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ABSTRACT OF THE DISSERTATION

Experimental mathematics applied to the study of

non-linear recurrences

By EMILIE ANN HOGAN

Dissertation Director: Doron Zeilberger

In this thesis we study three topics within the broad field of nonlinear recurrences.
First we will consider global asymptotic stability in rational recurrences. A recurrence
is globally asymptotically stable when the sequence it produces converges to an equilib-
rium solution given any initial conditions. Up to now, this topic has not been studied
from an algorithmic perspective. We develop an algorithm that takes as input a ra-
tional recurrence relation conjectured to be globally asymptotically stable, and, if it
is, outputs a rigorous proof of its stability. We apply this algorithm to many specific
rational recurrences.

Secondly, we study a three-parameter family of rational recurrences that produce
sequences of integers. We apply two methods to prove the integrality of these sequences.
We first show that some of the sequences also satisfy a linear recurrence. In order to
establish integrality of the entire family we make use of the Laurent phenomenon [11].

Finally, we develop a new concept that generalizes the notion of a recurrence. In-
stead of producing a single sequence, we produce infinitely many sequences from one set
of initial conditions. We will study two families of this type of generalized recurrences
that produce rational numbers when complex numbers are expected. We also observe

exponential sequences being produced by some of these generalized recurrences.
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Chapter 1

Introduction

In this thesis I study nonlinear recurrences by applying computerized and experimental
methods. We will see computers being utilized in two different ways. First, in Chapter
2, we study a general algorithm developed to prove convergence of rational difference
equations. Here we utilize computers as proof machines. The algorithm is created
by human means, programmed in Maple, and then used to systematically produce
convergence theorems. In contrast, in Chapters 3 and 4 experimental methods are
used to form conjectures. In Chapter 3, we study nonlinear recurrences that produce
sequences which also satisfy a linear recurrence. These linear recurrences could not
have been conjectured without the use of experimental mathematics. Additionally, the
theorems and propositions contained in Chapter 4 were all conjectured by noticing
interesting patterns that arose when iterating a more general type of recurrence.
Before continuing I must first lay the foundation for the study of recurrences.
Broadly speaking, a recurrence is a function, f : N — C, defined in terms of itself.

The most common example is the Fibonacci recurrence where

fn=fn1+ fnoo, fi=fo=1

We can also think of a recurrence as being described by a function F : N x CF — C
(see p. 8 in [8]):
fn == F(n) fn—l) ey f'n,—k)

In order to create a sequence from the recurrence we must also be given a set of k initial
values {x1,...,2,} C C, so that fi = x1,..., fr = zx. In the case of the Fibonacci
recurrence, F(n,z,y) = x +y, and 1 = x2 = 1. We call the integer k the order

of the recurrence. Notice that in the Fibonacci recurrence, the function F' does not



depend on n. When this happens we say that the recurrence has constant coefficients.
All of the recurrences we will be considering will have constant coefficients. Therefore,
throughout the thesis we will drop the dependence of F on n.

The class of all recurrences can be decomposed into two sub-classes: linear and
nonlinear. Linear recurrences are those for which F' is a linear function. The simplest
non-trivial example is the Fibonacci recurrence. Of course, the recurrences defined by
F(z) = cx and F = c for some constant ¢ € C are simpler, but quite trivial. In the
former, it is easily seen that f,, = x1c", and in the latter f,, = c for all n € N. Within the
class of linear recurrences we can further distinguish homogeneous recurrences, those
for which the constant term in F is 0, and non-homogeneous recurrences. The following
theorem, which gives us a closed form formula for the n** term in the sequence produced
by a linear homogeneous recurrence, appears in Chapter 4 of Richard Stanley’s book

Enumerative Combinatorics: Volume I [34].

Theorem 1.0.1. Let ay,9,...,ar € C be fivred, k > 1 and ap # 0. The following

conditions on a function f: N — C are equivalent:

(i) For all n >0,
Stk + o1 fogi—1 + 02 fpip—2+ -+ opfn =0.

(ii) For all n > 0,

m

i=1
where 1 + a1 + agz® + -+ + agz® = I, 1- vix)%, the v;s are distinct, and

Pi(n) is a polynomial in n of degree less than d;.

So we see that the class of linear homogeneous recurrences is completely character-
ized. Non-homogeneous linear recurrences are not quite so clear cut, but are similarly
well-studied. In contrast, the class of nonlinear recurrences has no general unifying
theorem. Even the class of quadratic recurrences, those described by a function, F,
with total degree 2, has no general characterization. It is for this reason that we turn

to computers, and experimental methods in general, to study sequences produced by



nonlinear recurrences. My aim is certainly not to present a unifying theory for nonlinear

recurrences, but to study interesting phenomena that arise within this class.

1.1 Thesis Outline

In Chapter 2 we will build up an algorithmic approach for proving global asymptotic
stability of rational difference equations (in this field, recurrences are typically referred
to as difference equations). The concept of global asymptotic stability is essentially
convergence to an equilibrium solution independent of initial conditions; a precise def-
inition will be given below. The basic idea for the algorithmic approach will be to
reduce the question of proving global asymptotic stability to that of proving positivity
of an associated polynomial. We will begin in Section 2.1 by surveying the definitions
and theorems involved in the field of stability of difference equations. Then, in Section
2.2, we will see how to construct a polynomial, P, from a rational difference equation.
This polynomial will have the property that if P is positive when its variables are
positive then its associated difference equation is globally asymptotically stable. Next,
in Section 2.3, I will describe my new algorithm for proving polynomial positivity. A
proof-of-concept can be found in 2.4; we apply the algorithm to a specific rational differ-
ence equation to prove that it converges to an equilibrium solution regardless of initial
conditions. In Section 2.5 we prove global asymptotic stability of many rational differ-
ence equations. Finally, in Section 2.6 we briefly summarize the most useful procedures
contained in the Maple package associated with Chapter 2.

Chapter 3 contains the study of a three parameter family of nonlinear recurrences,
inspired by the famed Somos sequences, that produce integer sequences. We first intro-
duce the Somos recurrences, and summarize various proof techniques used to establish
their integrality, in Section 3.1. One of these proof techniques, showing that a sequence
generated by a nonlinear recurrence satisfies a linear recurrence, is then used to prove
integrality of some sub-cases of the three parameter family in Section 3.2. Lastly, in
Section 3.3 we use the Laurent phenomenon to prove integrality of a two parameter
sub-family of these nonlinear recurrences. This will prove one direction of a conjecture

made in [17].



Finally, in Chapter 4 we consider a more general type of recurrence, that we will
call an m-recurrence, that can unexpectedly generate rational numbers. As described
above, when generating a sequence {ay},- , using a recurrence, computing a, amounts
to solving a linear equation in a,. In this chapter we study what happens when we
must solve a degree-m equation, for some integer m > 1, in order to compute a,. In
Section 4.1 we consider a degree 2, order 1 example created by manipulating the Somos
recurrence. We then consider a generalized version of this example which happens to
have connections to elliptic curves and algebraic correspondences. Then, in Section
4.2, we study a higher order, but still degree 2, recurrence obtained from “unfolding”
the recurrence in the previous section. We also note a connection with Diophantine

equations.



Chapter 2

Global Asymptotic Stability of Rational

Difference Equations

In this chapter we will introduce an algorithmic approach to proving global asymptotic
stability (GAS) of equilibrium points of rational difference equations. This topic has
applications to many other fields including biology, economics, and dynamical systems.
In application areas, one often studies time-evolving sequences produced by recurrences
with the goal of discovering end behavior of the sequence, given some initial conditions.
Essentially, when the sequence converges given any reasonable initial conditions, we
say that it is GAS. In Section 2.1, I will state the precise definition for GAS, as well as
introduce all of the other definitions necessary to study stability of difference equations.
In order to frame my algorithm within the current theory, Section 2.1 also includes a
few relevant theorems that can be used to prove GAS. The final theorem in this section
will be used as the basis for my algorithm, which is presented in Sections 2.2 and 2.3.
In the algorithm I first reduce the problem of GAS to the problem of proving that a
particular polynomial is positive. Then, in Section 2.3, I explain my new algorithm to
prove that a multivariate polynomial is positive (when all of its variables are taken to
be positive). Next, Section 2.4 contains a proof-of-concept that my algorithm is indeed
applicable to prove GAS. Finally, in Section 2.6, I present the most useful commands

in the Maple package that I have created to accompany this chapter of my thesis.



2.1 Introduction to Stability of Rational Difference Equations

2.1.1 Definitions

Following the various works of Ladas, et. al. [3, 22, 24], we state a few standard

definitions and theorems in the study of difference equations and stability.

Definition 2.1.1. A difference equation (of order k + 1) is an equation of the form

Tpt1 = F(Tpn, Tp—1,. ., Tpn_k) (2.1)
where the function F(ug,u1,...,us) maps I¥7! to I, for some interval I C R.

Typically, we will take I to be [0,00) or (0,00). In addition, the function F' will often
be a rational function, and in that case will be denoted R for emphasis.

Given a function F' we say that a solution of (2.1) is a sequence {xy} -, which

o0

n—_k» as being associated to the

satisfies (2.1). One can also think of a solution, {z,}
specific initial conditions {x_g, ..., xo} created by repeatedly applying F'. If a solution
is constant, z, = Z, for all n > —k then we say that the solution is an equilibrium
solution, and T is called an equilibrium point, or simply an equilibrium of F'. In practice,
we find the equilibria by solving the equation z = F(z, ..., Z), and taking the solutions
which lie in the interval 1.

The main topic to be investigated in this chapter is end behavior, specifically sta-

bility, of a solution of a given difference equation. There are various notions of stability

that will now be defined.

Definition 2.1.2. An equilibrium point, z, of (2.1) is said to be

1. locally stable if for every e > 0 there exists 6 > 0 such that if {z,},_ , is a

solution to (2.1) with the property that
e —Z| +|2o—pp1 — T+ -+ |0 —Z| <O

then |z, — Z| < ¢ for all n > 0.



2. locally asymptotically stable (LAS) if T is locally stable, and if there exists a v > 0

such that if {z,} 2, is a solution to (2.1) with the property that
[Tk = Z| + [3p1 — 2|+ F w0 — 2] <y

then

lim z, =2
n—oo

3. a global attractor if for every solution, {x,},> _,, of (2.1) we have

lim z, =
n—oo

4. globally asymptotically stable (GAS) if T is a global attractor, and Z is locally

stable.
5. unstable if x is not locally stable.

The goal in this chapter of my thesis is to present an algorithm to prove GAS. Since
GAS implies LAS, the first step must be to prove LAS (since, if a difference equation
is not LAS it can’t be GAS). The linearized stability theorem provides easily verifiable
criteria for local asymptotic stability. In order to state the theorem we must first define
the linearized difference equation and characteristic equation. First, suppose that F is
continuously differentiable in some open neighborhood of Z (when F' = R is a rational

function, this condition is clearly satisfied). Let

CNENR
;= T,...,T
q; s
for i = 0,1,...,k, be the partial derivatives of F(ug,...,u) w.r.t u; evaluated at the

equilibrium, Z, of (2.1). Using these ¢; we create the linearized equation of (2.1) about

the equilibrium point T,
Ynt1 = QOYn + QYn—1+ -+ GYntk, n=01,...,
and then the characteristic equation of (2.1) about T,
AL — oA — i\t — o — oA — g = 0. (2.2)

Now we can state the theorem as found in [3, 7, 15, 24, 28|.



Theorem 2.1.1 (Linearized Stability Theorem). Assume the function F is a contin-
uwously differentiable function defined in some neighborhood of an equilibrium point .

Then the following statements are true:

1. When all the roots of (2.2) have absolute value less than one, then the equilibrium

point T of (2.1) is locally asymptotically stable.

2. If at least one root of (2.2) has absolute value greater than one, then the equilib-

rium point T of (2.1) is unstable.

For difference equations with order 2, 3, or 4 (i.e., when k = 1,2, 3) there are necessary

and sufficient conditions for 1 in Theorem 2.1.1.

Theorem 2.1.2. Assume a1,a9 € R. Then a necessary and sufficient condition for all
the roots of the equation

M +ad+a =0

to lie inside the unit disk is

lar] < 1+ap <2

Theorem 2.1.3. Assume as,a1,a9 € R. Then a necessary and sufficient condition for

all the roots of the equation
/\3+a2)\2+a1/\+a0:0
to lie inside the unit disk is
lag + a0l <14 a1, |ag—3ag| <3 —ay, a4+ a1 —agas <1

Theorem 2.1.4. Assume as,asz,a1,a9 € R. Then a necessary and sufficient condition

for all the roots of the equation
A\ +a3)\3 + ao)? + a X + ap=20
to lie inside the unit disk is
lar + as| <14+ ag+ a2, |a1—as3] <2(1—ap), az—3ag<3

and

ag +ao + ag + a% + a%ag + aoa?,) < 14 2apas + ajaz + agaijasz + ag



In addition to Theorems 2.1.2 - 2.1.4, the following is a general sufficient condition

for 1 in Theorem 2.1.1 (see [22] (p. 12)).

Theorem 2.1.5. Assume that qo,q1,---,qr € R are such that
g0l + lqu] + -+ + lax] < 1.

Then all roots of (2.2) lie inside the unit disk.

In contrast to local asymptotic stability which is easy to verify (except in the case
that there are roots of (2.2) with norm 1), global asymptotic stability has no similarly
general necessary and sufficient conditions. There are a handful of theorems, providing
sufficient conditions, that have been used to verify the global asymptotic stability of
many specific difference equations. However, given a difference equation defined by
the function F', it is not always obvious which theorem to apply. For the sake of
completeness, the next section will discuss a selection of these theorems. The method

I will give later in this chapter will only rely on Theorem 2.1.10.

2.1.2 Global Asymptotic Stability Theorems

The following theorem was first stated in [6] as a generalization of a theorem in [5].

Theorem 2.1.6. Let I be an interval of real numbers and let F € C(I¥T1,I) (the set
of continuous functions from I*t1 to I). Assume the following three conditions are

satisfied:
1. F is increasing in each of its arguments,

2. F(z1,...,2,41) is strictly increasing in each of the arguments z;,, 2iy, - . . , 2, where

1<i1 <ip < <4 <k+1, and the arguments i1, 19, ...,1; are relatively prime,
3. Every point c in I is an equilibrium point of (2.1).
Then every solution of (2.1) has a finite limit.

Notice here that there is no mention of what this limit is. The next result, due to
Hatus and Bolis in [16], can also be found in [22] as Theorem 2.6.2. It states sufficient

conditions for T to be a global attractor.
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Theorem 2.1.7. Let I be an open interval of real numbers, let F € C(Ik“, I), and let

z € I be an equilibrium point of (2.1). Assume that F' satisfies the following conditions:
1. F is increasing in each of its arguments
2. F satisfies the negative feedback property

(u—2)(F(u,u,...,u) —u) <0, foralluel\{z}

Then the equilibrium point T is a global attractor for (2.1).

In the following theorem, found in [22], we see sufficient conditions for z to be a

global attractor of an order 2 difference equation of the form x, 11 = zp f(2n, Tn_1).
Theorem 2.1.8. Assume that the following conditions hold:

1. feC((0,00) x (0,00),(0,00))

2. f(z,y) is decreasing in x and increasing in y

3. xf(x,x) is strictly increasing in x

4. The equation

Tnt1 = Tnf(Tn, Tn-1), n=0,1,... (2.3)
has a unique positive equilibrium T

Then T is a global attractor of all positive solutions of (2.3).

The next theorem is from [24], a book by Kulenovi¢ and Ladas which summarizes
all known results for second order rational difference equations (with linear numerator
and denominator). This theorem introduces the notation M;(m, M) and m;(m, M),

which is used in many similar theorems.

Theorem 2.1.9. Let [a,b] be a closed and bounded interval of real numbers, and let

F € C(la,b)**, [a,b]) satisfy the following conditions

1. The function F(z1,...,zk+1) is monotonic in each of its arguments.
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2. For each m, M € [a,b] and for each i € {1,...,k+ 1} define

M, if F is increasing in z;

m, if F' s decreasing in z;

and
m;(m, M) = M;(M,m) (2.5)
and assume that if (m, M) is a solution of the system
M =F(Mi(m,M),..., Mgy1(m,M))
m = F(my(m,M),... ,mgyi1(m, M))
then M = m.
Then there exists exactly one equilibrium, T, of the equation
Tnt1 = F(xp, Tpn—1,...,Zn_x), n=0,1,...
and every solution of this equation converges to T.

The final theorem in this section, which will be utilized in the GAS algorithm in
Section 2.3, is first presented in a paper by Kruse and Nesemann [23]. It will be stated
it in a slightly different manner than it appears in their paper, using the notation we
have established in this thesis. First, it will be necessary to consider the difference

equation associated to a function F in vector form. Let G : RFt1 — RFH! be defined

from F' as
T F(zp,...,Tn_k)
Tp—1 T
L Tn—k ] L Tp—k+1

In the case that F' = R is rational we denote this vector mapping by @ instead of G.
Note that this transformation from F' to G essentially creates an order 1 mapping out
of an order k + 1 mapping. In addition, G is now a map that can be composed with

itself, so

X, = G™(Xp)
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where Xy = (zg,...,2_g) is the vector of initial conditions. Now we can state the

theorem.

Theorem 2.1.10 (Kruse, Nesemann 1999). Let ||-|| denote the Euclidean norm (i.e.,
l{a,b)|| = Va? +b2). Let S denote either [0,00) or (0,00) (the function G will neces-
sitate which). Let G : S¥*1 — SK*1 be a continuous mapping of the form (2.6) with a

unique fized point X € S¥*1. Suppose for the discrete dynamic system
X1 =G(X,), n=0,1,2,... (2.7)
there exists an integer K > 1 such that the K" iterate of G satisfies
|GH(X) = X|| < [|JXx = X|| forall X e S X £ X. (2.8)
Then X is GAS with respect to the norm ||-||.

