelle or HOL-Light is that

they are too hard to learn. This is valid, but one that should not scuttle the formal

proof debate. Rather, as we see in other areas where computers play a leading role,

the initial attempts are not so pleasing to the consumer, yet through refinements a

good product is made. For example, Apple’s iPod was not the first mp3 music player

that was developed; rather, it fixed the shortcomings of previous music players and its

success is well-deserved for that. Similarly, the superficially technical shortcomings of

formal proof will be fixed. For a good review of the current state of the art of formal

proof as of 2009, one only needs to look at the AMS Special Issue on Formal Proof,

consisting of [22], [19], [25], and [50].

The second form of abstraction away from pure computation is not an abandonment

of computation per se, but it is the notion that proofs are, no matter how they are

written, a computational notion in their purest form. This gives rise to the notion of

symbolic computation, which seeks to reduce proofs to statements that can be solved

computationally, instead of being proved verbally. A trivial example of the notion of

symbolic computation is the following:

Example Prove that there is no quadratic function f(x) satisfying f(1) = −1, f(2) =

12, f(3) = 31, and f(4) = 55.

The answer is as follows: a quadratic function f(x) = Ax2 +Bx+C satisfying those



6

four conditions would imply:

A + B + C = −1

4A + 2B + C = 12

9A + 3B + C = 31

16A + 4B + C = 55,

which is a system of four equations with three variables. Generally these overloaded

systems have no solutions, which is what happens in this case. This example, although

somewhat contrived, shows how a “proof” can be reduced down to mere computation,

and the fact that a contradiction appears in the computation immediately solves the

problem.

A more involved example, and a fundamental theory in the field of symbolic compu-

tation so far, is the Wilf-Zeilberger Theory [51] of hypergeometric functions and their

implication that every binomial identity can be verified or refuted through an effective

algorithm, which is, in its essence, a series of computations. Other examples abound

but the reader should realize that this author, nor any other respectable mathematician

in this field, is not doing away with theory or arguing that there will be a point in the

near future where theory is irrelevant and computers rule the world. On the contrary,

theory will always be the driving force. The theory we create is necessary to justify the

use of the computers to find out much more than can be found out without computers

at all. Behind all of the use of computers in this thesis, there is always an invisible

guiding hand behind it, carefully planned out by the author.

This thesis will not attempt to take a stance or argue about which style of math-

ematics is better, more useful, or most industrious. Mathematics, although universal

at its root, is still a human endeavor for the humans that use it and apply it. It will

still be shaped and influenced by the people in power, as it was during the Bourbaki

Revolution that led to our current period of formal, rigorous, proof-based mathematics.

This thesis attempts to straddle the divide between the two by using the computer for

what it’s best suited for at this stage in its development: pure computation and book-

keeping. Specifically, the main vehicle for intuition and discovery for two of the three
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problems discussed in this thesis is the enumeration scheme which, at the basic level,

is a (large) system of interconnected recurrence relations.

The first problem relates to avoiding (or missing) differences. The main problem

concerns the number f∆(n), which is defined as the size of the largest subset X of

[n] = {1, 2, . . . , n} so that ∀x, y ∈ X,x 6= y → |x− y| 6∈ ∆. A small amount of work has

been previously done, mainly concerning the computation of the number

µ(∆) = lim
n→∞

f∆(n),

which originated from a question posed by Motzkin [33]. In this thesis we will effectively

give a complete theory of the structure of the sequence {f∆(n)}∞n=0 using computational

means arising from a complicated enumeration scheme that arises with the considera-

tion of an extra parameter. Additionally, we will discuss three different, but equally

important, variations of the number f∆(n) that extend the definition of what it means

to avoid a difference while also considering a cyclic version of the number f∆(n). On

the way, we will answer new questions and pave new paths toward Szemerédi’s Theo-

rem, while also giving an asymptotic version of the long-refuted Triangle Conjecture of

Schützenberger and Perrin.

The second problem discussed is the counting of spanning trees of grid graphs.

A spanning tree is a minimally connected spanning subgraph, and a grid graph is a

graph of the form G × Pn, where Pn is the path graph on n vertices. For any specific

graph G and n, the number of spanning trees of G × Pn can be computed effectively

using the Matrix-Tree Theorem of Kirchhoff. However, what is desired, and given

in this thesis, is an effective way, given G, of computing the sequence of spanning

trees of G × Pn for n from 1 to ∞. The algorithmic method that is developed in

this thesis is of the Wilf-Zeilberger flavor in that only a finite amount of computation

is needed to obtain all information possible about the complete sequence of integers.

A consequence of this method is that it obtains a O(n) algorithm to compute the

number of spanning trees of G × Pn; however, the “up-front” charge in this algorithm

is potentially astronomically high as to be absurd. Regardless, it is a O(n) algorithm.

While most of the results obtained through the process developed in this thesis are not
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new, due to conversations with Richard Guy [21] these methods easily and immediately

admit a combinatorial proof of a fascinating property: all of these sequences that are

sequences of spanning trees in grid graphs are divisibility sequences, meaning sequences

{an}∞n=0 satisfying n|m→ an|am. Through these methods, we also discover many deep,

related relationships between sequences that have not been investigated in any proper

manner. These relationships that are given here, and others found by Guy, are “towards

a multiplicative theory of divisibility sequences,” as he (somewhat redundantly) puts

it. Until now, most enumeration schemes were created as a means to find the value

of one object by finding the values of many others. While that is done in this thesis,

this divisibility example shows that there are important things to be discovered when

analyzing the enumeration scheme as an object in its own right, for relationships like

the Split-Merge Lemma (Lemma 3.9.2) are consequences that come directly from the

enumeration scheme itself, and not any applications of it.

The final problem, although not as related as the first two, is the firefighter problem.

Although there are many variations which will be discussed later on, the basic problem

involves an underlying graph G and a vertex which is initially on fire at time t = 0.

Then, at each timestep, t is incremented, a certain number, f(t), of firefighters is

placed on vertices of G that are not on fire, and each vertex that is on fire has its

fire spread to adjacent vertices that are neither on fire nor protected by a firefighter.

This process continues indefinitely and necessarily stops for a finite graph G, where the

main question is “what is the least number of vertices that necessarily will catch on

fire?” For the case of infinite G the question is still the same, but the more relaxed

question to ask is whether or not the process itself will stop. The same question that

could be asked is whether or not the minimum number of vertices that will catch

on fire is finite or not. The firefighter problem is a good model to use in discrete

mathematics to answer questions relating to epidemiology, rumor spreading, and the

transmittal of “viral” information over the internet. In this thesis we go a very long

way to solving the firefighter problem in the specific case where G = Z2, the two-

dimensional infinite grid, and f(t) is not constant, which was the norm previously.

It was well-known that f(t) = 2 admitted a finite solution to the firefighter problem
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whereas f(t) = 1 did not. With my colleague Professor Kah Loon Ng [35], we found

that having f(t) = 1.5+ε (which will be carefully defined) firefighters per turn admits a

finite solution to the firefighter problem, and this author also discovered strong evidence

showing that having 3 firefighters every other turn (which would imply f(t) = 1.5 in our

future definition) will not be sufficient for a finite solution of the firefighter problem.

Therefore, it strongly suggests that there is a clear dividing line of 1.5 in the two-

dimensional grid case, where any iteration of the problem with strictly greater than 1.5

firefighters assures the admittance of a finite solution, but no iteration involving 1.5 or

fewer firefighters allows the admittance of a finite solution.

While all three of the problems in this thesis rely heavily on computers, they do so

not in a haphazard way, but mainly as a tool to do a large amount of bookkeeping.

It is always necessary to have rigor in mathematics, and a lot of the debate that is

present with the use of computers can be centered around the fact that some see no

distinction between rigor and formality. Nowhere in this document is rigor absent; the

use of computers does not indicate otherwise. It is worthwhile to notice the parallels

between the work done in this thesis and the ground-breaking work done by the great

Allen Newell and Herb Simon on the Logic Theory Machine [34] where they in effect

take the following five rules,

p ∨ p→ p

p→ q ∨ p

p ∨ q → q ∨ p

p ∨ q ∨ r → q ∨ p ∨ r

(p ∨ q)→ (p→ r ∨ q),

which they assume as true, and then let the computer “get to work”. What resulted was

the ability of the computer to prove 38 of the first 52 theorems in Principia Mathematica.

In this thesis, the computer is also given things that are true (and proved rigorously in

this thesis), such as Theorem 2.6.1, stating that the sequences {f∆(n)} are eventually

pseudoperiodic (see Section 2.6). With that information, this author has written a

computer program in the Java programming language that not only allows the user to
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find the eventual behavior of the sequence {f∆(n)}, but also prove that this is indeed

the correct behavior.

The main takeaway the author would like to impart on the reader is this: whatever

humans can do, computers can do better, with human assistance. A large amount of

mathematics has followed the following three-part structure:

1. Person A proves a mathematical theorem.

2. Person B finds a better way to prove said mathematical theorem, and in the

process discovers more concepts and theories that are worth pursuing.

3. Person B publishes better proof, and later on Person B (perhaps with Person A

as a collaborator) publishes more papers on the advancements made.

A large amount of this thesis follows these guidelines, with the author taking the role of

Person B. However, the author already has a main collaborator with him: the computer.

It’s hard to imagine much of the work in this thesis getting done without the raw power

of the computer. It’s not a power unrestrained, however - for as much as computers

have advanced and progressed recently, it is useful only when it has a guiding hand to

lead it, and this will certainly remain true for a long time.
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Chapter 2

Avoiding Differences

2.1 Motivation and History

The motivation for this chapter is from a result by Peter Shor in his graduate-school

days where he gives a counterexample to the Triangle Conjecture (see [44]). Given the

alphabet Σ = {x, y}, the Triangle Conjecture of Perrin and Schützenberger [36] concern

codes, which are certain subsets of the set

Am = {xiyxj | i + j < m}

where, of course, m > 0. The individual components xiyxj are called atoms, as they

will never be considered broken down any further. For the atomic element xiyxj , we

call i the prefix and j the suffix. The conjecture is named as such because the elements

of Am can be arranged graphically as a triangle, as can be seen for m = 10 in Figure

2.1.

Definition Given a set A of atoms, define An as the set of words that are obtained as

concatenations of exactly n elements of A, or

An = {w ∈ A⋆ | |w| = n}

where ⋆ is the Kleene Star [27].

Definition A subset A ⊆ Am is a code if any word that can be formed by concatenation

of atoms of A can be decomposed uniquely. Algebraically speaking, A is a code if the

free monoid on A exhibits unique factorization. Combinatorially speaking, A is a code

if |An| = |A|n for all n ≥ 0.
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Figure 2.1: Representation of atoms xiyxj as a triangle. Each point represents an atom
xiyxj, where the x-coordinate represents i and the y-coordinate represents j.

Example The sets Am = {yxi | i < m} and Bm = {xiyxm−i−1 | i < m} are codes for

all m ≥ 0. Verification of these facts is left to the reader.

Example The set A = {xyx, xyx2, yx} is not a code, for

xyx2yx = xyx · xyx, and

xyx2yx = xyx2 · yx.

The Triangle Conjecture states that if A ⊆ Am is a code, then |A| ≤ m. In the initial

paper where they introduced the Triangle Conjecture, Perrin and Schützenberger proved

the following:

Theorem 2.1.1 (Perrin-Schützenberger [36]). If X ⊆ Am is a code and the projections

of X on each of the two coordinates are both equal to {0, 1, . . . , r} for some r, then

|X| ≤ m.

Additionally, Pin and Simon [37] proved the following special cases of the Triangle

Conjecture:

Theorem 2.1.2 (Pin-Simon [37]). Let X ⊆ Am be a code such that either the set of

prefixes or the set of suffixes of X has size at most two. Then X ≤ m.

Theorem 2.1.3 (Pin-Simon [37]). Let X ⊆ Am be a code such that one of the following

is satisfied:
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1. There is exactly one prefix of X that has two or more suffixes.

2. There is exactly one suffix of X that has two or more prefixes.

Then X ≤ m.

Shortly thereafter De Felice [10] proved the following:

Theorem 2.1.4 (De Felice [10]). If X ⊆ Am is a finite code that occupies at most three

rows i, j, k satisfying i < j < k and j − i = k − j, then |X| ≤ m.

Hansel [23] found an upper bound to the size of a code X ⊆ Am by simply counting

the number of different possible words that can be created from all atoms in Am. From

this, he was able to prove the following:

Theorem 2.1.5 (Hansel [23]). The number of distinct words that can be constructed

from n atoms from Am is at most

((

1 +
1√
2

)

m

)n

.

Hence, if X ⊆ Am is a code, then |X| ≤
(

1 + 1√
2

)

m.

An initial attempt can be made toward the Triangle Conjecture by considering what

happens if we restrict the range of prefixes that can occur in our code. It would be

symbolic suicide to consider just an arbitrary set of prefixes {i1, i2, i3, . . . , ik} for a code

in Am, so to start we will consider the case where the set of prefixes is {0, 1, . . . , αm},

where αm is an integer. We will prove a slight strengthening of Theorem 2.1.5, namely:

Theorem 2.1.6. If the set of prefixes of X ⊆ Am is contained in {0, 1, . . . , αm} for

some 0 ≤ α ≤ 1, then the number of distinct words that can be constructed from n

atoms from X is at most

((

α + 1

2
+

√
1 + 2α− α2

2

)

m

)n

.

Proof. We will follow the procedure in [23]. Mathematica [30] was used for all of the

symbolic manipulation in this section. Fix m and let T = {xiyxj | i + j + 1 ≤ αm}.
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We are interested in counting the elements in the set

T n
ij = {a1a2 . . . an ∈ Tn | a1a2 . . . an = xiy · · · yxj}.

Toward this end, we define the following numbers:

tnij = |T n
ij |

tn = |Tn| =
αm∑

i=0

αm∑

j=0

tnij

un =

αm∑

i=0

tni0

Lemma 2.1.7. There is a bijection between the sets

T n
ij ⇐⇒

αm−j−1
⋃

k=0

T n−1
i0 × T 1

kj ∪
αm−1⋃

k=1

T n−1
ik × T 1

αm−j−1,j.

Proof. Given a word xiyxi2y · · · yxinyxj , we perform the bijection by peeling off the

right atom, where we make sure to remove as many x’s as possible from xin , while

always making sure that the atom we remove is an element of A. If we are able to

remove xinyxj, which is the most possible, then this is an element of T 1
kj for some

0 ≤ k ≤ αm − j − 1, since we made sure that k + j + 1 ≤ αm. What remains is an

element of T n−1
i0 . Otherwise, we peel off as much as possible, guaranteeing that the

atom removed is the largest size allowable, which means it is an element of T 1
m−j−1,j.

Similarly, what remains is an element of T n−1
ik for some 1 ≤ k ≤ αm − 1. Note that k

cannot be zero in this case, since we took care of that condition first.

Corollary 2.1.8.

tnij = (αm− j)tn−1
i0 +

αm−1∑

k=1

tn−1
ik . (2.1)

Proof. Follows from Lemma 2.1.7 considering that
∣
∣
∣T 1

ij

∣
∣
∣ = 1 for any specific value of k

and of j.

By summing (2.1) over all possible indices i and j, we obtain

tn = mtn−1 +

((

α− α2

2

)

m2 − αm

2

)

un−1.



15

Additionally, by letting j = 0 and by summing equation (2.1) over all possible indices

i, we obtain

un = tn + αmun−1.

At this point, we have all the necessary ingredients to compute tn, as this is simply

an enumeration scheme with two quantities (t and u). We can express this enumeration

scheme in matrix form:

M =






m
(

α− α2

2

)

m2 − αm
2

1 αm




 .

This results in a characteristic polynomial of

χM (x) = x2 −m(α + 1)x +
αm

2
(αm + 1)

Yielding a recurrence of

tn = m(α + 1)tn−1 −
αm

2
(αm + 1)tn−2

With initial conditions t0 = a0 and t1 = a1 - for the reader to determine as it does not

affect our asymptotic analysis - we get a generating function of

gt(x) =
a0 − (a0(α + 1)m− a1)x

1− (α + 1)m + αm
2 (αm + 1)x2

If we let

∆ = [(α + 1)m]2 − 2αm(αm + 1)

by factoring the denominator and using partial fractions, we obtain

gt(x) =
a0 − (a0(α + 1)m− a1)x

1− (α + 1)m + αm
2 (αm + 1)x2

=
a0 − (a0(α + 1)m− a1)x

(

1− 1
2

[

(α + 1)m +
√

∆
]

x
)(

1− 1
2

[

(α + 1)m−
√

∆
]

x
)

=
1√
∆

a0
2

[

(α + 1)m +
√

∆
]

− (a0(α + 1)m− a1)

1− 1
2

[

(α + 1)m +
√

∆
]

x

− 1√
∆

a0
2

[

(α + 1)m−
√

∆
]

− (a0(α + 1)m− a1)

1− 1
2

[

(α + 1)m−
√

∆
]

x
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This yields the final result:

tn =
1√
∆

(a0

2

[

(α + 1)m +
√

∆
]

− (a0(α + 1)m− a1)
)(1

2

[

(α + 1)m +
√

∆
])n

− 1√
∆

(a0

2

[

(α + 1)m−
√

∆
]

− (a0(α + 1)m− a1)
)(1

2

[

(α + 1)m−
√

∆
])n

After quite a bit of analysis, we obtain the limit

tn = O

(

α + 1

2
+

√
1 + 2α− α2

2

)

.

Note that the result is consistent with that of Hansel, since

lim
α→1

α + 1

2
+

√
1 + 2α − α2

2
= 1 +

1√
2
,

which corresponds to the case where α = 1.

2.2 The counterexample to the Triangle Conjecture

One small definition is first needed before we present the counterexample and its proof,

for the literature varies on its meaning:

Definition Given sets X and Y of integers, the difference set X − Y is defined as

X − Y = {|x− y| | x ∈ X, y ∈ Y, x 6= y}.

The counterexample to the Triangle Conjecture that Shor found is the following,

arranged intentionally:

yx14

yx13 x3yx6 x8yx6

yx7 x3yx4 x8yx4 x11yx4

yx1 x3yx2 x8yx2 x11yx2

y x3y x8y x11y

The proof as to why the above is a code is the true motivation for this chapter: say

for example we have a word of the form xiyxjyxk which can be decomposed in two
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different ways:

xiyxjyxk = xiyxj1 · xj2yxk, and

xiyxjyxk = xiyxj3 · xj4yxk.

It is then required that j1 + j2 = j3 + j4, or j1− j3 = j4− j2. Therefore, if the difference

set of {0, 3, 8, 11}, which are the prefixes of all the atoms, is disjoint from each of the

difference sets of {0, 1, 7, 13, 14}, {0, 2, 4, 6}, and {0, 1, 2}, which are the suffixes of all

the atoms of a given prefix, then our necessary condition can be satisfied. It is routine

to check that these difference sets are indeed disjoint, and as this argument can be

extended to words of any length, it is established that this is a counterexample to the

Triangle Conjecture.

