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Recurrence Relations

Definition
@ A recurrence relation (or recurrence) is an expression defining values

of a sequence of numbers (in this talk, integers) in terms of previous
values in the same sequence.

@ Example: F(n)=F(n—1)+ F(n—2)
@ A solution to a recurrence is a sequence of numbers whose terms
eventually satisfy a recurrence relation.

@ The terms in a solution that don't satisfy the recurrence are called
the initial condition.
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@ Simplest type of recurrence relation
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Linear Recurrences

@ Simplest type of recurrence relation
@ Terms defined as a fixed linear combination of previous terms
@ Prototypical example: Fibonacci numbers

@ Defined by F(1) =1, F(2) =1, F(n) = F(n—1) + F(n — 2) for
n>2
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Linear Recurrences

@ Simplest type of recurrence relation
@ Terms defined as a fixed linear combination of previous terms
@ Prototypical example: Fibonacci numbers
@ Defined by F(1) =1, F(2) =1, F(n) = F(n—1) + F(n — 2) for
n>2
o First few terms (A000045):
1,1,2,3,5,8,13,21,34,55,89,144,233,377
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Linear Recurrences

Simplest type of recurrence relation

Terms defined as a fixed linear combination of previous terms

Prototypical example: Fibonacci numbers
o Defined by F(1) =1, F(2) =1, F(n) = F(n— 1) + F(n — 2) for
n>2
o First few terms (A000045):
1,1,2,3,5,8,13,21, 34,55, 89, 144, 233, 377
Sequence of integers eventually satisfying a linear recurrence called
linear recurrent
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Linear Recurrences

Simplest type of recurrence relation

Terms defined as a fixed linear combination of previous terms

Prototypical example: Fibonacci numbers
o Defined by F(1) =1, F(2) =1, F(n) = F(n— 1) + F(n — 2) for
n>2
o First few terms (A000045):
1,1,2,3,5,8,13,21, 34,55, 89, 144, 233, 377
Sequence of integers eventually satisfying a linear recurrence called
linear recurrent

Closed forms for solutions, rational generating functions
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o No general theory of solutions
o Often highly sensitive to initial conditions
o Nested recurrences: A(n) = A(A(n — 1))
o Introduced by Douglas Hofstadter in 1963
o Highly sensitive to initial conditions
o Wide variety of behaviors, even for the same recurrence

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



Nested Recurrences

Solutions

More Complicated Recurrences

@ Nonlinear recurrences: A(n) = A(n—1)-A(n—2)
@ Occur in many real-world phenomena
o No general theory of solutions
o Often highly sensitive to initial conditions
o Nested recurrences: A(n) = A(A(n — 1))
o Introduced by Douglas Hofstadter in 1963
Highly sensitive to initial conditions

o
o Wide variety of behaviors, even for the same recurrence
o Many open questions of the form “Does this sequence even exist?”
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The Hofstadter Q-Sequence

@ Formulated by Douglas Hofstadter in 1963
@ Recurrence: Q(n) = Q(n— Q(n—1))+ Q(n— Q(n—2))

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



Nested Recurrences

The Hofstadter Q-Sequence

@ Formulated by Douglas Hofstadter in 1963
@ Recurrence: Q(n) = Q(n— Q(n—1))+ Q(n— Q(n—2))
o Initial Conditions: Q(1) = Q(2) =1
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The Hofstadter Q-Sequence

@ Formulated by Douglas Hofstadter in 1963
@ Recurrence: Q(n) = Q(n— Q(n—1))+ Q(n— Q(n—2))
o Initial Conditions: Q(1) = Q(2) =1

o Notation: (1,1)
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The Hofstadter Q-Sequence

Formulated by Douglas Hofstadter in 1963

@ Recurrence: Q(n) = Q(n— Q(n—1))+ Q(n— Q(n—2))
o Initial Conditions: Q(1) = Q(2) =1
o Notation: (1,1)
@ Reminiscent of Fibonacci definition; known as meta-Fibonacci
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The Hofstadter Q-Sequence

Formulated by Douglas Hofstadter in 1963

@ Recurrence: Q(n) = Q(n— Q(n—1))+ Q(n— Q(n—2))
o Initial Conditions: Q(1) = Q(2) =1
o Notation: (1,1)
@ Reminiscent of Fibonacci definition; known as meta-Fibonacci

Sample Calculation:

Q(3) = QB - Q(2) + QB - Q1))
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Nested Recurrences

The Hofstadter Q-Sequence

Formulated by Douglas Hofstadter in 1963

@ Recurrence: Q(n) = Q(n— Q(n—1))+ Q(n— Q(n—2))
o Initial Conditions: Q(1) = Q(2) =1
o Notation: (1,1)
@ Reminiscent of Fibonacci definition; known as meta-Fibonacci

Sample Calculation:

Q(3) = QB - Q(2) + QB - Q1))
=QB-1)+QB-1)
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Nested Recurrences

The Hofstadter Q-Sequence

Formulated by Douglas Hofstadter in 1963

@ Recurrence: Q(n) = Q(n— Q(n—1))+ Q(n— Q(n—2))
o Initial Conditions: Q(1) = Q(2) =1
o Notation: (1,1)
@ Reminiscent of Fibonacci definition; known as meta-Fibonacci

Sample Calculation:

Q(3)

Q3 -Q(2))+ Q(B—Q(1))
QB-1)+QB-1)
Q(2) + Q(2)
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Nested Recurrences

The Hofstadter Q-Sequence

Formulated by Douglas Hofstadter in 1963

@ Recurrence: Q(n) = Q(n— Q(n—1))+ Q(n— Q(n—2))
o Initial Conditions: Q(1) = Q(2) =1
o Notation: (1,1)
@ Reminiscent of Fibonacci definition; known as meta-Fibonacci
@ Sample Calculation:
Q(3) = QBB - Q(2)) + QB - Q(1))
=Q3-1)+Q@B-1)
=Q(2)+Q(2)
=1+1=2

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



Nested Recurrences

The Hofstadter Q-Sequence

Formulated by Douglas Hofstadter in 1963
Recurrence: Q(n) = Q(n— Q(n—1))+ Q(n— Q(n—2))
Initial Conditions: Q(1) = Q(2) =1

o Notation: (1,1)

Reminiscent of Fibonacci definition; known as meta-Fibonacci

Sample Calculation:

Q(3)

QB3 - Q(2)) + QBB - Q(1))
QB-1)+QB-1)
Q(2) + Q(2)

+1=

Il
—

2

First few terms (A005185):
1,1,2,3,3,45,5,6,6,6,8, 8,8, 10,9, 10, 11, 11, 12, 12, 12, 12, 16,
14, 14, 16, 16, 16, 16, 20, 17, 17, 20, 21, 19, 20
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o In general, very little

@ The pattern seen in the plot seems to continue
o If lim,_ oo @ exists, it equals %

o Well-defined for the first 1010 terms
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The Hofstadter Q-Sequence

o In general, very little
@ The pattern seen in the plot seems to continue
o If lim,_ o @ exists, it equals %

o Well-defined for the first 1010 terms

How could Q(n) be undefined?
o What if Q(n—1) > n?
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The Hofstadter Q-Sequence

o In general, very little
@ The pattern seen in the plot seems to continue

Qn)

o If lim,_ o exists, it equals %

o Well-defined for the first 1010 terms

How could Q(n) be undefined?
o What if Q(n—1) > n?

@ Then, Q(n) = Q(n— Q(n—1))+ Q(n— Q(n—2)), but
Q(n— Q(n—1)) is Q of a nonpositive number!
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The Hofstadter Q-Sequence

o In general, very little
@ The pattern seen in the plot seems to continue
o If lim,_ o @ exists, it equals %

o Well-defined for the first 1010 terms

How could Q(n) be undefined?
o What if Q(n—1) > n?

@ Then, Q(n) = Q(n— Q(n—1))+ Q(n— Q(n—2)), but
Q(n— Q(n—1)) is Q of a nonpositive number!

o If this happens, we say the sequence dies at index n.
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The Hofstadter Q-Sequence

o In general, very little
@ The pattern seen in the plot seems to continue
o If lim,_ o @ exists, it equals %

o Well-defined for the first 1010 terms

How could Q(n) be undefined?
o What if Q(n—1) > n?

@ Then, Q(n) = Q(n— Q(n—1))+ Q(n— Q(n—2)), but
Q(n— Q(n—1)) is Q of a nonpositive number!

o If this happens, we say the sequence dies at index n.

@ Open Question: Does the Hofstadter Q-sequence die?
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Cheating Death

Convention: If n <0, then Q(n) =0

o Sequence weakly dies at index n if nt" term depends on a term from
before the initial condition

@ Sequence strongly dies at index n if n'" term depends on itself or a
future term.
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Cheating Death

Convention: If n <0, then Q(n) =0

o Sequence weakly dies at index n if nt" term depends on a term from
before the initial condition

@ Sequence strongly dies at index n if nt" term depends on itself or a
future term.

Why this definition?

@ Allows us to consider wider variety of solutions
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Cheating Death

Convention: If n <0, then Q(n) =0

o Sequence weakly dies at index n if nt" term depends on a term from
before the initial condition

@ Sequence strongly dies at index n if nt" term depends on itself or a
future term.

Why this definition?

@ Allows us to consider wider variety of solutions
@ Not really cheating:
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Cheating Death

Convention: If n <0, then Q(n) =0

o Sequence weakly dies at index n if nt" term depends on a term from
before the initial condition

@ Sequence strongly dies at index n if nt" term depends on itself or a
future term.

Why this definition?

@ Allows us to consider wider variety of solutions

@ Not really cheating:
Can still ask: “Does Q(n — 1) ever exceed n?”
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In general, interested in solutions to nested recurrences

Often solutions to the Hofstadter Q-recurrence with different initial
conditions
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Nested Recurrences

t Solutions

Beyond the Hofstadter Q-sequence

In general, interested in solutions to nested recurrences

Often solutions to the Hofstadter Q-recurrence with different initial
conditions

Often solutions to other related recurrences
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Slow Solutions

An integer sequence is called slow if it is monotone increasing and
differences between successive terms are always 0 or 1.
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Definition
An integer sequence is called slow if it is monotone increasing and
differences between successive terms are always 0 or 1.

Some solutions to nested recurrences are also slow
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Slow Solutions

Definition
An integer sequence is called slow if it is monotone increasing and
differences between successive terms are always 0 or 1.

Some solutions to nested recurrences are also slow

Example: Conolly’'s sequence (A046699)
01,1,2,2,3,4,4,4,5,6,6,7,8,8,8,8,9,10,10,11,12,12,12,13, ...
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Slow Solutions

Definition
An integer sequence is called slow if it is monotone increasing and
differences between successive terms are always 0 or 1.

Some solutions to nested recurrences are also slow

Example: Conolly’'s sequence (A046699)
0 1,1,2,2,3,4,4,4,5,6,6,7,8,8,8,8,9,10,10,11, 12,12, 12,13, ...
o Satisfies recurrence C(n) = C(n— C(n—1))+ C(n—1— C(n—2))
with initial conditions (1, 1).
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Slow Solutions

Definition
An integer sequence is called slow if it is monotone increasing and
differences between successive terms are always 0 or 1.

Some solutions to nested recurrences are also slow

Example: Conolly’'s sequence (A046699)
01,1,2,2,3,4,4,4,5,6,6,7,8,8,8,8,9, 10, 10,11, 12,12, 12,13, . ..
o Satisfies recurrence C(n) = C(n— C(n—1))+ C(n—1— C(n—2))
with initial conditions (1, 1).