First, let me point out that this integer K tells us which power of G is a contraction
with respect to X, i.e., GX shrinks distances to X. This gives an intuitive reason for
HGK(X) — ?EH < HX — A_,’H to imply global asymptotic stability.

Before giving the proof let me first point out that the various definitions of stability,
as they are stated in Definition 2.1.2, do not quite apply here because our unique fixed
point (or equilibrium) is a vector rather than a scalar. However, Definition 2.1.2, can
be translated to the vector case. The recurrence is (2.7), the equilibrium is a vector
solution to the equation G(X) = X, and the order of the recurrence, k + 1, is 1 (so
k = 0). Other than these minor changes, a word for word translation of Definition 2.1.2
is what we mean by X’ being GAS in Theorem 2.1.10. With this in mind we now restate

the proof from [23] following our notation and including a few more details.

Proof. To prove that X' is GAS we must show two things: first X is locally stable, and
second X is a global attractor. To prove that X is locally stable we must show that for

every € > 0 there is a 6 > 0 such that if HXO — )E'H < 6 then
| X — X|| = ||G™(Xo) — X|| < e for all n > 0.

To find §, given ¢, we will use the fact that G is continuous, and thus G*, the composition

of G with itself ¢ times, is continuous for all 7 (in particular for 0 < i < K — 1). Thus,
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for every € > 0 there exist &g, d1,...,dx_1 > 0 such that
X0 — X| < 6 = ||G'(X) — X <e.
Notice that dy = £ since
X0 — X[ < 6o = = |G (X)) — X = || X — X| <.

Now let ¢ := ming<j<x—1{d;} < e and assume HXO — ?EH < 6. Then from continuity we

have
|G (X)) = X|| <efor 0<i<K-—1. (2.9)
Also, we have assumed in (2.8) that
1GK (X)) — || < A0 — X <6 <. (2.10)
So now we can proceed by induction. We have just shown the base case,
|G (X)) — X|| <efor 0<i< K —1and |[|[GF(X) — X <d(<e).
For some N > 1, assume as the induction hypothesis that,
HGNKH(XO) - A?H <efor0<i<K-—1and HG(N“)K(XO) - 2\?” <0 (<e).
To complete the inductive proof we need to show
HGW“)K“(%) _ XH <efor0<i<K-—1and HG<N+2>K(XO) - XH <5(<e).

By continuity, and because we know HG(N K (Ap) — X H < § from the induction hy-

pothesis, we can apply G* to GVHVE(Ap) to get:
“Gi(G(NJFl)K(XO)) - XH - HG(N“)K”(XO) - XH <efor0<i<K-—L
As in the base case, we use the assumption (2.8) to see

HGK(G(NH)K(XO)) _ /’\?H _ HG(N-&-Q)K(XO) _ /-EH < HG(N—f—l)K(XO) _ ¥

)

which again is less than § (and so, less than €) by the induction hypothesis. This

completes the proof of local stability. We still need to show that X is a global attractor.
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Let Xy # X be fixed initial conditions for the discrete dynamic system (2.7). For

. . o0
fixed 0 < j < K — 1, let Y%, := Xnk+; and consider the subsequence {y]]\,}N . of
{X.}o2 ;. For the remainder of the proof assume that j € {0,..., K — 1} is arbitrary,

but fixed. Also notice that
GK(yJJ;/) = yifﬂ?

and therefore by (2.8)

|98 - 2| < |94 - %] (2.11)
Then, since Hy}v - X H is strictly decreasing in N, and bounded from below by 0, we
know that this sequence of norms must have a limit:

lim |94 - & =L >0

N—o0

. o0
Also from (2.11) we know that the sequence {y}v} is bounded, in fact it is eas-

ily seen that H)}JJ\]H < Hng + 2 HX_ H Therefore it has a convergent subsequence,

yfn(N)}N_O. Let A :=limy_0o yﬁn(N). Then

L= tim ||~ &) = 1im |7, ) - & = [a- 2.

N—oo N—oo

Finally, because G is assumed to be continuous we see that

L= lim

N—o0

=& = Jim ||[GF ) - X|| = (6 (4) - X

J
Hym(N)—i—l Nsoo
Then we must have A = X, otherwise there is a contradiction to (2.8). Therefore,
L = 0 and so limy_, y]{, = X. We chose j € {0,...,K — 1} to be arbitrary, so

im0 X = & O

Next we will see how this theorem can be used to create a global asymptotic stability

proof algorithm.

2.2 From Global Asymptotic Stability to Polynomial Positivity

In this section we will see how to reduce the question of global asymptotic stability of a

rational difference equation to a question about an associated polynomial being positive.
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Throughout this section assume that we have fixed a rational difference equation,
Tyl = R(Tp, ..o, 2p—k), (2.12)

of order k + 1, with a unique equilibrium . Also assume that R is a rational function
with positive coefficients, so R : [0,00)¥*! — [0,00), and 7 is non-negative (if there is
no constant term in the denominator of R we cannot allow 0 to be in the domain, so
R : (0,00)"*1 — (0,00), and Z must be strictly positive). In order to apply Theorem

2.1.10 we must think of (2.12) and its equilibrium in their vector forms. For example,

if 41 = R(zp, Tp—1) = At2n thep

1+zy—1
44,
Q Zn 142z5,-1
- ’
Tp—1 Tn

and X = (2,2). In this case k = 1, s0 R: [0,00)? — [0,00), and Q : [0,00)? — [0, 00)2.
The goal will be to find a positive integer, K, which satisfies (2.8). Motivated by this
goal, we will construct the following polynomial, given specific @, X, and K (assume

we have conjectured some value for K):
Py % i (X) = numerator (HX — .)EHQ — HQK(X) — .)EH2> . (2.13)

Consider the implication of Py p ¢ > 0 for & > 0 (or > 0, both componentwise), and
X #X.
0 < mumerator (| & — X[ - Q% (x) - ®|*)
= 0< X=X~ ) - &|f
= e @) - x| < x|

= [[@%(x)-X| < ||lx - X|. (2.14)

Of course, the first implication, undoing the numerator from line 1 to line 2, in gen-
eral will not preserve an inequality since the denominator may be negative. However,
because we are squaring the Euclidean norm, the common denominator is always a
product of sums of squares. Taking the numerator is then equivalent to multiplying

both sides by the denominator, a positive quantity, which will not change the direction
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of the inequality. Notice that the final implicant, (2.14), is simply (2.8), so proving
Py %k > 0 for some K implies that Z is GAS for the rational difference equation R.
An algorithm for proving positivity will be shown in Section 2.3. Also note that when-
ever the function @) and equilibrium are clear from context, they will be omitted from

the subscript of P.

44z,
14251

Consider the above example, x,+1 = , with the equilibrium =z = 2. If we let

K =1 then the polynomial is:

Py ({x1,22)) = numerator (HX - 2‘?“2 — HQK(X) - é’?“z)

4+ x4

= numerator (|<x1’x2> —(2,2)|7 - H<1+x2

,$1>—<2,2>

)
2
= numerator ((xl —2)% 4 (29 — 2)? — ((;l i z; - 2) + (z1 — 2)2))

(723 + 223 — & — 1225 + day + 2} — 4:1:19:2))
(1+ x2)?

= numerator (—

= —2? + dayxo — dxy + 25 — 205 — Ta3 + 1220,

This polynomial is not positive since the coefficient on the highest power of x; is neg-
ative. However, this example was only meant to show the process to get a polynomial
from @, z, and K. For the correct K value and proof see Section 2.4.

For a given R and Z we know that showing positivity of an associated polynomial
implies GAS of Z for R. We also know, given K, what that polynomial associated to
Q and X is. However, we still need to see how to conjecture a reasonable value for K,
and then how to prove that the polynomial is indeed positive. We will see how to prove
positivity in the next section. Now let’s see how to conjecture a reasonable K value
given R and T using a brute force method. Start with K = 1 and apply the following

algorithm:
1. Create the polynomial Py p ; (&)

2. Apply a minimization technique to the polynomial Py ¢ (&) (e.g., simulated
annealing, gradient descent, Metropolis-Hastings algorithm, etc.) many times to

find approximate local minima of Py -
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3. (a) If all minima are positive then conjecture that this K works.

(b) If there is a negative minima then increment K by 1 and go back to step 1.

For ease of computation, and since this is only to conjecture a K, we apply the mini-
mization technique in step 2 to a discrete set of points. We will restrict to a fine mesh
with large upper bound. For example, the cartesian product Xf’:ll {g,2¢,...,Ne}, for
some large value of N and small value of e. Then every point in the mesh is a vector
of the form (1€, ise, ..., ix+1€), where 1 <i; < N.

Note that this is not the only possible algorithm for conjecturing a value for K.
However, the main result in this chapter is a positivity algorithm, so we will not consider
other possible algorithms. One could, in theory, replace step 2 with the following,
“Apply the polynomial positivity algorithm found in Section 2.3”. Then step 3 would
become, “If the algorithm in step 2 fails, increase K by 1 and go back to step 1, otherwise
return K ”. Using this positivity algorithm, once a K value is found, it is also proved to
be correct. However, using positivity in step 2 is sometimes not feasible since it often

takes more computer memory than the conjecturing algorithm.

2.3 An Algorithm to Prove Positivity of a Multivariate Polynomial

So far, my algorithm to prove global asymptotic stability of a particular rational dif-
ference equation has reduced the problem to proving that an associated polynomial is
positive. Now the question becomes, how does one prove positivity? The algorithm I

will present was inspired by the following definition and theorem found in [21].
Definition 2.3.1. The polynomial P € R[z1,...,x,] is

e positive (resp. non-negative) from p iff Voy > p,...,zn > p, P(x1,...,2,) > 0

(resp. P(x1,...,2,) > 0).

e absolutely positive (resp. absolutely non-negative) from p iff P is positive (resp.
non-negative) from p, and every partial derivative (of any order), P*, of P is

non-negative from p, i.e., Vo1 > p,x0 > p, ...,y > p, P*(z1,...,2,) > 0.
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In addition, we will denote by o, . ,,(P) the polynomial obtained from P by
translating in dimension ¢ by u; in the negative direction. In other words, replace x; by
x; + p; in P for all i. If u; = p for all i then we simply write o, (P). Now, I will state a
theorem from [21] that gives a necessary and sufficient condition for absolute positivity

(and absolute non-negativity).

Theorem 2.3.1 (Hong, Jakus 1998). Let P be a non-zero polynomial. Then P is
absolutely positive (resp. absolutely non-negative) from p iff every coefficient in o, (P)
is positive, and the constant term is nonzero (resp. mnon-negative). In particular, if
w = 0 then every coefficient in P is positive and the constant term is nonzero (resp.

non-negative).

Now, it is certainly too much to hope for the polynomials Py, 5 j to be absolutely
positive from zero. Of course, to satisfy Theorem 2.1.10, it is only necessary that they
be positive from zero (and possibly zero at a few points). My algorithm will subdivide
the positive orthant (the region in which all the variables are non-negative), denoted
by R’ where n is the number of variables in P, into regions in which P is essentially
absolutely positive in some direction (i.e., there is a direction such that the directional

derivative is positive).

Example 2.3.1. Consider the paraboloid given by P = (z — 1)2 + (y — 2)2. The
directional derivative, at the point (x,y) in the direction @ = (u1,ug), is given by

VP(z,y) 4 =2(x—1)u; +2(y — 2)us.

If we can find a decomposition of R? into subsets so that P(z,y) > 0 on the boundary
of each set, and the directional derivative away from the boundary is positive, this

guarantees positivity of P(z,y) on Ri. I propose the decomposition

R% ={(z,y):1<zand 2<y}U{(2,y):0<x<land 0<y<2}U

U{(z,y):0<z<land2<y}U{(z,y):1<zand 0 <y <2}

Clearly P is positive on the boundary of each of these regions (set x = 1 or y = 2).

Now, if 1 <z and 2 < y the direction ¥ = (1, 1) guarantees positivity of the directional
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derivative since
2z —Dur +2(y —2ue =22 +2y—6>24+4—-6=0.
Next, if 0 <2 <1 and 0 < y < 2 we consider the direction @ = (-1, —1) and see that
2z — Dup +2(y —2)ug = 22 —2y+6 > -2—-446 = 0.

Finally, if 0 < < 1 and 2 < y the directional derivative is positive in the direction

= (—1,1):
2 —1Du1 +2(y —2ug = —20+2y—2>-2+4-2=0.
Similarly, if 1 < 2 and 0 <y < 2 then the directional vector must be @ = (1,-1). <

Since the polynomials we construct while pursuing global asymptotic stability are
typically much more complicated than the one found in the previous example, we cannot
easily show that a directional derivative is positive. Instead, for each region S C R’
we will create a polynomial, Pg(y). This polynomial will have the property that if
Ps(y) > 0 for all y € R? then P(x) > 0 for all x € S. The algorithm will first be
described in two dimensions, and later generalized to the n-dimensional case.

Let P := P(z,y) be a polynomial in two variables (n = 2). In order to show that
P(z,y) >0 for (z,y) € Ra_, we first cut the positive quadrant into 4 regions as shown
in Figure 2.1, where Z is some positive number. In the case that P = Py p x as in
Section 2.2, Z will be the equilibrium point of the rational difference equation used to
create P.

For each of these four regions we create a new polynomial from P by transforming
the region into Ri, and making the corresponding variable substitutions. See Figures
2.2 - 2.4 for the region transformations (transforming SE is analogous to transforming

NW by permuting the x and y axes). Based on these region transformations we see
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NE

S

Figure 2.2: Transforming NE to Rﬁ_

that the associated polynomials are given by

PNE<$7y) :USE(P) :P(.Z'—‘r.f,y—i-i‘),

11
Psw(z,y) =01 (P <, > JCd””yd”)
z Ty

d d
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The change of variables in P before applying o, inverting the variables or not, is self
explanatory based on the transformation of the associated region. However, we must
also multiply by 2% and/or y% (where d, = the degree of z in P for z = x, y) as needed

before applying the o shift operator so that the resulting Pg is still a polynomial. When
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5]
sl —

Figure 2.3: Transforming SW to Ri

talking generally about one of these polynomials, we will denote it by P, where the
[J can refer to an arbitrary region. Note that if £ = 0 we will only consider the NFE
region, thus avoiding translating by % = %.

Before we continue the algorithm by giving criteria to test positivity of the polyno-
mials in (2.15) we must see why proving positivity of all P will be enough to prove

positivity of P(z,y) for all (z,y) € R%.

Proposition 2.3.2. Let P(x,y) be a polynomial, d, = deg,(P), d, = deg,(P), and
z > 0. Consider the polynomials Pyg, Psw, PNw, Psg as defined in (2.15). If these

four polynomials are all non-negative from 0 then P(x,y) is non-negative from 0.

. . e e e 2
Proof. For each of the four polynomials we will see that positivity for (z,y) € R%

implies positivity of P(z,y) in the corresponding region.
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=l
Bl =

Figure 2.4: Transforming NW to ]Ri

If Pyg(z,y) > 0 for (x,y) € R%: Then by definition of Pyg(z,y) we have
Pyg(z,y) =Plx+z,y+x) >0 forz>0,y>0.
Let 2’ := 2z +Z and v/ := y + T, then
P',y)>0 fora’ =a+2>z andy =y+7 > 7.
This says precisely that P(z,y) > 0 in the region NE.
If Psy (x,y) >0 for (z,y) € R2: Again, by definition of Psy (,y)
da d
Psy (z,y) =P <x+1;,7yii) (:E—i— ;) <y+ i) Y >0
for x > 0,y > 0.

Following the previous case we first substitute 2’ := x + % and y ==y + % to get

P (1,7 1,) (x')dz (y’)dy >0 fora' =x+

ry

>

ST
ST

1
> —, andy’:y+
T

ST
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Since we are only interested in the region for which 2’ and 3’ are both strictly

positive we may cancel the (z’ )d“” (v )dy without reversing the inequality. We also
make a second substitution letting z” := % and 3" := % Now we see that

1 1
P"y") >0 for0<z”:?§f, and0<y”:?§f

which is simply P(z,y) > 0 in the region SW.

If Pyw(z,y) >0 for (z,y) € R%: From the definition in (2.15) this means

1 1\ %
PNW(x,y):P<1,y+x> <x—|—_> >0 forxz>0,y>0.
$+§ x

i

As in the SW case, we will make two substitutions. The first being 2’ := = +

and y' := y + Z. This gives us

>—, andy =y +7>17.

K| =
K|~

1
P <x/,y'> (x’)dz >0 fora' =x+

Again, we may cancel the (2 )dx without reversing the inequality since 2’ is strictly

positive in the region in question. Finally, we make our second substitution,

2" := 1 (there is no second substitution for y') which yields

1
P y)>0 for0<a” = — <7, and y > z.

x
Therefore, P(z,y) > 0 in the region NW.
If Psp(z,y) >0 for (z,y) € R2: This case is analogous to the NW case by interchang-

ing the roles of x and y.

In each of the four cases positivity of the polynomial corresponds to positivity of P(x,y)

in the corresponding region. O

To prove positivity of each of the 5 we will test two criteria, neither using anything

more powerful than high school algebra.

PosCoeffs: From Theorem 2.3.1, if all coefficients, including the constant term, of P

are non-negative then Py(z,y) > 0 for (z,y) € R?.
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SubPoly: If the only negative coefficient in P (including the constant term) is on the

xy term then we check whether the binary quadratic form,
2 2
ax® + bxy + cy (2.16)

where a, b, and c are coefficients of their respective terms in P, is positive definite
(i.e., is positive for all (z,y) # 0) using its discriminant. The binary quadratic
form discriminant of (2.16) is defined to be d = 4ac — b* [30]. If a,d > 0, then
(2.16) is positive. Then, if this “sub-polynomial” of P is positive, Py itself is
positive (since the other coefficients are positive). Notice that this may not be
the discriminant most are familiar with. A further discussion of why this is taken
to be the discriminant can be found when the n-dimensional positivity algorithm

is summarized later in this section.