Remark The bounds in equation (2.2) are independent of m, for Shor also demon-

strated a construction to create more counterexamples from previously-existing codes.

Specifically, if X ⊆ Am is a code, then by letting

X↑
0 = {x2iyx2j | xiyxj ∈ X}

X↑
1 = {x2iyx2j+1 | xiyxj ∈ X},

then (X↑
0 ∪X↑

1 ) ⊆ A2m is also a code. Notice, however, that through this process

X

m
=

X↑
0 ∪X↑

1

2m

so the lower bound ratio in equation (2.2) remains constant.

We can expound on the previous remark:

Definition Given a code X, we define the k-expansion of X, X↑k, as follows:

X↑k =

k−1⋃

a=0

X↑k
a ,

where

X↑k
a = {xkiyxkj+a | xiyxj ∈ X}.

Lemma 2.2.1 (Code Expansion Lemma). If X ⊆ Am is a code, then X↑k ⊆ Akm is

also a code.
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Proof. Let P1 be the set of prefixes of X (which is equal to X↑1 and let {Si | i ∈ P1}

be the set of suffixes for each prefix. Since X is a code, then we know that P1 − P1

is disjoint from Si − Si for all i. Letting Pk be the set of prefixes of X↑k, we see that

Pk = kP1. We can now define the family of suffixes as {S′
i | i ∈ P1} since there is

a one-to-one correspondence (multiplication by k) between the prefixes in P1 and the

prefixes in Pk. Note that the only multiples of k that are in S′
i − S′

i are the ones that

are in Si − Si, which completes the proof.

Only a small amount of work has been done since Shor’s counterexample. Since the

Triangle Conjecture is refuted, a possible recourse is to consider the quantity

γ = lim
n→∞

(
size of largest code in An

n

)

.

Shor’s counterexample demonstrated that γ ≥ 16
15 , and Hansel’s counting argument that

was expounded on in Section 2.1 shows that

16

15
≤ γ ≤ 1 +

1√
2
. (2.2)

An interesting question would be to find the exact value of γ, but (2.2) is the state of

the art.

Remark What Shor showed was the following: if a set P of prefixes is given and a

family {Sp | p ∈ P} of suffixes is given such that the difference set of P is disjoint from

the difference set of Sp for all p ∈ P , then the family of atoms defined by

X =
⋃

p∈P

{xpyxj | j ∈ Sp}

is a code. It is worth noting that the converse is not true; for example, the following is

a code but does not satisfy “Shor’s Property”:

{x1yx1, x1yx2, x2yx8, x2yx9}.

Following the ideas from Shor’s counterexample, one way to find potential codes

would be as follows: we start with m and prefixes prescribed by P = {p1, . . . , pk}, each

less than m. Then we can find the largest code in Am with prefixes in P by finding the
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largest subset of [m− pi − 1] avoiding P − P for each i, which would form the suffixes

for atoms starting with xpiy. Indeed, going back to Shor’s example, {0, 1, 7, 13, 14}

is a subset of maximum size of [14] avoiding {0, 3, 8, 11} − {0, 3, 8, 11} = {3, 5, 8, 11},

{0, 2, 4, 6} is a subset of maximum size of [11] and [6] avoiding {3, 5, 8, 11}, and {0, 1, 2}

is a subset of maximum size of [3] avoiding {3, 5, 8, 11}.

This describes the importance of finding large subsets of [n] that avoid prescribed

differences in a prescribed set ∆, which for the purposes of the Triangle Conjecture is

itself a difference set of integers. For now, we will only be considering the size of the

largest subset of [n] avoiding ∆, which we will denote by f∆(n). We will study another

very similar quantity:

Definition f∆(n) is the size of the largest subset T of [n] such that T avoids differences

in ∆. Generally speaking, f∆(I;S) is the size of the largest subset T of I such that T

avoids differences in ∆ and S ∩T = ∅. We also define f∆(I) = f∆(I; ∅) and f∆(n;S) =

f∆([n];S). We say that a set A is a (∆, S)-set if A avoids elements in S and differences

in ∆. If S = ∅ then we will call A a ∆-set. We also say that a set A ⊆ I is a candidate

for f∆(I;S) if A avoids elements in S and differences in ∆, and |A| = f∆(I;S).

The first question relating to these quantities seemed to have been posed by Motzkin

(see [6]) , when he asked about the quantity

µ(∆) = lim
n→∞

f∆(n)

n
,

which is also equal to lim
n→∞

f∆(n;S)

n
for any finite S. Cantor and Gordon [6] determined

µ(∆) for |∆| ≤ 2 and proved that µ(∆) is always rational. Haralambis [24] extended

these results by determining µ(∆) for the following cases:

• ∆ = {1, j, k} where j is even and k = n(j + 1) + k for 0 ≤ k ≤ j.

• ∆ = {1, j, k} where j is odd and either k is odd or k ≥
(
j
2

)
.

• ∆ = {1, 2, j, k} except where j ≡ 0 (mod 3) and k ≡ 1 (mod 3).

• ∆ = {1, 2, 3n, 3n + 5} where n ≥ 2.
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• ∆ = {1, 3, 4, k} where k ≡ 2 (mod 7).

Gupta [20] gave more results, including the first results involving the determination of

µ(∆) for an infinite family of ∆ with |∆| → ∞. A major shortcoming of the results

obtained so far is that they are mainly ad hoc and do not give any insight into the

underlying structure. This chapter will give major insight into the quantity µ(∆) by

considering the sequences {f∆(n)}∞1 . Through this consideration we will be able to give

an algorithm that will compute µ(∆) for any given ∆ and will hence allow for further

investigations into the exact values of, for example, µ(∆) = {2, 4, j, k} due to formal

parameter analysis and combinatorial methods. Additionally, a major lemma (Lemma

2.8.1) will be given that provides a useful upper bound on µ(∆), which is in many cases

more important than the lower bounds provided by Cantor, Gordon, Haralambis, and

Gupta. Furthermore, the framework given in this chapter for dealing with µ(∆) readily

extend to generalized versions, which will be discussed lightly in this chapter and have

the real potential for future research.

2.3 Basic Properties of f∆(I; S)

We now turn our focus on the discrete quantity f∆(I;S) and f∆(n;S). We start with

a few simple but important lemmas. If proofs are not provided, then they are left to

the reader and promise to be easy exercises.

Lemma 2.3.1. f∆(1;S) = 116∈S .

Lemma 2.3.2. If A ⊆ I is a (∆, S)-set and B is a candidate for f∆(I;S), then

|A| ≤ |B|.

Lemma 2.3.3. The set

I∆(n, S) = {A ⊆ [n] | A is a (∆, S)-set}

is an independence system over [n] (see [45]), meaning:

1. ∅ ∈ I∆(n, S)

2. B ∈ I∆(n, S), A ⊆ B ⇒ A ∈ I∆(n, S).



21

Lemma 2.3.4. f∆(I;S) ≥ f∆(I)− |S|.

Proof. If A is a candidate for f∆(I), then A \ S is a (∆, S)-set, so if A′ is a candidate

for f∆(I;S), then |A′| ≥ |A \ S| = f∆(I)− S.

Lemma 2.3.5. |f∆(I;S)− f∆(I;S′)| ≤ max{|S|, |S′|}.

Proof. We have the clear inequalities

f∆(I;S) ≤ f∆(n)

f∆(I;S′) ≤ f∆(n).

Likewise, from Lemma 2.3.4 we have that

−f∆(I;S) ≤ |S| − f∆(n)

−f∆(I;S′) ≤ |S′| − f∆(n).

Combining the previous two statements, we have

f∆(I;S) − f∆(I;S′) ≤ |S′|

f∆(I;S′)− f∆(I;S) ≤ |S|

which yields the result we seek.

Lemma 2.3.6. For any integer k, f∆(I;S) = f∆(I ± k;S ± k).

Proof. If A ⊆ I is a (∆, S)-set, then A− k is a subset of I − k and is a (∆, S − k)-set,

as differences are unaffected if all members of a set are shifted by the same amount.

Specifically, the map A 7→ A − k is a cardinality-preserving bijection from the subsets

of I that are (∆, S)-sets and the subsets of I − k that are (∆, S − k)-sets. ‘−’ can be

replaced by ‘+’ in the previous two sentences for the same effect.

2.4 The Fundamental Recurrences

We are mainly concerned with finding f∆(n), but we require the extra parameter S as

it allows us to state and prove the following recurrence equation, of which there is no

similar equation without the extra parameter.
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Theorem 2.4.1. If 1 ∈ S, then

f∆(n;S) = f∆(n− 1;S − 1).

If 1 6∈ S, then

f∆(n;S) = max{f∆(n− 1;S − 1), 1 + f∆(n− 1;∆ ∪ (S − 1))}.

Proof. If 1 ∈ S, then f∆(n;S) = f∆({2, . . . , n};S \ 1) = f∆(n− 1;S − 1) from Lemma

2.3.6. If 1 6∈ S, let C be a candidate for f∆(n;S). We will condition on the event

that 1 ∈ C or not. If 1 ∈ C, then C \ {1} is a maximal subset of {2, . . . , n} avoiding

differences in ∆. However, C \ {1} must also avoid elements in ∆ + 1, for if δ ∈ C and

δ ∈ ∆ + 1, then δ − 1 ∈ ∆ and the fact now that 1 ∈ C and δ ∈ C contradicts the fact

that C avoided differences in ∆. Therefore, |C \ {1}| = f∆({2, . . . , n}; (∆ + 1) ∪ S) =

f∆(n − 1;∆ ∪ (S − 1)) so |C| = 1 + f∆(n − 1;∆ ∪ (S − 1)). If 1 6∈ C, then C is a

set of size f∆({2, . . . , n};S) = f∆(n − 1;S − 1). Since C is to be the larger of the two

possibilities, we take the maximum.

This concept can be extended further by generalizing what it means to avoid a

difference and avoid a specific element. If we say that a set A avoids a difference d,

then it implies that there is no x, y ∈ A such that y − x = d. Very slightly rephrased,

it means that there is no subset {x, y} ⊆ A with x+ d = y. Viewed in this manner, the

following generalized definition is clear:

Definition Given a set D = {d1, d2, . . . , dk} with d1 < d2 < · · · < dk, we say that a

set A avoids the generalized difference D if

∀x ∈ A {x, x + d1, x + d2, . . . , x + dk} 6⊆ A.

If D is a family of sets, then we say that A avoids differences in D if A avoids the

generalized difference D for all D ∈ D.

Similarly, if we say that A avoids an element x ∈ S, then it can be slightly rephrased

to say that {x} 6⊆ A. This yields the generalized definition:

Definition A set A avoids X = {x1, . . . , xk} if X 6⊆ A. If S is a family of sets, then

we abuse notation and say that A avoids (elements in) S if A avoids X for all X ∈ S.
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With the generalized definitions, we can now define the generalized analogue to

f∆(I;S):

Definition If S and D are families of sets, then fD(I;S) is the size of the largest

subset of I that avoids differences in D and elements in S. We also define fD(n;S) =

fD([n];S) and fD(I) = fD(I; ∅).

Definition If S is a family of sets, then

S− 1 = {S − 1 | S ∈ S}

(S− 1)⋆ = {S − 1 | S ∈ S, 1 6∈ S}.

With this new definition, we now have the generalized version of the recursion above:

Theorem 2.4.2. If {1} ∈ S then

fD(n;S) = fD(n− 1; (S − 1)⋆).

If {1} 6∈ S, then

fD(n;S) = max {fD(n− 1; (S− 1)⋆), 1 + fD(n− 1;S− 1)}.

Proof. Similar to the proof of Theorem 2.4.1, but it is worth explaining why (S− 1)⋆

is in the recurrence instead of simply S − 1. For the first part of the recurrence, we

assume that {1} ∈ S, so a candidate for fD(n;S) vacuously avoids any other set X ∈ S

that contains 1, so we may disregard those sets. With the previous sentence in mind,

the proof follows exactly in the same manner as Theorem 2.4.1.

We will mention now the cyclic variants, which will be expounded on later in the

chapter.

Definition f c
∆(n;S) is defined as the largest subset of Zn that avoids differences in

∆ and elements in S, where subtraction is done modulo n. Similarly, f c
D

(n;S) is the

largest subset of Zn that avoids generalized differences in D and generalized elements

in S, again where all operations are done modulo n.
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Figure 2.2: Graph C8,{1,3}

1 2 3 4 5 6 7 8

Figure 2.3: Graph U8,{1,3}

2.5 A Graph Theory Connection

Astute readers may have noticed that this problem bears a strong resemblance to

the problem of finding the independence number of circulant and unhooked-circulant

graphs, defined as follows (following the terminology of [4]):

Definition Given a set S of integers, the circulant graph Cn,S is the graph on vertex

set V = Zn such that u ∼ v if and only if u − v ∈ S, where the arithmetic is done

modulo n.

Definition Given a set S of integers, the unhooked-circulant graph Un,S is the graph

on vertex set V = [n] such that u ∼ v if and only if |u−v| ∈ S, where normal arithmetic

is used.

As examples, we present C8,S and U8,S with S = {1, 3} in Figures 2.2 and 2.3.

There is a direct relationship between finding f∆(n) and finding the independence

number of Un,S. As a consequence, we can give graph-theoretical arguments to answer

questions about f∆(n) by looking at Un,S, and similarly questions about f c
∆(n) by

considering Cn,S. In this example, we prove a theorem that extends the results of

Brown and Hoshino (see [4]). The main focus of their paper (which also gave a very
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nice application to music, involving the number of different chords one could play) was

the following result involving independence polynomials.

Definition Given a graph G on n vertices, the independence polynomial I(G,x) is

defined as

I(G,x) =

n∑

k=0

ikx
k,

where ik is the number of independent sets of G with precisely k vertices.

Theorem 2.5.1 (Brown-Hoshino [4]).

I(Cn,[d], x) = I(Cn−1,[d], x) + xI(Cn−d−1,[d], x) for all n ≥ 2d + 2.

Proof. See [4].

From Theorem 2.5.1, one can get a formula for the independence number of Cn,[d]. We

go further, and prove the following:

Theorem 2.5.2. Define [k, l] = {k, k + 1, . . . , l} and given n, let n = q(k + l) + r.

Then, the independence number of Un,[k,l] is qk + min(r, k). Equivalently, f[k,l](n) =

qk + min(r, k).

Proof. We will first consider the initial case where n ≤ k + l. Clearly, if 1 ≤ n ≤ k then

Un,[k,l] has no edges so the independence number would be n. Now we will show that the

independence number is k when n = k + l, which would imply that the independence

number is k when k < n < k + l:

Lemma 2.5.3. The largest subset of [k + l] avoiding differences in [k, l] is of size k.

Proof. Clearly, the set {1, 2, . . . , k} is a candidate. What remains now is to show that

there is no bigger set. To this end, we will utilize Hall’s Theorem [3]. Let L ⊆ [k + l]

be such that A = {a1, a2, . . . , ar} with a1 < a2 < · · · < ar avoids differences in [k, l].

Construct the bipartite graph G = (A,B), where B = {b1, . . . , bi}. For ai ∈ A and

bj ∈ B we connect as follows:

ai ∼ bj ⇐⇒ ai = j or |ai − j| ∈ [k, l].
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If we could match A, then we would be done, as it would imply that |A| ≤ |B| = k. We

must show that Hall’s Condition is satisfied. For a contradiction, let S ⊆ A be such

that |N(S)| < |S| and assume S is minimal.

Claim If ai ∈ S then ai > k.

Proof of claim. If ai ≤ k, then of course ai ∼ bai
. If there is no other vertex in S

adjacent to bai
, then S \ {ai} also fails Hall’s Condition, contradicting the minimality

of S. However, if there is another vertex ai′ ∼ bai
in G, then that would imply that

ai − ai′ ∈ [k, l], which contradicts the condition that A avoided differences in [k, l].

From the claim, we may assume that for all ai ∈ S, k + 1 ≤ ai ≤ k + l. However, S can

only contain one element out of the following sets, of which there are k:

{k + 1, 2k + 1}

{k + 2, 2k + 2}
...

{l, k + l}

{l + 1}

{l + 2}
...

{2k}

Now we present an important extension to our lemma that says that the extremal

pattern repeats itself.

Lemma 2.5.4. For any positive integer n, the largest subset of [n(k + l)] avoiding

differences in [k, l] is of size nk.

Proof. The proof of this lemma is very similar to the proof of the previous one, but

we present it in its entirely for completeness, while also trying to mimic the previous
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proof. Fix n. A candidate for our set (arranged intentionally) is

Cn =







1, 2, · · · k,

k + l + 1, k + l + 2, · · · 2k + l,

...
...

...
...

(n− 1)(k + l) + 1, (n − 1)(k + l) + 2, · · · (n− 1)(k + l) + k







.

Let Cn = [n(k + l)] \ Cn. Let A ⊆ [n(k + l)], with A = {a1, a2, . . . , ar} and a1 <

a2 < · · · < ar be such that A avoids differences in [k, l]. Construct the bipartite graph

G = (A,B), where B = {bj | j ∈ Cn}. For ak ∈ A and bj ∈ B we connect as follows:

ai ∼ bj ⇐⇒ ai = j or |ai − j| ∈ [k, l].

If we could match A, then we would be done, as it would imply that |A| ≤ |B| = nk.

We must show that Hall’s Condition is satisfied. For a contradiction, let S ⊆ A be such

that |N(S)| < |S| and assume S is minimal.

Claim If ai ∈ S then ai ∈ Cn.

Proof of claim. If ai ∈ Cn, then of course ai ∼ bai
. If there is no other vertex in S

adjacent to bai
, then S \ {ai} also fails Hall’s Condition, contradicting the minimality

of S. However, if there is another vertex ai′ ∼ bai
in G, then that would imply that

ai − ai′ ∈ [k, l], which contradicts the condition that A avoided differences in [k, l].

From the claim, we may assume that for all ai ∈ S, q(k + 1) ≤ ai ≤ q(k + l) for some

1 ≤ q ≤ n. However, S can only contain one element out of the following sets for each

q, 1 ≤ q ≤ n, of which there are nk:

{q(k + 1), q(2k + 1)}

{q(k + 2), q(2k + 2)}
...

{ql, q(k + l)}

{q(l + 1)}

{q(l + 2)}
...

{q(2k)}
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We have now shown what we wanted for each multiple of k + l.

Lemma 2.5.5 (Persistence Lemma). If f∆(kn, S) = km for infinitely many k, then

µ(∆) = m
n
.

Proof. Exercise.

With Lemma 2.5.5, we have completed the proof of Theorem 2.5.2.