@ Slow solutions studied extensively by Tanny and others
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Slow Solutions

Definition

An integer sequence is called slow if it is monotone increasing and
differences between successive terms are always 0 or 1.

Some solutions to nested recurrences are also slow
Example: Conolly’'s sequence (A046699)
0 1,1,2,2,3,4,4,4,5,6,6,7,8,8,8,8,9,10,10,11,12,12, 12,13, ...

o Satisfies recurrence C(n) = C(n— C(n—1))+ C(n—1— C(n—2))
with initial conditions (1, 1).

@ Slow solutions studied extensively by Tanny and others

@ Some, like Conolly's sequence, have combinatorial interpretations in
terms of counting leaves in certain tree structures.
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Slow Solutions

Definition

An integer sequence is called slow if it is monotone increasing and
differences between successive terms are always 0 or 1.

Some solutions to nested recurrences are also slow
Example: Conolly’'s sequence (A046699)
0 1,1,2,2,3,4,4,4,5,6,6,7,8,8,8,8,9,10,10,11,12,12, 12,13, ...

o Satisfies recurrence C(n) = C(n— C(n—1))+ C(n—1— C(n—2))
with initial conditions (1, 1).

@ Slow solutions studied extensively by Tanny and others

@ Some, like Conolly's sequence, have combinatorial interpretations in
terms of counting leaves in certain tree structures.

@ Others have no known such interpretations.
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Slow Solutions

Other Slow Solutions to Nested Recurrences

o Hofstadter-Conway $10000 Sequence (A004001):
A(n) = A(A(n—1)) + A(n — A(n — 1)),
I.C. (1,1) [Conway, Mallows]
1,1,2,2,3,4,4,4,5,6,7,7,8,8,8, 8,09, 10, 11, 12, 12
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Special Initial Cof Linear-Recurrent Solutions
Re

Slow Solutions

Other Slow Solutions to Nested Recurrences

o Hofstadter-Conway $10000 Sequence (A004001):
A(n) = A(A(n—1)) + A(n — A(n — 1)),
I.C. (1,1) [Conway, Mallows]
1,1,2,2,3,4,4,4,5,6,7,7,8,8,8, 8,09, 10, 11, 12, 12

o Hofstadter V-sequence (A063882):
V(n)=V(n—V(n-1))+ V(n—V(n—4)),
I.C. (1,1,1,1) [Balamohan, Kuznetsov, Tanny]
1,1,1,1,2,3,4,5,5,6,6,7,8,8, 9,9, 10, 11, 11, 11, 12
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Slow Solutions

Other Slow Solutions to Nested Recurrences

o Hofstadter-Conway $10000 Sequence (A004001):
A(n) = A(A(n—1)) + A(n — A(n — 1)),
I.C. (1,1) [Conway, Mallows]
1,1,2,2,3,4,4,4,5,6,7,7,8,8,8, 8,09, 10, 11, 12, 12

o Hofstadter V-sequence (A063882):
V(n)=V(n—V(n-1))+ V(n—V(n—4)),
I.C. (1,1,1,1) [Balamohan, Kuznetsov, Tanny]
1,1,1,1,2,3,4,5,5,6,6,7,8,8, 9,9, 10, 11, 11, 11, 12

@ B(n)=B(n—B(n—1))+ B(n— B(n—2))+ B(n— B(n—3)),
1.C. (1,2,3,4,5) [F., A278055]
1,2,3,45,6,6,7,8,9,9, 10, 11, 12, 12, 13, 14, 15, 15
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@ Nested Recurrences

@ Linear-Recurrent Solutions
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Golomb’s Solution

Golomb's Sequence (1990)

@ Same recurrence as Hofstadter:

Qc(n) = Qc(n— Qs(n — 1)) + Qe(n — Qs(n — 2))
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Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

Golomb’s Solution

Golomb's Sequence (1990)

@ Same recurrence as Hofstadter:
Qs(n) = Qg(n — Qe(n —1)) + Qs (n — Qe (n - 2))
o Initial Conditions: (3,2, 1)
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Linear-Recurrent Solutions

Golomb’s Solution

Golomb's Sequence (1990)
@ Same recurrence as Hofstadter:
Qs(n) = Qe(n — Qe(n —1)) + Qe(n — Qe(n - 2))
o Initial Conditions: (3,2, 1)
First few terms (A244477):

3,2,1,3,5,4,3,8,7, 3,11, 10, 3, 14, 13, 3, 17, 16, 3, 20, 19, 3, 23,
22, 3, 26, 25, 3, 29, 28, 3, 32, 31, 3, 35, 34, 3, 38, 37
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Golomb's Solution

Golomb's Sequence (1990)
@ Same recurrence as Hofstadter:
Qs(n) = Qe(n — Qe(n —1)) + Qe(n — Qe(n - 2))
o Initial Conditions: (3,2, 1)
First few terms (A244477):
3,2,1,3,5,4, 3,8,7, 3,11, 10, 3, 14, 13, 3, 17, 16, 3, 20, 19, 3, 23,
22,3, 26, 25, 3, 29, 28, 3, 32, 31, 3, 35, 34, 3, 38, 37

Formula
(*] Q(;(3k) =3k -2
0 Qc(Bk+1)=3
o Qc(3k+2)=3k+2
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Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

Proof of Golomb’s Solution

o Qc(3k) =3k -2 e Qc(1)=3
° Qe(3k+1)=3 ° Qs(2) =2
o Qc(Bk+2)=3k+2 e Qc(3)=1

Proof by induction

O
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Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

Proof of Golomb’s Solution

o Qc(3k) =3k -2 e Qc(1)=3
° Qe(3k+1)=3 ° Qs(2) =2
o Qc(Bk+2)=3k+2 e Qc(3)=1

Proof by induction

Qc(3k) = Qc(3k — Qc(3k — 1)) + Qc(3k — Q6 (3k — 2))

O
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Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

Proof of Golomb’s Solution

o Qc(3k) =3k -2 e Qc(1)=3
° Qe(3k+1)=3 ° Qs(2) =2
o Qc(Bk+2)=3k+2 e Qc(3)=1

Proof by induction

Qc(3k) = Qc(3k — Qc(3k — 1)) + Qc(3k — Qc(3k — 2))
= Qc(Bk — Qc(3(k—1)+2))+ Qc(3k — Qc(3(k—1) +1))

O
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Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

Proof of Golomb’s Solution

o Qc(3k) =3k -2 e Qc(1)=3
° Qe(3k+1)=3 ° Qs(2) =2
o Qc(Bk+2)=3k+2 e Qc(3)=1

Proof by induction

Qc(3k) = Qc(3k — Qc(3k — 1)) + Qc(3k — Qc(3k — 2))
= Qc(Bk— Qc(3(k—1)+2)) + Qc(3k — Qc(3(k — 1) + 1))
=Qc(B3k—(3(k—1)+2))+ Qc(3k—3)

O
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Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

Proof of Golomb’s Solution

o Qc(3k) =3k -2 e Qc(1)=3
° Qe(3k+1)=3 ° Qs(2) =2
o Qc(Bk+2)=3k+2 e Qc(3)=1

Proof by induction

Qc(3k) = Qc(3k — Qc(3k — 1)) + Q¢ (3k — Qs(3k — 2))
=Qc(Bk— Qc(B(k—1)+2))+ Qc(3k — Qc(3(k— 1)+ 1))
= Qc(3k—(3(k—1)+2))+ Qc(3k —3)
= Qc(1) + Qs (3(k—1))

O
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Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

Proof of Golomb’s Solution

o Qc(3k) =3k -2 e Qc(1)=3
° Qe(3k+1)=3 ° Qs(2) =2
o Qc(Bk+2)=3k+2 e Qc(3)=1

Proof by induction

Qc(3k) = Qc(3k — Qc(3k — 1)) + Q¢ (3k — Qs(3k — 2))
=Qc(Bk— Qc(B(k—1)+2))+ Qc(3k — Qc(3(k— 1)+ 1))
= Qc(3k—(3(k—1)+2))+ Qc(3k —3)
=Qc(1) + Qc(3(k—1))=3+@B(k—1)-2) =

O

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

Proof of Golomb’s Solution

o Qc(3k) =3k -2 e Qc(1)=3
° Qe(3k+1)=3 ° Qs(2) =2
o Qc(Bk+2)=3k+2 e Qc(3)=1

Proof by induction

Qc(3k) = Qc(3k — Qc(3k — 1)) + Qc(3k — Qs(3k — 2))
=Qc(Bk— Qc(B(k—1)+2))+ Qc(3k — Qc(3(k— 1)+ 1))
= Qc(3k—(3(k—1)+2))+ Qc(3k —3)
= Qc(1)+ Qe(3(k—1)) =3+ (3(k—1)—2) =3k -2

O
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Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

Proof of Golomb’s Solution

o Qc(3k) =3k -2 e Qc(1)=3
° Qe(3k+1)=3 ° Qs(2) =2
o Qc(Bk+2)=3k+2 e Qc(3)=1

Proof by induction

QRc(3k) = Qc(Bk — Qc(3k — 1)) + Qe (3k — Qs (3k — 2))
= Qc(B3k — Qc(3(k—1)+2)) + Qc(3k — Qc(3(k— 1) + 1))
= Qc(3k—(3(k—1)+2)) + Qc(3k —3)
=Qc(1)+ Qc(3(k—1)=3+B(k—1)—2)=3k—2
Other two cases similar
O
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Nested Recurrences

Slow Solutions
Linear-Recurrent Solutions

Proof of Golomb’s Solution

o Qc(3k) =3k -2 e Qc(1)=3
° Qe(3k+1)=3 ° Qs(2) =2
o Qc(Bk+2)=3k+2 e Qc(3)=1

Proof
Proof by induction

Qc(3k) = Qc(3k — Qc(3k — 1)) + Qc(3k — Qs(3k — 2))
=Qc(Bk— Qc(B(k—1)+2))+ Qc(3k — Qc(3(k— 1)+ 1))
= Qc(3k—(3(k—1)+2))+ Qc(3k —3)
= Qc(1)+ Qe(3(k—1)) =3+ (3(k—1)—2) =3k -2

Other two cases similar
Base case: Initial conditions O]
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Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

Ruskey's Solution

Ruskey's Sequence (2011)

@ Same recurrence as Hofstadter:

Qr(n) = Qr(n — Qr(n—1)) + Qr(n — Qr(n —2))
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Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

Ruskey's Solution

Ruskey's Sequence (2011)

@ Same recurrence as Hofstadter:
Qr(n) = Qr(n — Qr(n— 1)) + Qr(n — Qr(n — 2))
o Initial Conditions: (3,6,5,3,6,8) (and Qr(n) =0 if n < 0)
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Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

Ruskey's Solution

Ruskey's Sequence (2011)
@ Same recurrence as Hofstadter:
Qr(n) = Qr(n — Qr(n—1)) + Qr(n — Qr(n —2))
o Initial Conditions: (3,6,5,3,6,8) (and Qr(n) =0 if n < 0)
First few terms (A188670):

3,6,5,3,6,8, 3,6, 13, 3,6, 21, 3, 6, 34, 3, 6, 55, 3, 6, 89, 3, 6, 144, 3,
6, 233, 3, 6, 377, 3, 6, 610, 3, 6, 987, 3, 6, 1597
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Nested Recurrences
Slow Solutions
Linear-Recurrent Solutions