We also have an easy way to test whether P(z,y) < 0 for some (z,y) € R by
checking the leading coefficient (the coefficient on the highest degree term) and constant

term.

LCoeff: The leading coefficient must be positive, otherwise the polynomial eventually

tends to negative infinity in some direction.

Const: Similarly, the constant term must be positive, otherwise the polynomial is

negative in a neighborhood of the origin.

For each region [, if P passes one of PosCoeffs or SubPoly then, by Proposition
2.3.2, P(x,y) > 0 in the region . If P fails one of LCoeff or Const then we output
false immediately because we know that there are points in region O for which P(z,y)
is negative. However, for some region [, if P75 has too many negative coefficients, its
leading coeflicient is positive, and its constant term is positive, then we must do more
tests to establish positivity of Pg on Ri.

We would like to subdivide our original region (NE, NW, SE, or SW) into finitely
many pieces and try again. However, there isn’t an obvious way to do this since, except
for SW, the regions are infinite, and we have used our “obvious” cutpoint, Z. So instead,

we will first map the infinite region into a finite rectangle with lower left corner at the
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origin (see figures 2.5 and 2.6) and create a new polynomial P/,(z,y) from P(x,y) for
each now finite region. We will then subdivide this finite region in order to prove
that P(z,y) > 0 on the region in which it is defined. These new polynomials will be

defined in the following manner based on their corresponding region transformations.

Y

1

|
|
|
|
* 1
T

e

Figure 2.5: Transforming NE to finite rectangle

8l =
|

-

[
[
/x
T
aT

8l

Figure 2.6: Transforming NW to finite rectangle (SE similar by interchanging axes)

1

Pyp(z,y) =P (1, 1) g% gyt restricted to 0 < z,y < —

'y T
/ 1\ 4 . _ 1
Pyw(z,y) =P x,; y™ restricted to 0 <z < z,0 <y < -
/ 1 d . 1 _
Pyp(z,y) =P ) @ restricted to 0 < z < %,Ogygaz
1
Py (z,y) = P(z,y) restricted to 0 <z < 7,0 <y < =

(2.17)

Along the lines of Proposition 2.3.2 we can guarantee positivity of P(x,y) given
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positivity of the related polynomials (2.17).

Proposition 2.3.3. Let P(z,y) be a polynomial, d, = deg,(P), dy, = deg,(P), and
z > 0. Consider the polynomials Py g, Péy, Py, Pég as defined in (2.17). If any
one of these polynomials, generally denoted PL, is positive on the region indicated in
(2.17), then P(z,y) is positive on the region O. For example, if Py (x,y) > 0 on
0<z<zand 0 <y < %, then P(x,y) > 0 on the region NW, and similarly for the

other polynomials/regions.

Proof. We will only see the proof for Py, (x,y), the rest will follow in nearly the same
manner. Assume that Py (z,y) > 0for 0 <z <zand 0 <y < % Then by definition

of Py (z,y) we know that

1
p<x,>ydy>o for 0< z<7,0<y<
Yy

K|~

Since y is strictly positive in the region in which Py, (x,y) is defined, we can cancel
y% without reversing the inequality just as we did in the proof of Proposition 2.3.2.
Now, let ¢/ := i to see that

P(z,y) =0

for 0 <z <z andy = - >z, which is precisely the region NW. The other regions will

1
y
follow by doing substitutions 2’ := % and ¢/ := % as necessary. Note that no work needs

to be done for SW since P¢yy, (z,y) = P(x,y) and is defined in the region SW. O

Next, we need to see how to prove that B (z,y) > 0 on the desired region. We will
do this by subdividing the domain of P/ into finitely many smaller rectangles. Then,
for each smaller rectangle, S = {a < z < b,¢c <y < d}, we transform it to Ri creating
a corresponding polynomial, P§(z,y), and test criteria PosCoeffs and SubPoly to see
whether this polynomial is positive. See Figure 2.7 for the transformation of a general

rectangle, S, to Ri. Given this transformation, the polynomial, Pg, is given by

1 1 ‘g
P// — P/ - - dz dy
s (x,y) o1 1C< 0 I—i—a,y—kc %y

“a'd—
d! d,
1 1 1 3” 1 Y
(e L) (e ) ) e
T+, Y+ g b—a d—c
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where P/ is one of Py, Pyw, Pég, Péy, and d, = degree of z in B/, for z = z,y.

Before we see the canonical subdivision algorithm let us see why this Pg(z,y) will give

Y4 - - - - — -

d
Vq !

. . . 2
Figure 2.7: Transforming general rectangle, S, to R%

the desired result.

Proposition 2.3.4. Let P(x,y) be a polynomial, d;, = deg,(F}), d,, = deg,(F}),
0<a<b, and 0 < c < d. Consider the polynomial P§ as defined in (2.18). If P{(z,y)

is positive on R%, then PL(z,y) is positive on the rectangle S = {a <z < b,c <y < d}.

Proof. This proof follows the form of the proofs for Propositions 2.3.2 and 2.3.3. First,

by definition of P”(S), the fact that Pg(x,y) > 0 for z,y > 0 means

d! d
1 1 1 = 1 v
P — +a, —+c <m+> <y+> > 0.
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the inequality. Let 2’ = 2 + 71 and y = y + 7=, then

1 1

/

PD (wl—f‘a,y/—FC) >0
1
d—c

fora’ =z+;L > andy =y+ ;L > . Next, let 2" = 4, and ¢/ = % Making

wl

this substitution yields

P (m”+a,y”+c) >0

for 0 <a2” =4 <b-aand 0 <y’ = % < d — c¢. For the final substitution, let

2" =2" +a and vy =y’ + c¢. Then
P&l (.II//, y///) Z 0

fora < 2" =2"4+a <band c < y"” =y" + ¢ < d. In other words, P} (z,y) > 0 for

(z,y) € S. O

In principle any subdivision will work so long as we cover the entire finite rectangle.
However, since the goal is to program the algorithm we need to specify a canonical
subdivision. First we will simply divide into four equal regions. For each region we per-
form the above steps (transform the region and polynomial, apply criteria PosCoeffs
and SubPoly). If we fail either criteria on a specific subregion, then we subdivide that
subregion into four again and repeat. We continue to do this until we pass PosCoeffs
or SubPoly, fail LCoeff or Const (and output false), or we reach some stopping
condition and output FAIL. A stopping condition could be that we have subdivided IV
times, for some large N.

Before we summarize the positivity algorithm in the general n-dimensional case we
must see the general SubPoly criteria. It was previously stated only in the case of 2

variables.

SubPoly-n: If the only negative coefficients in P (including the constant term) are
on terms of the form z,zs then we check whether the quadratic form [25],
n
Z A, T35 (219)

ij=1
(]
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where a; ; are coefficients of their respective terms in Pr, is positive definite (i.e.,
is positive for all (z1,...,z,) # (0,...,0)) using its corresponding matrix. The
I 1

a, ., = *(I@j for

symmetric coefficient matrix is defined as: A = (a; ;), where a; ; = a’;; = 3

J
all i # j, and a;; = a;; [30]. Given this matrix, we can equivalently think of the
quadratic form as xAxT, where X = (z1,...,2,). Since A is a symmetric matrix,
we know from the spectral theorem that it is diagonalizable by an orthonormal

matrix, @, so we have that A = QDQ " where D is a diagonal matrix. We can

then rewrite the quadratic form as:

xAx?T =xQDQ " x"

=xDx'.

From this we easily see that the quadratic form is positive definite iff all eigen-
values of A are positive (i.e., A is positive definite). Then, if this quadratic “sub-
polynomial” of Py is positive, P itself is positive (since the other coefficients are

positive).

We are now ready to summarize the algorithm in the n-dimensional case. Assume
we have a polynomial P € R[x1,...,z,], and want to test whether P(x1,...,z,) >0

for (z1,...,2,) € R

1. First cut R’} into regions, similar to the NW, NE, SW, SE regions. For each

variable we have 2 possibilities for its domain

A region is defined by making a choice for each variable, thus we have 2" regions.

The associated polynomial, P, for each region is then created by substituting

in P, and then multiplying by (z; + %)d” if 0 <a; <7

2. For each region we check our 4 criteria PosCoeffs, SubPoly-n, LCoeff, and

Const. If all 2" polynomials pass PosCoeffs or SubPoly-n then we are done,
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and P is positive on R’} . If any of the polynomials fail LCoeff or Const then we
are also done because we know that there are values in R”} for the variables which
make P negative. Otherwise, we continue on to step 3 for the regions which fail

PosCoeffs and SubPoly-n.

3. Assume we have a specific region (domains for each variable), R, which failed
step 2. Then we create the polynomial Py, by substituting m% for x; in P if x; is
restricted to £ < x; < o0 in R, and then multiplying by x?zi for those variables
which were substituted. This new polynomial will be restricted to the region R/,
which is defined from R in the following manner: if 0 < z; < Z in R, then x; has
the same restriction in R’; otherwise, T < x; < oo in R, and then z; is restricted to

0<$@-§%1an. More formally, if D = {i: 0 < z; <Zin R}, and D = [n] ~ D

R = <X{0§$i§l’}> X <>< {0<l’i§1}>
i€D ieD r

(a) Subdivide R into 2" equal regions, S;, and for each region create the poly-

then

nomial Péj in the same manner as (2.18).

(b) Test positivity of Péj using criteria PosCoeffs, SubPoly-n, LCoeff, and
Const. If Péj passes PosCoeffs or SubPoly-n then we are done in region
S; and can continue checking the rest of the subregions of R’. If Péj fails
LCoeff or Const then we stop altogether because we know that there are
values for the variables in R} which make P negative. Otherwise, go back

to step 3(a) with region R’ now replaced by ;.

(¢) If we have recursed more than N times (for some choice of N), stop and

output FAIL.

Before going on to the proof-of-concept for a specific difference equation and equi-
librium let us see how to apply the polynomial positivity algorithm. We will see two
examples, one in which SubPoly must be used, and one where subdivisions are neces-

sary.

Example 2.3.2. Let P(z,y) = 22 — 2y + y* and Z = 1. First we subdivide R? into
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the for regions NE, SW, NW, SE and get the following polynomials:

Pyp(z,y)=ci(P) =2 —ay+1y> +x+y+1,

11
Psw (z,y) = 01 <P () fﬂdwydy> =2 —xy+yi+rty+1,
x’y

1
Pyw (z,y) = 011 <P <xy> xdz> =22+ 2y + 2+ P+ 3y + P e+ y + 1,
1
Psgp(z,y) =011 (P (x, y) ydy> =22y + 2%y 4+ 22 + 2® + 3xy + i+ +y+ 1

The polynomials Pyw (z,y) = Psg(z,y) have all positive coefficients, so they satisfy
PosCoeffs. To see that Pyg(x,y) (which equals Psyy (x,y) in this example) is positive
we must test criteria SubPoly.

The only negative coefficient in Pyg(z,y) is on the zy term, so we look at the sub-
polynomial 22 —2y-+y>. The discriminant of this binary quadratic form is 4-1-1—1% = 3,
which is positive as needed. So we see that Pyg(z,y) (and thus Psw (z,y)) is positive
by SubPoly.

In this example we don’t have to do further subdivisions since Pyw, Pvg, Psg, Psw

are all positive. Therefore, we are done by Proposition 2.3.2. &

Example 2.3.3. Let P(z,y) = 2*y—523y+ 1022y +x+y and Z = 1. First we subdivide

R%— into the for regions NE, SW, NW, SE and get the following polynomials:

Pyp(z,y) = o1(P) = aty + 2* — 23y — 2 + 2%y + 22 + 9zy + 112 4 Ty + 8,

11
Psy (z,y) = 01 (P <, > $d“yd9> =2t + 423 + 2%y + 1722 + 22y + 21z + y + 8,
ry

1
Pnw(z,y) = 011 (P <x7y> 3de>
_ 4 4 3 3 2 2
=z y+ " + 4’y + 42° + 1627y + 172" + 192y + 21z 4 Ty + 8§,
1
Psgp(z,y) =011 <P <:L', ) ydy> =2t — 3+ 2%y + 222 + 2y + 11z +y + 8.
Yy
In this example we see that Psy (z,y) and Pyw (z,y) pass criteria PosCoeffs since all

coefficients are positive. For the other two regions we will need to subdivide because

the negative coefficients are not on the term xy.
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Let us first examine SE. We need to create the polynomial Py (z,y) as in 2.17:
/ 1 dy
PSE(xay):P ;7y x
= 2ty 4+ 102%y + 22 — bxy +y restricted to 0 <z < 1,0 <y < 1.

Then we subdivide the region 0 < x < 1,0 < y < 1 into four equal rectangles:

1 1 11
= < — <y < - = < -, —<y<1
S {0<:c_2,0_y_2}, So {O<x_2,2_y_ },
Ss = 1< <1.0< <1 Sy = 1< <11< <1
3 — 2_1’_ 5 _y_2 5 4 = 2_1"_ 72_y_ ;

and create four associated polynomials using (2.18):

_ .4 3 2 2
Pgl(l‘,y) =x" + 3x° + 27y + 62~ + day + 20x + 4y + 25,
1 3
/" _ 14 4,93 3 2 2
PSQ(I,y)—ZCE Y+ 2z +293 Yy + 6x° 4+ 37y + 107+
25
+ 10zy + 32x + Y + 42,
P (x ):1334 +§x4—|—3:p3 + 2023 + 132%y+

+ 9622 + 24xy + 1962 + 16y + 144,

25 21
Py, (x.y) =55ty + ga' +102% + 342° 4 4827y +

+ 16622 + 98y + 344 + T2y + 256.

All four polynomials for the subdivision of SE are positive by PosCoeffs, therefore
P{p(z,y) > 0, and by Proposition 2.3.3 we see that P(z,y) > 0 on the region SE.

Now let us look at Pyp. Create Py as indicated by (2.17):

11
P]/VE(xvy) =P (%7 y) xdzydy
:8x4y+7x4+11x3y+9x3+2x2y+a:2 —xy—zrz+y+1

restricted to 0 < x < 1,0 <y < 1.

Subdivide the region 0 < x < 1,0 < y < 1 into the same S, So, S3, and Sy as above,
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and create the polynomials Pg, this time from Py p:

Pl (z,y) =2ty + 32% + 723y + 212° + 1922y + 5822+
+ 332y + 105z + 37y + 120,

3 21
sz (z,9) 253343/ + 4z + gx?’y + 2823 + 2922y + 7822+

105
+ 5wy + 144z + 60y + 166,

37 15 115 375
Pg, (z,y) =gty + —at 4+ Sy + Tx?’ + 14222y +

16 2 4
+ 46322 + 320zy + 1040z + 272y + 880,
15 83 375 463
Pg, (z,y) :Zx‘Ly + §x4 + ?xgy + 1302 + 7:c2y+

+ 64222 + 520zy + 1440z + 440y + 1216.

As before, all four subdivision polynomials pass PosCoeffs, and so they are posi-
tive. Therefore, by Propositions 2.3.2, 2.3.3, and 2.3.4 we know that P(z,y) > 0 for

(z,y) € RE. &
2.4 Proof of Concept

We have now seen the full algorithm to prove GAS of equilibrium points of rational
difference equations. However, there is no reason a priori that this algorithm is appli-
cable. It could be the case that no such K (see Section 2.2 for a definition of K) exists,
and this algorithm would be useless.

We will now see that this technique does, in fact, work to prove global asymptotic
stability of an equilibrium of a particular rational difference equation. The proof of the
following theorem to establish global asymptotic stability will go through the procedure

outlined in the previous sections.

Theorem 2.4.1. For the rational difference equation

44+ x,

— 2.2
T— (2.20)

Tn+1 =

the equilibrium, T = 2, is GAS.
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Proof. We will prove that K = 5 satisfies (2.8) from Theorem 2.1.10. From the ra-
tional difference equation, the equilibrium z = 2, and K = 5 we get the polynomial,

P = Py 5((71,72)), as defined in (2.13):

P = 252823 + 3402823 + 16062523 4 30602529 + 202528 + 602725 + 1158z 25+
18460123 4 289362723 + 458481 w9 + 2709027 + T1252S + 14182525+
+1122928 23 + 533622523 + 1473452523 + 2071442825 + 11310328 + 722525+
+14202325 + 90122525 + 201742525 + 247162325 4 747182523 + 1630322320+
+10895227 + 47xtxb + 127621 2] + 111202725 + 255282125 — 1187802 24—
—688300x x5 — 1195361z 23 — 7907362 2 — 14896927 + 122525 4+ 538x323+

+ 78542328 + 458642528 4 536041515 — 515564z x5 — 20664545515 —
24695642315 — 20757627 29 + 8338825 + 22210 4 862329 + 21092325+
+2207022 x5 + 1021172225 + 1055262225 — 6952692225 — 1867364x2 x5+
+78534322 22 + 6256056220 + 471681722 + 4z 220 + 1982125 + 3530225+
429636125 + 1172182128 + 1362882125 — 28944011 x5 + 253318z 25+
+5674806x1 23 + 1163402421 29 + 70543001 + 4230 + 14825 + 214525 + 15348x7+

+5387025 + 69340235 + 3057925 + 8018745 + 380241122 4 6262908z, + 3488704.