2.6 Behavior of f∆(n) as n→∞

As mentioned before, in order to compute f∆(n) it is necessary to compute f∆(n;S) for

other sets S based on the recursion. For example, to compute f{3,5}(n) = f{3,5}(n, ∅) it

is necessary to consider the system of recurrences listed in Figure 2.4. Using these

f{3,5}(n; ∅) = max{f{3,5}(n− 1; ∅), f{3,5}(n− 1; {3, 5}) + 1}

f{3,5}(n; {1}) = f{3,5}(n− 1, ∅)

f{3,5}(n; {2}) = max{f{3,5}(n− 1; {1}), f{3,5}(n− 1; {1, 3, 5}) + 1}

f{3,5}(n; {1, 2}) = f{3,5}(n− 1; {1})

f{3,5}(n; {1, 3}) = f{3,5}(n− 1; {2})

f{3,5}(n; {2, 4}) = max{f{3,5}(n− 1; {1, 3}), f{3,5}(n− 1; {1, 3, 5}) + 1}

f{3,5}(n; {3, 5}) = max{f{3,5}(n− 1; {2, 4}), f{3,5}(n− 1; {2, 3, 4, 5}) + 1}

f{3,5}(n; {1, 2, 3}) = f{3,5}(n− 1; {1, 2})

f{3,5}(n; {1, 3, 5}) = f{3,5}(n− 1; {2, 4})

f{3,5}(n; {1, 2, 3, 4}) = f{3,5}(n− 1; {1, 2, 3})

f{3,5}(n; {2, 3, 4, 5}) = max{f{3,5}(n− 1; {1, 2, 3, 4}), f{3,5}(n− 1; {1, 2, 3, 4, 5}) + 1}

f{3,5}(n; {1, 2, 3, 4, 5}) = f{3,5}(n− 1; {1, 2, 3, 4})

Figure 2.4: Enumeration scheme for computing the sequence {f{3,5}(n)}.

recurrences, it is straightforward to compute the first 25 elements of the sequence
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{f{3,5}(n)}:

1, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13

There is obvious structure in this sequence past a certain point. The structure becomes

clear when we consider the difference sequence, defining f{3,5}(0) = 0:

1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1

The difference sequence above is a periodic sequence with period 2 and offset 6. As it

turns out, this is true of all such sequences.

Definition A sequence is called pseudoperiodic if its difference sequence is periodic.

Definition Given sets ∆ and S, the closure C∆(S) is the smallest family of sets satis-

fying:

1. S ∈ C∆(S).

2. For all X ∈ C∆(S), X − 1 ∈ C∆(S) and ∆ ∪ (X − 1) ∈ C∆(S).

Equivalently, C∆(S) can be built up recursively by defining C1
∆(S) = {S} and

C
n
∆(S) = {X − 1 | X ∈ C

n−1
∆ (S)} ∪ {∆ ∪ (X − 1) | X ∈ C

n−1
∆ (S)}.

and letting C∆(S) = Cn⋆

∆ (S) where n⋆ is the least n satisfying Cn
∆(S) = C

n+1
∆ (S).

Theorem 2.6.1. For any sets ∆ and S, the sequence {f∆(n;S)}∞n=1 is an eventually

pseudoperiodic sequence.

Lemma 2.6.2. Let k = max(∆∪(S−1)). For all S′ ∈ C∆(S), |f∆(n;S)− f∆(n;S′)| ≤

k.

Proof. Follows from Lemma 2.3.4.

Proof of Theorem 2.6.1. Fix ∆ and S, and let C∆(S) = {S1, S2, . . . , Sk}. We may

assume that S1 = ∅ since it is always true that ∅ ∈ C∆(S). We define the state at n to

be

sn = (an,1, an,2, . . . , an,k),
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where an,i = f∆(n;Xi)− f∆(n;X1) = f∆(n;Xi)− f∆(n; ∅). Note that this implies that

an,1 = 0 for all n. Tt follows from Lemma 2.6.2 that |ai| ≤ k for all k. The main

recursion defines a function F on the space of all possible states to itself. Since this

space is finite (it has size at most (2k + 1)k−1) it implies that our sequences of states

s1, F (s1), F
2(s1), F

3(s1), . . .

is eventually periodic, implying that the sequence f∆(n;S) is eventually pseudoperiodic.

Remark As with most proofs of this sort, the bounds achieved on the offset or the

period of these eventually pseudoperiodic sequences are horrible. It is proved in [6]

that the period is at most 2max ∆. However, experimental evidence (see Section 2.10)

indicates that a period on the order of the sum of the elements of ∆ is possible.

What we will be more interested in, however, is the following corollary:

Corollary 2.6.3. For any set ∆, µ(∆) exists and is equal to p
q
, where q is the length

of the period of {f∆(n)}∞n=1 and p is the increase in {f∆(n)}∞n=0 over its period.

Proof. Direct from Theorem 2.6.1, as to find µ(∆) = lim
n→∞

f∆(n)

n
, it suffices to only

start considering the sequence {f∆(n)} when it becomes purely pseudoperiodic.

2.7 The Cyclic Extension

In this section we will briefly investigate the cyclic version of f∆(n), which involves

avoiding differences modulo n. Therefore, we view the set as a subset of Zn, and not

simply a subset of [n]. To count f c
∆(n), we must introduce another parameter based on

the following observation: if we want a similar recurrence as the non-cyclic case, then

we would consider the scenario when 1 is removed from the situation. Consider trying

to find f c
{2,3}(9) and consider the situation when 1 is removed, as described in Figure

2.5.
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Figure 2.5: Taking U9,{2,3} and removing vertex 1.

The lighter edges in the lower graph above represent the edges that have been

affected by the removal of vertex 1. The removal of the lighter edges produces a graph

that is isomorphic to UC{2,3}(8). With the lighter edges, the graph is what we will

define as follows:

Definition Given sets ∆ and ∆′, the two-sided circulant graph C∆,∆′(n) on n vertices

is the graph with vertex set [n] and edges E(G) = E1(G) ∪ E2(G) defined as follows:

E1(G) =
⋃

d∈∆

{{i, i + d} | 1 ≤ i ≤ n− d}, and

E2(G) =
⋃

d′∈∆′

{{i, i + d (mod n)} | n− d < i ≤ n}.

Just as before, we can generalize the definition and define C∆,∆′(I), which is the graph

with vertex set I and similarly-defined edges. The reader can convince him or herself

that C∆,∆′(I) is subgraph of C∆,∆′(n) induced by I, where n = max I.

Note that C∆(n) = C∆,∆(n). In the example above, we see that the removal of vertex

1 from C{2,3}(9) produced a graph isomorphic to C{2,3},{1,2}(8) (with the isomorphism

i 7→ i− 1). It is not a coincidence that {1, 2} = {2, 3} − 1:

Lemma 2.7.1. The removal of any vertex from C∆(n) produces a graph isomorphic to

C∆,∆−1(n− 1). The removal of vertex 1 from C∆,∆′(n) produces a graph isomorphic to

C∆,∆′−1(n− 1).

Proof. Exercise.
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Since there is no global uniformity anymore with the two-sided circulant graph, we

must add an additional parameter ∆′ when dealing with its relationship to the original

quantity of interest, f c
∆(n):

Definition f c
∆,∆′(I;S) is the size of the largest independent set in C∆,∆′(I). f c

∆,∆′(I) =

f c
∆,∆′(I; ∅)and f c

∆,∆′(n;S) = f c
∆,∆′([n];S).

Remark The previous definition can be rephrased in terms of avoiding differences, but

it is cleaner to associate the quantity f∆,∆′(n) with the two-sided circulant graphs.

With this operation in mind, along with the relationship between the circulant graphs

C∆(n) and the quantity f∆(n), we have the following recurrence, similar in nature to

the fundamental one of Theorem 2.4.1:

Theorem 2.7.2. If 1 ∈ S then

f c
∆,∆′(n;S) = f c

∆,∆′−1(n− 1;S − 1)

otherwise,

f c
∆,∆′(n;S) = max{f c

∆,∆′−1(n − 1;S − 1), 1 + f c
∆,∆′−1(n− 1;∆ ∪ (n−∆′) ∪ (S − 1))}.

Proof. Follows the proof of Theorem 2.4.1.

The problem with the theorem above, at first glance, is that there is no bound on

the number of parameters; S grows without bound as it depends on n. Previously S

depended only on ∆ so we could give a bound on how many different parameters we

would need to keep track of. This can be solved by having a different recurrence, with

a second S′ parameter whose function is similar to the ∆′ parameter.

Definition f c
∆,∆′(n;S, S′) = f c

∆,∆′(n;S ∪ ([n] \ S′)).

Theorem 2.7.3. If 1 ∈ S and n 6∈ S′, then

f c
∆,∆′(n;S, S′) = f c

∆,∆′−1(n− 1;S − 1, S′)

otherwise,

f c
∆,∆′(n;S, S′) = max{f c

∆,∆′−1(n− 1;S− 1, S′), 1+ f c
∆,∆′−1(n− 1;∆∪ (S − 1),∆′ ∪S′)}
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Note that a small extra condition was included, which can be avoided by certifying

that maxS′ < n. Since S′ is solely affected by ∆′ in the recurrence, this is a sufficient

condition since we will usually start out with S′ = ∅. Therefore, the strategy for

computing the cyclic version of f∆(n) is as follows:

1. Compute f∆,∆′(n;S) for 1 ≤ n ≤ max∆′ using Theorem 2.7.2.

2. Compute f∆,∆′(n;S, S′) for n > max∆′ using Theorem 2.7.3.

We can link the two recurrences by noting that

f∆,∆′(n;S, S′) = f∆,∆′(n;S ∪ (n− S′ + 1))

which gives us a complete overall strategy for computing any number of values of

f∆,∆′(n;S) in total linear time. The drawback, as usual, is that there is a large

(but fixed) computation that needs to be done (in O(2max ∆) time) and we will need

O(2max ∆) space to keep track of the current state.

2.8 An application: the Triangle Conjecture, revisited

The first counterexample was found by Shor to the Triangle Conjecture, and com-

puter programs can easily find further counterexamples. Additionally, as Lemma 2.2.1

demonstrated, any counterexample to the Triangle Conjecture can be extended to pro-

duce larger counterexamples via transformations such as:

xiyxj → x2iyx2j and x2iyx2j+1.

This larger counterexample has the same ratio relative to m as the original example, but

the underlying set of prefixes has changed. Are there infinite families of counterexamples

with the same set of prefixes? This would be an asymptotic version of the Triangle

Conjecture and can be stated succinctly as follows with the terminology used in this

chapter:

Theorem 2.8.1 (Asymptotic Version of the Triangle Conjecture). For any set X,

µ(X −X) ≤ 1

|X| .
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Proof. Let X = {x1, x2, . . . , xk} and consider the following infinite family of sets:

{ x1 , x2 , · · · , xn }

{ x1 + 1 , x2 + 1 , · · · , xn + 1 }

{ x1 + 2 , x2 + 2 , · · · , xn + 2 }

{ x1 + 3 , x2 + 3 , · · · , xn + 3 }

{ ... ,
... ,

... ,
... }

Let Ai = X + i and assume for a contradiction that for a fixed ε there is an arbitrarily

large N also satisfying N > ak

ε
with a set B ⊆ [N ] that avoids differences in X − X

and that

|B| >
(

1

|X| + ε

)

N.

From the choice of N , we have

|B| > N

|X| + ak

and so

|B| − ak >
N

|X| >
N − ak + 1

|X| .

Let B′ = {b ∈ B | b > ak} and consider the sets A = A0, A1, A2, . . . , AN−ak
. Note that

|B′| > N−ak. Each of the elements in B′ appear in |X| different sets in A. However, no

two elements of B′ can appear in the same set in A. Therefore, we have a contradiction

by the Pigeonhole Principle.

With Theorem 2.8.1 in mind, it follows that you cannot a priori fix a set of prefixes

and then obtain arbitrarily large counterexamples to the Triangle Conjecture with those

prefixes. This strongly suggests that the true value of γ is 16
15 , the lower end of the range.

In fact, experimental evidence indicates that that counterexamples decrease in ratio as

m gets larger; this will be discussed further in the conclusion.
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2.9 Towards an alternate proof of Szèmeredi’s Theorem

The famed theorem of Roth [42] states that given δ, for large enough N any subset of

[N ] = {1, . . . , N} with size at least δN must contain a three-term arithmetic progres-

sion, where δ → 0 as N →∞. Roth’s original theorem required that

δ ≫ 1

log log N

and a considerable amount of effort has been put into improving the bound on δ. Sze-

merédi’s Theorem [47] extended Roth’s Theorem for any length arithmetic progression,

and hence settled the weaker form of the Erdős-Turán conjecture. With Szemerédi’s

Theorem in the books, much research has been devoted to finding the quantities rk(n),

the largest subset of [n] that is k-free, meaning it does not contain any k-term arith-

metic progression. There is a decent amount of motivation for finding these numbers,

as demonstrated with these examples dealing with 3-free sets.

Example Let q(n) denote the minimum number of queens needed on the main diagonal

of a n× n chessboard so that all squares are either occupied or under attack.

Theorem 2.9.1 (Cockayne-Hedetniemi 1986 [7]). q(n) = n− r3(
n
2 ).

Example Näıve multiplication of two n × n matrices requires O(n3) multiplications,

but the best algorithm so far for matrix multiplications, developed by Coppersmith

and Winograd [9], requires O(n2.376) multiplications, and it requires the use of “large”

3-free sets, as shown by the following:

Theorem 2.9.2 (Salem-Spencer 1942 [43]). Given ε > 0, there exists Mε such that for

any M > Mε, there is a 3-free set B ⊆ [M2 ] such that |B| > M1−ǫ.

The machinery in this chapter allows us to consider the quantity rk,D(n), which is

defined as the size of the largest subset of [n] that avoids k-term arithmetic progressions

with difference at most D. With the terminology introduced in this chapter we could

write

rk,D(n) = f{{1,2,...,k−1},{2,4,...,2(k−1)},...,{D,2D,...,D(k−1)}}(n),
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but we will use the more convenient notation rk,D(n) instead. Note that rk(n) =

r{k, n−1
k−1

}(n). We also define the quantity

µk,D = lim
n→∞

fk,D(n)

n
.

With Corollary 2.6.3 in mind, the relationship with Roth’s Theorem is then clear:

Theorem 2.9.3. The following are equivalent:

1. Szemerédi’s Theorem, and

2. For all k, µk,D → 0 as D →∞.

Proof. (→) If µk,D → µ where µ > 0, then it implies the existence of a subset X ⊆ N

with positive density µ that avoids k-arithmetic progressions of difference D for all D.

Hence it avoids all k-arithmetic progressions.

(←) Assume that µk,D → 0 as D →∞ and let X ⊆ N have positive upper density

δ. Let D⋆ be such that µk,D⋆ < δ
4 . Using Corollary 2.6.3 (being a limit statement), let

N be given ε = δ
4 , and let N ′ > N be such that |X ∩ [N ′]| > δ

2 . From Corollary 2.6.3

it follows that |X ∩ [N ′]| contains a k-arithmetic progression of common difference at

most D, and hence X must contain this same arithmetic progression.

We can use our machinery – the recursion from Theorem 2.7.2 – to find rk,D(n) and

the resulting sequences can be analyzed. Full accompanying Mathematica and Java

code can be found in [38]. As an introductory example, the first 25 terms of r3,1(n) –

which is equal to f{{1,2}}(n) in the notation of Theorem 2.7.2 – is

1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, . . .

The pattern here is not hard to spot, and can be seen more clearly by looking at the

sequence of successive differences:

1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, . . .

This suggests that some of the candidates of r3,1(n) are the ones that contain all el-

ements not congruent to 0 modulo 3, which turns out to be true. Therefore, we can

conclude so far that µ3,1 ≥ 2
3 , and it can easily be verified that µ3,1 = 2

3 .



37

From Theorem 2.7.2, we know that µk,D exists for all positive k and D. A related

corollary is as follows:

Corollary 2.9.4. If {rk,D(n)} = {fD(n;S)} is pseudoperiodic with period p and µk,Dµ

is given from Theorem 2.6.3, then the following holds:

1. There is a set A ⊆ Zp that avoids differences (modulo p) in D and elements

(modulo p) in S.

2. There is no set B ⊆ Zp′ that avoids differences (modulo p′) in D and elements

(modulo p′) in S such that |B|
p′

> µ.

Below is a table of the results obtained in the specific case of avoiding three-term

arithmetic progressions using experimental means. Cyclic set witnesses – the sets de-

scribed in Corollary 2.9.4 – were also searched for and given, except in the case k = 12.

An automated theorem-prover has been implemented in this case (see [38]), and proofs

have been given confirming the exact values of αk for k ≤ 9.

Additionally, conjectured values of µk,D have been found for various other values of

k and D:

2.10 Results and Further Study

This chapter linked the Triangle Conjecture and Shor’s Counterexample to the more

general problem of figuring out f∆(n), defined as the size of the largest subset of [n] that

avoids differences in ∆. The quantity f∆(n) was investigated fully, as was its counter-

part fD(n). Additionally, cyclic variants of these two quantities were also investigated,

although not as fully.

This chapter exhibited the fact that the sequence {f∆(n)}|∞1 is a pseudoperiodic

sequence but no bound on the period was given, apart from the large bound given for

free from the proof of Theorem 2.6.1. We can compute (and prove - see [41]) the values

µ(∆) for the sequences {f∆(n)}|∞1 for small values of µ(∆). Theorem 2.5.2 solves the

problem for all singleton ∆:
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k µk Cyclic set witness

1 2
3 {1, 2} in Z3

2 2
3 {1, 2} in Z3

3 4
8 {1, 2, 6, 7} in Z8

4 4
9 {1, 2, 4, 5} in Z9

5 4
9 {1, 2, 4, 5} in Z9

6 4
9 {1, 2, 4, 5} in Z9

7 4
9 {1, 2, 4, 5} in Z9

8 4
9 {1, 2, 4, 5} in Z9

9 4
10 {1, 2, 4, 5} in Z10

10 4
11 {1, 2, 4, 9} in Z11

11 8
24 {1, 2, 4, 5, 13, 16, 19, 20} in Z24

12 56
177 ⋆

13 6
19 {1, 2, 4, 13, 15, 16} in Z19

14 6
19 {1, 2, 4, 13, 15, 16} in Z19

15 6
19 {1, 2, 4, 13, 15, 16} in Z19

16 6
19 {1, 2, 4, 13, 15, 16} in Z19

17 6
19 {1, 2, 4, 13, 15, 16} in Z19

Figure 2.6: Table giving values of µ3,D for 1 ≤ D ≤ 17. Cyclic set witnesses (see
Corollary 2.9.4) are also given for all values except D = 12.

Corollary 2.10.1 (Corollary to Theorem 2.5.2).

µ({d}) =
d

2d
for any d.

Additionally, the following lemma, although stated here, has certainly been known

for a while:

Lemma 2.10.2. As exhibited by the set of odd numbers, if ∆ contains only odd num-

bers, then µ(∆) = 1/2.