Ruskey's Solution

Ruskey's Sequence (2011)
@ Same recurrence as Hofstadter:
Qr(n) = Qr(n — Qr(n—1)) + Qr(n — Qr(n —2))
o Initial Conditions: (3,6,5,3,6,8) (and Qr(n) =0 if n < 0)
First few terms (A188670):
3,6,5,3,6,8, 3,6, 13, 3,6, 21, 3, 6, 34, 3, 6, 55, 3, 6, 89, 3, 6, 144, 3,
6, 233, 3, 6, 377, 3, 6, 610, 3, 6, 987, 3, 6, 1597

Formula
o Qr(3k) = F(k +4), where F means Fibonacci

o Qr(3k+1)=3
o Qr(Bk+2)=6
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Discovering More Golomb/Ruskey-Like Solutions

@ Discovering More Golomb/Ruskey-Like Solutions
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Discovering More Golomb/Ruskey-Like Solutions

General Framework

@ Goal: Find a bunch of solutions to the Hofstadter Q-recurrence that
are eventually interleavings of nice sequences
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Discovering More Golomb/Ruskey-Like Solutions

General Framework

@ Goal: Find a bunch of solutions to the Hofstadter Q-recurrence that
are eventually interleavings of nice sequences

@ Try to generalize the proof of Golomb's solution
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Discovering More Golomb/Ruskey-Like Solutions

General Framework

@ Goal: Find a bunch of solutions to the Hofstadter Q-recurrence that
are eventually interleavings of nice sequences

@ Try to generalize the proof of Golomb's solution
o Tedious and mechanical
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Discovering More Golomb/Ruskey-Like Solutions

General Framework

@ Goal: Find a bunch of solutions to the Hofstadter Q-recurrence that
are eventually interleavings of nice sequences
@ Try to generalize the proof of Golomb's solution

o Tedious and mechanical
o Make a computer do it
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Discovering More Golomb/Ruskey-Like Solutions

General Framework

@ Goal: Find a bunch of solutions to the Hofstadter Q-recurrence that
are eventually interleavings of nice sequences

@ Try to generalize the proof of Golomb's solution

o Tedious and mechanical
o Make a computer do it

o Same method will also work for other recurrences

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



Discovering More Golomb/Ruskey-Like Solutions

General Framework

@ Goal: Find a bunch of solutions to the Hofstadter Q-recurrence that
are eventually interleavings of nice sequences

@ Try to generalize the proof of Golomb's solution

o Tedious and mechanical
o Make a computer do it

o Same method will also work for other recurrences

@ Relies heavily on symbolic computation
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Discovering More Golomb/Ruskey-Like Solutions

Steps for Discovering Solutions

Steps (to be illustrated by example)

@ Decide how many sequences to interleave (we'll call m)
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Discovering More Golomb/Ruskey-Like Solutions

Steps for Discovering Solutions

Steps (to be illustrated by example)

@ Decide how many sequences to interleave (we'll call m)
@ Choose behaviors of subsequences (which introduces unknowns )
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Discovering More Golomb/Ruskey-Like Solutions

Steps for Discovering Solutions

Steps (to be illustrated by example)

@ Decide how many sequences to interleave (we'll call m)
@ Choose behaviors of subsequences (which introduces unknowns )
o Constant: L(mk +r) = pu,
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Discovering More Golomb/Ruskey-Like Solutions

Steps for Discovering Solutions

Steps (to be illustrated by example)

@ Decide how many sequences to interleave (we'll call m)
@ Choose behaviors of subsequences (which introduces unknowns )

o Constant: L(mk +r) = pu,
o Linear with slope 1: L(mk + r) = mk + p,
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Discovering More Golomb/Ruskey-Like Solutions

Steps for Discovering Solutions

Steps (to be illustrated by example)

@ Decide how many sequences to interleave (we'll call m)
@ Choose behaviors of subsequences (which introduces unknowns )

o Constant: L(mk +r) = pu,
o Linear with slope 1: L(mk + r) = mk + p,
L(mk+r) >1

o Faster-growing: lim
€ g k— o0 mk
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Discovering More Golomb/Ruskey-Like Solutions

Steps for Discovering Solutions

Steps (to be illustrated by example)

@ Decide how many sequences to interleave (we'll call m)
@ Choose behaviors of subsequences (which introduces unknowns )

o Constant: L(mk +r) = pu,
o Linear with slope 1: L(mk + r) = mk + p,
L(mk+r) >1

o Faster-growing: lim
€ g k— o0 mk

© Inductively unpack the recurrence in terms of the unknowns
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Discovering More Golomb/Ruskey-Like Solutions

Steps for Discovering Solutions

Steps (to be illustrated by example)

@ Decide how many sequences to interleave (we'll call m)
@ Choose behaviors of subsequences (which introduces unknowns )

o Constant: L(mk +r) = pu,
o Linear with slope 1: L(mk + r) = mk + p,
L(mk+r) >1

o Faster-growing: lim
€ g k— o0 mk

© Inductively unpack the recurrence in terms of the unknowns

@ Check for structural consistency
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Discovering More Golomb/Ruskey-Like Solutions

Steps for Discovering Solutions

Steps (to be illustrated by example)

@ Decide how many sequences to interleave (we'll call m)
@ Choose behaviors of subsequences (which introduces unknowns )

o Constant: L(mk +r) = pu,
o Linear with slope 1: L(mk + r) = mk + p,
L(mk+r) >1

o Faster-growing: lim
€ g k— o0 mk

© Inductively unpack the recurrence in terms of the unknowns

@ Check for structural consistency

© Formulate constraints on values for unknowns
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Discovering More Golomb/Ruskey-Like Solutions

Steps for Discovering Solutions

Steps (to be illustrated by example)

@ Decide how many sequences to interleave (we'll call m)
@ Choose behaviors of subsequences (which introduces unknowns )

o Constant: L(mk +r) = pu,
o Linear with slope 1: L(mk + r) = mk + p,
L(mk+r) >1

o Faster-growing: kIer;o r
© Inductively unpack the recurrence in terms of the unknowns
@ Check for structural consistency

@ Formulate constraints on values for unknowns

@ Try to satisfy the constraints
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Discovering More Golomb/Ruskey-Like Solutions

Steps for Discovering Solutions

Steps (to be illustrated by example)

@ Decide how many sequences to interleave (we'll call m)
@ Choose behaviors of subsequences (which introduces unknowns )

o Constant: L(mk +r) = pu,
o Linear with slope 1: L(mk + r) = mk + p,
L(mk+r) >1

o Faster-growing: kIer;o r
© Inductively unpack the recurrence in terms of the unknowns
@ Check for structural consistency

@ Formulate constraints on values for unknowns

@ Try to satisfy the constraints

@ Find an initial condition
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Nested Recurrence:
Discovering More Golomb/Ruskey-Like Solutions
Sp al Initial Condition:

Re

First Two Steps

Running Example

We'll discover another solution to the Q-recurrence with 3 interleaved
subsequences.

o Step 1: Search for solutions with 3 interleaved sequences (m = 3)
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Nested Recurrence:
Discovering More Golomb,/Ruskey-Like Solutions
Special Initial Co

Re

First Two Steps

Running Example

We'll discover another solution to the Q-recurrence with 3 interleaved
subsequences.

o Step 1: Search for solutions with 3 interleaved sequences (m = 3)

o Step 2: Specify the behaviors of the 3 interleaved sequences (pg, 1,
and pp are unknowns):
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Nested Recurrence:
Discovering More Golomb/Ruskey-Like Solutions
Special Initial Condition

Refe

First Two Steps

Running Example

We'll discover another solution to the Q-recurrence with 3 interleaved
subsequences.

o Step 1: Search for solutions with 3 interleaved sequences (m = 3)

o Step 2: Specify the behaviors of the 3 interleaved sequences (pg, 1,
and pp are unknowns):

o Linear with slope 1: Q(3k) = 3k + 1o
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Nested Recurrence:
Discovering More Golomb/Ruskey-Like Solutions
Special Initial Condition

Refe

First Two Steps

Running Example

We'll discover another solution to the Q-recurrence with 3 interleaved
subsequences.

o Step 1: Search for solutions with 3 interleaved sequences (m = 3)

o Step 2: Specify the behaviors of the 3 interleaved sequences (pg, 1,
and pp are unknowns):
o Linear with slope 1: Q(3k) = 3k + 1o
o Constant: Q(3k +1) =
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Nested Recurrence:
Discovering More Golomb/Ruskey-Like Solutions
Special Initial

Ref

First Two Steps

Running Example

We'll discover another solution to the Q-recurrence with 3 interleaved
subsequences.

o Step 1: Search for solutions with 3 interleaved sequences (m = 3)
o Step 2: Specify the behaviors of the 3 interleaved sequences (pg, 1,
and pp are unknowns):
o Linear with slope 1: Q(3k) =3k + 1o
o Constant: Q(3k +1) =
o Constant: Q(3k +2) =
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\
Discovering More Golomb/Ru
Speciz

Unpacking the Recurrence Inductively

Running Example

o Linear with slope 1: Q(3k) = 3k + o
o Constant: Q(3k +1) =

o Constant: Q(3k +2) = u»

@ Step 3: Unpack the recurrence:

Q(3k) = Q(3k — Q(3k — 1)) + Q(3k — Q(3k —2))
= Q(?)k — u2) + Q(3k — p1)
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Discovering More Golomb/Ru
Speciz

Unpacking the Recurrence Inductively

Running Example

o Linear with slope 1: Q(3k) = 3k + o
o Constant: Q(3k +1) =

o Constant: Q(3k +2) = u»

@ Step 3: Unpack the recurrence:

Q(3k) = Q(3k — Q(3k — 1)) + Q(3k — Q(3k — 2))
= Q(?)k — u2) + Q(3k — p1)
QBBk+1) = Q(3k+1— Q(3k)) + Q(3k + 1 — Q(3k — 1))
= Q(Bk+1— (3k+ o)) + QBk + 1 — o)
= Q1 — o) + QBk +1— p2)
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Nested
Discovering More Golomb/Ruske;
Special Initial

ke Solutions

Unpacking the Recurrence Inductively

Running Example

o Linear with slope 1: Q(3k) = 3k + o
o Constant: Q(3k +1) =

o Constant: Q(3k +2) = u»

@ Step 3: Unpack the recurrence:

Q(3k) = Q(3k — Q(3k — 1)) + Q(3k — Q(3k — 2))

= Q(3k — p2) + Q(3k — 1)

QBk+1) = QBk+1—-Q(3k)+ QBk+1— Q(Bk —1))
= QBk+1—(3k+p0))+ QBk+1— )
= Q1 — o) + QBk +1— p2)

Q(3k +2) = A3k + 2 — Q(3k + 1)) + Q(3k + 2 — Q(3kK))
= Q(Bk +2— )+ Q(Bk + 2 — (3k + o))
= QBk+2— ) + Q2 — po)
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Discovering More Golomb/Ruskey-Like Solutions

Unpacking the Recurrence Inductively

@ What can we do with expressions like Q(3k — p2), Q(1 — o), etc.?
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Discovering More Golomb/Ruskey-Like Solutions

Unpacking the Recurrence Inductively

@ What can we do with expressions like Q(3k — p2), Q(1 — o), etc.?