The goal is to prove that this polynomial is positive when all variables are positive.
Recall that we created this polynomial by taking the numerator of

|l = 2"~ fl@* () - x|,

where Q(X) is the map

44xp
Q xn _ 1+xn71
Tn—1 Tn

Now we run the polynomial positivity algorithm described in Section 2.3 to prove that
this polynomial is positive. If the polynomial is positive when all variables are positive
then the equilibrium, & = 2, is GAS for the original difference equation by Theorem

2.1.10.
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First we will prove that P > 0 in the region NE. We make the polynomial Pyg by
substituting z; = 1 + 2 and x93 = 3 + 2 into P. See Appendix A.3 for the polynomial
Pyg. Now we need to prove that Pyg > 0 in the region Ri except when all variables
are simultaneously zero. The only negative coefficient is on the term xix9, so we can
use the discriminant method. The binary quadratic form that we must show is positive

definite is
3493666897 — 6980904z 25 + 3187005753

Its discriminant is d = 445324725659927484 which is positive, so by SubPoly Pyg > 0
in R%—'
Now we will prove P > 0 in the region NW. Create the polynomial Pyy by

1

substituting x; = 1/x1, multiplying by a:cllz = 2%, and then translating x; by 1/2 to
the left, and xo by 2 to the left. See Appendix A.3 for the polynomial Pyyy. All
coefficients in Pyyw are positive, and the constant term is zero. There is no proper
subset of the variables for which setting them all equal zero yields the zero polynomial.
Therefore, Py is zero only when all variables are zero, and so P > 0 in NW.

Next, we will prove P > 0 in the region SE. First make the polynomial Psgp by
substituting zo = 1/x9, multiplying by xgzz = 4%, and then translating z; by 2 to the
left and z by 1/2 to the left. See Appendix A.3 for the polynomial Pgr. Now we need
to prove that Pgg > 0 in the region Ri except when all variables are simultaneously
zero. All coefficients are positive, and the constant term is zero. There is no proper
subset of the variables for which setting them all equal zero yields the zero polynomial.
Therefore, Psg is zero only when all variables are zero, and then P > 0 in the region

SE.

Finally, we must prove P > 0 in the region SW. Make the polynomial Pgy by

1 2 10 d

substituting z; = 1/x1 and z9 = 1/x9, multiplying by ac?z = 2§ and acgz = x5, an
then translating both variables by 1/2 to the left. See Appendix A.3 for the polynomial
Psy. Now we need to prove that Psy > 0 in the region Ri except when all variables
are simultaneously zero. As in the region NFE the term xix9 has a negative coefficient

(and that is the only such coefficient), so we will use the discriminant method again.
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The binary quadratic form that must be positive is

349366689 , 872613 | 318700575 ,
xr{ — 1T e — 1
16384 1 2048 M2 16384 2

The discriminant is d = 11133%%%2%?181871, which is positive. Then, by SubPoly, Psy

is positive in Ri, so P > 0 in the region SW.

Since P > 0 in all four regions, NE, NW, SE, and SW, the K value 5 is proven

to work for the rational difference equation x,41 = 112“”? - ]

We can now see that the algorithm is indeed applicable. However, it wouldn’t be
possible without programming the algorithm. For large K values, even K > 3, the
polynomials are near impossible to deal with by hand. I have created a Maple package
to conjecture K values and prove global asymptotic stability. For a description of the

most useful procedures in the maple code see Section 2.6.

2.5 Results

In this section we will present the results that my algorithm can prove in full generality.
For a list in the spirit of Elias Camouzis and Gerasimos Ladas in their book [3] see
Appendix A.1. Also found in the appendix are some of the results that my algorithm
can prove when values for the parameters are given, but cannot prove in as much
generality as here. Typically this occurs when the K value is not uniform over the set

of parameters as it is in Theorems 2.5.1 - 2.5.10.

Theorem 2.5.1. The rational difference equation x,y1 = Bxy is GAS iff 5 < 1.

Proof. For this rational difference equation, the equilibrium is Z = 0 and it is LAS iff
8 < 1 by the Linearized Stability Theorem. To show that it is GAS when 8 < 1 we
must prove that the polynomial, Py, (71) = 1 — (32, is positive. Clearly Py 1(z1) is

only positive when 8 < 1. Therefore, z = 0 is GAS iff 5 < 1. O
Theorem 2.5.2. The rational difference equation x,+1 = yxn—1 is GAS iff v < 1.

Proof. For this rational difference equation, the only non-negative equilibrium is z = 0,

and it is LAS iff v < 1. To prove GAS for v < 1 we must prove that the polynomial,
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P<0,0>,1(m1, T9) = x3 — w372 is positive. There is a negative coefficient, so we will do a

substitution to get the range of v to be (0,00). First let v = % and multiply by ~?.

Then 1 < 3 < co. Next, let 41 = 2 + 1 so that 0 < v9 < co. Now the polynomial is
P = 23(%3 + 272)

which has all positive coefficients. Therefore, for 0 < v < 1 the equilibrium z = 0 is

GAS. =

Theorem 2.5.3. The rational difference equation x,+1 = %]‘14_5;"1 is GAS iff |M| > 1.

Proof. For this rational difference equation there are two possible equilibrium points,
T =4(M-1)and z = —3(M +1). We require that all coefficients, and the equilibrium
point be positive. There are two cases for which the coefficient, M?—1 = (M —1)(M+1),

is positive, each corresponds to one of the two equilibria:

1

M—1>0amd M+1>0, 2= (M~1),
1

M—1<0and M+1<0, z=—3(M+1)

In the first case, the polynomial, P<1(M_1)> o(x), is
2 b

Py =64z 4 (32M? — 64M + 160)z> + (—16M> 4 48M? — 112M + 144)2%+

—8(M — 1)(M? + M?* — M + Tz + 4(M + 1)(M? — M +2)(M — 1)?
and we require that M > 1. Substitute M = M; + 1 to get the following polynomial

Py =64z + (32M? 4+ 128)2% 4+ (—16 M} — 64M; + 64)2°+

— 8My (M3 + AM? + 4My + 8)x + AMZ (M, + 2)(M? + My + 2).

Since not all coefficients here are positive, we must notice (or ask our computer algebra

system) that P; factors.
Py = 4(M? 4+ My + 2+ 22) (M + 2 + 22) (M, — 22)?

Since each term in the product is positive we know that 131 is positive. So we see that

when M > 1,z = (M — 1) is GAS.
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In the second case, the polynomial P< L(ar41) o(x) is
2 K

Py := 642" + (32M? + 64M + 160)2> 4 (16 M3 + 48M? 4+ 112M + 144)2*+
—8(M + 1) (M3 = M?* — M — T)x — 4(M — 1)(M? + M +2)(M + 1)?

and we require that M < —1. Substitute M = M; — 1, and then My = —M>. Then the

domain of My is (0,00) as needed. We then get the polynomial,

Py =642 + (32M3 + 128)x® — (16 M35 + 64 My — 64)2°+
— 8My(M3 4 AMZ + 4My + 8)x + 4M3 (Mo + 2) (M3 + My + 2).
As before we must notice that P, factors into a product of positive terms and is therefore

positive:

Py = A(M32 4 My + 2 + 22) (M + 2 + 22) (M; — 2x).

In both cases P is positive, so  is GAS iff |[M| > 1. O

Theorem 2.5.4. The rational difference equation xp1 = Ben o GAS for all positive

14z,
B#1

Proof. For this rational difference equation there are two equilibria, z = 0 and z = 5—1.
If 0 < B < 1, the only non-negative equilibrium is £ = 0 which is LAS. If § > 1 the
equilibrium Z = 8 — 1 is LAS. If 8 = 1 then the equilibrium z = 0 is not LAS.

First, assume 0 < 8 < 1 and thus the equilibrium is Z = 0. The polynomial Py ()
is then

P =z +2c+1-p2%

The coefficients are positive, and the constant term is positive because 0 < 8 < 1, so
Z=0is GAS when 0 < g < 1.

Now assume 3 > 1, and the equilibrium is z = # — 1. The polynomial Pz_yy () is
Py =zt 4 (4 —2B)x3 + (8% — 66 + 5)* + (28% — 48 + 2)x.

In this case the positivity method described in section 2.3 does not apply because there

is no way to make the coefficient of 23 positive using the tricks we have used in previous
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proofs. However, we can still prove positivity of P> by noticing that it factors into a

product of positive terms,
Py=x(x+2)(8—-1—xz)%

Therefore, since P; and P» are positive when > 0 we have that the equilibria are GAS

when 8 >0 and 8 # 1. O

Theorem 2.5.5. The rational difference equation x,y1 = ji;; is GAS iff A > 1.

Proof. For this rational difference equation there are two equilibrium points, £ = 0 and
Z=1—A. If 0 < A < 1 neither equilibrium is LAS. If A > 1 the only non-negative
equilibrium is = 0 and it is LAS. To prove that it is GAS we must show that the

following polynomial, Py 1(z1,¥2), is positive when A > 1,

P = 2223 + 2Ax 23 + A%23 — 23,

In order to get the range of A to be (0, 00) we must make the substitution A = A; + 1.

The resulting polynomial is
P = 2223 + 2A 0123 + 2x123 + A22d + 24143,

Since all coefficients in P are positive when A, € (0,00), the polynomial is positive.

Therefore z = 0 is GAS when A > 1. O

Theorem 2.5.6. The rational difference equation xp4+1 = Ai’;;il is GAS for all posi-

tive values of A.

Proof. For this rational difference equation there are two possible equilibrium points,
Z=0and Zz=1— A. If A > 1 then the only non-negative equilibrium is Z = 0, and
it is LAS. To prove that it is also GAS we must show that the following polynomial,

Po,0y,1(21,22), is positive for A > 1,
Py = a3 + 2Axs + A%23 — 23
We do the substitution A = A; + 1 to get the polynomial

P = a5+ 2A123 + 223 + A2xd + 24,42,
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All coefficients are now positive, so the polynomial is positive or 0 when all variables
are positive. Therefore £ = 0 is GAS when A > 1.
If 0 < A < 1 then the equilibrium Z = 0 is not LAS. However, the equilibrium

T =1- Ais LAS. The polynomial Pj_41_4)2(71,22) is
Py = a5+ (4A — 2)a3 + (5A% — 64+ 1)22 4 (243 — 4A% + 2A)x,

Since A is restricted between 0 and 1 we can do the substitution, A = 1/A; and
multiply by A3, followed by A; = Ay + 1. Then we are concerned with Ay € (0, 00).

The polynomial becomes

Py = (2 + 2o + Aomy)(—As + m9 + Agxo)?.
Since each of the terms is positive we see that z=1— A is GAS when 0 < A< 1. O
Theorem 2.5.7. The rational difference equation x,+1 = o+ Bz, is GAS iff B < 1.
Proof. For this rational difference equation the equilibrium is z = ﬁ, which will be

positive iff 5 < 1. For K = 1 the polynomial P< N > 1($) is
-5)

P:= B+ 1)1~ 8)2" =228+ 1)(1 - B)'z + (B +1)(1 - )’
= (B+1)(1-p)° [(1- 5% - 20(1 - f)z + o]
=(B+11-8)*[(1 - Pz —a
Since the domain of § is [0, 1) we must make some substitutions in order for the param-

eter to have domain (0,00). First substitute § = ﬁ and multiply by 3%. Next, make

the substitution 81 = s + 1 to arrive at
P = B3(2+ B2)(—Box + afz + )’
which is clearly positive. Therefore, the equilibrium & = ﬁ is GAS when § < 1. O

Theorem 2.5.8. The rational difference equation xn41 = q+ %%;‘12 is GAS iff ¢ >0
and M? — ¢*> > 0.
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Proof. For this rational difference equation there are two possible equilibria
_ 1 _ 1
T = §(M+q), and T = §(q - M).

We require that all coefficients, and the equilibrium point be positive, so there are two
cases for which the coefficients, M2 — ¢> = (M — q)(M + q) and ¢, are positive. Each

case corresponds to one of the two equilibrium points:

1
M—-q<0,M+q<0, andq>0,with:f:—§(M—q),

M—-—q>0,M+q>0, and g > 0, with:f:%(M—l-q).
In the first case, we consider the region given by {0 < ¢, M < —q}. The polynomial
P@%(qu)),z(x) is
Py = —4q(Mq + 2qz + M?) (=22 4+ M + q)(2z + M — ¢)>.
Substitute M = M; — ¢ and then M; = —M> to get the following polynomial
Pp = 4q(qMy + 2qz + M32)(2z + My)(My + 2q — 2)%.

Now the region that the polynomial must be positive in is {My > 0,¢ > 0,z > 0}.
Since ﬁl is a product of positive polynomials (either all coefficients are positive or it is
squared), we know that P is positive.

In the second case, the region is {0 < ¢,q < M }. The polynomial P(l(M+q)> o(x) is
2 I

Py = 4q(M?* — Mq + 2qx)(M — q + 2z)(M + q — 2z)°.
Substitute M = M; + ¢ to get the polynomial

Py = 4(](]\412 + Miq + 2qx)(My + 2x) (M + 2q — 23:)2.

As before, P, is positive. Therefore, the equilibrium of z,+1 = ¢ + %M i:f is GAS iff

g >0 and |[M]| > q. O

Theorem 2.5.9. The rational difference equation xpy1 = %% is GAS iff

qg>—1 and M? - ¢*> > 0.
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Proof. For the rational difference equation there are two equilibria,
_ 1 _ 1
T = §(M— q) and T = —§(M+q).

This is the most complicated of all the order 1 rational difference equations, with linear
numerator and denominator, because of the possibilities for the parameters. We require
that all coefficients and the equilibrium are positive. In order for the coefficients to be

positive we must have

M?—¢*>0and1+¢>0

(M —q)(M+q)>0and g > —1.
Therefore,

{M —q¢>0and M+ ¢ >0} and ¢ > —1,
or

{M —g<0and M+ ¢ <0} and ¢ > —1.

Now, if we are in the first case then the positive equilibrium is z = %(M — q) since
M —q > 0. If we are in the second case then the positive equilibrium is & = —%(M +q)
since M + ¢ < 0.

Let’s look at the first case. Another way to state it is
{1<Mand —1<g<M}or{0<M<1land — M <qg< M}
with equilibrium Z = 1(M — ¢). The polynomial, P<%(M_q)>72(:n) is
Py = 4(q+2)(M? — Mq+2¢* — 2M + 6q + 4 + 2qz + 4z)(M + q + 22)(M — q — 2x)*.

First, consider the case where {1 < M and — 1 < ¢ < M}. Then we must substitute
M = M;+1and ¢g = ¢ — 1 into P; to yield the following polynomial in which M; > 0

and 0 < q1 < M7 + 2.

Piy=4(14 q)(M} + My — Mgy 4 q1 + 263 + 22 + 2zq1)-

2z + My + ) (=22 + My +2 — )%
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Since we still have negative terms, and ¢; has a finite interval as its domain, we make the

substitution ¢; = q% and multiply by ¢§, followed by the substitution g = g3 + ﬁ

2
== [ (M +2)%qs — 2x(Migs + 2g3 + 1)) (Migs + M1 + 2g3 + 3) -

- (M2g3 +2Mygs + 2My + 2 + 22(Mygs + 2g3 + 1)) -

. (233(M1Q3 +2¢g3 + 1)(Miq3 + My + 2q3 + 3)+
+ Mg + 5Miq3 + Miqs +8Miq3 + 3Miqs+

+4M1q3 + 2M7 + 4Miqs + 8M; + 4q3 + 10” )

Notice that each (multiplicative) term of ﬁl,l is positive, either it is squared or it has
no negative coefficients. Therefore 13171 is positive.

Now let {0 < M <1and — M < g < M} and perform the substitutions

1
M = —, and then multiply by Mf’,
M

My = My +1,

1
Mg—i-l.

q9=4q —
The region is then {0 < M3,0 < ¢1 < ﬁ}, and the polynomial is
Pio = 4(M; +2) [(fh +22)*(Maqy + 2Ms + q1 + 3)(Maqy + q1 + 2 + 2z M5 + 22)-
: <2(M2 +1)(q1 Mz + 2Ms + 1 + 3) + 2M3 g} + 6MZ g1 + 4Magi+

+4M3 + 15Maqy + 2¢3 + 12My + 9¢1 + 10)] )

Since all variables are positive, and in this factored polynomial all coefficients are pos-
itive, the polynomial is positive as needed.

Now we must do the second case, where the equilibrium is —%(M + q), and the
parameters satisfy {M —¢ <0 and M +¢ <0} and ¢ > —1. Again, we can restate

this as

{M<—-land —1<g<—-M}or{-1<M<0Oand M <q< —M}.
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The polynomial P< 1(M+q) o(x) is
2 b

Py i=4(2 + q)(M? + Mq + 2¢* + 2M + 6q + 4 + 22(2 + q)):
(22 — M + q)(2z + M + q)*.

In the first sub-case we assume that {M < —1 and —1 < ¢ < —M}. In order to trans-

form the region into one which all variables are positive we must do the substitutions

M= M —1,
q:q1_17
My = —Mo.

Then the region is {0 < M3 and 0 < q; < Ms + 2}, so all variables are positive, and

the polynomial is

Poy =41+ q1) (Mo + q1 + 22) (Mo — 1 + 2 — 22)%

(M3 — Maqr + 263 + Mo+ q1 + 22(1 + q1)).

You may notice that there is a negative coefficient in one of these terms, namely in the
term M2 — Maqy + 2¢% + Mo + g1 + 2x(1 + q1). However, we can show that this term is
still positive using the SubPoly method. The negative coefficient is on the term Masgq;.
The sub-polynomial is M2 — Maq; + 2¢3 whose binary quadratic form discriminant is
4-1-1—(—=1)2 =3 > 0. Therefore, this term is positive, and so ﬁg}l > (0 as well.