Besides the above lemma and the results stated in Section 2.2, not much else is

known about the value µ(∆) for other various families ∆. Additionally, while finding
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k
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7
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30
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7
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9
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7
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4
11

11
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24

12
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13
8
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14
8
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8
19

16
8
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8
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Figure 2.7: Values of µk,D.
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{1, 3, 5}

{2, 4}

{2}

{1, 3}

{3, 5}{}

{1}

{1, 2, 3}

{1, 2}

{1, 2, 3, 4, 5}

{1, 2, 3, 4} {2, 3, 4, 5}

Figure 2.8: A directed graph representing the enumeration scheme for calculating
f{3, 5}(n).

the value of f c
∆(n) is NP-Complete (see [8]), it is unknown whether the same is true

in the non-circular case, although this author claims it to be true. Nevertheless, it

does not automatically imply that the problem of finding µ(∆) is also NP-Complete

or NP-Hard. To this end, it certainly seems reasonable that symbolic methods could

be used initially to find µ(∆) for three-member sets {i, j, k}, and from there finding a

formula for µ(∆) depending solely on the elements of ∆.

Additionally, toward the goal of reducing the upper bound on the pseudoperiod

of the sequences (f∆(n))|∞1 , it may be worthwhile to consider the digraphs that are

obtained by considering each parameter S as a vertex in the graph and connecting

S → S′ if S is used in the recurrence equation involving S′. For example, the graph

obtained by considering the enumeration scheme for calculating f{3, 5}(n) is shown in

Figure 2.8. Insights into the structure of this graph and how it could be utilized while
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the recurrence is “in motion” (a pebbling problem of sorts - see [29]) would be very

helpful in lowering the bound on the pseudoperiod. From experimental results obtained

so far on a wide variety of values ∆, the author wishes to conjecture the following:

Conjecture 1. The pseudoperiod of {f∆(n)} is bounded from above by
∑

∆.

Finally, there is the question of the Triangle Conjecture itself, which now has to be

modified to ask what γ is. Equation 2.2 gives the current known bounds, and so the

author wishes to formally conjecture the true bound:

Conjecture 2. γ = 16
15 .

Specifically, the author thinks more is true that lends credence to the fact that

counterexamples of the Triangle Conjecture are simply hiccups of sorts in creation that

correct themselves as m→∞ (as justified by Theorem 2.8.1). To this end, we see that

through Shor’s construction of multiplying the size of a code, we make the following

definition:

Definition Let

C = {X ⊆ N | X is a counterexample to the Triangle Conjecture}.

The Triangle Conjecture Counterexample partially-ordered set (TCC poset) is the

partially-ordered set on C where X ≺ Y if and only if Y is obtained from X by Shor’s

multiplication method.

Remark Officially a counterexample X to the Triangle Conjecture requires the pa-

rameter m, which specifies the set Am that X is a subset of. However, given a set X

the m can be found easily: m = max{i + j + 1 | xiyxj ∈ X}.

Conjecture 3. All minimal elements X of the TCC poset satisfy |X| = m + 1.

This would imply that γ = 16
15 assuming that Shor’s counterexample is indeed the

minimal counterexample with respect to m, which at this point should be possible to

accomplish on today’s computers.
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Additionally, there is a large graph-theoretic aspect of the Triangle Conjecture that

has not been discussed much in this chapter, or elsewhere for that matter. Defining a

right isosceles triangle in Z
2 as a triple of points (i1, j1), (i1, j2), and (i2, j1) as three

points that determine a right isosceles triangle, one can notice the following:

Lemma 2.10.3. If X ⊆ Am is a code, then interpreting X as points in Z
2, X does

not contain any right isosceles triangle.

Therefore, it would be interesting to find the size of the largest subset of Am that

avoids all isosceles right triangles. Toward this end, it would help to compute the

number of isosceles triangles in Am, which produces this conjecture:

Conjecture 4. There are f(m) isosceles triangles in Am, where

f(m) =







15
36m3 + 7

8m2 + 1
12m− 3

8 if m is odd

15
36m3 + 7

8m2 + 1
12m if m is even

.

It can be verified that f(m) will always be an integer for positive m. Using the

deletion method (see [1]), one can they attempt to get upper bounds on the number of

isosceles triangle-free subsets of Am, and hence new upper bounds.
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Chapter 3

Spanning Trees in Grid Graphs

3.1 Introduction

The Matrix Tree Theorem of Kirchhoff, a generalization of Cayley’s Theorem from

complete graphs to arbitrary graphs [45], gives the number of spanning trees on a

labeled graph as a determinant of a specific matrix. If A = (aij) is the adjacency

matrix of a graph G, then the number of spanning trees can be found by computing

any cofactor of the Laplacian matrix of G, or specific to the (n, n)-cofactor:

Number of spanning trees of G =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a12 + . . . + a1n −a12 · · · −a1,n−1

−a21 a21 + · · · + a2n −a2,n−1

...
. . .

...

−an−1,1 −an−1,2 · · · an−1,1 + · · ·+ an−1,n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Since determinants are easy to compute, then the Matrix Tree Theorem allows for

the computation for the first few numbers in the sequence of spanning trees for families

of graphs dependent on one or more parameters. However, the downside of the Matrix

Tree Theorem is that it can only produce a sequence of numbers, and cannot a priori

assist in finding out the recurrence involved with said sequence, or even determine if

such a recurrence exists. In this chapter, the initial motivation is the following families

of graphs, which will be defined in the next section:

1. k × n grid graphs, with n→∞.

2. k × n cylinder graphs, with n→∞.
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3. k × n torus graphs, with n→∞.

All of the families of graphs mentioned above can be placed into a more general class

of graphs of the form G×Pn or G×Cn, where Pn and Cn denote the path and cylinder

graph on n vertices, respectively. For each of these classes, a general method is obtained

for finding recurrences for all of the above families of graphs, and explicit recurrences are

found for many cases. The only drawback, as it stands, is the amount of computational

power needed to obtain these recurrences, as the recurrences are obtained through

characteristic polynomials of large matrices. The result is at least 50 new sequences

of numbers with complete information, meaning recurrences and generating functions,

plus improvements on the best-known recurrences known for other sequences.

3.2 History and Outline

The main source of the historical results is a paper [15] and website [14] by Faase, where

the main motivation is to count the number of hamiltonian cycles in certain classes of

graphs. Later on, in 2000, Desjarlais and Molina [11] discuss the number of spanning

trees in 2×n and 3×n grid graphs. In 2004, Golin and Leung [18] discuss a technique

called unhooking which will be used in this chapter to reduce the problem of counting

spanning trees in cylinder graphs to the problem of counting spanning trees in grid

graphs.

In the first two papers and this chapter, the general idea is the same: our goal is to

count the number of spanning trees, but the method we use requires us to count other

related objects, also. The paper by Faase appeals to the Transfer-Matrix Method, used

widely in statistical mechanics (for more about the Transfer-Matrix Method, see [45]).

The main distinction of this chapter from [11] is the direct application of the Cayley-

Hamilton Theorem [28] to achieve recurrences for the sequences we are investigating.

Overall, the results from this chapter yield sequences for the number of spanning trees

of the graphs G × Pn and G × Cn for any graph G. Along with these sequences, our

methods find the minimal recurrence, generating function, and closed-form formulae

for all of these sequences. As a consequence, we also find the sequences and recurrences



45

v11

v12

v1,n−1

v1,n

Figure 3.1: Vertex naming conventions for the grid graph.

for many, many other types of subgraphs.

The bulk of the chapter focuses on the steps involved in finding the transition matrix

for a given graph. In doing so, we will have to count other, related spanning forests

with special properties.

3.3 Notation

All of the graphs we will be dealing with depend on two parameters, which we will call

k and n. In all cases, we will think of k as fixed and n→∞.

Definition The k × n grid graph Gk(n) is the simple graph with vertex and edge sets

as follows:

V (Gk(n)) = {vi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ n}

E (Gk(n)) = {vi,jvi′,j′ | |i− i′|+ |j − j′| = 1}

In order to keep the diagrams clean, Figure 3.1 shows the vertex naming conventions

we will use.

When showing examples, usually of spanning trees or spanning forests, we will

always show the underlying graph in one form or another. A concrete example is given

in Figure 3.2: we will use black edges for edges in the subgraph exemplified; all unused

edges will show up in light grey.

When dealing with grids of arbitrary size, we will mainly be interested in the very

right-most end of the grid, so we will represent the rest of the graph we do not care

about by a gray box, as shown in Figure 3.3.
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Figure 3.2: Showing a spanning forest of P2 × P2 and its underlying graph.

Figure 3.3: An example of a spanning tree/forest of P2 × Pk where we only care about
the right-hand side.

Definition The k × n cylinder graph Ck(n) can be obtained by “wrapping” the grid

graph around, specifically by adding the following edges:

E (Ck(n)) = E (Gk(n))
⋃

{{v1,i, vn,i} | 1 ≤ i ≤ k}.

Remark Note that Ck(n) = Pk × Cn.

Definition The k × n torus graph Tk(n) can be obtained by “wrapping” the cylinder

graph around the other way, specifically by adding the following edges:

E (Tk(n)) = E (Ck(n))
⋃

{{vi,1, vi,k} | 1 ≤ i ≤ n}

Remark Note that Tk(n) = Ck × Cn.

Throughout this paper, we will be dealing with partitions of the set [k] = {1, 2, . . . , k}.

We denote by Bk the set of all such partitions, and Bk = |Bk| are the Bell numbers.

We will impose an ordering on Bk, which we will call the lexicographic ordering on Bk:

Definition Given two partitions P1 and P2 of [k], for i ∈ [k], let Xi be the block of P1

containing i, and likewise Yi the block of P2 containing i. Let j be the minimum value

of i such that Xi 6= Yi. Then P1 < P2 iff
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1. |P1| < |P2| or

2. |P1| = |P2| and Xj ≺ Yj, where ≺ denotes normal lexicographic ordering on sets

of integers.

For example, B3 in order is

B3 = {{{1, 2, 3}}, {{1}, {2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2}, {3}}}

However, we will use shorthand notation for set partitions as follows:

B3 = {123, 1/23, 12/3, 13/2, 1/2/3}.

Since our examples will only deal with k < 10, we will not have to worry about double-

digit numbers on our shorthand notation.

We will find many recurrences in this paper, all pertaining to the number of spanning

trees of the graphs mentioned above. Since we will be dealing with each type of graph

separately, we will always denote by Tn the number of spanning trees of whatever graph

we are dealing with at the moment, which will be unambiguous.

3.4 Grid Graphs: The Example For k = 2.

What follows is mainly from [11] and is the inspiration for the other results on grid

graphs. We would like to find a recurrence for Tn, which for now will represent the

number of spanning trees in G2(n). If we started out with a spanning tree on G2(n−1),

then Figure 3.4 shows the three different ways to add the additional two vertices to still

make a spanning tree on G2(n).

Figure 3.4: The three possible ways to extend a spanning tree of P2×Pn−1 to a spanning
tree of P2 × Pn.

However, there is also a way to create a spanning tree on the 2 × n grid from

something that isn’t a spanning tree on G2(n − 1). Let x = vn−1,1 and y = vn−1,2 be
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Figure 3.5: The only way to extend a special spanning forest of P2×Pn−1 to a spanning
tree of P2 × Pn

the end vertices on Gk(n − 1). If we have a spanning forest on G2(n − 1) with the

property that there are two trees in the forest and x and y are in distinct trees, then

Figure 3.5 shows the only way to append edges to create a spanning tree in G2(n).

Therefore, in counting Tn it is useful to also count Fn, which we define as the number

of spanning forests in G2(n) consisting of two trees with the additional property that

the end vertices vn,1 and vn,2 are in distinct components. From the preceding two

paragraphs we can now obtain the recurrence

Tn = 3Tn−1 + Fn−1

and through similar reasoning we can also find the recurrence

Fn = 2Tn−1 + Fn−1

At this point, let us note that we have enough information to find Tn (or Fn) in time

linear in n. However, our goal is to provide explicit recurrences for Tn alone. If we let

vn denote the column vector

vn =




Tn

Fn





And if we define the matrix A by

A =




3 1

2 1





Then we satisfy

Avn−1 = vn.

With the starting conditions

v1 =




1

1



 .
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The characteristic polynomial of A is

χλ(A) = λ2 − 4λ + 1

so by the Cayley-Hamilton Theorem, we satisfy

A2 − 4A + 1 = 0.

This can be re-written as

A2 = 4A− 1

and if we multiply by the vector vn on the right we obtain




Tn+2

Fn+2



 = 4




Tn+1

Fn+1



−




Tn

Fn



 .

Hence, we now see that Tn and Fn satisfy the same recurrence:

Tn+2 = 4Tn+1 − Tn

Fn+2 = 4Fn+1 − Fn

with starting conditions

T1 = 1 T2 = 4

F1 = 1 F2 = 3
.

We now have all the information we need to obtain more information, such as the

generating function and, finally, a closed-form formula for Tn. All of these items can

be found in [11].

3.5 The General Case For Grid Graphs.

We want to use the same ideas for general k, but it requires a bit more bookkeeping.

To extend the idea of Fn in the previous section, we need to consider partitions of

[k] = {1, 2, . . . , k} and the forests that come from these partitions.

Definition Given a spanning forest F of Gk(n), the partition induced by F is obtained

from the equivalence relation

i ∼ j ⇐⇒ vn,i, vn,j are in the same component of F .
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For example, the partition induced by a spanning tree of Gk(n) is 123 · · · n and the

partition induced by the forest with no edges is 1/2/3/ · · · /n− 1/n.

Definition Given a spanning forest F of Gk(n) and a partition P of [k], we say that

F is consistent with P if:

1. The number of components in F is precisely |P |.

2. P is the partition induced by F .

Definition Given a graph G on k vertices and a partition P of [k], let τG(n;P ) be the

number of spanning trees of the graph G × Pn consistent with P . We will often omit

G when it is clear from the context, or irrelevant. Recall that we have an ordering of

partitions, so we will define τG(n; i) = τG(n;Pi). τG(n) = τG(n; {[n]}), the number of

spanning trees of G× Pn.

In the previous section, since B2 = 2, we were counting two things: T2 , which cor-

responds to τP2(n), and Fn, which corresponds to τP2(n; 1/2). Therefore, for arbitrary

k we are now tasked with counting Bk different objects at once, so we are to find the

Bk×Bk matrix that represents the Bk simultaneous recurrences between these objects.

Definition Define by En the set of edges

En = E(Gk(n)) \ E(Gk(n− 1))

Note that |En| = 2k − 1 edges.

Given some forest F of Gk(n−1) and some subset X ⊆ En, we can combine the two

to make a forest of Gk(n). If we are only interested in the number of components in the

new forest and its induced partition, then we only need to know the same information

from F , and this is all independent of n. Therefore, we have the following definition:

Definition Given two partitions P1 and P2 in Bk, a subset X ⊆ En transfers from

P1 to P2 if a forest consistent with P1 becomes a forest consistent with P2 after the

addition of X.
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Figure 3.6: A spanning forest of G4(4) where, from left to right, the edges transfer as
follows: 1/23/4 → 1234→ 12/34 → 12/3/4.

Example Figure 3.6 shows a spanning forest of G4(4) where, from left to right, the

edges transfer from 1/23/4 to 1234, from 1234 to 12/34, and from 12/34 to 1/2/34.

Therefore, for a graph G with |G| = k, we can define the Bk×Bk matrix AG by the

following:

AG(i, j) = |{X ⊆ En+1 | X transfers from Pj to Pi}|.

The 2×2 matrix in the previous section is AP2. Brute-force search with straightforward

Mathematica code [40] can produce more matrices, such as the transition matrix for

P3 × Pn shown in Figure 3.7 and P4 × Pn in Figure 3.8.









8 3 3 4 1
4 3 2 2 1
4 2 3 2 1
1 0 0 1 0
3 2 2 2 1









Figure 3.7: The transition matrix AP3 .

A5, A6, and A7 have also been found; they are shown in [40]. Once these matrices

are known, then everything about the sequence of spanning trees can be found. The fol-

lowing table shows some results obtained for grid graphs; results obtained for arbitrary

graphs of the form G × Pn for all graphs G with at most five vertices are in [40], and

results are continuously being computed for larger graphs with results posted as they

arrive. The website will be continually updated as the author computes these matrices

for larger graphs.
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




























21 8 9 11 8 14 11 15 3 3 4 3 4 5 1

9 8 6 4 4 6 5 8 3 3 4 2 2 2 1

6 4 9 4 4 4 4 4 3 2 2 3 2 2 1

3 0 0 3 1 2 1 2 0 0 0 0 1 1 0

9 4 6 5 8 6 4 8 2 3 2 3 4 2 1

1 0 0 1 0 3 1 0 0 0 0 0 0 1 0

3 1 0 1 0 2 3 2 0 0 1 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

5 4 6 4 3 4 3 4 3 2 2 2 2 2 1

5 4 4 3 4 6 3 4 2 3 2 2 2 2 1

1 1 0 0 0 0 1 2 0 0 1 0 0 0 0

5 3 6 3 4 4 4 4 2 2 2 3 2 2 1

1 0 0 1 1 0 0 2 0 0 0 0 1 0 0

1 0 0 1 0 2 1 0 0 0 0 0 0 1 0

4 3 4 3 3 4 3 4 2 2 2 2 2 2 1






























Figure 3.8: The transition matrix AP4 .

3.6 A sample of results
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G2(n) : ([11])

Tn = 4Tn−1 − Tn−2

Sequence: {1, 4, 15, 56, 209, . . .} (OEIS A001353)

Generating Function: x
1−4x+x2

G3(n) : ([14])

Tn = 15Tn−1 − 32Tn−2 + 15Tn−3 − Tn−4

Sequence: {1, 15, 192, 2415, 30305, . . .} (OEIS A006238)

Generating Function: 3x(1+49x+1152x2)
1+24x−24x2+x3

G4(n) : ([14])

Tn = 56Tn−1 − 672Tn−2 + 2632Tn−3 − 4094Tn−4 + 2632Tn−5 − 672Tn−6 + 56Tn−7 − Tn−8

Sequence: {1, 56, 2415, 100352, 4140081, . . .} (OEIS A003696)

Generating Function: x(x6−49x4+112x3−49x2+1)
x8−56x7+672x6−2632x5+4094x4−2632x3+672x2−56x+1

G5(n) : ([14], with improvements from this paper)

Tn = 209Tn−1 − 11936Tn−2 + 274208Tn−3 − 3112032Tn−4 + 19456019Tn−5

−70651107Tn−6 + 152325888Tn−7 − 196664896Tn−8 + 152325888Tn−9

−70651107Tn−10 + 19456019Tn−11 − 3112032Tn−12 + 274208Tn−13

−11936Tn−14 + 209Tn−15 − Tn−16

Sequence: {1, 209, 30305, 4140081, 557568000, . . .} (OEIS A003779)

Generating Function: See [40]

Figure 3.9: Full sequence information for G2(n), G3(n), G4(n), and G5(n).
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G6(n) : (new)

Tn = 780Tn−1 − 194881Tn−2 + 22377420Tn−3 − 1419219792Tn−4

+55284715980Tn−5 − 1410775106597Tn−6 + 24574215822780Tn−7

−300429297446885Tn−8 + 2629946465331120Tn−9 − 16741727755133760Tn−10

+78475174345180080Tn−11 − 273689714665707178Tn−12 + 716370537293731320Tn−13

−1417056251105102122Tn−14 + 2129255507292156360Tn−15 − 2437932520099475424Tn−16

+2129255507292156360Tn−17 − 1417056251105102122Tn−18 + 716370537293731320Tn−19

−273689714665707178Tn−20 + 78475174345180080Tn−21 − 16741727755133760Tn−22

+2629946465331120Tn−23 − 300429297446885Tn−24 + 24574215822780Tn−25

−1410775106597Tn−26 + 55284715980Tn−27 − 1419219792Tn−28 + 22377420Tn−29

−194881Tn−30 + 780Tn−31 − Tn−32

Sequence: {1, 780, 380160, 170537640, 74795194705, . . .} (OEIS A139400)

Generating Function: See [40]

Figure 3.10: Full sequence information for G6(n).