° Q(l — pp): constant; can now be treated as an unknown
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Discovering More Golomb/Ruskey-Like Solutions

Unpacking the Recurrence Inductively

@ What can we do with expressions like Q(3k — p2), Q(1 — o), etc.?
° Q(l — pp): constant; can now be treated as an unknown

° C")(3k — pp): congruence class of pp mod 3 determines which case
we are in.
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Discovering More Golomb/Ruskey-Like Solutions

Unpacking the Recurrence Inductively

@ What can we do with expressions like Q(3k — p2), Q(1 — o), etc.?
° Q(l — pp): constant; can now be treated as an unknown

° C")(3k — pp): congruence class of pp mod 3 determines which case
we are in.

@ Must decide congruence classes of w1, and .
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Discovering More Golomb/Ruskey-Like Solutions

Unpacking the Recurrence Inductively

What can we do with expressions like Q(3k — p2), Q(1 — o), etc.?

Q(1 — pp): constant; can now be treated as an unknown

Q(3k — pp): congruence class of pp mod 3 determines which case
we are in.

Must decide congruence classes of p1, and po.

Computer doesn’t know what we're aiming for, so it tries all
possibilities and reports back.
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Discovering More Golomb/Ruskey-Like Solutions

Unpacking the Recurrence Inductively

@ What can we do with expressions like Q(3k — p2), Q(1 — o), etc.?

@ Q(1 — up): constant; can now be treated as an unknown

@ Q(3k — pp): congruence class of pp mod 3 determines which case
we are in.

@ Must decide congruence classes of w1, and .

o Computer doesn’t know what we're aiming for, so it tries all
possibilities and reports back.

@ We know what we're aiming for, so we'll suppose the computer is
checking:
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Discovering More Golomb/Ruskey-Like Solutions

Unpacking the Recurrence Inductively

@ What can we do with expressions like Q(3k — p2), Q(1 — o), etc.?

@ Q(1 — up): constant; can now be treated as an unknown

@ Q(3k — pp): congruence class of pp mod 3 determines which case
we are in.

@ Must decide congruence classes of w1, and .

o Computer doesn’t know what we're aiming for, so it tries all
possibilities and reports back.

@ We know what we're aiming for, so we'll suppose the computer is
checking:

e p1 = 0(mod3)
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Discovering More Golomb/Ruskey-Like Solutions

Unpacking the Recurrence Inductively

@ What can we do with expressions like Q(3k — p2), Q(1 — o), etc.?

@ Q(1 — up): constant; can now be treated as an unknown

@ Q(3k — pp): congruence class of pp mod 3 determines which case
we are in.

@ Must decide congruence classes of w1, and .
o Computer doesn’t know what we're aiming for, so it tries all
possibilities and reports back.

@ We know what we're aiming for, so we'll suppose the computer is
checking:
e p1 = 0(mod3)
o pp =2(mod3)
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Nested R
Discovering More Golomb/Ruskey-
Special |

Unpacking the Recurrence Inductively

o 3 =0(mod3)
@ pp =2(mod3)

Q( k) =3k + o
QBBk+1) =
Q(3k) = o

Running Example: Continuing to Unpack

Q(3k) = Q(3k — p2) + Q(3k — 1)
= p1 +3(k — %)Jrﬂo

e © ¢

=3k + po
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Nested R
Discovering More Golomb/Ruskey-
Special |

Unpacking the Recurrence Inductively

o 3 =0(mod3) o Q(3k) =3k + o
@ i =2(mod3) o QBk+1) =
o Q(3k) = pa

Running Example: Continuing to Unpack

Q(3k) = Q(3k — p2) + Q(3k — 1)
= p1 +3(k — %)Jrﬂo

=3k + po
Q(3k +1) = Q(1 — o) + Q(3k +1 — p2)
= Q1 — po) + 2
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Unpacking the Recurrence Inductively

o 3 =0(mod3) o Q(3k) =3k + o
@ i =2(mod3) o QBk+1) =
o Q(3k) = pa

Running Example: Continuing to Unpack

Q(3k) = Q(3k — p2) + Q(3k — 1)
= p1 +3(k — %)Jrﬂo

=3k + o

Q(Bk+1) = Q(1 — po) + Q(3k + 1 — p2)
= Q(1 — po) + p2

Q(Bk +2) = Q(Bk +2 — 1) + Q(2 — po)
= o + Q(2 — po)
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Discovering More Golomb/Ruskey-Like Solutions

Structural Consistency

o Q(3k) =3k + o o Q(3k) =3k + o

o QBk+1)=Q(1— po) + p2 o QBk+1)=1u

o Q(Bk+2) =2+ Q2 — po) o Q(3k) = o

Running Example

o Step 4: Structural Consistency

o Need the unpacked expression for each subsequence to have the
appropriate type
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Discovering More Golomb/Ruskey-Like Solutions

Structural Consistency

o Q(3k) =3k + o o Q(3k) =3k + o

o QBk+1)=Q(1— po) + p2 o QBk+1)=1u

o Q(Bk+2) =2+ Q2 — po) o Q(3k) = o

Running Example

o Step 4: Structural Consistency

o Need the unpacked expression for each subsequence to have the
appropriate type
o 3k + po is linear with slope 1
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Discovering More Golomb/Ruskey-Like Solutions

Structural Consistency

o Q(3k) =3k + o o Q(3k) =3k + o

o QBk+1)=Q(1— po) + p2 o QBk+1)=1u

o Q(Bk+2) =2+ Q2 — po) o Q(3k) = o

Running Example

o Step 4: Structural Consistency
o Need the unpacked expression for each subsequence to have the
appropriate type
o 3k + po is linear with slope 1
o Q(1 — po) + 2 is constant
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Discovering More Golomb/Ruskey-Like Solutions

Structural Consistency

o Q(3k) =3k + o o Q(3k) =3k + o

o QBk+1)=Q(1— po) + p2 o QBk+1)=1u

o Q(Bk+2) =2+ Q2 — po) o Q(3k) = o

Running Example

o Step 4: Structural Consistency
o Need the unpacked expression for each subsequence to have the
appropriate type
o 3k + po is linear with slope 1
o Q(1 — po) + 2 is constant
o pa + Q(2 — po) is constant
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Discovering More Golomb/Ruskey-Like Solutions

Determining Constraints

o Q(3k) =3k + o o Q(3k) =3k + o

o QBk+1)=Q(1— o) + p2 o QBk+1)=y

o QBk+2) =2+ Q2 —) o QBK) =

Running Example

o Step 5: Constraints
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Discovering More Golomb/Ruskey-Like Solutions

Determining Constraints

o Q(3k) =3k + o o Q(3k) =3k + o

o QBk+1)=Q(1— o) + p2 o QBk+1)=y

o QBk+2) =2+ Q2 —) o QBK) =

Running Example

o Step 5: Constraints
o Need 3k + po = 3k + po, so 0 = 0 (tautology)
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Discovering More Golomb/Ruskey-Like Solutions

Determining Constraints

o Q(3k) =3k + o o Q(3k) =3k + o

o QBk+1)=Q(1— o) + p2 o QBk+1)=y

o QBk+2) =2+ Q2 —) o QBK) =

Running Example

o Step 5: Constraints
o Need 3k + pio = 3k + 10, s0 0 = 0 (tautology)
o Need p1 = Q(1 — o) + o
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Discovering More Golomb/Ruskey-Like Solutions

Determining Constraints

o Q(3k) =3k + o o Q(3k) =3k + o

o QBk+1)=Q(1— o) + p2 o QBk+1)=y

o QBk+2) =2+ Q2 —) o QBK) =

Running Example

o Step 5: Constraints
o Need 3k + pio = 3k + 10, s0 0 = 0 (tautology)
o Need M1 = Q(]. _"NO) + U2
o Need 1o = 2 + Q(Z — /Lo)
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Determining Constraints

o Q(3k) =3k + o o Q(3k) =3k + o

o QBk+1)=Q(1— o) + p2 o QBk+1)=y

o QBk+2) =2+ Q2 —) o QBK) =

Running Example

o Step 5: Constraints
o Need 3k + pio = 3k + 10, s0 0 = 0 (tautology)
o Need M1 = Q(]. _"NO) + U2
o Need 1o = 2 + Q(Z — /Lo)
o Need constraints enforcing congruences
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Discovering More Golomb/Ruskey-Like Solutions

Determining Constraints

o Q(3k) =3k + o o Q(3k) =3k + o

o QBk+1)=Q(1— o) + p2 o QBk+1)=y

o QBk+2) =2+ Q2 —) o QBK) =

Running Example

o Step 5: Constraints
o Need 3k + pio = 3k + 10, s0 0 = 0 (tautology)
Need 11 = Q(1 — o) + po
Need 12 = p2 + Q(2 — pio)
Need constraints enforcing congruences
Need constraints of the form 1 — 1ip <0 = Q(1 — o) =0
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Discovering More Golomb/Ruskey-Like Solutions

Determining Constraints

o Q(3k) =3k + o o Q(3k) =3k + o

o QBk+1)=Q(1— o) + p2 o QBk+1)=y

o QBk+2) =2+ Q2 —) o QBK) =

Running Example

o Step 5: Constraints
o Need 3k + pio = 3k + 10, s0 0 = 0 (tautology)
o Need M1 = Q(]. _"NO) + U2
o Need 1o = 2 + Q(Z — /Lo)
o Need constraints enforcing congruences
o Need constraints of the form 1 — 10 <0 = Q(1 — o) =0
o Sometimes need a few other technical constraints
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Discovering More Golomb/Ruskey-Li

Satisfying Constraints

o 1= Q(1— po) + p2 ® o =0(mod3)
0 0=Q(2— o) @ pp = 2(mod3)

Running Example

o Step 6: Satisfy Constraints
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Nested Recurrence:
Discovering More Golomb/Ruskey-Like Solutions
Special Initial ( ition

References

Satisfying Constraints

Running Example

o Step 6: Satisfy Constraints

o More degrees of freedom than constraints, so there should either be
no solutions or infinitely many
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Nested Recurrence:
Discovering More Golomb,/Ruskey-Like Solutions
Special Initial Co

Ref

Satisfying Constraints

o up = Q(l to) + 12 @ o =0(mod3)
0 0=Q(2— o) @ pp = 2(mod3)

Running Example

o Step 6: Satisfy Constraints
o More degrees of freedom than constraints, so there should either be
no solutions or infinitely many
o Computer algebra systems can find a feasible point for a system of
constraints
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Nested Recurrence:
Discovering More Golomb,/Ruskey-Like Solutions
Special Initial Co

Ref

Satisfying Constraints

o up = Q(l to) + 12 @ o =0(mod3)
0 0=Q(2— o) @ pp = 2(mod3)

Running Example

o Step 6: Satisfy Constraints
o More degrees of freedom than constraints, so there should either be

no solutions or infinitely many
o Computer algebra systems can find a feasible point for a system of

constraints
o One of many feasible solutions here:
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Nested Recurrence:
Discovering More Golomb/Ruskey-Like Solutions
Special Initial Condition

Refe

Satisfying Constraints

oy = Q(l o) + p2 o 1o =0(mod3)
e 0= Q(2—,u0) @ pp = 2(mod3)

Running Example

o Step 6: Satisfy Constraints
o More degrees of freedom than constraints, so there should either be

no solutions or infinitely many
o Computer algebra systems can find a feasible point for a system of

constraints
o One of many feasible solutions here:

0 o =0, puy =3, ppo=2
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Nested Recurrence:
Discovering More Golomb,/Ruskey-Like Solutions
Special Initial Co

Ref

Satisfying Constraints

o up = Q(l to) + 12 @ o =0(mod3)
0 0=Q(2— o) @ pp = 2(mod3)

Running Example

o Step 6: Satisfy Constraints
o More degrees of freedom than constraints, so there should either be

no solutions or infinitely many
o Computer algebra systems can find a feasible point for a system of

constraints
o One of many feasible solutions here:

° /~{'_0=0v/~"1=§1p‘2=2
0 QL —po)=Q(1)=1
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Nested Recurrence:
Discovering More Golomb,/Ruskey-Like Solutions
Special Initial Co

Ref

Satisfying Constraints

o up = Q(l to) + 12 @ o =0(mod3)
0 0=Q(2— o) @ pp = 2(mod3)

Running Example

o Step 6: Satisfy Constraints
o More degrees of freedom than constraints, so there should either be
no solutions or infinitely many
o Computer algebra systems can find a feasible point for a system of
constraints
o One of many feasible solutions here:
0 po =0, u1 =3, pp =2
o Q(1 - o) = Q1) =1
o Q2—po) = Q@) =0
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ial Initial Condition:

Re

Finding Initial Conditions

Running Example

o Step 7: Find Initial Condition
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Nested Recurrence:
Discovering More Golomb/Ruskey-Like Solutions
ial Initial Condition:

Re

Finding Initial Conditions

Running Example

o Step 7: Find Initial Condition

o When unpacking the recurrence, we assumed inductively each step
that we were never referring to an anomalous initial condition.
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Nested Recurrence:
Discovering More Golomb/Ruskey-Like Solutions
ial Initial Condition:

Re

Finding Initial Conditions

Running Example

o Step 7: Find Initial Condition
o When unpacking the recurrence, we assumed inductively each step
that we were never referring to an anomalous initial condition.
o Examining the unpacking carefully gives constraints on k for which
we are safe.
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Nested Recurrence:
Discovering More Golomb/Ruskey-Like Solutions
ial Initial Condition:

Re

Finding Initial Conditions

Running Example

o Step 7: Find Initial Condition
o When unpacking the recurrence, we assumed inductively each step
that we were never referring to an anomalous initial condition.

o Examining the unpacking carefully gives constraints on k for which
we are safe.

o Check unsafe values of k separately as a base case.
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Nested Recurrence:
Discovering More Golomb/Ruskey-Like Solutions
Initial Co

Re

Finding Initial Conditions

Running Example

o Step 7: Find Initial Condition
o When unpacking the recurrence, we assumed inductively each step
that we were never referring to an anomalous initial condition.
o Examining the unpacking carefully gives constraints on k for which
we are safe.
o Check unsafe values of k separately as a base case.
o This is the initial condition
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Nested Recurrence:
Discovering More Golomb/Ruskey-Like Solutions
Special Initial Col n:

Re

Finding Initial Conditions

Running Example

o Step 7: Find Initial Condition
o When unpacking the recurrence, we assumed inductively each step
that we were never referring to an anomalous initial condition.
o Examining the unpacking carefully gives constraints on k for which
we are safe.
o Check unsafe values of k separately as a base case.
o This is the initial condition

@ In this case, k = 0 and k = 1 are unsafe, and the computer finds
initial condition (1,0, 3, 3,2).
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Nested Recurrence:
Discovering More Golomb/Ruskey-Like Solutions
Special Initial ¢ ition

Refer

Finding Initial Conditions

Running Example

o Step 7: Find Initial Condition
o When unpacking the recurrence, we assumed inductively each step
that we were never referring to an anomalous initial condition.
o Examining the unpacking carefully gives constraints on k for which
we are safe.
o Check unsafe values of k separately as a base case.
o This is the initial condition

@ In this case, k = 0 and k = 1 are unsafe, and the computer finds
initial condition (1,0, 3, 3,2).

1,0,3,3,2,6,3,2,9,3,2,12,3,2,15,3,2,18,3,2,21,3,2,24,3,2,27, . ..
(A264756)

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



Discovering More Golomb/Ruskey-Like Solutions

Interleaved Solutions to the Hofstadter @-Recurrence

Results of Exploration

@ Interleaved solutions are very common
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Discovering More Golomb/Ruskey-Like Solutions

Interleaved Solutions to the Hofstadter @-Recurrence

Results of Exploration

@ Interleaved solutions are very common

@ There appear to be various symmetries among the solution families
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Discovering More Golomb/Ruskey-Like Solutions

Interleaved Solutions to the Hofstadter @-Recurrence

Results of Exploration

@ Interleaved solutions are very common
@ There appear to be various symmetries among the solution families

@ Interleaved sequences can include any linear-recurrent subsequence
with the following properties:
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Discovering More Golomb/Ruskey-Like Solutions

Interleaved Solutions to the Hofstadter @-Recurrence

Results of Exploration

@ Interleaved solutions are very common
@ There appear to be various symmetries among the solution families

@ Interleaved sequences can include any linear-recurrent subsequence
with the following properties:
o Satisfies a homogeneous linear recurrence with positive coefficients
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Discovering More Golomb/Ruskey-Like Solutions

Interleaved Solutions to the Hofstadter @-Recurrence

Results of Exploration

@ Interleaved solutions are very common
@ There appear to be various symmetries among the solution families

@ Interleaved sequences can include any linear-recurrent subsequence
with the following properties:
o Satisfies a homogeneous linear recurrence with positive coefficients
o Grows exponentially
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Discovering More Golomb/Ruskey-Like Solutions

Interleaved Solutions to the Hofstadter @-Recurrence

Results of Exploration

@ Interleaved solutions are very common
@ There appear to be various symmetries among the solution families

@ Interleaved sequences can include any linear-recurrent subsequence
with the following properties:
o Satisfies a homogeneous linear recurrence with positive coefficients
o Grows exponentially

@ Interleaved sequences can be polynomials of arbitrary degree
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Discovering More Golomb/Ruskey-Like Solutions

Interleaved Solutions to the Hofstadter @-Recurrence

Results of Exploration

@ Interleaved solutions are very common
@ There appear to be various symmetries among the solution families
@ Interleaved sequences can include any linear-recurrent subsequence
with the following properties:
o Satisfies a homogeneous linear recurrence with positive coefficients
o Grows exponentially

@ Interleaved sequences can be polynomials of arbitrary degree
o For Q, can find a degree d polynomial if m = 3d
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2000 4000 6000 8000 10000

Sample solution, log plot, m =9, cubic subsequence (A264758)



Discovering More Golomb/Ruskey-Like Solutions

Interleaved Solutions to the Hofstadter @-Recurrence

Solutions to the Hofstadter Q-recurrence are invariant under shifting
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Interleaved Solutions to the Hofstadter @-Recurrence

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

@ 2 interleaved sequences: 2 infinite families (1 if shifts considered
equivalent)
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Discovering More Golomb/Ruskey-Like Solutions

Interleaved Solutions to the Hofstadter @-Recurrence

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

@ 2 interleaved sequences: 2 infinite families (1 if shifts considered
equivalent)

o 3 interleaved: 12 (4) families
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Discovering More Golomb/Ruskey-Like Solutions

Interleaved Solutions to the Hofstadter @-Recurrence

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

@ 2 interleaved sequences: 2 infinite families (1 if shifts considered
equivalent)

o 3 interleaved: 12 (4) families
@ 4 interleaved: 12 (5) families
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Discovering More Golomb/Ruskey-Like Solutions

Interleaved Solutions to the Hofstadter @-Recurrence

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

@ 2 interleaved sequences: 2 infinite families (1 if shifts considered
equivalent)

o 3 interleaved: 12 (4) families
@ 4 interleaved: 12 (5) families
@ 5 interleaved: 35 (7) families
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Interleaved Solutions to the Hofstadter @-Recurrence

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

@ 2 interleaved sequences: 2 infinite families (1 if shifts considered
equivalent)

o 3 interleaved: 12 (4) families
@ 4 interleaved: 12 (5) families
@ 5 interleaved: 35 (7) families
@ 6 interleaved: 294 (86) families

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



Discovering More Golomb/Ruskey-Like Solutions

Interleaved Solutions to the Hofstadter @-Recurrence

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

@ 2 interleaved sequences: 2 infinite families (1 if shifts considered
equivalent)

o 3 interleaved: 12 (4) families
@ 4 interleaved: 12 (5) families
@ 5 interleaved: 35 (7) families
@ 6 interleaved: 294 (86) families
o 7 interleaved: 588 (84) families
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Discovering More Golomb/Ruskey-Like Solutions

Interleaved Solutions to the Hofstadter @-Recurrence

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

@ 2 interleaved sequences: 2 infinite families (1 if shifts considered
equivalent)

3 interleaved: 12 (4) families

4 interleaved: 12 (5) families

5 interleaved: 35 (7) families

6 interleaved: 294 (86) families

7 interleaved: 588 (84) families

8 interleaved: at least 3256 (610) families
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Discovering More Golomb/Ruskey-Like Solutions

Interleaved Solutions to the Hofstadter @-Recurrence

Solutions to the Hofstadter Q-recurrence are invariant under shifting

Enumerating Solution Families

@ 2 interleaved sequences: 2 infinite families (1 if shifts considered
equivalent)

3 interleaved: 12 (4) families

4 interleaved: 12 (5) families

5 interleaved: 35 (7) families

6 interleaved: 294 (86) families

7 interleaved: 588 (84) families

8 interleaved: at least 3256 (610) families

9 interleaved: at least 15273 (2279) families

© © © 6 6 o ¢
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Special Initial Conditions Other Initial Conditions

© Special Initial Conditions
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1 through N
Special Initial Conditions Other Initial Conditions

Nested Recurrences with Special Initial Conditions

@ Goal: Explore the behavior of the nested recurrences when given
special initial conditions
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Special Initial Conditions 0 Conditions

Nested Recurrences with Special Initial Conditions

@ Goal: Explore the behavior of the nested recurrences when given
special initial conditions

@ To consider infinitely many initial conditions simultaneously, we
include unknowns in our initial conditions and use symbolic
computation
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1 through N
Special Initial Conditions Other Initial Conditions

Nested Recurrences with Special Initial Conditions

@ Goal: Explore the behavior of the nested recurrences when given
special initial conditions

@ To consider infinitely many initial conditions simultaneously, we
include unknowns in our initial conditions and use symbolic
computation

@ Can consider weak or strong death
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1 through N
Special Initial Conditions Other Initial Conditions

Nested Recurrences with Special Initial Conditions

General Method

@ Start with symbolic initial condition
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1 through N
Special Initial Conditions Other Initial Conditions

Nested Recurrences with Special Initial Conditions

General Method

@ Start with symbolic initial condition
@ Generate a bunch of terms
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1 through N
Special Initial Conditions Other Initial Conditions

Nested Recurrences with Special Initial Conditions

General Method

@ Start with symbolic initial condition
@ Generate a bunch of terms
o Did it die?
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1 through N
Special Initial Conditions Other Initial Conditions

Nested Recurrences with Special Initial Conditions

General Method

@ Start with symbolic initial condition
@ Generate a bunch of terms
o Did it die?

@ Look for a pattern

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



1 through N
Special Initial Conditions Other Initial Conditions

Nested Recurrences with Special Initial Conditions

General Method

@ Start with symbolic initial condition
@ Generate a bunch of terms

o Did it die?