For the second sub-case we assume that {—1 < M < 0and M < g < —M}. Again
we transform the region into one where all variables are positive using the following

substitutions

M = _M17
q=q + My,

1
M, = —, and then multiply by MS’,
M,

My = M3+ 1.
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Then the region becomes {0 < M3,0 < q1 < ﬁ}, and the polynomial is

Poy =42z 4+ q1)(Msqy + 2Ms + q1 + 1)(Mzq1 + q1 — 2 + 22 M + 22)*-

: <2M§q% +6M3Iqn + AMsq; + AM3 + TMsqr + 265 + 1+

+ 2x(Ms + 1)(Msqy + 2Ms + ¢1 + 1))

Again, all terms are positive, and so the polynomial is positive. That is the final

case for this rational difference equation, so the equilibrium is GAS iff ¢ > —1 and

M? —¢* > 0. O
Theorem 2.5.10. The rational difference equation x,11 = #‘LEH is GAS iff
A>1.

Proof. For this rational difference equation there are two possible equilibrium points,
r=0and T = 119;:}. If 0 < A < 1 neither equilibrium is LAS. If A > 1 the only positive
equilibrium is Z = 0, and it is LAS. In order to show that it is GAS we must prove that

the following polynomial, P gy (71, 72),
P :=z3 4+ 2Ba3x + B?x32% + 2A23 + 2ABaix, + (A% — 1)22,

is positive when A > 1 and B,x1,z2 > 0. In order to get all variables in the range

(0,00) we do the substitution A = A; + 1 and get
P = 13 + 2Badx) + B2ada? + (241 + 2)z3 + (2BA; + 2B)adx; + (A2 4 24,)23.

Since all coefficients are positive, the polynomial is positive when all variables and

parameters are in the range (0, 00). Therefore, z = 0 is GAS when A > 1. O

2.6 Maple Code

The Maple package that I have written to accompany this chapter contains many pro-
cedures. There is a Help function (type Help() to see a list of all procedures, and
Help((procedure name)) to get help on a specific procedure). The following is a list of

the most common inputs for the procedures.
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R - a rational difference equation

vars - variables in R

K - K value to test, see equation 2.8 for criteria that K satisfies

MinK - minimum K value to test

MaxK - maximum K value to test

N - positive integer, the number of times to subdivide the finite regions, see step 3 in

the algorithm at the end of section 2.3
Here is a description of the most useful procedures in the code:

ProveK: A procedure to prove that a specific K value works for a specific rational

difference equation.

Inputs: R, vars, K, N

Output: List of lists of length 2. The first element of each inner list is the equilib-
rium, the second element of each inner list is a subset of {true, false, FAIL}.
If the subset is {true} then the equilibrium (the first element of that list) is
GAS. If the subset contains false then the K value that was input does not
work (and it is proven to not work using LCoeff or Const ). If the subset
contains F'AIL (but not false) then the K value is not proven to work, but

it is also not proven to not work. Increasing N may help.

ProveK((4+x[n])/(1+x[n-11), [x[n-1],x[n]]1,5,2);

Prove: A procedure to prove that a K value between MinK and MaxK works for a specific

rational difference equation.

Inputs: R, vars, MinK, MaxX, N
Output: Set of lists of length 2. The first element of each list is the equilibrium,
the second element of each list is the K value. If MinK < K < MaxK then

the equilibrium is GAS, and K is proven to work. If K = 0 then MazK is

not large enough. If K = —1 then the equilibrium is not LAS.
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Prove((4+x[n])/(1+x[n-11), [x[n-1],x[n]],1,5,2);

WebBook: A procedure to find K values for numParams sets of parameter values for a

rational difference with parameters for coefficients, e.g.,

In

A+wp

Tpt+1 =

Inputs: R, vars, params, paramPoss, numParams, MinK, MaxK, N

R - a rational difference equation (with parameters)
params - parameters in R
paramPoss - possible values for parameters
numParams - number of parameter sets to investigate
Outputs: Set of lists of length 2. The first element is the set of parameters that

were tested, the second element is the output of the procedure Prove for R

with the given parameters.

Try:

WebBook (x[n]/(A+x[n-1]), [x[n-1],x[n]], [A],

{seq(i/10,i=1..50)},3,1,5,2);

2.7 Conclusion

In Sections 2.2 and 2.3 we have seen both parts of my GAS algorithm: first reducing
the problem to proving that a polynomial is positive, and then proving polynomial
positivity. Putting the two together we now have a completely algorithmic approach to
proving GAS of a given rational difference equation.
Inputs:

R - rational function in k 4 1 variables

Z - equilibrium, solution to z = R(z,...,T)

MaxK - a maximum K value to try

Outputs:
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true if z is proven to be GAS for x,, 11 = R(Zpn, Tn—1,. .., Tn_k)
false if z is not LAS for 41 = R(zp, Tp—1,...,Tn—k)
FAIL if MaxK was not high enough.

Procedure:

1. Check local asymptotic stability using Theorem 2.1.1 (Linearized Stability Theo-

rem). If not LAS then output false. If LAS then continue to Step 2.

2. Conjecture a K value that satisfies Theorem 2.1.10 using the procedure outlined

in Section 2.2.

3. Apply the n-dimensional polynomial positivity algorithm outlined at the end of
Section 2.3. If the conjectured K value was proven to work, output true. If the
conjectured K value was proven not to work (Pg failed LCoeff or Const), or

the algorithm reached a recursion limit, continue to Step 4.

4. If K < MaxK, increment K by 1 and return to Step 3. If K > MaxK then
output FAIL.

This algorithm now gives a completely automatic proof machine for global asymp-
totic stability. As was mentioned in Section 2.1.2, this problem has historically not been
approached in any kind of systematic fashion. Many of the theorems stated in Section
2.1.2, along with countless others appearing in [3, 24], were developed as generalizations
of techniques used to prove GAS of specific difference equations. This meant that given
a particular difference equation, proving its equilibrium is GAS would amount to trying
to apply various known theorems; there may not have been a clear cut path leading
to the proof. My algorithm can now serve as that path. Of course, given a difference
equation that is known to be GAS, my algorithm may not always be able to prove
it. However, I believe that it is much more widely applicable than any one previously
known theorem guaranteeing global asymptotic stability.

The results that my algorithm can prove, for order 2 rational difference equations
with linear numerator and denominator and parameter coefficients, were shown in Sec-

tion 2.5. They are also summarized in a table in Appendix A.1. In addition, I have run
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my Maple procedure WebBook (described in Section 2.6) which has generated hundreds
of GAS theorems when specific parameter values are given. Some of these are summa-

rized in Appendix A.2, and many more can be found on my website in WebBooks.
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Chapter 3

A New Family of Somos-Like Recurrences

In the previous chapter we developed an algorithm to prove the convergence of sequences
produced by rational difference equations (also known as rational recurrences). The
algorithm was developed, and subsequently programmed, in order to systematically
generate proofs. In this chapter, though we do mention the use of computers to come
up with conjectures (see Section 3.2.1) the role of computers is less essential.
Additionally, in the previous chapter we were concerned with studying the end
behavior of a sequence produced by a rational recurrence. Here, and in Chapter 4,
the topic of interest will be the surprising nature of the terms themselves. Generally,
when one considers a rational recurrence with integer initial conditions, the sequence
will consist of rational numbers. But as we will see, occasionally we observe integer
sequences being produced. There can be many explanations for this phenomenon, some

of which will be described in this chapter.

3.1 Introduction to Somos-type Recurrences

3.1.1 Somos Sequences

The study of integer sequences produced by nonlinear recurrences took off when Michael

Somos introduced the following recurrence
515n-6 = Sn_15n_5 + Sp_28n_4 + 52 5, with s;=1for 1 <i<6 (3.1)

in Problem 1470 in the 1989 volume of the Crux Mathematicorum [31]. This recurrence

produces what is now sequence A006722 in the OEIS [29]:

1,1,1,1,1,1,3,5,9,23,75,421,1103, 5047,41783, 281527, 2534423, . ..
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The problem Somos proposed was to prove (or disprove) that s, € Z for all n > 1.
Somos discovered this recurrence through his study of elliptic theta functions [32]. When
Somos first discovered this recurrence he verified that s,, € Z for the first hundred terms.
This was quite surprising since in order to compute s,, you must divide a combination
of previous terms by s,_g. One would expect a recurrence of this form to produce
a sequence of rational numbers, not integers. As we will see, this recurrence led to
the study of many related recurrences that share this integrality property. In a 1991
expository article [14], David Gale surveys the research inspired by this recurrence for
the first few years after it was introduced. Much of what follows in this introduction
can be found in his article.

No immediate proofs were given for integrality of Somos’ original recurrence (3.1),
so the recurrence was generalized in hopes that this would lead to a proof. This gener-
alization, known as the Somos-k sequence, is given by the following recurrence:

1£]

SnSn—k = Z Sn—iSn—k-is

i=1
with initial conditions s,, = 1 for 1 < m < k. Notice that k& = 6 yields (3.1). The
integrality phenomenon was also observed when k£ = 4,5, and 7 (and it is easy to show
that k = 2,3 yields s, = 1 for all n). However, for k > 8 we quickly see non-integer
rational numbers in the sequence (see A030127 in [29]). Soon after this generalization,
a number theoretic proof of integrality for Somos-4 was given by Janice Malouf [27].
Here I will present the variation due to George Bergman that can be found in the Gale

article [14].

Proposition 3.1.1. Let the sequence {ay},-, be produced by the following recurrence:
AnGn—4 = Qp—10np—3 + afl_2, (3.2)

with initial conditions a; =1 for 1 <i<4. Then a, € Z for alln > 1.

Proof. First, we show that any four consecutive terms are pairwise relatively prime.
If not, let n be the smallest index for which a, has a common factor with one of

Gp—_1,0p_2, OT G,_3. Assume that a,, and a,,_1 share a common prime factor, p. Because
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p divides anan,_4 and a,_1a,_3, p must also divide ai_Q (and hence, a,_2). But this is
a contradiction to the minimality of n. In the case that a, and a,,_o share a common
prime factor, p, we see analogously that a contradiction arises when p must divide a,,_1
Or (y,_3.

We will now show by induction on n that if a,_4,...,an,..., a3 are integers, then
ant4 € Z. The base case, for n = 5, is clearly true because our initial conditions are all
1. Assume, as the inductive hypothesis, that a,—4,...,ant+3 € Z for some n > 5. For
clarity in notation, let a,,_3 := a, a,—2 := b, and a,,_1 := ¢. Then, since a,_4 is assumed
to be an integer we must have that a,, divides ana,—4 = ac+ b2, so ac + b2 = 0 mod a,,.
Because a, b, ¢, and a,, are pairwise relatively prime we can apply the recurrence (3.2)

modulo a,, using modular division:

[

anan72+a%_1 B 0-b+c? _c

Unt1 = = — mod a,
Q3 a a
2
2
An1Gn-1 +a2  Sc+0° 3
n—
2
I e
an+2an+ai+1_ab 0+<a> _03
ap+3 = = = mod Q.
p—1 c a

Finally, we have

Unt4Gn = Qpy30n+1 + a% 19 €L (by inductive hypothesis)
3 2 n AN\ 2
a? a ab
c°b? Sa c®
a3b? + adb? — adb?

= (ac +b%) = 0 mod a,.

We see that anisany1 + a% 9 is divisible by ap, and so a4 is an integer. Therefore,

by induction, a,, € Z for all n. O

This proof of integrality of the Somos-4 sequence immediately generalizes to show
that the Somos-5 recurrence produces an integer sequence. However, for k = 6 and 7
the proof fails in the beginning. We cannot establish an equivalent pairwise relatively
prime statement since there are more than three terms in the Somos-6 and 7 recurrences.
Even though this proof does not generalize, proofs for kK = 6 and 7 are known using the

Laurent phenomenon (see Section 3.1.2) and enumeration (Section 3.1.3).
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3.1.2 Laurent Phenomenon

The first proof of integrality of the Somos-6 sequence given by recurrence (3.1) was
found by Dean Hickerson using the computer algebra system Macsyma. He established
the stronger result that if s; = z;, a formal variable for 1 < ¢ < 6, then s, is a Laurent
polynomial: a rational function in which the denominator is a monomial in the initial
6 variables, i.e., s, € Z[xfl, xéﬂ, ... ,wﬁil]. This, of course, proves integrality by letting
z; = 1 for 1 < ¢ < 6. The Laurent property is shared by all Somos-k recurrences
that produce integers. In general, when a recurrence produces a sequence of Laurent
polynomials in its initial conditions, we say that it possesses the Laurent phenomenon
[11]. A broad understanding of this phenomenon was first developed by Fomin and
Zelevinsky through their study of cluster algebras (see [1, 9, 10, 12, 13]).

Eventually, we will see Fomin and Zelevinsky’s theorem which gives sufficient condi-
tions for a recurrence to produce a sequence of Laurent polynomials. These conditions,
on the surface, seem quite arbitrary. Therefore I will first give some motivation to
explain the role cluster algebras play in proving the Laurent property. For a more
in-depth motivation see [11, 35]. In the most general setting, a cluster algebra can
be thought of as collections of variables (called clusters) associated with vertices in a
tree, T, along with polynomials, Py,..., Py € Z[y1,...,yx] with P; not depending on
¥i, associated to edges of the tree (called exchange polynomials). For each vertex t € T
we associate the cluster x(t) = {x1(t),...,zx(t)}. We choose one vertex ¢ty € T to be
the root and call its cluster the initial cluster, x(tg). The polynomials associated to the
edges of T' give us a way to express the variables in any cluster in terms of variables in
the initial cluster. If (¢,¢’) is an edge in T' with associated polynomial P; then we have

the following exchange relation between clusters x(t) and x(t'):
z;(t) = z;(t') for any j # i,

Pi(x(1))
ZT; (t,)

Notice that this exchange relation strongly resembles the form of the Somos-k recur-

X; (t) =

rence.

In order to see the connection to sequences and the Laurent phenomenon, and to
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motivate Theorem 3.1.2 found below, we must consider the caterpillar tree Tj,; which

has [ vertices of degree k on its spine. The tree T34 is pictured in Figure 3.1. At each

to thead

Figure 3.1: The caterpillar tree T34

spine vertex the exchange polynomials, Py,..., P, € Zy1,...,yx|, on the k incident
edges must be distinct.

In [11], Fomin and Zelevinsky prove the Caterpillar Lemma (a generalization of a
theorem found in [10] of the same name). The Caterpillar Lemma gives conditions for
the exchange polynomials on T}, ; which, if satisfied, guarantee that each cluster variable
xi(t), for i € [k] and t € T}, is a Laurent polynomial in the variables z1(tp), ..., zx(to),
with coefficients in Z. What will be important to us is the fact that the conditions in
the Caterpillar Lemma can be satisfied when the exchange polynomials are created, in

some canonical fashion, from a recurrence of the form

T'n4+kTn = F(Tn—i—ly cee ’Tn—l—k—l)a

with initial conditions r; = x;(typ) for 1 < 1 < k. In this case, one can show that
the cluster variables associated to the vertex tp.q.q, after being expressed in terms of
the initial cluster, will be k consecutive terms in the sequence {r,} ~,. Of course,
it is not true in general that the Caterpillar Lemma is satisfied for any recurrence
of the form r,1krn = F(rnt1,..., nik—1), but in many of the cases that we care
about (e.g., Somos-k) the conditions are satisfied. With this cluster algebra setting
in mind as motivation, we will now build up the machinery from [11] to see sufficient
conditions on the recurrence that guarantee this Laurent property. In the end we
will have defined a sequence of polynomials, Gy_1,Gg_o,...,Gq, recursively. One of
the sufficient conditions will pertain to the polynomial Gy. We will then use these
sufficient conditions in Section 3.3 to prove that a large family of recurrences possesses

the Laurent phenomenon.
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First, we consider a recurrence in the following form

Tnt+kTn = F($n+1, s axn-i-k—l)u

where F € Z[y1, . ..,yx_1). In the case of Somos-4, k = 4, and F(y1,y2,y3) = y1y3 + y3.
Note that this is not the most general way to define a nonlinear (or even rational)
recurrence, but it is the required form to be able to apply Fomin and Zelevinsky’s

method. Next, define the polynomials Fi,..., Fy € Z[y1,...,yx] as

Fm = F(ym+17“’ 7yk—17yk7y17"‘7ym—1)'

Since m € {1,...,k} this polynomial is well defined. For example, if K = 4 we have the

four polynomials:

Fi =F(y2,y3,y4), Fo= F(y3,y4,%1),

F3 = F(ys,y1,y2), Fi=F(y1,y2,93)-

Notice that F), does not depend on y,,. These F}, play the role of the exchange

polynomials on the spine of T} ;. For m € [k — 1] define the polynomial @, as
Q= Funlyo = FWmsts s U1, 0,51, Y ).

We are now ready to recursively define the polynomials Gy_1,Gr_9, ..., Gy, which
serve as exchange polynomials on the “legs” of the Caterpillar tree T}, ;. The polynomial
Gy—1 will be defined from G,,, using intermediate polynomials g’m_l and Em_l. First,
let Gp_1 := F. Then assume we have defined G,,, for some 1 < m < k — 1. From G,,

first define ém,l :

Gm—1 = Gm‘ysz—m )
Ym
Now, let L be a Laurent monomial in y,...,yx—1 such that % is a polynomial in

Z[y1,...,yk—1] not divisible by any non-unit in Z. Then

Next, let b € Z be the maximal power such that an divides ém,l. Finally, we define

Gp—1 88

G
Gmfl = Qb 1.
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Now, we are able to restate Theorem 3.1 from [11]. The conditions in this theorem,
when thought of in the setting of the Caterpillar tree, can be shown to be equivalent

to the conditions in the Caterpillar Lemma found in [11].

Theorem 3.1.2 (Fomin, Zelevinsky 2002). Let F' € Zly1,...,yx—1] be a polynomial

satisfying the following conditions:

(i) F is not divisible by any y; for i € [k — 1],

(i) each Qu, is an irreducible element of Z[yE', . .. ,y,:f_ll], and
(iii) Go = F.

o0

Then every term of the sequence {xyn},~ 4,

defined by the recurrence

. F($n+1, Ceey xn+k71)
Tntk = z )
n

18 a Laurent polynomial in the initial k terms, with coefficients in Z.