3.7 Extending to Generalized Graphs of the Form G× Pn

For the results above, it was not necessary that the graph we were dealing with was a

grid. We could have repeated the same process as above for any sequences of graphs

Gn defined by

Gn = G× Pn

for some predefined graph G. In fact, the Mathematica code in the appendix handles

any such general case. Therefore, it leads to the following theorem:

Theorem 3.7.1. Let a graph G be given with k vertices, and define the sequence of

graphs {Gn} by Gn = G×Pn. Then there is a Bk ×Bk matrix M and a vector v, both

taking on integer values, such that

Tn = Mnv[1]

where Tn is the number of spanning trees in Gn. Furthermore, Mnv[i] lists the number

of spanning forests consistent with Pi in Gn.
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Figure 3.11: An example of a spanning forest of C3(3). The inclusion of either v1,1v3,1

or v1,2v3,2 admits a spanning tree.

Corollary 3.7.2. Let a graph G be given with k vertices, and consider the sequence

{Tn}. Then Tn satisfies a linear recurrence of order Bk.

3.8 Extending to Cylinder Graphs

In this section we will discuss the changes necessary to extend the above arguments

to find recurrences for cylinder graphs and generalized cylinder graphs. We shall take

advantage of the “unhooking” technique covered in [18]. The technique is a reduction

from a cylinder graph to a grid graph. Recall that the vertex sets of Ck(n) and Gk(n)

are the same.

Definition For a given k, we define Ek by

Ek = E(Ck(n)) \E(Gk(n))

If we unhook (i.e. remove) the edges in Ek then what we have left is precisely Gk(n).

Now we have to consider what structures in Gk(n) yield a spanning tree in Ck(n) by

the addition of some subset of edges from Ek. Since we are going to add edges that

go from one end of the grid to another, we must look at both ends of the grid now,

as opposed to only looking at one end. For example, Figure 3.11 shows a spanning

forest of G3(3) that will never yield a spanning tree of G3(n) for any n > 3 through the

method described in the previous sections, but this spanning forest would create two

different spanning trees of C3(3) through the addition of either edge v1,1v3,1 or v1,2v3,2.

Therefore, we can keep the same basic idea used with grid graphs, with some mod-

ifications. We must now keep track of how our spanning forests affects the vertices at

each end.
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Definition Given a spanning forest F of Gk(n), the partition P of [2k] induced by F

is obtained from the equivalence relation

i ∼ j ⇐⇒ vi, vj are in the same component of F

where we identify the vertices v1, v2, . . . , vk with v1,1, v1,2, . . . , v1,k, respectively, and the

vertices vk+1, vk+2, . . . , v2k with vn,1, vn,2, . . . , vn,k, respectively.

Definition Given a spanning forest F of Gk(n) and a partition P of [2k], we say that

F is cylindrically consistent with P if:

1. The number of trees in F is precisely |P |.

2. P is the partition induced by F .

For example, the forest shown in Figure 3.11 is cylindrically consistent with the par-

tition 12/3456. It’s important to know what partition a certain forest of Gk(n) is

cylindrically consistent with, as that determines how many different ways edges can

be added to achieve a spanning tree of Ck(n). Since each spanning tree of Ck(n) is

uniquely determined by the underlying spanning forest of Gk(n) and the extra edges

from Ek, we have all the information we need to count the number of spanning trees of

Ck(n).

Definition For a given k, the tree-counting vector dk is the vector, indexed by the

partitions of [2k], such that dk(i) is the number of ways that edges from E(Ck(n)) \

E(Gk(n)) can be added to get from a forest cylindrically consistent with partition i to

a spanning tree of Ck(n). Notice that this is independent of n.

For example, it can be verified that d2 is given in Figure 3.12.

To count the number of spanning trees for Ck(n) we can produce the B2k × B2k

matrix in the same way as we did for the grid graphs, and using this matrix we can find

the number of spanning forests of Gk(n) consistent with each of the partitions of B2k,

which can be expressed as a vector of length B2k. Then, when we take the dot product

of this vector with dk, we obtain the number of spanning trees of Ck(n). For example,
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1234 1

1/234 1

12/34 2

134/2 1

123/4 1

14/23 2

124/3 1

13/24 0

1/2/34 1

1/23/4 1

1/24/3 0

12/3/4 1

13/2/4 0

14/2/3 1

1/2/3/4 0

d2 = (1, 1, 2, 1, 1, 2, 1, 0, 1, 1, 0, 1, 0, 1, 0)

Figure 3.12: The tree-counting vector d2 in detail.

it can be verified that Figure 3.13 is the transition matrix for C2(n): The initial vector

is as follows:

v = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

We then obtain

(Av) · d2 = 12

(A2v) · d2 = 75

(A3v) · d2 = 384

...

which yields the sequence of the number of spanning trees on C2(n).

Similar to the process with grids, there is nothing specific here to the simple cylinder

graph - these methods can be used to obtain sequences for graph families of the form
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Figure 3.13: The transition matrix for C2(n).

G×Cn for arbitrary G. However, due to the rapid growth of B2k, the ability to find the

appropriate matrices becomes somewhat difficult starting at graphs with five vertices.

Nevertheless, we still have the following:

Theorem 3.8.1. For a given graph G on k vertices, there is a B2k × B2k matrix M

and a vector v of length B2k such that

(Mnv) · dk

is the number of spanning trees of the graph G× Cn.

Corollary 3.8.2. For a given graph G on k vertices, the number of spanning trees {Tn}

of G×Cn satisfies a linear recurrence of order at most B2k.

Although the sequence for C2(n) is already known, these methods used were able

to obtain new sequences for C3(n) and K3 × Cn, which is stated in Figure 3.14.
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C2(n) : ([14], with improvements)

Tn = 10Tn−1 − 35Tn−2 + 52Tn−3 − 35Tn−4 + 10Tn−5 − Tn−6

Sequence: {1, 12, 75, 384, 1805, . . .} (OEIS A006235)

Generating Function: x(x4+2x3−10x2+2x+1)
(x3−5x2+5x−1)2

C3(n) : (new)

Tn = 48Tn−1 − 960Tn−2 + 10622Tn−3 − 73248Tn−4 + 335952Tn−5 − 1065855Tn−6

+2396928Tn−7 − 3877536Tn−8 + 4548100Tn−9 − 3877536Tn−10 + 2396928Tn−11

−1065855Tn−12 + 335952Tn−13 − 73248Tn−14 + 10622Tn−15

−960Tn−16 + 48Tn−17 − Tn−18

Sequence: {1, 70, 1728, 31500, 508805, . . .} (OEIS to be submitted)

Generating Function: See [40]

K3 × Cn : (new)

Tn = 58Tn−1 − 1131Tn−2 + 8700Tn−3 − 29493Tn−4 + 43734Tn−5

−29493Tn−6 + 8700Tn−7 − 1131Tn−8 + 58Tn−9 − Tn−10

Sequence: {3, 318, 12960, 410700, 11870715, . . .} (OEIS to be submitted)

Generating Function: 3x(1+48x−697x2−2474x3+9918x4+62x5−2045x6+96x7+5x8)
(−1+29x−145x2+145x3−29x4+x5)2

Figure 3.14: Full sequence results for spanning trees of G× Cn for certain G.

3.9 An Application: Divisibility Sequences

This section exhibits a fantastic application of the methods described so far in this

chapter: all sequenced produced by counting spanning trees of grid graphs are divis-

ibility sequences. It was not a thought in this author’s mind to think of divisibility

sequences, but once it was proposed by Richard Guy [21], a complete combinatorial

proof revealed itself fairly easily. This section is devoted to this combinatorial proof.

Intuitively, the grid graph G×Pn is created by placing n copies of G side-by-side and

then connecting corresponding vertices in each copy by a path. A spanning forest is an

acyclic subgraph of G. A spanning tree of a graph G is an acyclic connected subgraph

of G. If G is disconnected, then G contains no spanning trees and the same can be said

for G× Pn for any n. Recall that we let τG(n) denote the number of spanning trees of
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G×Pn, and often we will omit the subscript G when there is no ambiguity. We will be

interested in special types of spanning forests, which we define as follows:

Definition A right-justified spanning forest of G × Pn is a spanning forest with the

property that every component of the spanning forest contains at least one vertex of

{vn,i | 1 ≤ i ≤ ν}. Similarly, we can define a left-justified spanning forest of G×Pn as a

spanning forest with the property that every component of the spanning forest contains

at least one vertex of {v1,i | 1 ≤ i ≤ ν}

If F is a right-justified (resp. left-justified) spanning forest of G×Pn, then the partition

induced by F is a partition of [ν] defined by the equivalence relation

i ∼ j ⇐⇒ vn,i and vn,j (resp. v1,i and v1,j) belong to the same component of F.

(3.1)

We will abuse notation and say that vi and vj are in the same block of a partition,

when officially we mean that i and j are in the same block.

We will also be interested in counting τG(n;P ), which is the number of right-justified

spanning forests of G × Pn which induce the partition P . Note that the number of

spanning trees is τG(n; {[n]}). Again, the subscript G will usually be omitted. In

Section 3.5, we established a general method for counting τG(n) by counting τG(n;P )

for all possible values of P . The ideas behind this enumeration scheme will be extremely

helpful for the main result of this section.

We will often be dealing with spanning trees of G × P2n, where G has ν vertices.

Note that we can split up a spanning tree T of G× P2n into three separate parts:

1. The left half, lh(T ), which is the subgraph induced by the vertices

{vi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ν}.

Note that this is a right-justified spanning forest of G× Pn.

2. The right half, rh(T ), which is the subgraph induced by the vertices

{vi,j | n < i ≤ 2n, 1 ≤ j ≤ ν}.
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Note that this can be viewed as a left-justified spanning forest of G×Pn through

the vertex map vi,j 7→ vi−n,j.

3. The middle edges, mid(T ), which is defined by

E(G× P2n) ∩ {vn,jvn+1,j | 1 ≤ j ≤ ν}.

Note that we can view mid(T ) as a subset of [ν], and will do so frequently.

As an example, Figure 3.15 demonstrates the breakdown of a spanning tree of P4 × P4

into the left half, the right half, and the middle edges:

When dealing with such a spanning tree T , we will use prime (′) notation to refer

to vertices that are on the “other side” of T . Specifically, if T is a spanning tree of

G×P2n, then v′i,j = v2n−i,j. Note that v′′ = v. We will also extend the prime notation

to edges, so if e = xy, then e′ = x′y′.

Given a spanning tree T we will define PL = PL(T ) as the partition induced by

the left half of T , viewing it as a right-justified spanning tree. Similarly, we will define

PR = PR(T ) as the partition induced by the right half of T , viewing it as a left-justified

spanning tree. We hope the reader will not be confused by the fact that PL(T ) is

obtained by looking at the right-hand side of lh(T ) and vice-versa. In Figure 3.15,

PL = {{1, 2, 3}, {4}}, mid(T ) = {2, 4}, and PR = {{1, 2, 3, 4}}.

Additionally, Pn denotes the family of set partitions of [n], and B(n) = |Pn| is the

nth Bell Number. Pn(k) denotes the family of set partitions of [n] with exactly k blocks.

Definition A sequence {bn}|∞1 is a divisibility sequence if

n|m→ bn|bm for all n,m. (3.2)

Additionally, the sequence is a strong divisibility sequence if

gcd(bn, bm) = bgcd(n,m) for all n,m. (3.3)

For now we will consider the case where m = 2n; the methods that are used to show that

an|a2n can be expanded to cover any other multiple. If we take an arbitrary spanning

tree of G × Pn then it can be decomposed uniquely into lh(T ), rh(T ), and mid(T ).
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Figure 3.15: How a tree T decomposes into lh(T ), mid(T ), and rh(T ).
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Figure 3.16: An example of the three parts of appropriate sizes that cannot combine
to a spanning tree.

Additionally, if PL has pl blocks and |mid(T )| = m, then it follows that PR must have

pr = m− pl + 1 blocks. Note also that the partition PR cannot be any partition with

m−pl+1 blocks; for example, Figure 3.16 shows a left tree, right tree, and set of middle

edges that cannot be combined to make a spanning tree, even though the relationship

pr = m− pl + 1 still holds.

To this end we make the following definition:

Definition Given a partition P and a set of edges mid (which is viewed as a subset of

[ν]), we call a partition P ′ compatible with P and mid if the following holds:

1. |P ′| = |mid| − |P |+ 1, and

2. For any two a, b ∈ mid, if a and b are in the same block of P , then a and b are in

separate blocks of P ′.

We denote by comp(P,mid) the set of partitions compatible with P and mid.

The second condition is necessary because if there were two edges in mid that were

both in the same block in each of the two partitions, then the combined graph would

have a loop, and hence not be a tree. This is exemplified in Figure 3.16.

By conditioning on the size of the partition on the left-hand side and the number

of middle edges, we can obtain a formula that relates τG(n) and τG(2n):
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Lemma 3.9.1 (Counting the Number of Spanning Trees).

τG(2n) =

ν∑

p=1

∑

P∈Pν(p)

ν∑

k=1

∑

mid∈([ν]
k )

τG(n;P )
∑

P ′∈comp(P,mid)

τG(n;P ′). (3.4)

The fact that the above quantity on the right-hand side is divisible by an is imme-

diate from the following lemma, which is the cornerstone of this paper:

Lemma 3.9.2 (Split-Merge Lemma). Fix k, the number of edges, and p, the number

of parts in the partition on the left-hand side. Then

∑

mid∈([ν]
k )

∑

P∈Pν(p)

τG(n;P )
∑

P ′∈comp(P,mid)

τG(n;P ′) =

(
k − 1

p− 1

)

τG(n)
∑

P∈P(e)

(
∏

P )τG(n;P ),

(3.5)

where
∏

P ′ is the product of all of the sizes of the parts in P ′.

We shall give a bijective proof of Lemma 3.9.2. Toward the bijection, we define the

following special sequence of edges:

Definition With T = T0, suppose (i, j) is lexicographically least so that the following

conditions hold:

1. vi and vj are both incident to middle edges.

2. i and j are in the same block of PL.

3. On the path from vi to vj there is an edge e such that T ′ = T − e + e′ is still a

tree.

Let x1x2 be the first such edge satisfying the above condition (3) on the path from vi

to vj. Defining T1 = T0 − x1x2 + x′
1x

′
2, we can repeat the process to obtain a sequence

of trees T1, T2, . . . and edges e1, e2, . . ..

Remark Assuming that PL is not the finest partition, such edges can always be found.

This can be done by an inductive argument on |PL|, for example.

Remark Every time an edge x1x2 is selected through the definition above, the block of

PL containing i and j will be split into two different blocks, and hence as a consequence

two blocks of PR will be merged into one block. We can then define the following finite

sequences:
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Definition (Continued) From the remarks, we see that the sequence of trees T1, T2, . . .

and edges e1, e2, . . . is finite, and specifically ends at Tpr−1, epr−1. Given a tree T , we de-

note by l→r(T ) the sequence of edges e1, e2, . . . , epr−1. Being in a symmetric situation

with respect to PL and PR, we can similarly define the set r→l(T ).

The following lemma is crucial to our bijection:

Lemma 3.9.3. Letting T ′ = Tpr−1, every edge of l→r(T ) is in r→l(T ′).

Proof. Fix T . Without loss of generality, it suffices to show that e′1 ∈r→l(T ′). Suppose

that e1 was on the path between vertices vi and vj (i < j) and consider the block of

the partition in PR(T ′) that contains v′i. If i is the smallest element in this block, then

it is certain that e′1 ∈r→l(T ′). In the case that there is a smaller element a in that

block, consider the point during the process where we are about to remove e1 and add

e′1. Part of the graph is shown in Figure 3.17, where solid lines indicate edges, dashed

lines indicate edges that potentially may be there, and dotted lines indicate edges that

aren’t there.

With the figure in mind, we can now finish up our proof by considering, being that

this is still a tree, how x′
3 is connected to x1. Specifically, the unique path from x′

3 to

x1 either utilizes the edge x3x4 or does not. If x3x4 is not used, then the path can be

viewed in this manner, as shown in Figure 3.18.

In this case, we have a contradiction as we cannot move e1 to the right side, as this

would cause a cycle. Similarly, if x3x4 was used in the path, then again there would be

a contradiction for e1 would not have been the lexicographically-least edge available to

move to the right, as shown in Figure 3.19.

From the Lemma 3.9.2, we can now prove the divisibility property:

Proof. We associate with the left-hand side the set of spanning trees T of G×P2n with

k middle edges and p parts in PL(T ). We associate with the right-hand side a spanning

tree of G × Pn (taking care of the τG(n) term) and a right-justified spanning forest F

inducing a partition P ∈ P(e) with the added conditions:
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Figure 3.17: The situation in the proof of Lemma 3.9.3.
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Figure 3.18: Case 1: The path from x′
3 to x1 does not involve the edge viv

′
i.
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x4 x′
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Figure 3.19: Case 2: The path from v′i to x1 passes through viv
′
i.

1. In each block of P , one specific vertex is marked. This takes care of the
∏

P

term.

2. A global identifier N between 1 and
(
k−1
p−1

)
is assigned. This takes care of the

(
k−1
p−1

)
term.

The bijection is then as follows: starting with a spanning tree T from the collection

representing the left-hand side of the equation, move all of the edges in l→r(T ), which

consists of p − 1 edges, over to the right-hand side of T to create T ′. We can view

the left half of T ′ as our spanning forest F and our right half as a spanning tree.

Additionally, due to the way the edges were moved, each block of the partition induced

by the spanning forest is incident to exactly one middle edge, so mark each vertex that

is incident with a middle edge.
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+ =

Figure 3.20: How trees are added.

3.10 Conclusions and Conjectures

From investigations, we have a few conjectures:

Conjecture 5. For the matrix M given in Theorem 3.7.1, the characteristic polynomial

χλ(M) factors over the integers into monomials whose degree is always a power of 2.

Conjecture 6. For any graph G, all recurrences for {τG(n)}∞n=1 satisfies a linear re-

currence whose coefficients alternate in sign.

Conjecture 7. The recurrence of minimum order for the grid graph Gk(n) has order

2k−1.

Conjecture 8. The recurrence of minimum order for the graph Kk × Pn has order k.