@ Look for a pattern

@ Try to automatically prove the pattern by induction
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1 through N
Special Initial Conditions Other Initial Conditions

Nested Recurrences with Special Initial Conditions

General Method

@ Start with symbolic initial condition

@ Generate a bunch of terms

o Did it die?

@ Look for a pattern

@ Try to automatically prove the pattern by induction
@ Determine how long the pattern lasts
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1 through N
Special Initial Conditions Other Initial Conditions

Nested Recurrences with Special Initial Conditions

General Method

@ Start with symbolic initial condition
@ Generate a bunch of terms
Did it die?

Look for a pattern

o
@ Try to automatically prove the pattern by induction
@ Determine how long the pattern lasts

°

Rinse and repeat
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1 through N
Special Initial Conditions Other Initial Conditions

Nested Recurrences with Special Initial Conditions

General Method

@ Start with symbolic initial condition
@ Generate a bunch of terms
Did it die?

Look for a pattern

o
@ Try to automatically prove the pattern by induction
@ Determine how long the pattern lasts

°

Rinse and repeat

o New initial condition: Old sequence through the end of the last
pattern
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1 through N

Special Initial Conditions Other Initial Conditions

© Special Initial Conditions
o 1 through N
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1 through N
Special Initial Conditions Other Initial Conditions

®-Recurrence

Primary exploration: Q-recurrence with 1.C. (1,2,3,..., N)
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1 through N
Special Initial Conditions Other Initial Conditions

®-Recurrence

Primary exploration: Q-recurrence with 1.C. (1,2,3,..., N)
Notation: Qu
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1 through N
Special Initial Conditions Other Initial Conditions

®-Recurrence

Primary exploration: Q-recurrence with 1.C. (1,2,3,..., N)
Notation: Qu

@ N =2 and N = 3 are shifts of the Q-sequence
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1 through N
Special Initial Conditions Other Initial Conditions

®-Recurrence

Primary exploration: Q-recurrence with 1.C. (1,2,3,..., N)
Notation: Qu

@ N =2 and N = 3 are shifts of the Q-sequence
o N =8, N=11and N = 12 weakly die (check with computer)
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1 through N
Special Initial Conditions Other Initial Conditions

®-Recurrence

Primary exploration: Q-recurrence with 1.C. (1,2,3,..., N)
Notation: Qu

@ N =2 and N = 3 are shifts of the Q-sequence
o N =8, N=11and N = 12 weakly die (check with computer)
o N=4,56,7,9,10, 13 each persist for at least 30 million terms
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1 through N
Special Initial Conditions Other Initial Conditions

®-Recurrence: Weak Death

For all N > 14, Qn weakly dies.
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1 through N
Special Initial Conditions Other Initial Conditions

®-Recurrence: Weak Death

For all N > 14, Qn weakly dies.

Assume N is sufficiently large. Compute the next terms, starting from
index N + 1.
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1 through N
Special Initial Conditions Other Initial Conditions

®-Recurrence: Weak Death

For all N > 14, Qn weakly dies.

Assume N is sufficiently large. Compute the next terms, starting from
index N + 1.

Qv(N +1) = Qu(N+1—Q(N)) + Qu(N +1— Q(N — 1))
=Qu(N+1—N)+Qu(N+1—(N-1))

= Qn(1) + Qn(2)
—142=3
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Special Initial

Qn(N+1)=3
Qu(N+2)=N+1
Qu(N+3)=N+2
Qu(N+4) =5
Qnu(N+5)=N+3
Qn(N +6) =6
Qu(N+7)=7
Qu(N+8)=N+4
Qu(N+9)=N+6
Qn(N +10) = 10

© © 6 6 6 6 © 66 © o

Con

1 through N

ons Other Initial Conditions

eferences

Initial Condition 1 through N: Weak Death

Qn
Qn
Qn
Qn
Qn
Qn
Qn
Qn
Qn
Qn

N+19) = N+11
N+20) = N+15

(N+11)=38
(N+12) = N+6
(N+13) = N+10
(N +14) =12
(N+15) = N+7
(N + 16) = 14
(N 417) =12
(N+18) =11

(

(

Qn(
Qn(
Qn(
Qn(
Qn(
Qn(
Qn(
Qn(

N+21) =16
N +22) =13
N +23) =17
N +24) =15
N+25) = N+14
N + 26) = 20
N +27) =20
N+28) = 2N+8

O
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1 through N
Other Initial Conditions

°QN(N+1):3 o (N+11)—8 9 Qn(N+21) =16

° Q (N+3) N+ 2 ° (N+13) N+10

° Qu(N+4)=5 o Qu(N+14)=12 ° Qu(N+23) =17

@ Qu(N+5)=N+3 @ Qu(N+15)=N+7 © Qu(N+24) =15

® Qu(N+6)= © Qu(N+16) =14 ® Qu(N+25) = N+14

@ QuIN+T)=7 @ Qu(N+17) =12 o Qu(N +26) =20

© Qu(N+8)=N+4 © Qu(N+18) =11

© QuN+9)=N+6 o Qu(N+19) = N+11 @ Qu(N+27)=20

@ Qun(N+10)=10 @ Qn(N+20) = N+15 @ Qn(N+28)=2N+8
If N> 21, Qu weakly dies at index N + 29.

O
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1 through N
Other Initial Conditions

o (N+1)—3 o (N+11)—8 n(N +21) =16
° (N+3) N+ 2 ° (N+13) N+10 N
© Qu(N+4)=5 o Qu(N +14) =12 w(N +23) =17
@ Qu(N+5)=N+3 @ Qu(N+15)=N+7 n(N +24) =15
® Qn(N+6)=6 © Qu(N +16) =14 Qn(N+25) = N+14
° N = ° N+17) = 12

Qu(N+7) =7 Qu(N +17) (N +26) = 20
® Qu(N+8)=N+4 ° Qu(N+18) =11
© QuN+9)=N+6 o Qu(N+19) = N+11 (N +27) =20
@ Qn(N +10) =10 @ Qn(N+20) = N+15 v(N+28) = 2N +8

If N> 21, Qu weakly dies at index N + 29.
Check 14, 15, 16, 17, 18, 19, 20 separately. They all weakly die. O
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1 through N
Special Initial Conditions Other Initial Conditions

Q-Recurrence: Strong Death

What about Qu under strong death?

o Going forward, assume N sufficiently large (meaning N > 118)

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



1 through N
Special Initial Conditions Other Initial Conditions

Q-Recurrence: Strong Death

What about Qu under strong death?

o Going forward, assume N sufficiently large (meaning N > 118)
@ For N+35 < N+5k+r <2N+4:
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1 through N
Special Initial Conditions Other Initial Conditions

Q-Recurrence: Strong Death

What about Qu under strong death?

o Going forward, assume N sufficiently large (meaning N > 118)
@ For N+35 < N+5k+r <2N+4:
o Qu(N +5k) = (2N +4) k — 11N — 22
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1 through N
Special Initial Conditions Other Initial Conditions

Q-Recurrence: Strong Death

What about Qu under strong death?

o Going forward, assume N sufficiently large (meaning N > 118)
@ For N+35 < N+5k+r <2N+4:

o Qu(N +5k) = (2N +4) k — 11N — 22

o Qu(N+5k+1)=5
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1 through N

Special Initial Conditions Other Initial Conditions

Q-Recurrence: Strong Death

What about Qu under strong death?

o Going forward, assume N sufficiently large (meaning N > 118)
@ For N+35 < N+5k+r <2N+4:

o Qu(N +5k) = (2N +4) k — 11N — 22

o Qu(N+5k+1)=5

o Qu(N +5k+2)=2N+4
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1 through N
Special Initial Conditions Other Initial Conditions

Q-Recurrence: Strong Death

What about Qu under strong death?

o Going forward, assume N sufficiently large (meaning N > 118)
@ For N+35 < N+5k+r <2N+4:

Qu(N +5k) = (2N + 4) k — 11N — 22

Qu(N +5k+1)=5

Qu(N + 5k +2) = 2N + 4

Qn(N +5k+3)=3

© © 6 o

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



1 through N
Special Initial Conditions Other Initial Conditions

Q-Recurrence: Strong Death

What about Qu under strong death?

o Going forward, assume N sufficiently large (meaning N > 118)
@ For N+35 < N+5k+r <2N+4:

o Qu(N +5k) = (2N + 4) k — 11N — 22
o Qu(N+5k+1)=5

° QN(N+5k+2)_2N+4

o Qu(N+5k+3)=

o Qu(N+5k+4)=
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1 through N
Special Initial Conditions Other Initial Conditions

Q-Recurrence: Strong Death

What about Qu under strong death?

o Going forward, assume N sufficiently large (meaning N > 118)
@ For N+35 < N+5k+r <2N+4:

Qn(N + 5k) = (2N + 4) k — 11N — 22

Qu(N +5k+1)=5

Qn(N +5k+2)=2N+4

Qn(N +5k+3)=3

Qn(N +5k+4)=5

@ After that, five possible behaviors, depends on N mod 5

© © 6 o
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1 through N
Special Initial Conditions Other Initial Conditions

Q-Recurrence: Strong Death

What about Qu under strong death?

o Going forward, assume N sufficiently large (meaning N > 118)
@ For N+35 < N+5k+r <2N+4:

Qn(N + 5k) = (2N + 4) k — 11N — 22

Qu(N +5k+1)=5

Qn(N +5k+2)=2N+4

Qn(N +5k+3)=3

Qn(N +5k+4)=5

@ After that, five possible behaviors, depends on N mod 5

o N =0(mod5): Strong death after 2NV 4 18 terms
(Qn(2N +18) = 0)

© © 6 o
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1 through N
Special Initial Conditions Other Initial Conditions

Q-Recurrence: Strong Death

What about Qu under strong death?

o Going forward, assume N sufficiently large (meaning N > 118)

@ For N+35 < N+5k+r <2N+4:

Qu(N +5k) = (2N + 4) k — 11N — 22

Qu(N +5k+1)=5

Qu(N +5k +2) =2N +4

Qn(N +5k+3)=3

Qn(N +5k+4)=5

@ After that, five possible behaviors, depends on N mod 5
o N =0(mod5): Strong death after 2NV 4 18 terms

(Qn(2N +18) = 0)

o N =1(mod5): Strong death after 2N + 164 terms

© © 6 o
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1 through N
Special Initial Conditions Other Initial Conditions

Q-Recurrence: Strong Death

What about Qu under strong death?

o Going forward, assume N sufficiently large (meaning N > 118)
@ For N+35 < N+5k+r <2N+4:
Qu(N +5k) = (2N + 4) k — 11N — 22
Qu(N +5k+1)=5
Qu(N +5k +2) =2N +4
Qnu(N +5k+3) =3
Qn(N +5k+4)=5
@ After that, five possible behaviors, depends on N mod 5
o N =0(mod5): Strong death after 2NV 4 18 terms
(Qn(2N +18) = 0)
o N =1(mod5): Strong death after 2N + 164 terms
o N =4 (mod5): Strong death after 2N + 8 terms

© © 6 o
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1 through N
Special Initial Conditions Other Initial Conditions

N = 3 (mod5) is Weird
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1 through N
Special Initial Conditions Other Initial Conditions

N = 3 (mod5) is Weird
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N = 38
Every fifth term is 4
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1 through N
Special Initial Conditions Other Initial Conditions