Let us see how one can use this theorem to prove Laurentness of the Somos-4
sequence. As stated before, the Somos-4 recurrence is given by F(y1,y2,y3) = y1y3 +y3
and k = 4. First, we see that F is not divisible by any y; for i € {1,2,3}, so F satisfies

condition (i). Next, we verify requirement (ii) by constructing @1, Q2, and Qs:

Q1= Fily,_g = F(y2,93,0) =y2- 0+ 93 = v3,
Qo = Fal,,_o = F(y3,0,y1) = y3 - y1 + 0° = yay1,
Qs = F3|,_o=F(0,y1,92) =02 +yi =i

fcl, yQﬂ, y;fl}, the monomials @); are irreducible.

Since y1,y2,y3 are unit elements in Zy
Finally, we must show (iii) by constructing Gs, ..., G and verifying that Gy = F.
First we set G3 := F = y1y3 + y5. The rest is straightforward, so just stating the

polynomials will suffice.
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=yiys "+ v =y} + yiys Y3 =y U35 + U3
~ 52 ~ 51 p 50
Gy i=—= =} + Y33 Gri=—— =z +v3 Goi=—55 =vs+
Ys Y1Ys Y1 Y3
ég él éo
Gy i=—5 = Ui + ¥3y3 G1i=—5 = y1v3 + ¥ Go=—5 =113 +ys3 = F
Qg QQ Ql

Since Gy = F' we know by Theorem 3.1.2 that the Somos-4 recurrence generates a se-

quence of Laurent polynomials.

3.1.3 Somos and Enumeration

One thing that the number theoretic and Laurent phenomenon proofs lack is a reason
for integrality, other than some lucky cancelation. Another way to prove integrality of a
sequence is to find some objects that the numerical sequence counts. If one can establish
an enumerative proof, then we will have a much more tangible reason for integrality.
This was done for the Somos-4 and 5 sequences by David Speyer [33], and for Somos-6
and 7 by Gabriel Carroll and Speyer [4]. The Somos-4 and 5 sequences count perfect
matchings of a sequence of graphs that grow as n grows; see Figures 3.2 and 3.3 for
the first few graphs (vertices of the graph are when two lines cross, or when there is
a corner) [33]. For the Somos-6 and 7 sequences, Carroll and Speyer proved that the
number of “groves” (collections of a particular type of restricted path in a triangular

lattice) of size n corresponds to the n'” element in the sequence.

3.1.4 Somos-inspired Recurrences

Now that the integrality of the Somos-k sequences has been established for kK = 4,5,6,7,
and they are known to be non-integral for £ > 8, it might seem that this topic is com-
pletely understood. However, these recurrences inspired numerous related recurrences

with the same integrality and Laurent properties, many of which are discussed in [14].
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2 matchings 3 matchings 7 matchings 23 matchings

Figure 3.2: The first four nontrivial Somos-4 graphs
Gale and Raphael Robinson generalized Somos-4 and 5 with the following recurrence:
plp_f = TAp_10n_k1] + YUn—mGn—ktm, (3.3)
where z,y € Z and 1 < [ < m < k. We obtain Somos-4 when we let £k = 4, [ = 1,
m =2, and x = y = 1. Similarly, by letting k =5,1 =1, m =2, and x =y = 1, we get

Somos-5. Recurrence (3.3) is known as the three-term Gale-Robinson recurrence. We

can similarly generalize Somos-6, 7 with the four-term Gale-Robinson recurrence:
OnQp—k = Tan—pOn—k+p T Yan—qAn—k+q + 20n—rlp—k+r; (3.4)

where x,y, z € Z and p+q+r = k. Integrality and Laurentness are known for both (3.3)
and (3.4) for all z,y,z € Z. In [4, 33], Carroll and Speyer actually gave enumerative
proofs for these recurrences. The combinatorial objects mentioned in the previous
section are merely byproducts of this more general result.

Up to this point, all of the recurrences we have seen in this chapter are homogeneous,
in the sense that all of the terms have the same total degree. However, this doesn’t have
to be the case. As Gale recounts in his story of the Somos sequences, Dana Scott wrote

a program to study (3.2) but forgot to square the a,_o term, yielding the recurrence
OnQp—4 = Qp—10p—3 + Gn—2. (35)

Much to his surprise, (3.5) still produced a sequence of integers when the initial condi-

tions were a; = 1 for 1 < ¢ < 4. This curiosity led to the generalization

_ P q r
Onlp—4 = Q10,3+ Gy o,
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2 matchings 3 matchings

11 matchings

5 matchings
Figure 3.3: The first four nontrivial Somos-5 graphs

which yields integers for any p, ¢,r € N. Paul Heideman and I took the idea of (3.5) in

a different direction. We considered the following non-homogeneous recurrence:

hphy— 2k 1) = hn—1hn—2K + Mok + (k41,5 (3.6)

with initial conditions h; = 1 for 1 < ¢ < k. In our paper, Heideman and I prove that
for any fixed K € N, the sequence produced by (3.6) consists of integers [17]. To do

this, we show that it is also produced by the linear recurrence
hy, = [2K2 + 8K + 4] (hn_gK — hn—4K) + hn_sK, (3.7)

with the initial 6K + 1 terms given by the quadratic recurrence (3.6). Of course, to
prove integrality of the sequence, the initial 6 K + 1 terms must be integers. If not, the
linear recurrence (3.7) does not produce an integer sequence. Therefore, we also show
that these initial terms are given by a piecewise polynomial with integer coefficients,
and are therefore integers. The following two lemmas and proofs appeared in [17]. We
restate the proofs here because similar lemmas appear in Section 3.2. The proofs of the
lemmas in 3.2 are nearly identical to those presented here and so they will be omitted

from Section 3.2.
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Lemma 3.1.3. The initial 6K + 1 terms of the sequence produced by (3.6) are given

by the following piecewise polynomial:

B =1 1<m<2K +1
h2K+m:2m—1 2<m<K+1
hakm = 2m? + 2K —2m + 1 2<m<K+1

harcim = 4K?m —2K?2 +12Km +2m? —8K +2m -3 2<m <K +1
hsicm = 4K?m? 4+ 4K3 — 4K?m + 16 Km2+
+ 16K? — 16 Km + 8m? + 10K — 10m + 3 2<m< K+ 1.
Proof. The first of the piecewise polynomials, h,, = 1 for 1 < m < 2K + 1, is simply
the definition of the initial conditions for (3.6). Each of the other relations is proved
independently by induction. These polynomials were originally conjectured and proved
via a computer program written by Doron Zeilberger.
We will now show that haog .y = 2m — 1 for 2 < m < K + 1. For the base case, we

must verify that hog o = 3. From (3.6) we have

hok yoh1 = hogy1hs + hg o + hg i

hogto=1-14+141=3.

Now we assume that hogim = 2m — 1 for some 2 < m < K 4+ 1. We need to show

that hog i (me1) =2(m+1) —1=2m+1 for 2 <m < K. We will use the definition of

hoK +(m41) from (3.6):
h2K+(m+1)hm = hok4mhm+1 + Rk 4ms1 + hr4m.
Since 2 < m < K, we know that

3<m+1<K+1
K+3<K+(m+1)<2K+1

K+2<K+m<2K.

From the definition of h; for 1 < i < 2K +1 we have that hy,41 = hK+(m+1) =hgyi = 1.

From the inductive hypothesis, we also know that hog ., = 2m = 1. Plugging these
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values in, we have

hor(me1y-1=02m—1)-1+1+1
hok 4 (my1) = 2m + 1.

So, by induction, hegym = 2m — 1 for 2 < m < K 4+ 1. Notice that this is induction
on a finite set; the induction variable m is restricted between 2 and K + 1, and the
induction hypothesis is not true when m > K + 1.

The rest of the piecewise polynomial proofs follow the same general form, and are

thus omitted. O

Lemma 3.1.4. The sequence produced by (3.6) also satisfies the linear recurrence (3.7)

forn > 6K + 2.

Proof. First note that proving the converse (i.e., that the sequence given by the linear
recurrence (3.7) satisfies the quadratic recurrence (3.6)) is equivalent to proving the
statement itself. To see this in general, let {xy} ", be produced by the recurrence
Tn = F1(Tp-1,...,2p_k,) with initial conditions x1,...,xg,+1. If this sequence also
satisfies ©, = Fa(Tp—_1,...,2Tn_k,) then the sequence produced by Fy, with initial con-
ditions given by F7, satisfies F} simply by uniqueness of the sequence. Thus we will
assume that {h,} is given by (3.7), and show that it is annihilated by (3.6) using strong
induction.

Define the sequence {h,} for all n > 6K +2 by (3.7), and let h,, for 1 <n < 6K +1
be given by the piecewise polynomial in Lemma 3.1.3. To show that (3.6) annihilates

the sequence produced by (3.7), let
¢(n) = hnhp_r41) = Pn—1hn—2K — hpn-r — hn-rK—1. (3.8)

We will prove by induction that ¢(n) = 0, for all n > 2K + 2. Clearly ¢(n) = 0 for
2K +2 < n < 6K +1 since the first 6 K 4+ 1 terms coming from Lemma 3.1.3 have been
shown to be produced by (3.6).

For the base case, we must prove that ¢(6K +2) = 0. This is nothing but algebraic
calculations, easily verified by a computer algebra system such as Maple or Mathemat-

ica. For all terms except hgx 2 we can substitute the initial conditions for the linear
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recurrence into the definition of ¢(6K + 2):

O(6K +2) = herx+2hax+1 — hex+1hax+2 — hsx+2 — hsg+1.
These initial conditions are given by

hak 1 = hsky (k1) = 2K + 4K +1

her+1 = hsri (1) = 4K+ 24K° + 40K* + 16K + 1
hagso = 6K + 16K + 9

hskyo = AK3 + 24K% + 42K + 15

hsk+1 = harcs (1) = 4K° + 6K + 10K + 1.
However, hgx 2 must be computed from the linear recurrence (3.7):

hercra = (2K* + 8K + 4)(hax+2 — har+2) + ha
= (2K% 4+ 8K +4)((6K* + 16K +9) —3) + 1

= 12K* + 80K3 + 164K? + 112K + 25.

Now it is a matter of plugging this into a computer algebra system and verifying that
$(6K +2)=0.

Since the base case is verified, we can proceed with the induction. We make the
strong induction assumption that ¢(m) = 0 for all m < n, and we need to show that
¢(n) = 0. We compute ¢(n) by substituting for hy,, hy—1, hn—k, and h,— k1 from the
definition of {h,}:

hn = (K)hnf2K - H(K)hnfllK + hn76K
hn—1=H(K)hp—2k—1 — H(K)hp—ak—1 + hn—6K—1
hp—k = H(K)hyp—3x — H(K)hp—5K + hn—7K

hp—g—1=H(K)hp_sx—1 — H(K)hp—s5x-1+ hp_71K_1.

For simplicity in notation, we have let the term 2K2 + 8K + 4 be denoted by H(K).
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After substituting into ¢(n), expand and then simplify and we are left with

¢(n) =— H(K)hp—arxhpn—ork—1+ H(K)hp—ax—1hn—ox — H(K)h,—3x+
— H(K)hp_3r—1 + hn—okx—1hn—6x — hn—oxhn—6x—1 + H(K)hp_5r+

+ H(K)hp—s5K-1— hn—71x — hn—7K-1.
If we collect terms (with the intention to apply the inductive hypothesis) we see that

—H(K)hp—axhpn—ok—1+ H(K)hp—arx—1hn—2x — H(K)hp_3K+

— H(K)hn-3x-1 = —H(K)¢(n — 2K)
which equals 0 by the induction hypothesis. Thus

é(n) =hp—ok—1hn—6K — hn—2khn—6K—-1 — hn—71K — hn—7K—1

+ H(K)hp—s5x + H(K)hp—55-1.
Now we substitute h,_sx and h,_sx—1 from the definition of {h,}:

hp—ok =H(K)hp—ax — H(K)hn—6x + hn—sK

hn—ox—1 =H(K)hp—ax—1 — H(K)hn—6x—1 + hn—sx—1.
Simplifying again, we obtain:

d(n) =H(K)hp—ax—1hn—ex — H(K)hp—axhpn—e6x—1 — H(K)hp—s5x — H(K)hp_s5x_1+
+ hn—6xhn—sx—1 — hn—6x—1hn—s8x — hn—7Kk — hn—7K—1
=~ H(K)p(n — AK) + ¢(n — 6K)

=0.
Thus by induction, ¢(n) =0 for all n € Z™. O
Putting Lemmas 3.1.3 and 3.1.4 together, we obtain the following theorem.
Theorem 3.1.5. The recurrence
hnhn—(2x+1) = Pn—1hn—2x + hn—k + hn_(k11) (3.9)

with initial conditions hy, = 1 forn < 2K 41, generates an infinite sequence of integers.
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After Heideman and I proved integrality of this particular sequence, we generalized
in the same manner that Gale and Robinson generalized the Somos recurrence. Consider

the following 3-parameter family of recurrences:
TnTp_k = Tn—iTp—kti + Tnj + Tkt (3.10)

where i < k—1i < k, j < k—j < k, and initial conditions () =1 for 1 <[ < k. If

we let k be odd (k=2K +1),i=1,and j = kgl = K, we get (3.6). However, unlike
Gale-Robinson, it is not true that (3.10) produces an integer sequence for any choice of

k,1,7. Instead, we made the following conjecture.

Conjecture 3.1.6. Consider the quadratic recurrence (3.10). This recurrence produces

a sequence of integers iff one of the following holds:
1. k is even, © is odd, and j = %,
2. k is even, i is even, and j = %, j=
3. k is odd, i is odd, and j = %,

4. k is odd, i is even, and j =

I

In Section 3.2, we will see what progress has been made towards finding linear
recurrences for the cases in Conjecture 3.1.6. Then, in Section 3.3 we will use the

Laurent phenomenon to prove the backwards implication in this conjecture.

3.2 Finding Linear Annihilators for Quadratic Recurrences

In the previous section we saw that the recurrence (3.6) produces an integer sequence.
After Heideman and I published [17], I began to look into proving more subcases of
Conjecture 3.1.6. 1 was able to prove integrality of another special case of (3.10),

analogous to (3.6), when k = 2K is even. This recurrence is given by
€nen—2K = €n—1€y_(2K-1) + €n—K + €n—K, (3.11)

with initial conditions e, =1 for 1 < n < 2K. We will prove integrality by first seeing

that the initial 6K — 2 terms of (3.11) are given by a piecewise polynomial. Then, we
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see that the sequence produced by (3.11) is annihilated by a linear recurrence of order
6K — 3. These two statements together prove integrality of the sequence {e,} -, in

the same way that Lemmas 3.1.3 and 3.1.4 prove integrality of {h,} . ;.

Lemma 3.2.1. The initial 6K — 2 terms of the sequence produced by (3.11) are given

by the following piecewise polynomial:

em =1 1<m<2K
ek +m =2m + 1 1<m<K
e3i4m = 2m? + 2K +4m + 1 1<m<K-1

earcim = 4K*m +6K2 +8Km +2m? + 10K +2m -1 0<m< K —1
e5K+m = 4K?m? + 4K3 4+ 16 K?m + 12Km?+
+24K? + 48Km — 2m? + 36K — 10m — 9 0<m<K-2

Lemma 3.2.2. The sequence produced by (3.11) also satisfies the linear recurrence
en = [2K? + 6K — 1] (en—(2/0-1) — €n—(aK—2)) + €n(6K—3)» (3.12)
forn>6K — 2.

The proofs are nearly identical to those of Lemmas 3.1.3 and 3.1.4, so they are

omitted. Together these lemmas prove the following theorem.
Theorem 3.2.3. The recurrence (3.11) generates an infinite sequence of integers.

In (3.6) and (3.11) it is the case that ¢ = 1 in (3.10). However, we can also prove
integrality in some cases when i is arbitrary, and k, j are specific multiples of ¢. For

example, if we let k = (2K + 1)i and j = K4 in (3.10) we get the recurrence
Anly— (2K 41)i = On—iGn—2Ki + Gn—Ki + Gn_(K11);- (3.13)

We will now show that the sequence produced by (3.13) is simply an expansion of

{hn},2 | where each term is repeated exactly 7 times.

Theorem 3.2.4. Consider the sequence {ay},., defined by the recurrence (3.13), and

the sequence {hy},> | defined by the recurrence (3.6). Then for all integers L >0,

ari+m = hr+1, forme{1,... i} (3.14)
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Proof. We proceed by induction on L. For the base case, we must verify that (3.14)
holds for 0 < L < 2K. If L is in this range, Li + m € {1,...,(2K + 1)i}, and
L+1€{1,...,2K + 1}. Since this index puts us within the initial conditions for both

recurremnces,

aritm =1=hr1.

Now, assume as the inductive hypothesis that apsjim = hpre1, for all M < L, and
assume that L > 2K. Using the definition (3.13) of a,, and the inductive hypothesis we

see

ALi+mOLitm—(2K+1)i = @Li+m—iQLi+m—2Ki T QLi+m—Ki T QLitm—(K+1)i
= A(L-1)i+mA(L—2K)i+m t QL—K)i+m T Q(L—K—1)i+m
=hp—141hr—ok+1 +hi—k+1 +ho—k—141

ari+mh(ri1)—x+1) = brrn-1hern—2x + -k + -k

Solving for ar; i, and using the definition (3.6) of h,, we clearly see that

hpyny—1hsn—2x + Moy —x + iy —(x+1)

ALi+m = = hL+1-

h(L41)—(2K+1)

Thus, by induction, ar;1m = hr41. O

In the proof of integrality for the sequence {h,},~, we showed that it is also anni-
hilated by a linear recurrence of order 6K. Since the sequence {ay} - is {hy},o; with

each term repeated ¢ times, we also have a linear recurrence that annihilates {an},- ;.