For the time being, we will only prove the special case of Conjecture 3 for the

grid graphs G2(n). We will give a combinatorial proof that we hope can be adjusted

accordingly to the higher cases. To aid in the proof, we will introduce the concept of

grid addition, which is simply a shorthand way of creating the union of two grids.

Definition If G1 is a subgraph of Pk × Pn1 and G2 is a subgraph of Pk × Pn2 , then

G1 + G2 is a subgraph of Pk × Pn1+n2 defined as the graph obtained by identifying

the right-most vertices of G1 with the left-most vertices of G2. Any overlapping edges

remain as one.

Example Figure 3.20 shows the addition of a tree on G2(3) with a tree on G2(2) to

obtain a subgraph of G2(4).

Theorem 3.10.1. The number of spanning trees of the graphs G2(n) satisfies the linear

recurrence Tn = 4Tn−1 − Tn−2 with the initial conditions T1 = 1, T2 = 4.
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Figure 3.21: How to interpret Tn−2.

+ +

+ +

Figure 3.22: How to interpret 4Tn−1.

Proof. Showing the initial conditions is a minor exercise. We will prove this recurrence

in the equivalent form Tn + Tn−2 = 4Tn−1. Let Tk denote the set of spanning trees of

the graph G2(k). We will associate Tn−2 with the set Tn−2 with an addition at the end,

as shown by Figure 3.21.

In this way, we can think of Tn−2 as being trees of G2(n). Similarly, as Figure 3.22

shows, we will associate 4Tn−1 with the set of trees from Tn−1 with each of the four

trees of G2(2) added at the end.

If we have a tree from Tn, then we can decompose it depending on what the end-

ing of the tree looks like. Figure 3.23 shows all of the possibilities, along with their

decompositions. Note that the decompositions are of the same form as we dictated for

4Tn−1.

Similarly, if we have a tree from Tn−2 modified as explained above, then Figure 3.24

shows the decomposition. Again, note that the decompositions are of the same form as

we dictated for 4Tn−1.

The reader can verify that the map described is invertible, yielding the desired

bijection.

Overall, this chapter demonstrated a concrete method for finding the recurrence and

full information for the sequence {τG(n)}∞n=1 that counts the number of spanning trees
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→ +

→ +

→ +

→ +

→ +

→ +

→ +

Figure 3.23: How to decompose certain elements of Tn into elements in 4Tn−1.

→ +

Figure 3.24: How to decompose certain elements of Tn into elements of Tn−2.



71

of the grid graph G × Pn. Similar methods have been demonstrated for graphs of the

form G×Cn and
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Chapter 4

The Firefighter Problem

4.1 Introduction and terminology

The firefighter problem is a dynamic problem introduced by Hartnell [26], that can be

described as follows: given a connected graph G, a vertex r is initially set on fire. At

the beginning of each discrete time period t ≥ 1, a number of firefighters are available

to be positioned at different vertices in G that are currently not on fire nor already have

a firefighter positioned. For this paper, we shall represent the number of firefighters

available at each t ≥ 1 by a function f(t). These firefighters remain on their assigned

vertices and thus prevent the fire from spreading to that vertex. At the end of each

time period, all vertices that are not defended and are adjacent to at least one vertex

on fire will catch the fire and become burned. Once the vertex is burned or defended,

it remains that way permanently.

If G is a finite graph, the process ends when one of the following occurs:

(i) The fire is contained, meaning the fire is unable to spread, and there are still

vertices in G that are neither burned nor defended.

(ii) The fire spreads until every vertex in G is either burned or defended.

If G is infinite, then (i) could still happen but (ii) is replaced by

(ii′) The fire cannot be contained, meaning the fire spreads indefinitely.

The firefighter problem was considered on a variety of graphs, including finite grids

(MacGillivray and Wang [31], Wang and Moeller [49]), infinite grids (Develin and Hartke

[12], Wang and Moeller [49], Fogarty [17]) and trees (MacGillivray et.al. [16], Hartnell

[26]). Other related publications [1,3,4,6-8] are listed in the reference section.
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The firefighter problem can be viewed in a more general context as a monotonic

irreversible k-threshold with vaccinations (see [13]) process for k = 1 and plenty of

questions still remain for the generalizations. In these types of processes, the vertices

on the underlying graph can take on either of the two values 0 or 1, corresponding to

unburnt and burnt, and the value of these vertices can change over time. This process

is monotonic because the set of vertices on fire (having value 1) at time t is a subset of

the vertices on fire at time t + 1. It is irreversible because once a vertex catches fire,

it is on fire permanently. It is a 1-threshold process because an undefended vertex only

needs to have one of its neighbors to be on fire at time t for it to catch on fire at time

t+1. This is understandable in a firefighting setting, where adjacency to fire is all that

is usually need to catch on fire shortly. Increasing the threshold factor k is more useful

in an epidemiological setting, where association to a sick person is often not enough for

an individual to contract a disease, yet being around enough people who are sick would

be enough to contract the disease. Additionally, this process is with vaccination since

there are firefighters (or vaccinations in the public-health setting) that can be placed

on unburnt vertices and allow that vertex to remain unburnt permanently.

In this chapter, we will consider the two dimensional infinite grid graph G = L2

defined by

V (G) = Z× Z,

E(G) = {{(m,n), (m′, n′)} | |m−m′|+ |n− n′| = 1}.

Suppose we are given a function f(t) representing the number of firefighters available

for deployment at each time period t, our goal is to determine if it is possible to position

the firefighters on the vertices of L2 such that at some finite time t′, the fire is unable

to spread any further. For our purposes, we shall only consider functions f(t) that are

periodic in t. Thus, we can state our problem formally as:

CONTAINMENT

INSTANCE: A rooted graph (L2, r) and a periodic function f(t).

QUESTION: Is there a finite t′ such that by positioning f(t) firefighters at each

time period t, the fire can be contained after t′ time periods.
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Figure 4.1: The six non-isomorphic minimal solutions to the firefighter problem with
f(t) = 2. It is left to the reader to determine where the fire started in each scenario!

Most of the existing literature considers f(t) to be a constant function (usually

f(t) = 1) independent of t. Specifically, Wang and Moeller [49] showed that one

firefighter per time period (f(t) = 1 ∀t) is insufficient to prevent the fire from spreading

indefinitely while f(t) = 2 for all t suffices, in which case a minimum of 8 time periods

are required to succesfully contain the fire. An alternative proof (using a computer

program) to the minimum number of time periods required when f(t) = 2 for all t was

provided by Develin and Hartke [12], who also established that a minimum of 18 vertices

in L2 would be burnt before containment can be achieved. The six non-isomorphic

minimal solutions taking 8 turns and burning 18 vertices are shown as follows, found

using Mathematica software that can be found at [39]:

One way to generalize the firefighter problem introduced by Hartnell is to allow the

fire to start initially at a finite number of vertices in L2 rather than a single root r. This

was considered by Fogarty [17] when it was shown that f(t) = 2 for all t is sufficient to

contain a fire that starts at any finite number of vertices in L2. For the remainder of
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this paper, we shall consider the firefighter problem where the fire could start initially

at either a single vertex or a finite collection of vertices in L2.

The results by Wang and Moeller [49], Develin and Hartke [12] and Fogarty [17]

described above provide the motivation. We would like to know if f(t) is not a con-

stant function, and the average (whose notion will be made precise below) number of

firefighters available per time period is a number between 1 and 2, is there a finite t′

such that by positioning f(t) firefighters at each time period t, the fire can be contained

after t′ time periods?

To make the notion of the average number of firefighters per time period precise,

let f : N→ N ∪ {0} be a periodic function with period pf . Define

Nf =

pf∑

t=1

f(t) and Rf =
Nf

pf

.

Thus, if the number of firefighters available for deployment at each time period is given

by f , then Rf tells us the average number of firefighters available for deployment at each

time period. We will frequently identify f with a sequence of its period. For example,

we write f = [2, 1, 2, 2] to correspond to the function defined as

f(t) =







2 if t ≡ 1 mod 4,

1 if t ≡ 2 mod 4,

2 if t ≡ 3 mod 4,

2 if t ≡ 0 mod 4.

Observe that Rf = 1.75 in this example.

Definition For any function f : N→ N ∪ {0}, define f−1 : N→ N as

f−1(n) = min

{

j ∈ N |
j
∑

t=1

f(t) ≥ n

}

.

In other words, f−1(n) can be thought of as the time t when the nth firefighter becomes

available for deployment.

Note that f−1(n) is a nondecreasing function of n.
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Definition For a finite set S ⊂ Z× Z and some (x, y) ∈ Z× Z, define

d(S, (x, y)) = min{|x′ − x|+ |y′ − y| | (x′, y′) ∈ S}.

Definition For any periodic function f and S ⊂ Z × Z, we say that there is a con-

tainment certificate of f for S if and only if there exists a set CS(f) ⊂ Z× Z×N that

satisfies the following conditions:

1. For all t ∈ N, f(t) ≥ |{(x, y, j) ∈ CS(f) | j = t}|;

2. For all (x, y, t) ∈ CS(f), d(S, (x, y)) ≥ t;

3. The number of vertices that have at least one path in L2 to a vertex in S without

passing through any vertex (x, y) where (x, y, t) ∈ CS(f) for some t ∈ N is finite.

We extend the definition slightly and call a containment certificate convex if it satisfies

a fourth condition:

4. For every (x, y, t) ∈ CS(f), there is a path from a vertex in S to (x, y) of length

D(S, (x, y)).

Hopefully the use of the word convex will not frustrate the reader. A containment

certificate can be extended readily to a closed curve in R
2 (this will be expounded on

later in the chapter) and the notion of convexity only partially derives from this curve.

While there are convex containment certificates that yield concave curves, like the one

as follows: it is true that any non-convex containment certificate produces a concave

curve in R
2.

Suppose that the set of vertices in S are initially set on fire and f(t) represents

the number of firefighters available for deployment at time t. A containment certificate

of f for S, if it exists, contains all the information on where and when each available

firefighter is deployed such that the spread of the fire can eventually be contained at

some finite time t′. For example if (8, 9, 4) ∈ CS(f), then we would place a firefighter

on (8, 9) at time t = 4. Condition 1 of the containment certificate ensures that there

are at most f(t) firefighters deployed at time t. Condition 2 ensures that (x, y) is not



77

1

1

2

2 3

3 4

4

5

6

8

10

12

13

131211

11109

9

8

7

7

6

5

Figure 4.2: An example of a concave scenario. The initial fire is the vertex that is

lighter than the others.
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already on fire when a firefighter is deployed there at time t. Condition 3 gurantees

that there exists some t′ ≥ max{t | (x, y, t) ∈ CS(f)} such that the number of vertices

on fire at times t ≥ t′ is a constant, meaning that the fire is indeed contained.

Suppose CS(f) is a containment certificate of f for S. For each n ∈ N, define

C>n
S (f) = {(x, y, t) ∈ CS(f) | t > n};

C=n
S (f) = {(x, y, t) ∈ CS(f) | t = n};

C<n
S (f) = {(x, y, t) ∈ CS(f) | t < n}.

We will consider two partial orders associated with periodic functions.

Definition

f � g ⇐⇒
k∑

t=1

f(t) ≤
k∑

t=1

g(t) ∀k ∈ N.

Additionally, we say that g dominates f if f � g.

Definition

f �∗ g ⇐⇒ ∃n ∈ N such that

k∑

t=1

f(t) ≤
k∑

t=1

g(t) ∀k ≥ n.

Additionally, we say that g eventually dominates f if f �∗ g.

Observe the fact that g dominates f implies g eventually dominates f . It is useful to

note that to establish f � g for periodic f and g, it suffices to show that

k∑

t=1

f(t) ≤
k∑

t=1

g(t) for all 1 ≤ k ≤ lcm(pf , pg).

Several specific periodic functions will be used frequently in this paper. Their defi-

nitions and notations are introduced below.

Definition For any n, k ∈ Z
+, gn,k is the periodic function with period n by

gn,k(t) =







0 if t 6≡ 0 mod n,

k if t ≡ 0 mod n.

In other words, gn,k = [

n−1
︷ ︸︸ ︷

0, 0, ..., 0, k].
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Definition For any integer n ≥ 2, Zn = gn,zn where

zn =







3n
2 + 1 if n is even,

1
2(3n + 1) if n is odd.

Note that for each n, zn is defined to be the smallest positive integer such that RZn >

1.5.

Definition For any integer n ≥ 1,

Fn(t) =







1 if t ≡ k mod 2n + 1, where k ∈ {1, 2, ..., n}

2 if t ≡ k mod 2n + 1, where k ∈ {0, n + 1, n + 2, ..., 2n}.

In other words, Fn = [

n
︷ ︸︸ ︷

1, 1, ..., 1,

n+1
︷ ︸︸ ︷

2, 2, ..., 2]. Note that pFn = 2n + 1 and RFn > 1.5 for

all n ≥ 1.

Definition If f is a periodic function and i is any non-negative integer, f+i is the

i-translate of f :

f+i(t) = f(t + i) for all t ≥ 1.

Note that f+0 = f . We are now ready to state the main result of this chapter.

Theorem 4.1.1. Suppose a finite set S ⊂ Z× Z of vertices are initially set on fire. If

the number of firefighters available for deployment per time period is given by a periodic

function f such that Rf > 1.5, then there exists a containment certificate of f for S.

Remark The above theorem gives no conclusion about containment of the fire if the

function f is such that Rf ≤ 1.5. We will discuss this briefly at the end of the chapter.

In Section 4.2, we will prove several lemmas regarding some of the periodic functions

defined above. The main result is proven in Section 4.3 and the chapter concludes in

Section 4.5 with a brief discussion on possible future work.
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4.2 Several lemmas

We first show that the relation �∗ is transitive.

Lemma 4.2.1. If f , g and h are periodic functions such that f �∗ g and g �∗ h, then

f �∗ h.

Proof. Let n1, n2 ∈ N be such that

k∑

t=1

f(t) ≤
k∑

t=1

g(t) ∀k ≥ n1 and
k∑

t=1

g(t) ≤
k∑

t=1

h(t) ∀k ≥ n2.

Let n = max{n1, n2}. We have

k∑

t=1

f(t) ≤
k∑

t=1

h(t) ∀k ≥ n

and thus f �∗ h.

Lemma 4.2.2. For any periodic function f , we have gpf ,Nf
� f .

Proof. Note that gpf ,Nf
and f have the same period. If k < pf then we have

0 =

k∑

t=1

gpf ,Nf
(t) ≤

k∑

t=1

f(t)

since f must take on non-negative values. If k = pf then

pf∑

t=1

gpf ,Nf
(t) =

pf∑

t=1

f(t)

and so by definition we have gpf ,Nf
� f .

Lemma 4.2.3. If f is a periodic function that is non-decreasing on its period, then

f � f+i for all i ∈ Z
+.

Proof. Let i ∈ Z
+. Since f and f+i have the same period, it suffices to show

n∑

t=1

f(t) ≤
n∑

t=1

f+i(t) for all n ≤ pf .

Case 1: Suppose n+i ≤ pf . In this case, as f is non-decreasing, we have f(t) ≤ f(t+i)

for all t = 1, 2, ..., n, implying

n∑

t=1

f(t) ≤
n∑

t=1

f(t + i)
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and thus f � f+i.

Case 2: Suppose n + i > pf . Note that

n∑

t=1

f(t + i) =

n+i∑

t=i+1

f(t) =

pf∑

t=i+1

f(t) +

n+i∑

t=pf +1

f(t)

=

pf∑

t=i+1

f(t) +

n+i−pf∑

t=1

f(t).

Thus,

n∑

t=1

f(t) =

n+i−pf∑

t=1

f(t) +

n∑

t=n+i−pf +1

f(t)

≤
n+i−pf∑

t=1

f(t) +

pf∑

t=i+1

f(t) (since f is non-decreasing)

=
n+i∑

t=i+1

f(t) =
n∑

t=1

f+i(t)

and we are done.

Lemma 4.2.4. If f is a periodic function such that pf ≥ 2 and Rf > 1.5, then Zn � f

for some n ≥ 2.

Proof. Take n = pf .

If we want to compare two periodic functions f and g, then as stated before we

would have to compare f and g up to lcm(pf , pg), which could be as large as pfpg. The

following lemma adds a hypothesis but the end result allows us to simply compare the

two functions up to one specific value.

Lemma 4.2.5. Let g be a periodic function that is non-decreasing on its period and f

be a periodic function such that pf ≥ pg and

pf∑

t=1

f(t) <

pf∑

t=1

g(t).

Then f �∗ g, meaning there exists n ∈ N such that

k∑

t=1

f(t) ≤
k∑

t=1

g(t) for all k ≥ n.
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Proof. We first prove the following claim.

Claim: For each k = 1, 2, 3, ...,

(k+1)pf∑

t=kpf+1

f(t) <

(k+1)pf∑

t=kpf +1

g(t).

Proof of Claim: Let kpf + 1 = k′pg + r, with 0 < r ≤ pg. Then we have

(k+1)pf∑

t=kpf+1

g(t) =

r+pf−1
∑

t=r

g(t)

=

pf∑

t=1

g+(r−1)(t)

≥
pf∑

t=1

g(t) by Lemma 4.2.3

>

pf∑

t=1

f(t) =

(k+1)pf∑

t=kpf+1

f(t).

So from the above claim, the following function

h(k) =

kpf∑

t=1

g(t) −
kpf∑

t=1

f(t)

is a strictly increasing function in k. Define k∗ by

k∗ = min{k ∈ N | h(k) > Nf}.

Now let n = k∗pf . This is the n that we require in order to prove the lemma. To see
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this, suppose k ≥ n and k = akpf + bk, where 0 ≤ bk < pf . Then

k∑

t=1

f(t) =

akpf+bk∑

t=1

f(t)

≤
akpf+pf∑

t=1

f(t)

=

(ak+1)pf∑

t=1

f(t)

=

akpf∑

t=1

f(t) +

(ak+1)pf∑

t=akpf+1

f(t)

=

akpf∑

t=1

f(t) +

pf∑

t=1

f(t)

=

(akpf∑

t=1

g(t)− h(ak)

)

+

pf∑

t=1

f(t)

≤
(akpf∑

t=1

g(t)− h(k∗)

)

+

pf∑

t=1

f(t) (since ak ≥ k∗)

<

(akpf∑

t=1

g(t)−
pf∑

t=1

f(t)

)

+

pf∑

t=1

f(t)

=

akpf∑

t=1

g(t) ≤
akpf+bk∑

t=1

g(t) =

k∑

t=1

g(t).

The proof of the lemma is thus complete.

Using Lemma 4.2.5 we can prove the next lemma easily.

Lemma 4.2.6. For each n ≥ 2, Fn2 �∗ Zn.

Proof. Note that Fn2 is periodic, pF
n2 = 2n2 + 1 ≥ n = pZn and

2n2+1∑

t=1

Fn2(t) = n2 + 2(n2 + 1) = 3n2 + 2.

If n is even, then
2n2+1∑

t=1

Zn(t) = 2n

(
3n

2
+ 1

)

= 3n2 + 2n.