N = 3 (mod5) is Weird
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N = 38
Every fifth term is 4
Rest of terms are poorly understood
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Another solution isolating these terms, A272610, Initial Condition
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1 through N
Special Initial Conditions Other Initial Conditions

N = 2 (mod5) is Even Weirder

@ Recall that for N +35 < N +5k+r < 2N + 4:

o Qu(N +5k)= (2N +4)k — 11N — 22
o Qu(N+5k+1)=5

o QN(N+5k+2)—2N+4

o Qu(N+5k+3)=

o Qu(N+5k+4)=
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1 through N
Special Initial Conditions Other Initial Conditions

N = 2 (mod5) is Even Weirder

@ Recall that for N4+35 < N+ 5k +r <2N + 4:
Qn(N +5k) = (2N +4) k — 11N — 22

Qu(N +5k+1)=5
Qn(N+5k+2)=2N+4
Qn(N+5k+3)=3

Qnv(N +5k+4)=5

o If N =2(mod5), get another, much longer, similar piece
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1 through N
Special Initial Conditions Other Initial Conditions

N = 2 (mod5) is Even Weirder

@ Recall that for N4+35 < N+ 5k +r <2N + 4:
o Qu(N +5k) = (2N +4) k — 11N — 22
o Qu(N+5k+1)=5
o Qu(N+5k+2)=2N+4
o Qu(N+5k+3)=3
Qnu(N+5k+4)=5

o If N =2(mod5), get another, much longer, similar piece

@ Then, cases depend on N mod 25
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1 through N
Special Initial Conditions Other Initial Conditions

N = 2 (mod5) is Even Weirder

@ Recall that for N4+35 < N+ 5k +r <2N + 4:
o Qu(N +5k) = (2N +4) k — 11N — 22
o Qu(N+5k+1)=5
o Qu(N+5k+2)=2N+4
o Qu(N+5k+3)=3
Qnu(N+5k+4)=5

o If N =2(mod5), get another, much longer, similar piece

@ Then, cases depend on N mod 25
@ Can continue depending on N mod higher powers of 5
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1 through N
Special Initial Conditions Other Initial Conditions

Detailed Description of N = 2 (mod5)

0o Ap=N—-2 A =2N+4, By = —-11N - 22
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1 through N
Special Initial Conditions Other Initial Conditions

Detailed Description of N = 2 (mod5)

0o Ap=N—-2 A =2N+4, By = —-11N - 22

@ Fori>2 A =A_1 (7’4';1_/54"724_2) + Bi_1, Bi=A; — Ai_1
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1 through N
Special Initial Conditions Other Initial Conditions

Detailed Description of N = 2 (mod5)

@ Ay=N-2 A1 =2N+4, By =—-11N - 22
@ Fori>2 A =A_1 (%) +Bi_1, Bi=Ai —Ai1

@ Start with / = 1. From A; + 7 through A; 1:
Qu(A; +5k) =3

Qu(Ai+5k+1)=5

Qn(Ai + 5k +2) = Aij1k + Bita

Qu(Ai +5k+3) =5

Qn(Ai+ 5k +4) = Aijx
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1 through N
Special Initial Conditions Other Initial Conditions

Detailed Description of N = 2 (mod5)

0 A =N—-2 A =2N+4 B, =—-11N - 22

@ Fori>2 A =A_1 (7’4';1_/54"724_2) + Bi_1, Bi=A; — Ai_1
@ Start with / = 1. From A; + 7 through A; 1:

Qn(A;i +5k) =3

° QN(A;+5k+1) =5

o Qn(Ai +5k+2) = A1k + Bita
[*]

[+

Qu(Ai + 5k +3) =5
Qn(Ai + 5k +4) = Aitq

@ After this, value of (Ai+1 + 2/ + 3) mod 5 determines next behavior
0: Strong death after 160 more terms (like 1 mod 5)
1: Keep going with i + 1 (like 2 mod 5)
2: Fours and chaos forever (like 3 mod 5)
3: Strong death after 4 more terms (like 4 mod 5)
4: Strong death after 14 more terms (like 0 mod 5)

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics
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1 through N
Special Initial Conditions Other Initial Conditions

Tree of Behaviors of Qy

Write N in base 5, read digits from right to left

0 2 34
02 1222 32 42
(i8] 132 332 432
1432 PXER 3432 4432
03432 13432 pEYEH 43432
Death 160 Go Deeper Death 14
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1 through N
Special Initial Conditions Other Initial Conditions

Tree of Behaviors of Qy

il
N
)
b

1B 152 332 432
1432 PEEY] 3432 4432
03432 13432 23432 13432

023432{123432[223432]323432]423432

Death 160 Go Deeper Death 14
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1 through N
Special Initial Conditions Other Initial Conditions

Tree of Behaviors of Qy

5] |7 3] 12

1432 EEEH 3132 4432

03T 13132 2343 1343

Death 160 Go Deeper Death 14

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



1 through N
Special Initial Conditions Other Initial Conditions

Tree of Behaviors of Qy

oration of Nested Recurrences Using Experimental Matl



1 through N
Special Initial Conditions Other Initial Conditions

Three-Term Hofstadter-like Recurrence

Bn(n) = By(n— Bn(n—1)) + By(n— Bn(n—2)) + By(n— Bn(n — 3)),
initial condition (1,2,3,..., N)

Structure Theorem for By

o N > 74: By does not strongly die before 2N terms; has period-7
quasilinear pattern from By(N + 67) through roughly By (2N).
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1 through N
Special Initial Conditions Other Initial Conditions

Three-Term Hofstadter-like Recurrence

Bn(n) = By(n— Bn(n—1)) + By(n— Bn(n—2)) + By(n— Bn(n — 3)),
initial condition (1,2,3,..., N)

Structure Theorem for By

o N > 74: By does not strongly die before 2N terms; has period-7
quasilinear pattern from By(N + 67) through roughly By (2N).

o N=0(mod7) and N > 196: Strong death after 2\ + 27 terms
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1 through N
Special Initial Conditions Other Initial Conditions

Three-Term Hofstadter-like Recurrence

Bn(n) = By(n— Bn(n—1)) + By(n— Bn(n—2)) + By(n— Bn(n — 3)),
initial condition (1,2,3,..., N)

Structure Theorem for By

o N > 74: By does not strongly die before 2N terms; has period-7
quasilinear pattern from By(N + 67) through roughly By (2N).

o N=0(mod7) and N > 196: Strong death after 2\ + 27 terms
o N=1(mod7) and N > 2087: Strong death after 2N ++ 254 terms
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1 through N
Special Initial Conditions Other Initial Conditions

Three-Term Hofstadter-like Recurrence

Bn(n) = By(n— Bn(n—1)) + By(n— Bn(n—2)) + By(n— Bn(n — 3)),
initial condition (1,2,3,..., N)

Structure Theorem for By

o N > 74: By does not strongly die before 2N terms; has period-7
quasilinear pattern from By(N + 67) through roughly By (2N).

o N=0(mod7) and N > 196: Strong death after 2\ + 27 terms
o N=1(mod7) and N > 2087: Strong death after 2N ++ 254 terms
o N =2(mod7) and N > 3201: Strong death after 2N + 524 terms
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1 through N
Special Initial Conditions Other Initial Conditions

Three-Term Hofstadter-like Recurrence

Bn(n) = By(n— Bn(n—1)) + By(n— Bn(n—2)) + By(n— Bn(n — 3)),
initial condition (1,2,3,..., N)

Structure Theorem for By

o N > 74: By does not strongly die before 2N terms; has period-7
quasilinear pattern from By(N + 67) through roughly By (2N).

N =0(mod7) and N > 196: Strong death after 2N + 27 terms

N =1(mod7) and N > 2087: Strong death after 2\ + 254 terms
N =2(mod7) and N > 3201: Strong death after 2N + 524 terms
N =3(mod7) and N > 4315: Strong death after 2/ + 560 terms

© 6 © ¢
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1 through N
Special Initial Conditions Other Initial Conditions

Three-Term Hofstadter-like Recurrence

Bn(n) = By(n— Bn(n—1)) + By(n— Bn(n—2)) + By(n— Bn(n — 3)),
initial condition (1,2,3,..., N)

Structure Theorem for By

o N > 74: By does not strongly die before 2N terms; has period-7
quasilinear pattern from By(N + 67) through roughly By (2N).

o N=0(mod7) and N > 196: Strong death after 2\ + 27 terms
° 1(mod7) and N > 2087: Strong death after 2/ + 254 terms
o N =2(mod7) and N > 3201: Strong death after 2N + 524 terms
o N =3(mod7) and N > 4315: Strong death after 2N + 560 terms
o N =4(mod7) and N > 200: Strong death after 2\ + 20 terms
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1 through N
Special Initial Conditions Other Initial Conditions

Three-Term Hofstadter-like Recurrence

Bn(n) = By(n— Bn(n—1)) + By(n— Bn(n—2)) + By(n— Bn(n — 3)),
initial condition (1,2,3,..., N)

Structure Theorem for By

o N > 74: By does not strongly die before 2N terms; has period-7
quasilinear pattern from By(N + 67) through roughly By (2N).

o N=0(mod7) and N > 196: Strong death after 2\ + 27 terms

o N=1(mod7) and N > 2087: Strong death after 2N ++ 254 terms
o N =2(mod7) and N > 3201: Strong death after 2N + 524 terms

o N =3(mod7) and N > 4315: Strong death after 2N + 560 terms

o N =4(mod7) and N > 200: Strong death after 2\ + 20 terms

o N =5(mod7) and N > 32478: Strong death after 2N + 4547 terms
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1 through N
Special Initial Conditions Other Initial Conditions

Three-Term Hofstadter-like Recurrence

Bn(n) = By(n— Bn(n—1)) + By(n— Bn(n—2)) + By(n— Bn(n — 3)),
initial condition (1,2,3,..., N)

Structure Theorem for By

o N > 74: By does not strongly die before 2N terms; has period-7
quasilinear pattern from By(N + 67) through roughly By (2N).

N =0(mod7) and N > 196: Strong death after 2N + 27 terms
N =1(mod7) and N > 2087: Strong death after 2N + 254 terms
mod 7) and N > 3201: Strong death after 2N + 524 terms
mod 7) and N > 4315: Strong death after 2N + 560 terms
mod 7) and NN > 200: Strong death after 2N 4+ 20 terms
mod 7) and N > 32478: Strong death after 2\ + 4547 terms
and N > 118: Strong death after 2N + 9 terms

© © © 6 © o ¢
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All 69503 terms of Bsps7g, log plot, A274058



1 through N
Special Initial Conditions Other Initial Conditions

Sporadic N Values?

acts

@ Previous theorem classifies all but 6079 values of N
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1 through N
Special Initial Conditions Other Initial Conditions

Sporadic N Values?

acts

@ Previous theorem classifies all but 6079 values of N
o N € {5,6}: By does not weakly die.
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1 through N
Special Initial Conditions Other Initial Conditions

Sporadic N Values?

@ Previous theorem classifies all but 6079 values of N
o N € {5,6}: By does not weakly die.
o N € {7,8,9}: By not known to weakly die.
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1 through N
Special Initial Conditions Other Initial Conditions

Sporadic N Values?