Proposition 3.2.5. If the sequence {an},-, is given by the recurrence (3.13) then it

is also annihilated by the following linear recurrence of order (6K — 1)i+ 1

2K-1
Gp =0p—1 + Z (_an—mli + anf(m1i+1)) +
mi=1
4K-1
+ [2K2 + 8K + 3] Z (an—in - anf(m2i+1)) + (315)
mo=2K
6K—1

+ Z (_an—mai + an*(m31+1)) ’
—)
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Proof. In contrast to the proof of Lemma 3.1.4, which establishes a linear recurrence
for the sequence {hy,} |, this proof will not be done using induction. Instead, we will

use the linear recurrence for {h,} ~; along with Theorem 3.2.4 to prove that {a,},-,

is annihilated by (3.15). First, define ¢(n) as follows:

2K—-1
o(n) :=an — ap—1 — Z (—@n—myi + an—(m1i+1)) +
mi1=1
4K—1
— [2K2 + 8K + 3] Z (an—mgi - anf(mgiJrl)) +
mo=2K
6K—1
= > (“Onomsi + Gnmgie) -
m3=4K

We will show that ¢(n) = 0 for all n > (6K — 1)i directly, using ar;+m = hr+1 and the
fact that {h,},- is annihilated by the linear recurrence (3.7).
In order to use Theorem 3.2.4 we must express n modulo ¢, i.e., n = Li + m where

L>0and me{l,...,i}. Then

2K—1
¢(Li+m) =aritm — Qrit(m-1) — Z (_a(L—ml)i+m + a(L—m1)i+(m—l)) +
mi1=1
4K—1
—[2K*+8K+3] Y (0(-mayitm — A(L-ma)it(m-1) +
mo=2K
6K —1
- Z (*G(L_mgmm + a(L—m3)i+(m—1)) .
m3=4K

In order to show that ¢(Li +m) = 0, we will need to treat the cases m € {2,...,i}
and m = 1 separately. First we let m € {2,...,4}, and use the fact that ap;tm = hr41

from Theorem 3.2.4 to simplify ¢(Li + m) in terms of h:

2K—1
$(Li+m) =hps1 —hoi1 — Y (=hpomit1 +hoom1) +

mi1=1
4K—-1
— [2K?+8K +3] > (hpomyt1 — hromat1) +
mo=2K
6K—1

— Y (“himgi1 + Cromgi1) = 0.
m3=4K

Now we must prove that ¢(Li+1) = 0. As in the previous case we must first rewrite

¢(Li + 1) so that all indices on a are of the form Li + m with m € {1,...,i}. Then
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we simplify as before in terms of {hy,}. This case is slightly more complicated, since
A(L—my)itm does not equal a(;_pm,)i+(m—1) (as in the previous case). We first rewrite

¢(Li+1), but in this case we sometimes have to rewrite (L —m;)i as (L —m; —1)i+i:

2K -1
d(Li+1) =ariy1 — a(r—1)i+i — Z (=@(L—myyit1 + AL—my—1)iti) T
mi=1
AK -1
— [2K* + 8K + 3] Z (@(L—m2)it1 — O(L—ma—1)i+i) +
mo=2K
6K —1
- Z (_a(Lfmg)i+1 + a(Lfmgfl)iJri) .
m3=4K

Next, we use Theorem 3.2.4 to rewrite in terms of the h sequence:

2K—1
o(Li+1)=hp41 — hr — Z (=hL—mi+1 + PL—m,) +
mi1=1
4K—1
— [2K?+8K +3] > (hpomyt1 — hrom,) +
mo=2K
6K—1
- Z (=hL—ms+1 +hL—ms)-
ms3=4K

Each of these sums are telescoping, so we have that
2K -1
Z (=hi—mi+1+PL—m) = —hr +hr_2x-1),

mi1=1
4K—1

Z (hL—myt+1 = PL—my) = hp_@2Kk—1) — ho—(4K-1),
mo=2K
6K—1

Z (=hL-ms+1 +PL—my) = —hp_@arx—1) + hp_(6K-1)-
m3=4K

We can use these to simplify ¢(Li+ 1):
G(Li+ 1) =hpi1 — hy — (—hp + hp_ K1)+
— [2K* 4+ 8K + 3] (h—(2k—1) — hr—(ax—1))+
— (=hp—@r-1) +hr—@6K-1))
=hp1 — [2K* 4+ 8K + 4] (h(p41)—21 — h(r1)-ax) — B+1)—6K-
Using the linear recurrence in Lemma 3.1.4 we see that ¢(Li + 1) = 0. Putting both

cases together we get ¢(n) = 0 for all n > (6 K —1)i+1. Therefore, the linear recurrence

(3.15) does in fact annihilate the sequence produced by (3.13). O
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In the same spirit as Theorem 3.2.4 we can use Theorem 3.2.3 to prove integrality

of the sequence produced by
bnbn—2Ki = bn—ibp_2K—1)i + bn—Ki + bn—Ki- (3.16)

Theorem 3.2.6. Consider the sequence {by}.-, defined by the recurrence (3.16), and

the sequence {ey},~, defined by the recurrence (3.11). Then
bLivm = €er+1, forme{l,... i}. (3.17)
As before, there is a linear annihilator for the sequence produced by (3.16).

Proposition 3.2.7. If the sequence {b,},> | is given by the recurrence (3.16) then it

1s also annihilated by the linear recurrence

2K—2
bn :bnfl + Z (*bnfmli + bn—(m1i+1)) +
mi1=1
4K -3
+ [2K2 + 6K — 2} Z (bn—mgi — bnf(m2i+1)) + (3.18)
mo=2K-—1
6K—4
+ Z (_bn—mgi + bnf(m3i+1))
m3=4K—2

This method of finding linear annihilators of quadratic recurrences is useful for
proving integrality of sequences, however it is not an all encompassing technique. Notice
that the four linear annihilators, (3.7), (3.12), (3.15), and (3.18), do not fully prove any

of the subcases of Conjecture 3.1.6. One might have expected, after seeing the linear

[e.e]

recurrences for {hy, },- ; and {e,}ro |,

that all integer sequences produced by (3.10) have
linear annihilators with the same general structure. However, we now see that is not
the case. They may all have linear annihilators, but the structure of these annihilators
is not uniform. In fact, experimentally the structure of the linear annihilator depends
on the greatest common divisor of k, i, and j (parameters of (3.10)). Although I do
believe (based on experimental observations) that every integer sequence produced by
(3.10) has a corresponding linear annihilator, I have not discovered a general form.

However, we can still prove the full backwards implication in Conjecture 3.1.6 using

Fomin and Zelevinsky’s Laurent phenomenon techniques explained in Section 3.1.2.



70

Before we see this, I will describe the experimental method used to conjecture these

linear recurrences.

3.2.1 Conjecturing a Linear Recurrence Using a Hankel Matrix

In Sections 3.1.4 and 3.2 we saw that sequences produced by a specific nonlinear recur-
rences can be annihilated by related linear recurrences. These linear recurrences were
conjectured using linear algebra. Let {g,} -, be an arbitrary sequence, and consider

the following (m + 1) X (m + 1) matrix, known as a Hankel matrix [26]:

9n In+1 T In+m
In+1 9n+2 0 On+l4m
Gn,m =
In+m  YGn+m+1 gn+2m

If an m € Z can be found such that det(Gj ) = 0 for all n, then there is a linear
recurrence for the sequence {g,},-, of order m. Recall that the columns of a matrix
with determinant zero are linearly dependent. By looking at the eigenvectors for the
eigenvalue A = 0 we can find the linear recurrence explicitly. Consider an eigenvector,

—

U = (vo,...,Vm), such that Gy, p, - U = 0 for all n > 1. Then the linear recurrence for

{gn}22, is simply given by
Vogn + Vign+1 + -+ + UmGntm = 0.

To conjecture the linear recurrences in the previous sections I simply used Maple to
calculate these G, ,, for increasing values of m. When an m was found such that
deg(Gp,m) = 0 for all n < N (for some large value of V) I calculated eigenvectors and
searched for patterns.

This is a concrete example of how experimental techniques can be used to automat-
ically make conjectures. I have created a Maple package, HANKEL, that implements

the above process. The three most useful procedures from HANKEL are:
Xn: Creates terms in the sequence (3.10).

Inputs: Integers n, i, 7, and k
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Output: The nt" term in the sequence produced by the recurrence (3.10).

Try: [seq(¥Xn(n,1,2,5),n=1..100)];
ConjLinOrder: Conjectures the order of a linear annihilator of a given sequence.

Inputs: A sequence S (in the form of a list) and an integer m.

Output: The conjectured order (less than m) of a linear recurrence that annihi-

lates S. Uses the Hankel matrix technique described above.

Try: ConjLinOrder([seq(Xn(n,1,2,5),n=1..100)]1, 13);
ConjLinRecur: Conjectures the linear annihilator of a given sequence.

Inputs: A list S (in the form of a list) and an integer m

Outputs: The linear recurrence of order ConjLinOrder (S,m) that is conjectured
to annihilate S. This will be the eigenvector associated to the zero eigenvalue

of the associated Hankel matrix.

Try: ConjLinRecur([seq(Xn(n,1,1,3),n=1..100)], 13);

There is also ConjLinRecurVerbose which includes print statements to interpret the
output of ConjLinRecur. The code can be found on my website.

This technique works well to conjecture linear recurrences that annihilate specific
sequences, however it does not work well in the general case. If we have a recurrence
with parameters, like (3.10) for example, we cannot examine the matrix Gy, ,, and
take its determinant unless we consider specific values for the parameters. Because of
the conjectures that this technique has been able to make (more than what has been
presented in the previous sections), I expect that this technique can eventually be used
to prove the backwards implication of Conjecture 3.1.6. However, for now we turn to

the Laurent phenomenon for this proof.
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3.3 Using the Laurent Phenomenon

In Section 3.1.2 we saw Theorem 3.1.2, which gives sufficient conditions for a recurrence
of the form

InTn—k = F(xn—la cee 7wn7k+1)7

with formal variable initial conditions to produce a sequence of Laurent polynomials.
In order to apply this theorem we must construct the sequence {Gn}gzk_l, from F. If
we find in the end that Gy = F', and if F' satisfies some other minimal conditions, then
we know that the recurrence produces Laurent polynomials. We will now use this to

prove the backwards implication in Conjecture 3.1.6.

Theorem 3.3.1. Consider the quadratic recurrence (3.10), with the usual initial con-

ditions, x; =1 for 1 <i<k. If
1. k is even, © is odd, and j = %, or
2. k is even, i is even, and j = %, j= g, orj =kt or
3. k is odd, i is odd, and j = %, or
4. k is odd, i is even, and j = %,
then {xy,}.7 | is an infinite sequence of integers.

Proof. In each of the four cases the proof follows the same general idea, so we will only
show case 3, where k is odd, ¢ is odd, and j = % Let k :=2K +1and ¢:=2I +1,
from which we have that j = K — I. Also, assume that 2/ +1 < k —i = 2K — 2[ and

K —I<k—j=K+1+1. The recurrence (3.10) in this case is

TnTp—(2K+1) = Tn—(214+1)Tn—(2K—21) T Tn(K—1) T Tn_(K+1+1)> (3.19)

and so
F(y1,- - 92K) = Yar1Yarx—or Y Yrc—1 + Ykcir41-

Clearly, F satisfies requirement (i) in Theorem 3.1.2 as it is not divisible by any y,. In

addition, we can show that F' satisfies (ii) in Theorem 3.1.2. If we replace one of the
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terms in F' by 0 (which is how we construct @,,), then we will be left with two terms.
The sets of variables for each term are disjoint, so there will be no way to factor the
resulting polynomial. To prove (iii), we will have two cases depending on the relative

order of ¢ and j. We first assume that i < j, so
2I+1<K—-I<K+1T+1<2K —21. (3.20)

We need to show that Gy = F, so we must start with Gr_1 = Gox := F and use the
recursive procedure described in Section 3.1.2 to eventually construct Gy. In order to
find G,,_1 from G,, the first step is to replace y, with % in G,. So, since the only
variables in Gak are Yo; 1, Yog_ors Ygc—1» and Y-, ;o ¢, the first time G, will change is
when n = 2K — 21, the largest of the four indices. So G,, = Goi for 2K —21 < n < 2K.

To get Gaog_o7—1 we first need Qo _o;.

Qar—2r = Fax—a1l, o
= F(Yar—or415- > Y210 Y15+ Yo 27 1)
=0 Yog_ar—1 +Yx—3r-1 +Yx—1

=Yrk-_31-1 T Yx_1-

Then we can find GQK_QI_l,

Gaor—21-1 = Gar_21] _ Qor_ar
Yok —21— Yor o7

Yorr1Yx—31—1 T Yor1¥x—1 T Yk —1Y2x—21 T Yk 141Y2K—21

Yok o1

Gaox 211
L

Now, L is a Laurent monomial which makes a polynomial in Zyi, ..., ysx]

not divisible by any non-unit in Z. So L = yg}i_ﬂ, and then éQK_QI_l is

~

~ Gaok—21-1
Gog—21-1 = ———

L

= Yor1Yx—31—-1 T Y21+1YK—1 T Yk —1Y2K—21 T Yk +1+1Y2K 21"

The final step in creating Gox 971 is finding b, the maximal power of QQox o7 which
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Gog—21-1 _ %
Gok—2r-1 = ——— = Gark—211
2K —21

=Yor11Yx—31-1 T Y2r+1Yx—1 T Yk 1Yok —21 T Yk +1+1Y2K 21"
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Now, to find the index for the next new GG, we must look at the indices of the terms

that are in Gox_o7—1 and find the largest that is less than 2K — 27 — 1. The indices in

Gaok 271 are

2T +1,K -3 -1,K—I,2K -2, K + I + 1

and, referring back to (3.20), the largest that is less than 2K — 27 — 1 is K + 1 + 1.

Therefore, G,, = Gog_o7—1 for K+ 1+4+1<mn <2K —2I — 1. For the rest of this proof

I will omit the discussion for creating @, G, é, and GG, as we have already seen these

once and they all follow the same steps.

Qrt1+1 = Fryral, —o
= F(yK+I+27 s 7y2K707y17 s 7yK+I)

= Yk 4+31+2YK—1 T Y2141-

Gr+1 = GKri141] _QKira
Y141~ VK141
_YormYk—s1—1Yk+1+1 T Yorr1Yx—1Yk+141 T Yr—1Yor—21YK+141 n
Y4141
+ Yo —2rYk+31+2YK—1 T Yorr1Yox—or
Yr+1+1
& Gryr Grqa
K+I — L - 1
(yK+I+1)
Y21 - 1YK—31-1YK+1+1 T Y2r 1 YK —1YK+1+1 T YKk —1Y2K—21YK+141 7T
+ Yo —21YK+314+2YK—1 T Y21+1Y2K—21-
5K+I ~
Grir =—5—— = Gir+1
QK11

=Yort1YK—31-1YK+1+1 T Yor 1Yk —1YK+14+1 T Yk—1Y2K —21YK+T4+17T

+ Yo o1YKy3r+2YK—1 T Yar+1Y2K —21-
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Once again, we must find the next highest index out of those in Gx ;. The indices are
21 +1, K -3 -1, K+ I+ 1,K—-1,2K -2, K+ 31 +2

and, again we refer to (3.20) in order to see that the highest that is less than K + I is
K—-I S0G,=Ggyrfor K-1<n<K-+1.

Qr-1= Fr1l, —o
= F(Z/KJH’ s Yors 00U Y1)
=Yk 31 1YK+I+1 T Yax—2I-

Gr-1-1=Gk-1|  ax_;
Y1~ Ve 1

(Yktr1Y2x—o1 T Yor—or¥Yk+31+2 T Yors1Yr+r+1 + Yor1Yx—1)

Y1

(Y —31-1YK 141 T Yorc—21)

Yx—1
8 G111 Gr_1-1
K—-I-1— L 1
(nyl)
=Yr+141Y2K—21 T Yor—21Y K +31+2 T Yor 1Y +141 + Yore1Yr—1)°
(Yr—s1-1Yk+1+1 T Y2r—21)-
éKfIfl éKfIfl
Gr_1-1=—3 =

= A1
K—I Qs
=Yry1+1Y25—21 T Yok —21YK+31+2 T Y2141YK 4141 T Y2r+1YK—1-

Once more, we find that the next highest index less than K — I — 1 out of those in
Gr_1-1i82I+1. So G, =Gg_j_1for2I +1<n< K -1 -1.

Qart1 = Foral, o
= F(y2I+27"',y2K707y17'--7y21)

=YKk+1+1 T YK +3142-
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Gar = Gari1]  Qarin
Yor+1= Vort1

Yrcrre1 Y Yrcraree) Wars1Yor—or T Y1+ Yrcrr41)

Yors1

~

~ G
G2I :TZI = 2

1
Yors1

=Yrr141 T Y rsr+2) Wor1Yor—o1 + Yx—1 + Yry141)-

_ Gor Gog

s Nl
Q2I+1 Q2I+1

Gor

=Yor+1Y2Kx—21 T Yk —1 + YK+I+1

All of the indices in Goj are greater than 21, so G,, = Goy for 0 < n < 2I. Therefore,
Go = Gar = Yyr1Yarc—or t Y1 + Y141, and this is precisely F. So F satisfies
requirement (iii).

So far in this proof we have only covered the case when k is odd, ¢ is odd, j = %,
and ¢ < j. In order to see the case when i > j we again follow the procedure outlined
in Section 3.1.2 to recursively create the polynomials G,, and see that, indeed Gy = F.