On the other hand, if n is odd, then

2n2+1∑

t=1

Zn(t) = 2n

(
3n + 1

2

)

= 3n2 + n.
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In either case, we have
2n2+1∑

t=1

Fn2(t) <

2n2+1∑

t=1

Zn(t)

and thus by Lemma 4.2.5, Fn2 �∗ Zn.

Lemma 4.2.7. Given any periodic function f such that pf ≥ 2 and Rf > 1.5, there

exists some n ≥ 2 such that Fn2 �∗ f .

Proof. Suppose f is periodic, pf ≥ 2 and Rf > 1.5. By Lemma 4.2.2, gpf ,Nf
�∗ f .

Note that Rgpf ,Nf
= Rf > 1.5, so by Lemmas 4.2.4 and 4.2.6, for some n ≥ 2,

Fn2 �∗ Zn �∗ gpf ,Nf
.

Applying Lemma 4.2.1 to

Fn2 �∗ Zn �∗ gpf ,Nf
�∗ f

completes the proof.

4.3 Proof of main result

We first state two lemmas without proof.

Lemma 4.3.1. Suppose S1 and S2 are both finite subsets of Z× Z such that S1 ⊆ S2.

For any function f , if CS2(f) is a containment certificate of f for S2, then CS2(f) is

also a containment certificate of f for S1.

Lemma 4.3.2. For any d ∈ N ∪ {0}, let

Sd = {(x, y) ∈ Z× Z | |x|+ |y| ≤ d}.

For any (x, y) ∈ Z× Z such that (x, y) /∈ Sd,

d(Sd, (x, y)) = |x|+ |y| − d.

Now for any n ∈ N, recall that Fn = [

n
︷ ︸︸ ︷

1, 1, ..., 1,

n+1
︷ ︸︸ ︷

2, 2, ..., 2] is a periodic function with

period 2n + 1. Let

F 2
n = [

n
︷ ︸︸ ︷

1, 1, ..., 1,

n+1
︷ ︸︸ ︷

2, 2, ..., 2,

n
︷ ︸︸ ︷

1, 1, ..., 1,

n+1
︷ ︸︸ ︷

2, 2, ..., 2].
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Note that F 2
n is periodic with period 2(2n + 1) and F 2

n � Fn. Let p = 2(2n + 1) and

define the function Gp of period p by

Gp = [

p−1
︷ ︸︸ ︷

1, 0, 1, 0, ..., 1, p + 1].

It is easy to see that Gp � F 2
n .

Lemma 4.3.3. For any n, d ∈ N, let p = 2(2n + 1). There exists a containment

certificate of Gp for Sd.

Proof. Consider the following eight sets:

A0 =

2(p+1)3(d+p)−1
⋃

i=1, i odd

{(
i− 1

2
,−
(

d + p +
i− 1

2

)

, i

)}

,

A1 =

d+p
⋃

i=1

p
⋃

k=1

{(−(i− 1)p − k,−(d + p), ip)} ,

A2 =

d+p
⋃

i=1

{(−p(d + p)− i,−(d + p) + i, ip)} ,

A3 =

(p+1)(d+p)
⋃

i=1

p
⋃

k=1

{(−(p + 1)(d + p), (i− 1)p + k, (d + p + i)p)} ,

A4 =

(p+1)(d+p)
⋃

i=1

{(−(p + 1)(d + p) + i, p(p + 1)(d + p) + i, (d + p + i)p)} ,

A5 =

(p+1)2(d+p)
⋃

i=1

p
⋃

k=1

{
((i− 1)p + k, (p + 1)2(d + p), ((p + 2)(d + p) + i)p)

}
,

A6 =

(p+1)2(d+p)
⋃

i=1

{
(p(p + 1)2(d + p) + i, (p + 1)2(d + p)− i, ((p + 2)(d + p) + i)p)

}
,

A7 =

N⋃

i=1







((p + 1)3(d + p),−(i− 1)p− k, ((d + p)(p + 2 + (p + 1)2) + i)p) |

1 ≤ k ≤ p and (i− 1)p + k ≤ ((p + 1)3 + 1)(d + p) + 2







,

where

N =

⌈
((p + 1)3 + 1)(d + p) + 2

p

⌉

.

We claim that A =
⋃7

i=0 Ai is a containment certificate of Gp for Sd.

Figure 1 illustrates the positions corresponding to the set A =
⋃7

i=0 Ai.
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Figure 4.3: A global view of the containment certificate described in the proof of Lemma
4.3.3.
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Recall that an element (x, y, t) in a containment certificate can be thought of as the

time t where a firefighter is positioned at (x, y). To show that the first condition in the

definition of a containment certificate is satisfied, it is easier to describe the elements of

the eight sets in terms on their positions on Z× Z and when these positions are taken

up by the firefighters. Note that Gp(t) = 1 for all odd t, Gp(t) = p + 1 if t = kp for

some k ∈ N and Gp(t) = 0 otherwise.

1. At each odd t = 1, 3, ..., 2(p+1)3(d+p)−1, a firefighter is positioned at ( t−1
2 ,−(d+

p + t−1
2 )). This corresponds to the set A0.

2. At each t = ip, i = 1, 2, ..., d + p, we have p + 1 firefighters available, p of which

have positions given by A1 (forming a horizontal line) and the remaining one has

position given by A2 (forming a diagonal line).

3. At each t = (d + p + i)p, i = 1, ..., (p + 1)(d + p)p, we have p + 1 firefighters

available, p of which have positions given by A3 (forming a vertical line) and the

remaining one has position given by A4 (forming a diagonal line).

4. At each t = ((p+2)(d+p)+ i)p, i = 1, ..., (p+1)2(d+p), we have p+1 firefighters

available, p of which have positions given by A5 (forming a horizontal line) and

the remaining one has position given by A6 (forming a diagonal line).

5. At each t = ((d + p)(p + 2 + (p + 1)2) + i)p, i = 1, ..., N , we place p firefighters

at positions given by A7. This forms a vertical line and the positioning ends

when this vertical line meets with the diagonal line formed by firefighters whose

positions corresponds to the set A0.

We next check the second condition in the definition of a containment certificate.

Case 1: Suppose ( i−1
2 ,−(d + p + i−1

2 ), i) ∈ A0 for some i ∈ {1, 3, ..., 2(p + 1)3(d +

p)− 1}. By Lemma 4.3.2,

d

(

Sd,

(
i− 1

2
,−
(

d + p +
i− 1

2

)))

=

∣
∣
∣
∣

i− 1

2

∣
∣
∣
∣
+

∣
∣
∣
∣
−
(

d + p +
i− 1

2

)∣
∣
∣
∣
− d

=
i− 1

2
+

(

d + p +
i− 1

2

)

− d

= p + i− 1 ≥ i (since p ≥ 6).



88

Case 2: Suppose (−(i− 1)p− k,−(d+ p), ip) ∈ A1 for some i ∈ {1, 2, ..., d+ p} and

some k ∈ {1, ..., p}. By Lemma 4.3.2,

d(Sd, (−(i− 1)p − k,−(d + p))) = | − (i− 1)p − k|+ | − (d + p)| − d

= (i− 1)p + k + (d + p)− d

= ip + k ≥ ip.

Case 3: Suppose (−p(d + p)− i,−(d + p) + i, ip) ∈ A2 for some i ∈ {1, 2, ..., d + p}.

By Lemma 4.3.2,

d(Sd, (−p(d + p)− i,−(d + p) + i)) = | − p(d + p)− i|+ | − (d + p) + i| − d

= p(d + p) + i + (d + p)− i− d

= p(d + p + 1) ≥ ip.

Case 4: Suppose (−(p + 1)(d + p), (i − 1)p + k, (d + p + i)p) ∈ A3 for some i ∈

{1, 2, ..., (p + 1)(d + p)} and k ∈ {1, ..., p}. By Lemma 4.3.2,

d(Sd, (−(p + 1)(d + p), (i− 1)p + k)) = | − (p + 1)(d + p)|+ |(i− 1)p + k| − d

= (p + 1)(d + p) + (i− 1)p + k − d

= pd + p2 + d + p + ip− p + k − d

= pd + p2 + ip + k ≥ (d + p + i)p.

Case 5: Suppose (−(p+1)(d+p)+ i, p(p+1)(d+p)+ i, (d+p+ i)p) ∈ A4 for some
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i ∈ {1, 2, ..., (p + 1)(d + p)}. By Lemma 4.3.2,

d(Sd, (−(p + 1)(d + p) + i, p(p + 1)(d + p) + i))

= | − (p + 1)(d + p) + i|+ |p(p + 1)(d + p) + i| − d

= (p + 1)(d + p)− i + p(p + 1)(d + p) + i− d

= (p + 1)2(d + p)− d

= p2d + p3 + 2pd + 2p2 + p

≥ p2d + p3 + 2pd + 2p2

= (p + 2)(d + p)p

= (d + p + (p + 1)(d + p))p

≥ (d + p + i)p.

Case 6: Suppose ((i− 1)p + k, (p + 1)2(d + p), ((p + 2)(d + p) + i)p) ∈ A5 for some

i ∈ {1, ..., (p + 1)2(d + p)} and k ∈ {1, ..., p}. By Lemma 4.3.2,

d(Sd, ((i − 1)p + k, (p + 1)2(d + p)) = |(i− 1)p + k|+ |(p + 1)2(d + p)| − d

= ip− p + k + (p2 + 2p + 1)(d + p)− d

= ip + k + p2d + p3 + 2pd + 2p2

≥ ip + p(pd + p2 + 2d + 2p)

= ((p + 2)(d + p) + i)p.

Case 7: Suppose (p(p+1)2(d+ p)+ i, (p+1)2(d+ p)− i, ((p+2)(d+ p)+ i)p) ∈ A6
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for some i ∈ {1, ..., (p + 1)2(d + p)}. By Lemma 4.3.2,

d(Sd, (p(p + 1)2(d + p) + i, (p + 1)2(d + p)− i))

= |p(p + 1)2(d + p) + i|+ |(p + 1)2(d + p)− i| − d

= (p + 1)3(d + p)− d

= p3d + p4 + 3p2d + 3p3 + 3pd + 3p2 + p

≥ p3d + p4 + 3p2d + 3p3 + 3pd + 3p2

= (p2d + p3 + 3pd + 3p2 + 3d + 3p)p

= ((p + 1)2 + p + 2)(d + p)p

= ((p + 2)(d + p) + (p + 1)2(d + p))p

≥ ((p + 2)(d + p) + i)p.

Case 8: Suppose ((p+1)3(d+p),−((i−1)p+k), ((d+p)(p+2+(p+1)2 )+i)p) ∈ A7

for some i ∈ {1, ...., N} and k ∈ {1, ..., p}. By Lemma 4.3.2,

d(Sd, ((p + 1)3(d + p),−((i − 1)p + k)))

= |(p + 1)3(d + p)|+ | − ((i− 1)p + k)| − d

= (p + 1)3(d + p) + (i− 1)p + k − d

≥ (p3 + 3p2 + 3p + 1)(d + p)− p− d + ip

= (p + d)(p3 + 3p2 + 3p) + ip

= (p + d)p(p + 2 + (p + 1)2) + ip

= ((d + p)(p + 2 + (p + 1)2) + i)p.

Thus, the second condition in the definition of a containment certificate is satisfied.

To see that A satisfies the third condition, let us consider the closed curve (in R
2)

determined by A by “connecting the dots”, meaning we draw a line segment between

two adjacent points (x, y, t) and (x′, y′, t′) ∈ A that satisfy

max{|x− x′|, |y − y′|} = 1.

Note that this produces a polygon P with nine sides. P separates R
2 into an interior

and an exterior. Since the interior has finite area as a subset of R
2, there are only a
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finite number of lattice points in the interior. Also, note that Sd is a subset of the

interior, thus any point on the exterior must cross P in order to reach any point is Sd.

This implies that the only vertices that have at least one path to a vertex in Sd without

passing through any vertex in A are precisely the lattice points in the interior of P ,

which is finite.

Lemma 4.3.4. Suppose f and g are two periodic functions such that f �∗ g. If there

is a containment certificate of f for Sd for all d ≥ 0, then there is a containment

certificate of g for Sd for all d ≥ 0.

Proof. Since f �∗ g, there exists n ∈ N such that

k∑

t=1

f(t) ≤
k∑

t=1

g(t)

for all k ≥ n. Since there is a containment certificate of f for Sd for all d ≥ 0, let

CSn+d+1
(f) be a containment certificate of f for Sn+d+1. We will use CSn+d+1

(f) to

construct a containment certificate of g for Sd. We order the elements in CSn+d+1
(f)

on the third coordinate such that

CSn+d+1
(f) = {(x1, y1, t1), (x2, y2, t2), ..., (xr , yr, tr)},

where t1 ≤ t2 ≤ ... ≤ tr. It is now easy to see that for all j ≥ 1,

tj∑

t=1

f(t) ≥ j.

Now define CSd
(g) to be

CSd
(g) = {(xj , yj, g

−1(j)) | 1 ≤ j ≤ r}.

Note that elements in CSn+d+1
(f) and CSd

(g) differ only the third coordinate. To prove

that CSd
(g) is indeed a containment certificate of g for Sd, we check the three conditions

in the definition of a containment certificate.

Condition 1: Note that

|{j ∈ N | g−1(j) = i}| = number of j such that min{k |∑k
t=1 g(t) ≥ j} = i

= g(i).



92

Thus CSd
(g) satisfies the first condition since there are exactly g(i) elements in CSd

(g)

where that the third coordinate is i.

Condition 2: For the second condition, first consider the case where (xj , yj, tj) ∈

C≤n
Sn+d+1

(f). This implies tj ≤ n. We want to show that d(Sd, (xj , yj)) ≥ g−1(j). We

claim that g−1(j) ≤ n. Suppose, for a contradiction that g−1(j) > n. By the definition

of g−1, this implies that
n∑

t=1

g(t) < j.

However,
n∑

t=1

f(t) ≥
tj∑

t=1

f(t) ≥ j ⇒
n∑

t=1

g(t) < j ≤
n∑

t=1

f(t),

which contradicts f �∗ g. So g−1(j) ≤ n. Since (xj, yj , tj) ∈ CSn+d+1
(f),

d(Sn+d+1, (xj , yj)) ≥ 1⇒ d(Sd, (xj , yj)) > n ≥ g−1(j)

and we are done. Next consider the case where (xj, yj , tj) ∈ C>n
Sn+d+1

(f). We claim that

g−1(j) ≤ tj. Suppose, for a contradiction that g−1(j) > tj. By the definition of g−1,

this implies that
tj∑

t=1

g(t) < j.

However,
tj∑

t=1

f(t) ≥ j ⇒
tj∑

t=1

g(t) < j ≤
tj∑

t=1

f(t),

which contradicts f �∗ g since tj > n. So g−1(j) ≤ tj . Since (xj, yj , tj) ∈ CSn+d+1
(f),

d(Sd, (xj , yj)) > d(Sn+d+1, (xj , yj)) ≥ tj ⇒ d(Sd, (xj , yj)) > g−1(j)

and we are done. Thus CSd
(g) satisfies the second condition in the definition of a

containment certificate.

Condition 3: The third condition follows naturally because CSn+d−1
(f) is a

containment certificate and the positions (xj , yj) determined by CSd
(g) and those de-

termined by CSn+d+1
(f) are exactly identical.

We are now ready to prove our main result.
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Theorem 4.3.5. Suppose a finite set S ⊂ Z× Z of vertices are initially set on fire. If

the number of firefighters available for deployment per time period is given by a periodic

function f such that Rf > 1.5, then there exists a containment certificate of f for S.

Proof. Suppose f is a periodic function such that Rf > 1.5. If pf = 1, this means that

f(t) ≥ 2 for all t. Fogarty [17] has shown that this is sufficient to contain the fire that

starts at any finite set S. Suppose pf ≥ 2. By Lemma 4.2.7, there exists some n ≥ 2

such that Fn2 �∗ f . Since F 2
n2 �∗ Fn2 and Gp �∗ F 2

n2 where p = 2(2n2 + 1), we have

Gp �∗ f .

Now let

d = max{|x|+ |y| | (x, y) ∈ S}.

By Lemma 4.3.3, there exists a containment certificate of Gp for Sd. By Lemma 4.3.4,

since Gp �∗ f , there also exists a containment certificate of f for Sd, CSd
(f). Since

S ⊆ Sd, by Lemma 3.1, CSd
(f) is also a containment certificate of f for S.

From this, we have a simple corollary that extends the space of functions for which

there are containment certificates:

Corollary 4.3.6. If

lim inf
n→∞

Rf (n) > 1.5,

then there is a containment certificate of f for any finite S.

Proof. Let l = lim inf
n→∞

Rf (n) and let r be a rational number satisfying 1.5 < r < l.

Additionally, let N be so that Rf (n) > r for all n > N . Let F be any periodic function

with ratio equal to r and consider the following function g:

g(t) =







0 for 0 < t < N

f(t−N) otherwise

Note that there exists a containment certificate for g for it is equivalent to having a

containment certificate for F . Additionally, note that g � f . Therefore, by Lemma

4.3.4, there is a containment certificate for f .
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Figure 4.4: A snapshot of a part of a containment scenario.

Figure 4.5: A legitimate modification made from Figure 4.4.

4.4 Lower bounds for convex containment certificates

The general containment certificate shown in Figure 4.3 admittedly looks a little bizarre,

but it comes as an artifact from the intention to place the firefighters as close to the

fire as possible. However, it isn’t necessary to always place the firefighters adjacent to

the fire to have the same effect. For example, consider Figure 4.4, a close-up of the

following simplistic situation that is the start of a firefighting scenario.

In Figure 4.4, five fighters are placed, all below the single fire. Due to the structure

of the infinite grid Z
2, we can shift the middle firefighter down one step without any

change in the possibility of full containment, as exemplified in Figure 4.5.

Being unconcerned about minimizing the total number of vertices that are burned,

the fighters can allow the fire to spread one step below, but that is as far as it can go

in that direction. The way the fire spreads otherwise is exactly the same as it was in

the initial placement.
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Indeed, we can go further and start with a containment certificate – i.e. a situation

where the fire has already been contained – and then try to “expand” the containment

wall as much as possible. This can be done easily with the help of a computer, but we

first would like to enumerate all of the ways pieces of wall could form. We can do so

easily with the help of a mathematical computer assistant such as Mathematica (code

is given at [39]), which was used in this case to find, using brute force, the following

list of 128 different ways a four-firefighter length of wall can be positioned relative to

the fire.

We can take advantage of this fact and extend this idea over all possible situations

that are seen in a containment certificate. Assume that we are dealing with a convex

containment certificate. The important part of the containment scenario is then a wall

around the set of fires; there may be firefighters completely “consumed” by the fire on

the inside of the outer wall, but those are irrelevant here. If we start at one fighter on

the outer wall and travel around the fire clockwise, we can view the next four fighters in

this wall and these four fighters will be in one of the 128 scenarios that were enumerated

using Mathematica. These 128 scenarios are shown in Figure 4.6 and Figure 4.7 and

follow the “right hand rule” in that we think of following the wall starting at the middle

of each example, and we view the fire as being to the right as we are going along the

wall.