@ Previous theorem classifies all but 6079 values of N
o N € {5,6}: By does not weakly die.

o N € {7,8,9}: By not known to weakly die.

o N > 14: By weakly dies after N + 24 terms.
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1 through N
Special Initial Conditions Other Initial Conditions

Sporadic N Values?

Previous theorem classifies all but 6079 values of N
N € {5,6}: By does not weakly die.

N € {7,8,9}: By not known to weakly die.

N > 14: By weakly dies after N + 24 terms.

N € {81,182,193,429,822,1892, 2789, 3442, 7292, 23511, 25163 }:
By weakly dies, but does not strongly die.

©
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1 through N
Special Initial Conditions Other Initial Conditions

Sporadic N Values?

Previous theorem classifies all but 6079 values of N
N € {5,6}: By does not weakly die.

N € {7,8,9}: By not known to weakly die.

N > 14: By weakly dies after N + 24 terms.

N € {81,182,193,429,822,1892, 2789, 3442, 7292, 23511, 25163 }:
By weakly dies, but does not strongly die.

N € {4,10,11,12,13,14,15,18}: By weakly dies, but not known to
strongly die.

©
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1 through N
Special Initial Conditions Other Initial Conditions

Sporadic N Values?

Previous theorem classifies all but 6079 values of N
N € {5,6}: By does not weakly die.

N € {7,8,9}: By not known to weakly die.

N > 14: By weakly dies after N + 24 terms.

N € {81,182,193,429,822,1892, 2789, 3442, 7292, 23511, 25163 }:
By weakly dies, but does not strongly die.

N € {4,10,11,12,13,14,15,18}: By weakly dies, but not known to
strongly die.

©

@ All other N: By strongly dies.

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



1 through N
Special Initial Conditions Other Initial Conditions

Sporadic N Values?

Previous theorem classifies all but 6079 values of N
N € {5,6}: By does not weakly die.

N € {7,8,9}: By not known to weakly die.

N > 14: By weakly dies after N + 24 terms.

N € {81,182,193,429,822,1892, 2789, 3442, 7292, 23511, 25163 }:
By weakly dies, but does not strongly die.

N € {4,10,11,12,13,14,15,18}: By weakly dies, but not known to
strongly die.

©

All other N: By strongly dies.
Fun fact: Boogso strongly dies, but it has 84975 - 2560362 4 3] terms.

©
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1 through N
Special Initial Conditions Other Initial Conditions

More on Sporadic N Values

o N € {81,182,429,822,1892, 2789, 7292, 23511, 25163}
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1 through N
Special Initial Conditions Other Initial Conditions

More on Sporadic N Values

o N € {81,182,429,822,1892,2789, 7292, 23511, 25163 }:

o Eventual alternation between 2 and M - 2% for some M
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1 through N
Special Initial Conditions Other Initial Conditions

More on Sporadic N Values

o N € {81,182,429,822,1892,2789, 7292, 23511, 25163 }:

o Eventual alternation between 2 and M - 2% for some M
o So, doesn't strongly die for a “boring” reason
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1 through N
Special Initial Conditions Other Initial Conditions

More on Sporadic N Values

o N € {81,182,429,822,1892,2789, 7292, 23511, 25163 }:

o Eventual alternation between 2 and M - 2% for some M
o So, doesn't strongly die for a “boring” reason

o N € {193,3442}:
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1 through N
Special Initial Conditions Other Initial Conditions

More on Sporadic N Values

o N € {81,182,429,822,1892,2789, 7292, 23511, 25163 }:

o Eventual alternation between 2 and M - 2% for some M
o So, doesn't strongly die for a “boring” reason

o N € {193,3442}:

o Built out of infinitely many period-5 sub-patterns
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1 through N
Special Initial Conditions Other Initial Conditions

More on Sporadic N Values

o N € {81,182,429,822,1892,2789, 7292, 23511, 25163 }:

o Eventual alternation between 2 and M - 2% for some M
o So, doesn't strongly die for a “boring” reason

o N € {193,3442}:

o Built out of infinitely many period-5 sub-patterns
o Each one six times longer than previous
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1 through N
Special Initial Conditions Other Initial Conditions

More on Sporadic N Values

o N € {81,182,429,822,1892,2789, 7292, 23511, 25163 }:

o Eventual alternation between 2 and M - 2¥ for some M
o So, doesn't strongly die for a “boring” reason
o N € {193,3442}:
o Built out of infinitely many period-5 sub-patterns
o Each one six times longer than previous
o So, doesn’t strongly die for an “interesting” reason

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics
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1 through N
Special Initial Conditions Other Initial Conditions

Four-Plus-Term Hofstadter-like Recurrence

d
Gd7N(n) = Z Gd7N(n — GdJV(n — I))

Initial condition (1,2,3,..., N)
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Special Initial Conditions Other Initial Conditions

Four-Plus-Term Hofstadter-like Recurrence

d
Gd7N(n) = Z Gd7N(n — GdJV(n — I))

Initial condition (1,2,3,..., N)

Really weird behavior; see for yourself!
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© Special Initial Conditions

@ Other Initial Conditions
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Other Interesting Initial Conditions
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Other Interesting Initial Conditions

We Consider @-Recurrence Wi
o (N,2)
° (2,N)
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Other Interesting Initial Conditions

o (N,2)
o (2, N)
o (N4 N, 4)
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Other Interesting Initial Conditions

(N,2)

o (2,N)

o (N4 N, 4)
o (4,N,4,N)

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



1 through N
Special Initial Conditions Other Initial Conditions

Other Interesting Initial Conditions

(N,2)

o (2,N)

o (N4 N, 4)
o (4,N,4,N)

Pretty much any other parametrized family of initial conditions that you
can think of is worth exploring!
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Special Initial Conditions Other Initial Conditions

Other Interesting Initial Conditions

(N,2)

o (2,N)

o (N4 N, 4)
o (4,N,4,N)

Pretty much any other parametrized family of initial conditions that you
can think of is worth exploring!

Can also do all these same explorations with other recurrences
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(N,2) and (2, N)

@ Most sequences quasilinear and easy to describe
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(N,2) and (2, N)

@ Most sequences quasilinear and easy to describe
o (N,2), N> 25 N =3(mod4): Strong death after 5N + 11 terms
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(N,2) and (2, N)

@ Most sequences quasilinear and easy to describe
o (N,2), N> 25 N =3(mod4): Strong death after 5N + 11 terms
o (N,2), N> 75, N =5(mod12): Strong death after 28N 4 64 terms
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Special Initial Conditions Other Initial Conditions

(N,2) and (2, N)

@ Most sequences quasilinear and easy to describe

o (N,2), N> 25 N =3(mod4): Strong death after 5N + 11 terms

o (N,2), N> 75, N =5(mod12): Strong death after 28N 4 64 terms
°

(N,2), N >51, N =1,9,13,21 (mod 12): Quasilinear, but not easy
to describe
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(N,2) and (2, N)

@ Most sequences quasilinear and easy to describe

o (N,2), N> 25 N =3(mod4): Strong death after 5N + 11 terms

o (N,2), N> 75, N =5(mod12): Strong death after 28N 4 64 terms

o (N,2), N>51, N=1,9,13,21 (mod 12): Quasilinear, but not easy
to describe

(N,2): A few sporadic interesting cases for small N

Nathan Fox An Exploration of Nested Recurrences Using Experimental Mathematics



1 through N
Special Initial Conditions Other Initial Conditions

(N,2) and (2, N)

@ Most sequences quasilinear and easy to describe

o (N,2), N> 25 N =3(mod4): Strong death after 5N + 11 terms

o (N,2), N> 75, N =5(mod12): Strong death after 28N 4 64 terms
°

(N,2), N >51, N =1,9,13,21 (mod 12): Quasilinear, but not easy
to describe

(N,2): A few sporadic interesting cases for small N
o Most notably N =5, N =17, N =41
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Special Initial Conditions Other Initial Conditions

@ N > 11 odd: Strong death after N + 13 terms
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1 through N
Special Initial Conditions Other Initial Conditions

@ N > 11 odd: Strong death after N + 13 terms
o N >21, N=0(mod4): Strong death after 4 V’J“HT WJ +9
terms, provided N # 2A2 4 2A
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1 through N
Special Initial Conditions Other Initial Conditions

@ N > 11 odd: Strong death after N + 13 terms
o N>21, N=0(mod4): Strong death after 4 V’J“HT WJ +9

terms, provided N # 2A2 4 2A
o N >242, N =2,18,26 (mod 32): Strong death after 12N + 50
terms
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Special Initial Conditions Other Initial Conditions

@ N > 11 odd: Strong death after N + 13 terms
o N>21, N=0(mod4): Strong death after 4 V’J“HT WJ +9

terms, provided N # 2A2 4 2A

o N >242, N =2,18,26 (mod 32): Strong death after 12N + 50
terms

o N > 242, N =10(mod32): Strong death after 12 + 58 terms
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@ N > 11 odd: Strong death after N + 13 terms
o N >21, N=0(mod4): Strong death after 4 V’J“HT WJ +9
terms, provided N # 2A2 4 2A

o N >242, N =2,18,26 (mod 32): Strong death after 12N + 50
terms

o N > 242, N =10(mod32): Strong death after 12 + 58 terms
o N > 422, N =6(mod8): Strong death after 14N + 34 terms
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1 through N
Special Initial Conditions Other Initial Conditions

@ N > 11 odd: Strong death after N + 13 terms
o N >21, N=0(mod4): Strong death after 4 V’J“HT WJ +9
terms, provided N # 2A2 4 2A

o N >242, N =2,18,26 (mod 32): Strong death after 12N + 50
terms

o N > 242, N =10(mod32): Strong death after 12 + 58 terms
o N > 422, N =6(mod8): Strong death after 14N + 34 terms
o N =2A2 + 2A: Seems to strongly die eventually, but complicated
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o N >26, N=1(mod4): Strong death after 2/ + 28 terms
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o N >26, N=1(mod4): Strong death after 2/ + 28 terms
o N >33, N=3(mod4): Strong death after 3N + 36 terms
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1 through N
Special Initial Conditions Other Initial Conditions

o N >26, N=1(mod4): Strong death after 2/ + 28 terms
o N >33, N=3(mod4): Strong death after 3N + 36 terms

o N >19, N =0(mod4): Strong death after 4 {N“*— WJ +6
terms, provided N # 2A% +2A+ 4
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1 through N
Special Initial Conditions Other Initial Conditions

o N >26, N=1(mod4): Strong death after 2/ + 28 terms

o N >33, N=3(mod4): Strong death after 3N + 36 terms

o N >19, N=0(mod4): Strong death after 4 {%J +6
terms, provided N # 2A% +2A+ 4

o N =2A2+2A + 4: Similar to 2A% + 2A case of (N,4, N, 4)
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1 through N
Special Initial Conditions Other Initial Conditions

o N >26, N=1(mod4): Strong death after 2/ + 28 terms

o N >33, N=3(mod4): Strong death after 3N + 36 terms

o N >19, N=0(mod4): Strong death after 4 {%J +6
terms, provided N # 2A% +2A+ 4

o N =2A2+2A + 4: Similar to 2A% + 2A case of (N,4, N, 4)

o N =2(mod4): Seems to strongly die eventually, but complicated
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Summary

We've seen a huge diversity of solutions to nested recurrences
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Special Initial Conditions Other Initial Conditions

Summary

We've seen a huge diversity of solutions to nested recurrences

My mantra when working with nested recurrences: “If you think it might
be possible, it probably is possible.”
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