Using the simple idea from the beginning of this section, we are able to modify some

of these 128 scenarios to take care of this fact and “push” the wall out as far as possible

while still containing the fire. This mapping is shown in Figures 4.8, 4.9, 4.10, 4.11,

4.12, 4.13, 4.14, and 4.15.

Notice that in each of the transformations, only the middle two pieces out of the four

are relocated, ensuring that the wall will still be contiguous after each stage. Hence, we

can repeat this process throughout, and given that the mapping of local transformations

is idempotent, this process will eventually converge. It turns out we always converge

into a well-behaved structure.

Definition A diamond containment certificate with corners (xS , yS) and (xN , yN ) is
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Figure 4.6: The first 64 of the 128 possible positions a group of four fighters could be

in.
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Figure 4.7: The second 64 of the 128 possible positions a group of four fighters could

be in.
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Figure 4.8: The wall transformation mapping for cases 1 through 16.
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Figure 4.9: The wall transformation mapping for cases 17 through 32.
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Figure 4.10: The wall transformation mapping for cases 33 through 48.
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Figure 4.11: The wall transformation mapping for cases 49 through 64.
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Figure 4.12: The wall transformation mapping for cases 65 through 80.
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Figure 4.13: The wall transformation mapping for cases 81 through 96.
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Figure 4.14: The wall transformation mapping for cases 97 through 112.
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Figure 4.15: The wall transformation mapping for cases 113 through 128.
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a containment certificate whose firefighters are the points (x, y) ∈ Z2 satisfying one of

the following two conditions:

•
∣
∣
∣
x−xS

y−yS

∣
∣
∣ = 1 and

∣
∣
∣
x−xN

y−yN

∣
∣
∣ ≥ 1, or

•
∣
∣
∣
x−xS

y−yS

∣
∣
∣ ≥ 1 and

∣
∣
∣
x−xN

y−yN

∣
∣
∣ = 1.

Remark Although it was not specified in the definition, the set of firefighters in a

diamond containment certificate will only be nonempty if 2xS , 2yS , 2xN , and 2yN are

all integers. However, for the rest of this chapter, we will assume that xS , yS, xN , and

yN are all integers, as all arguments will hold in the other cases.

Theorem 4.4.1. Any convex containment certificate C can be mapped to a diamond

containment certificate C′ that works for the same initial configuration and the same

number of turns.

Proof. To obtain the diamond, all one needs to do is start at some section of the

containment certificate and apply the mapping to the consecutive parts of the “slid-

ing window” around the containment certificate, until there are no more non-identity

transformations left (see [39] for a demonstration). The only configurations that map

to themselves are the ones that precisely are part of some diamond containment cer-

tificate. What is obtained at the end of the process, considering that we started with a

fully-contained wall and the wall’s integrity never changes during a transformation, is

a diamond containment certificate.

If the initial containment certificate is convex, then any application of the map-

ping that transforms part of the containment certificate still upholds the rules of the

containment certificate, so is still a solution to the initial configuration.

From Theorem 4.4.1, we can now show that there are functions f with Rf = 1.5 that

can not produce a convex containment certificate by showing that it can not produce

a diamond containment certificate. We will show this specifically with the function

f = [3, 0].

Corollary 4.4.2. There is no diamond containment certificate for f = [3, 0]. As a

consequence, there is no convex containment certificate for f , also.
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Figure 4.16: How the generic situation looks for having a diamond containment certifi-
cate (already predetermined) contain a fire starting at a single point.

Proof. We will assume that the fire starts at one point, (x, y), and a diamond with

corners (xS , yS) and (xN , yN ) is a diamond containment certificate. Additionally, we

may also assume without loss of generality that the corner (xS , yS) is the first corner

that the fire will approach, and we may also assume that x ≥ xS . Hence, part our

situation looks like the following, where the containment certificate is shown:

With this scenario, we will have a need for a total of 2(y − yS) + 1 + (x − xS)

firefighters by turn (x−xS)+(y−yS), where the 2(y−yS)+1 firefighters are needed at

positions (x1, y), (x1 +1, y−1), . . . , (xS , yS), (xS +1, yS +1), . . . , (x2, y) and the (x−xS)

firefighters are needed at positions (x2 +1, y+1), . . . , (x2 +x−xS , y+x−xS). However,

notice at this point that we will also need (x−xS) + (y− yS) firefighters to protect the

upper-left wall, as for each two turns past (x − xS) + (y − yS), two more firefighters

are needed, one on the lower-left and one on the lower-right wall, and the upper-left

firewall, which needs to be protected, also increases in length by one. Therefore, it is

necessary that

3

⌈
(x− xS) + (y − yS)

2

⌉

− (2(y − yS) + 1 + (x− xS)) ≤ (x− xS) + (y − yS),

or equivalently,

3

⌈
(x− xS) + (y − yS)

2

⌉

≤ 3(y − yS) + 2(x− xS) + 1. (4.1)
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We can check (4.1) by considering the following three cases:

• x = 2l, y = 2k: We have

2

⌈
2k + 2l

2

⌉

≤ 6k + 4l + 1

3(k + l) ≤ 6k + 4l + 1

0 ≤ 3k + l + 1

which is true, for it must be that |y| > |x| and so |k| > |l|.

• x = 2l, y = 2k + 1: We have

2

⌈
2k + 2l + 2

2

⌉

≤ 6k + 3 + 4l + 1

3(k + l + 1) ≤ 6k + 4l + 4

0 ≤ 3k + l + 1

which is still true, for even though |y| > |x|, it still implies here that |k| ≥ |l|.

• x = 2l + 1, y = 2k: We have

2

⌈
2k + 2l + 2

2

⌉

≤ 6k + 4l + 2 + 1

3(k + l + 1) ≤ 6k + 4l + 3

0 ≤ 3k + l

which is true for the same reasons as above.

From the calculations above we see that even though we might be able to have enough

firefighters at turn (x−xS)+(y−yS), we will not be able to protect the upper-left part

of the diamond in the future, when the whole upper-left section of the firewall hits it at

once. The calculations show that no matter what, we will not have enough firefighters

in total to protect all of the areas that need protected at that time, and hence there

are no diamond containment certificates, and so no convex containment certificates, for

[3, 0].
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4.5 Discussion and conclusion

For a given periodic function f and set S ⊂ Z × Z, if a containment certificate of f

for S exists, it is not necessarily unique. In fact, our initial efforts to prove Theorem

4.3.5 resulted in the construction of a containment certificate of the function Fn =

[

n
︷ ︸︸ ︷

1, 1, ..., 1,

n+1
︷ ︸︸ ︷

2, 2, ..., 2] for the set Sd, for every n ≥ 1 and d ≥ 0. Of course, with Lemmas

4.2.7 and 4.3.4, we are still able to arrive at Theorem 4.3.5. The containment certificate

of Fn differs significantly from the containment certificate of Gp for Sd presented in

Lemma 4.3.3. Our decision to present the containment certificate of Gp for Sd in this

chapter is based on its relative simpler form and ease of checking the three conditions

of a containment certificate.

In this chapter, we have established that if f is a periodic function with Rf > 1.5,

then for any d ≥ 0, there always exists a containment certificate of f for Sd. But what

about periodic functions f with Rf ≤ 1.5? Attempts have been made, for example,

with the function f = [2, 1] but with no success. Even in the simplest case when the

fire breaks out at just a single vertex of L2, we were unable to determine if there is a

containment certificate of f = [2, 1] for S0. Through our many attempts, however, we

believe that such a containment certificate does not exist.

Conjecture 9. There is no containment certificate of f = [2, 1] for S0.

In this light, if we define the following number:

R := inf{k ∈ R | ∀f with Rf = k there exists a CS(f) for any finite S}

then the research mentioned in Section 1 showed that 1 ≤ R ≤ 2, and this chapter has

shown that 1 ≤ R ≤ 1.5. So, it leads to the following question:

Question 1: What is R, exactly?

Note that if Conjecture 1 holds, then it would answer Question 1, and the answer

would be 1.5. It is clear, however, that new machinery beyond what is covered in this

chapter will be necessary to answer this question.

We wish to note, however, that containment certificates exist for “periodic” func-

tions with ratios less than 1.5. The reason for the quotation marks will become clear
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soon. Consider first the function

g = [4, 0, 0, 0, 0, 0, 0, 0].

Clearly there is a containment certificate of g for S0. However, by the way we defined

g we would have Rg = 0.5, which is much less than 1.5. We can extend this example

further to obtain ratios as close to 0 as possible where containment certificates still

exist.

For a more subtle second example, consider the function

f = [2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2].

This function has a containment certificate for S0, as shown in Figure 2:

m1
m1
m2

m2

l3
l3 l4

l4

l5
l5

l6
l6

l7
l7

l8
l10

l12

l14

l16

l18

l20

l9
l11

l13

l15

l17

l19

l21
l21

|
⋆ |||
|||||

|||
||||

| ||
||

||
||

||
||

|⋆ Initial fire

|Burnt vertices

li Firefighter placed on turn i

Figure 2
A not-so-nice containment certificate.

With the above example, we have reached a point at turn 8 where we were able

to just hold off the fire indefinitely. Hence we could place one fighter per turn at

this stage indefinitely without increasing the number of “exposed” vertices that could

catch on fire the next turn. Although the two examples above are valid examples in the

context of the chapter, they don’t contain the spirit of our chapter. Rather than finding
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functions with a certain ratio where containment certificates exist, we are interested in

the question of whether all functions with a given ratio admit containment certificates.

One final thing to notice is that the restriction on the periodicity of the function

can probably be relaxed. For any arbitrary function f : N→ N, it will still be true that

there exists a containment certificate of f for any finite S if f eventually dominates a

Fn for some n. Given f : N→ N and n ∈ N, we define the running ratio of f at n to be

Rf (n) :=

∑n
t=1 f(t)

n
.

The authors believe that the following conjecture is true.

Conjecture 10. If Rf (n) > 1.5 for all n and

lim inf
n→∞

Rf (n) > 1.5,

then there is a containment certificate of f for any finite S.

Finally, the authors wish to note that this chapter stemmed from questions arising

from epidemiology and that many extensions to this problem can be thought of by

thinking of the problem in this manner. In this simplified model of disease spread, the

nodes of the graph represent individuals in the population, and the edges represent

relations that may allow for disease spread. Therefore, the results in this chapter

could be translated into disease control for a population whose social structure is a

grid and for a disease that strikes neighbors the next time period after a person is

infected. While this is a very simplistic and unlikely setting for population structure

and disease spread, we invite readers to extend these results to more general types of

graphs and more interesting fire/disease behaviors that more accurate. For example, the

first modification that could be made to this problem is to add a probability parameter

p to the scenario, which would be the probability that a unprotected node would catch

fire given that a neighbor is on fire. Another possible modification would be to modify

the graph as t increases, presumably to represent the changes in inter-person behavior

as a day goes by: one is rarely likely to catch a disease from a co-worker at four in the

morning!
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Chapter 5

Conclusions and Further Work

In sum, this thesis detailed examples of situations where the use of the computer can

be of crucial use and importance in solving certain combinatorial problems. Behind all

of the work that the computer has done, it is important to remember that the need for

a well-crafted plan to be formulated, typically in the form of an enumeration scheme.

Traditionally most of this work falls under the banner of Experimental Mathematics,

and it should not be forgotten that just like in experiments in the other physical and

social sciences, the design and planning takes up 90% of the time and effort. The con-

jectures stated in the concluding subsections of the previous chapters will be presented

here again, along with potential research plans that are suitable even for interested

undergraduates.

5.1 Avoiding Differences

Research Plan 1. This research plan would focus solely on the algorithm devised for

finding and proving the behavior of {f∆(n)} and the value of µ(∆) for a given value

of ∆. The algorithm described in this thesis is decidedly inefficient at dealing with

large sets ∆. Related to this route is the question of what the pseudoperiod of {f∆(n)}

really is, as bounds for the pseudoperiod (and even the offset) would go long ways to

determining how far out in the sequence we need to look at to find the pseudoperiod.

Conjecture 1. The pseudoperiod of {f∆(n)} is bounded from above by
∑

∆.

Boris Bukh [5] recently claimed that a paper on tilings, which are finite sets X such

that there admits a set T such that {X + t | t ∈ T} is a partition of N (see [48] and

[46]), disproves this conjecture. However, this author believes this not to be the case, as
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these cyclic set witnesses aren’t necessary tilings nor derived from them. Nevertheless,

the author still wishes to state the conjecture, even though it may already be refuted.

Research Plan 2. One can use the computer programs in [41] to find more coun-

terexamples, beyond Shor’s, to the Triangle Conjecture. Is there anything in common

with all of these counterexamples? To the author, with Theorem 2.8.1 in mind, it

seems that such counterexamples are simply “growing pains” of sorts. Since the initial

growing pains are the worst, it suggests:

Conjecture 2. γ = 16
15 .

To this end, analyzing the TCC Poset would be fruitful.

Conjecture 3. All minimal elements X of the TCC poset satisfy |X| = m + 1.

Research Plan 3. Most of the analysis was focused on {f∆(n)}, but similar analysis

on the other quantities {f c
∆(n)}, {fD(n)}, and {f c

D
(n)} can be helpful if there is different

behavior. More broadly, an analysis should be done on enumeration schemes {f1, f2, . . .}

where all recurrences are of the form

fi(n) = max{fj(n− 1), 1 + fk(n− 1)}.

It is clear that the pseudoperiodicity of these sequences {fi} follow from this structure,

but is there a characterization looming?

Research Plan 4. Recall that the simplest example of a set of atoms that was not a

code was represented as an isosceles triangle in the plane. Similarly, a characterization

of the simplest example (or examples) involving four atoms can be made, and for larger

sets. It is then an interesting extremal graph theory problem to find the largest size of

a set of atoms that avoids these structures. The following is obviously true and should

not be difficult to prove:

Conjecture 4. There are f(m) isosceles triangles in Am, where

f(m) =







15
36m3 + 7

8m2 + 1
12m− 3

8 if m is odd

15
36m3 + 7

8m2 + 1
12m if m is even

.
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5.2 Spanning Trees in Grid Graphs

Research Plan 5. There is certainly plenty of consistent behavior with the charac-

teristic polynomials of these matrices that are created, and it may be worthwhile to

analyze the structure of the matrices themselves.

Conjecture 5. For the matrix M given in Theorem 3.7.1, the characteristic polynomial

χλ(M) factors over the integers into monomials whose degree is always a power of 2.

Conjecture 6. For any graph G, the recurrence {τG(n)} satisfies a linear recurrence

whose coefficients alternate in sign.

Towards analyzing specific matrices, it would be useful to restrict attention to spe-

cific classes of grid graphs, such as mentioned in the following conjectures.

Conjecture 7. The recurrence for the grid graph Gk(n) has order 2k−1.

Conjecture 8. The recurrence for the graph Kk × Pn has order k.

5.3 The Firefighter Problem

Research Plan 6. This thesis came close to completely solving the basic firefighter

problem in the two-dimensional grid, and it would be great to solve it completely.

Conjecture 9. There is no containment certificate of f = [2, 1] for S0.

Conjecture 10. If Rf (n) > 1.5 for all n and

lim inf
n→∞

Rf (n) > 1.5,

then there is a containment certificate of f for any finite S.

The reason the first conjecture of these two is still here is because we still cannot be

certain that a non-convex containment certificate does not exist.

Research Plan 7. This thesis introduced the novel idea of modifying the containment

certificates to obtain lower bounds. Are there similar modifications that can be done
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in other scenarios? The list of 128 transformations was specifically designed to take

advantage of the idea that having the firefighters on the diagonal is the most efficient

way to deal with the two-dimensional grid. This can be thought of a “dual” notion,

but how to formulate it specifically, and what other examples can be used here?

5.4 A Parting Statement

To whoever reads this: no matter what stage of life you are in, make sure that whatever

you do, you can say the following two things about it:

1. “I’m good at it.”

2. “I love it.”
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[2] Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff. A formally verified
proof of the prime number theorem. ACM Trans. Comput. Log., 9(1):Art. 2, 23,
2008.

[3] Gregory F. Bachelis. A short proof of Hall’s theorem on SDRs. Amer. Math.
Monthly, 109(5):473–474, 2002.

[4] J. Brown and R. Hoshino. Independence polynomials of circulants with an appli-
cation to music. 309(8):2292–2304, 2009.

[5] Boris Bukh. Personal communication.

[6] D. Cantor and B. Gordon. Sequences of integers with missing differences. Journal
of Combinatorial Theory, Series A, 14:281–287, 1973.

[7] E. J. Cockayne and S. T. Hedetniemi. On the diagonal queens domination problem.
J. Combin. Theory Ser. A, 42(1):137–139, 1986.

[8] Bruno Codenotti, Ivan Gerace, and Sebastiano Vigna. Hardness results and spec-
tral techniques for combinatorial problems on circulant graphs. Linear Algebra
Appl., 285(1-3):123–142, 1998.

[9] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. J. Symbolic Comput., 9(3):251–280, 1990.

[10] Clelia De Felice. On the triangle conjecture. Inform. Process. Lett., 14(5):197–200,
1982.

[11] M. Desjarlais and R. Molina. Counting spanning trees in grid graphs. Congressus
Numerantium, 145:177–185, 2000.

[12] M. Develin and S.G. Hartke. Fire containment in grids of dimension three and
higher. Discrete Applied Mathematics, 155(17):2257–2268, 2007.

[13] Paul A. Dreyer, Jr. and Fred S. Roberts. Irreversible k-threshold processes: graph-
theoretical threshold models of the spread of disease and of opinion. Discrete Appl.
Math., 157(7):1615–1627, 2009.

[14] F. J. Faase. Counting hamilton cycles in product graphs:
http://www.iwriteiam.nl/counting.html.



117

[15] F. J. Faase. On the number of specific spanning subgraphs of the graphs g × pn.
Ars Combinatoria, 49:129–154, 1998.

[16] Stephen Finbow, Andrew King, Gary MacGillivray, and Romeo Rizzi. The
firefighter problem for graphs of maximum degree three. Discrete Math.,
307(16):2094–2105, 2007.

[17] P. Fogarty. Catching the fire on grids. Master’s thesis, University of Vermont,
2003.

[18] M.J. Golin and Y. C. Leung. Unhooking circulant graphs: A combinatorial method
for counting spanning trees and other parameters. Lecture Notes in Computer
Science, 3353:296–307, 2004.

[19] Georges Gonthier. Formal proof—the four-color theorem. Notices Amer. Math.
Soc., 55(11):1382–1393, 2008.

[20] S. Gupta. Sets of integers with missing differences. Journal of Combinatorial
Theory, Series A, 89:55–69, 2000.

[21] Richard Guy. Personal communication.

[22] Thomas C. Hales. Formal proof. Notices Amer. Math. Soc., 55(11):1370–1380,
2008.
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