Once we have completed case 3 we again follow Fomin and Zelevinsky’s procedure for

cases 1, 2, and 4. In all cases we see that Gy = F' and so the theorem follows. ]

3.4 Conclusion

We began in this chapter by introducing the Somos-k recurrences. We gave three
different techniques for proving that Somos-k (for & = 4, 5, 6, and 7) produces an
integer sequence: number theory, the Laurent phenomenon and cluster algebras, and
enumeration. Having seen that the Somos-k recurrences are completely understood
we turned to recurrences of a similar form, that still possess the integrality property.
Many of these recurrences are homogeneous in degree, as Somos-k is; we then saw
that this need not be the case. We spent the rest of the chapter studying the three
parameter recurrence (3.10). In [17], Paul Heideman and I proved that the special case

where k = 2K 4+ 1,4 =1, and j = K, produces an integer sequence. Instead of using
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one of the three proof methods mentioned above, we showed that the sequence also
satisfied a linear recurrence. I then used this linear recurrence technique to establish
integrality for three additional sub-cases of (3.10): first, k = 2K, i =1, and j = K
then, k = (2K + 1)i and j = Kj; finally k = 2K and j = Ki.

Though the method of finding linear annihilators does give us a tangible reason for
integrality, it has not proved to be a unifying technique. Instead, we proved integrality
of sequences produced by (3.10) (when k, 4, and j satisfy some conditions) using the
Laurent phenomenon technique. This settled one direction of a conjecture put forth by

Heideman and me in [17].
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Chapter 4

Nonlinear Recurrences that Unexpectedly Generate

Rationals

In the previous chapter we explored a family of nonlinear recurrences, inspired by the
Somos sequences, that produce integer sequences when rational numbers were expected.

The general form of these recurrences was
TnTp—t = P(Tp_1,.. ., Tpn_k+1), (4.1)
where P is a polynomial. This is just a special case of the more general form
Tn = R(xp_1,...,Tpn_k), (4.2)

where R is a rational function (recall that recurrences of this form were studied in

Chapter 2 under the name difference equations, see Definition 2.1.1). We get (4.1)

when we let R = IL in (4.2). In this chapter we will further generalize (4.2) and
n—=k

study “recurrences” of the form
xp = F(xp,...,xy_k), forsomel <m €N, (4.3)

which we will call m-recurrences.

There are two major differences between (4.2) and (4.3). First, we raise x, to an
integer power greater than 1. Secondly, we allow x,, the next term we are interested
in finding, to be on the right side of the equation. Equivalently, we can write an

m-recurrence as

m

> Fi(wp-1,... )z, =0 (4.4)
=0

In this chapter we will take F; to be polynomials, but in general they could be any

functions F; : C — C. Written in this equivalent form we see that in order to compute
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T, we must solve a degree m equation. Thus, we will expect to produce complex
numbers when the initial conditions are in Z or Q. Moreover, when we solve this degree-
m equation for x,, we get m solutions (counting multiplicities). So instead of producing
a single sequence, as is the usual case, we may produce infinitely many sequences from
one set of initial conditions. We will consider the set of sequences as being stored as
a tree, which I will refer to as a sequence tree. Given specific x,,_g,...,x,_1 there are
m possibilities for x,, which will be the children of z,,_1 in the sequence tree. When

m = 2 and k = 1 we produce the following sequence tree:

The superscripts refer to the path from the root to z,, through the sequence tree. For

(2,1) (2)

example, to get to x from x1, take the second child of the root to get to x5, and

then the first child of :céQ).

m-Recurrences in which £ = 1 are also known as m — [ correspondences where [
is the degree of x,,_; in F [37]. For a given value of x,_; there are m possibilities,
or m images, for x,. Conversely, for a given value of z,, there are [ possibilities (or
pre-images) for z,,_1 that could have produced z,.

One way to construct recurrences that obviously generate rational numbers is to
begin with a recurrence that generates rational numbers and then find a recurrence for
its sequence of ratios. Given a sequence {x,}5° |, we will call {m;—:l}:o:l the sequence
of ratios of {x,}. Obviously, if a sequence {z,}>° consists of rational numbers then
the sequence of ratios of {x,} is also rational. Of course, it may not be the case that
the obvious recurrence for the sequence of ratios is an m-recurrence. In particular, this
is not the case for Somos-4, a sequence of great interest in the upcoming discussion.
However we may be able to find an alternate recurrence that is of this desired form, as
we will see in the case of Somos-4. We can then generalize and find new recurrences

that were not specifically constructed to generate rational numbers. This is what we
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will do now, first for Somos-4 and then in general.

4.1 A 2-Recurrence of Order 1 That Generates Rational Numbers

Consider the generalized Somos-4 recurrence, a special case of the three-term Gale-

Robinson recurrence (3.3):
SpSp—4 = 0Sp—15p—3 + BSZ—% a,B € Z, (45)

with integer initial conditions. When o = 8 = 1, and the initial conditions are s; = 1

for 1 < ¢ < 4, we simply get the Somos-4 recurrence (3.2). With the intention to

o0

1> and

construct an m-recurrence, we consider the sequence of ratios of {s,}, {tn}

then the sequence of ratios of {t,}, {fn},—,, defined by

n=1’

Sn+1 tnt1 Sn+425n
tn = ) and fn = t = )

Sn n Sn+1

Since {sp},— is clearly a rational sequence (in fact it is an integer sequence when
the initial conditions are uniformly 1, see [11]) we know that {¢,},-, and {f,} -, are
rational sequences. The following proposition gives us a 2-recurrence for f,, which we

will study, and eventually generalize.

Proposition 4.1.1. The following 2-recurrence annihilates the sequence {fn},o;:

fafis+la—Q2a+B+1)fa] far1 +afy +5=0. (4.6)
Notice that this 2-recurrence is written in the form (4.4).

In [18, 19, 20, 36], Hone and Swart study an expression equivalent to (4.6) from
the perspective of elliptic functions. Whereas our goal is to generalize the idea of a
recurrence, their main goal is to produce explicit formulas, and asymptotics, for the
generalized Somos sequences in terms of Weierstrass sigma functions. In addition, they
obtain a sufficient condition for (4.5) to produce integers when the Laurent phenomenon
doesn’t apply (e.g., when the initial conditions are integers, but not all equal to 1).
The following theorem, which appears in [20] in a slightly different form, contains an

expression equivalent to (4.6), and will aid us in proving Proposition 4.1.1.
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Theorem 4.1.2 (Hone, Swart 2008). If {s,}.—, is a generalized Somos-4 sequence,

defined by recurrence (4.5), with coefficients a and 3, then the quantity

2 2
SnSn+3 (8n+1) (Sn+2) BSn+15n+2
§— SnSnts |, < + +

Sn+15n+2 SnSn+4-2 Sn+15n+3

_ 1.1 B
B fnfn+1 T (fn - fn+1) * fnfn+1

SnSn+3

is independent of n.

Proof of Proposition 4.1.1. Since S, from Theorem 4.1.2, is independent of n, we can

compute it by simply considering the case when n = 1. We have that

11 3
S=fifetal s+ )+
fif a(fl f2) fife
_ 53515452 a( 53 n s3 >+ Bs3s3

S% 5% 53851 S48592 53515482

=14+2a+ 0.
Now consider the following quantity

T=fofo+1(S—2a+B+1)) =0.

Since T' = 0 this indicates a possible homogeneous recurrence for f,, (i.e., a recurrence
with no constant term). To see this we write 7" in terms of f,, and f,+1 using the

definition of S from Theorem 4.1.2:

T= fnfn+1 (S _(2(1 —i—ﬁ + 1)) =

:fnfn+1 (fnfn+1 +a <]}n + fnl—',—1> + fnf/i—i-l - (2a + ﬁ + 1))

=f2fi +(a— 20+ B+1)fy) fas1 +afn+ B8 =0.

Thus we see that (4.6) annihilates the sequence {f,} ;. Rewriting, we can see that

(4.6) is a 2-recurrence with k = 1:

2 (2a+6+1)fn+1fn_O‘fn—i-l_afn_ﬁ
n+1 — fTQL .
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The sequence tree for the 2-recurrence (4.6), where @« = f = 1 and f1 = 1, is
shown in Figure 4.1 and appears to consist of only rational numbers. From Proposition
4.1.1 we know that (4.6) annihilates a sequence of rational numbers, namely {f,}>. ;.
However, one might wonder whether only rational numbers are produced when we start
with f; = 1 and repeatedly apply the 2-recurrence to create the sequence tree. Could

oo
there be a branch in which complex numbers appear? The sequence {S’SL;’A} occurs
n=1

n+1
as a branch of the sequence tree, and it turns out that the sequence tree does consist of

only rational numbers. We will see why this is true through a generalization of (4.6).

2 1 3 1 @&
4 49

AN

Figure 4.1: The sequence tree for (4.6) with o =5 =1

m ; . .
Recall the form of an m-recurrence, > " Fi(¢p—1,...,Tn—k)x;, = 0, as given in

(4.4). The recurrence (4.6) is of this type with &k =1, m = 2, and

F(Y)=Y?
Fi(Y)=—-Q2a++1)Y +a,

Fo(Y) = OéY + ﬁ

One way to generalize this is to look at m-recurrences of the form (4.4) with k = 1,

m = 2, and
B(Y)=Y?4+ AY + Ay

Fi(Y)=ByY?+ BY + By

Fo(Y) = CY? + C1Y + C.
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We can prove some minimal sufficient conditions for (4.4), with the above expressions

for Fy, F1, F5, to produce a rational sequence tree.

Proposition 4.1.3. Let X :=z, and Y := x,_1. Consider the 2-recurrence
(Y2 4+ A1Y 4+ Ag) X% + (BoY? 4+ B1Y + Bo)X 4 (CoY? + C1Y +Cp) =0,  (4.8)
with initial condition x1 = 1. The corresponding sequence tree is rational if
(i) Ay = By, Ag = Co, By = C1, and
(ii) (By 4 By + Bg)? — 4(A1 + Ag + 1)(Cy + C1 + Cy) = ¢* for some q € Q.

The 2-recurrence (4.8) is much more general than the 2-recurrence for the ratios
of ratios of the generalized Somos-4 sequence, (4.6). For example, let Ag = Cy = 1,
Ay =By=-1, By=C1 =1, By = —4, and Cy = 1, then the quantity from condition
(i) is
(Ba + By + By)* —4 (A1 + Ag +1) (Cy + C1 + Cp) =
= (1 —4+1)2—4(-1+1+1)A+1+1)

=16—-12=4=2%
Since this is the square of a rational number, the 2-recurrence,
XV? - XY(X4+Y)+ (X2 +Y?) —4XY + (X +Y)+1=0,

where X := z, and Y := x,_1, produces a rational sequence tree. This is clearly
not a special case of the 2-recurrence for the sequence of ratios of ratios of the gen-
eralized Somos-4 (4.6). Therefore, once proved, Proposition 4.1.3 gives us a family of
2-recurrences with £k = 1 that produce rational sequence trees even though they were

not specially constructed to do so.
Proof of Proposition 4.1.5. First, make the substitutions in (i), and define P(X,Y):

P(X,Y):= (Y?+ A1Y + A)) X2 + (A1Y? + B1Y + Bo)X + (AgY? + ByY + Cp)

=XV 4+ A XY(X +Y)+ Ag( X2+ Y?) + B1XY + By(X +Y) + Co.
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This is known as an Euler-Chasles correspondence (see [2, 37]) and is well known in
the theory of algebraic correspondences to have nice properties. Notice that P(X,Y)
is symmetric in X and Y this is the key fact going forward.

This proof will be accomplished by induction on n: assuming that z,,_o,x,_1 € Q,
we will show that x,, € Q. We are given that x1 = 1 € Q, so to complete the base
case we must show that zo € Q. Notice that the expression in condition (ii) is the
discriminant of the quadratic equation P(X,1) = 0. Since this discriminant is the
square of a rational number we know that xo € Q. Thus the base case, =, € Q for
n = 1,2, is satisfied.

D and 2P

Assume, as the induction hypothesis, that x,_s and its two children, z, ’, N

are rational. These children of x,,_y are the solutions of P(X,x,_2) = 0:

{o0,a,} = (X €R: P(X.2,) = 0}

n—1""n
Then, since P is symmetric in X and Y, we know that P(z,_,, x(i)_l) =0fori=1,2.

(4)

n_1, are the two elements

The values for x,,, the descendant of a specific x,,_o through x
of the set {X : P(X, xfﬁl) = 0}. But of course, one of the elements of this set is z,_2,
which we have assumed is rational. Since we are solving a quadratic equation with
rational coefficients and we know that one of the roots is rational, it must be that the
other root is rational as well.

From the base case, xl,:rél), xé2) € Q, and the inductive step, we clearly see that

xé” ) e Q for i,5 € {1,2}. Then continuing by induction we see that the entire sequence

tree is rational. O

In the next section we will use this 2-recurrence of order 1 (4.8) to obtain a family

of higher order 2-recurrences.

4.2 Higher Order 2-Recurrences that Surprisingly Generate Rationals

In the previous section we looked at 2-recurrences of order 1, also known as 2-2 corre-
spondences. These turn out to have many connections to elliptic curves and are well
studied from that perspective. We now turn our attention to higher order 2-recurrences.

As before, we will first explore in the context of Somos-4, then look into generalizations.
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Recall the 2-recurrence (4.6) for the ratios of ratios of generalized Somos-4 sequence:

R fi— (2a+ B+ 1) fasifo+ afpi1 +afy+B8=0,

where f, = 8”85*723", and s, is given by the generalized Somos-4 recurrence. By substi-

n+1
tuting the definition of f,, into (4.6), we get a 2-recurrence of order 3 for the generalized

Somos-4 sequence:

s280 g+ (043?14-1 — 20+ B+ 1)Snt25n+15n) Sn+s + asl o8y + Bseose i = 0. (4.9)

Just as the 2-recurrence for f,, appeared in Hone and Swart’s paper [20], this recurrence

for s, appears as a Diophantine equation in the following theorem first found in [20].

Theorem 4.2.1 (Hone, Swart 2008). Given «, 5 € Z and S € Q with 8S € Z, suppose

that the quartic equation
s%0? + a(su® + t3v) + pt2u® = Sstuv (4.10)

has a solution of the form (s,t,u,v) = (A1, Ag, A3, Ay), with A1 = £1 and non-zero
Ag, As, Ay € Z. Then, provided that the orbit of this set of initial data under (4.5) is

non-periodic, it produces infinitely many integer solutions of the Diophantine equation

(4.10).

Notice that this applies in the more general setting when the integer initial conditions
$1,--.,84 are not uniformly equal to 1; in this case, S may not equal 2« + 5 + 1. This
theorem states that every set of four consecutive terms in the generalized Somos-4
sequence, produced by (4.5), satisfies the Diophantine equation (4.10) (where s = sy,
t = Sp+1, U = Spi2, and v = s,43). However, as we will see later in this section,
there are other integer sequences which produce infinitely many solutions to (4.10) and
do not satisfy the order 4 recurrence (4.5) for the generalized Somos-4 sequence. In
addition we will see an octic (total degree 8) Diophantine equation which is satisfied
by consecutive terms in a sequence produced by a 2-recurrence analogous to (4.9).

Before we generalize the 2-recurrence of order 3 for Somos-4 let us explore the
sequence tree, Ty shown in Figure 4.2, generated by (4.9) with & = 8 = 1 and initial

conditions s; = sg = s3 = 1. There are a few things worth noting about T,. First and
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most conspicuously, there are non-integer rational numbers in 7. However, this is not

entirely surprising because we can generally express s,1 in terms of f, as follows:

n
S

Sp+1 =

(T R )

s1™
Since typically, f; € Z, and not every branch of the sequence tree for f, equals the
sequence of ratios of ratios of s,, we should not expect that s,41 as given by the
recurrence (4.9) would always be an integer.

The next thing to notice about Ty are some interesting branches. The sequence
29(n) " where g(n) = [%J, appears as a branch, as well as simply 2"~3. Both are
easy to prove by showing that (4.9) annihilates the sequences s, = 29(") and s, = 273,
and seeing that their first 3 terms occur consecutively within the initial levels of T%.
The existence of each of these branches will be proved in a more general setting by
Theorems 4.2.2 and 4.2.4. It is also worth noting that these exponential sequences,
that appear when we reduced the order of the Somos-4 recurrence from 4 to 3, are not
annihilated by the order 4 recurrence. In contrast with the formula for the usual s,
in terms of the Weierstrass sigma function associated to a particular elliptic curve [18],
these new sequences have closed form formulas in terms of elementary functions. In
addition, we get a reduction in the asymptotics. It is known that the original Somos-4
sequence, which of course occurs as a branch in T}, is asymptotically ¢"2 for some ¢
which can be found in terms of elliptic curves [18]. Not only do we see a branch that
is asymptotically 2”2, but we also have a branch that grows like 2" which is a major
asymptotic reduction.

We now continue by generalizing (4.9), using the 2-recurrence (4.8) from the pre-
vious section, and then proving our observations from the previous paragraph for this
more general 2-recurrence. Recall that (4.9) was obtained from (4.6) by replacing f,, by
its definition in terms of s,. Even though (4.8) encompasses more than just those re-

currences created as ratios of ratios of integer sequences, we can nevertheless substitute
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64 48 32 16 % 27 23 4479
Figure 4.2: The sequence tree for (4.9)

__ Qn420an

n+1

and study the resulting 2-recurrence of order 3:

2 2 2 4 2 2
(anan+2 + AlananJrlan-‘rQ + Aoan+1)an+1an+3+

+ (Araz a5 + Biana) y1ant2 + Botpi1)ani105 420013+ (4.11)

2 2 2 4 4
+ (Ao, a5 42 + Boanay1ant2 + Coapy)ay o =0.

Of course we must satisfy the conditions in Proposition 4.1.3 in order for (4.11) to
produce rational numbers. Notice that we get (4.9) from (4.11) if we let Ay = Ag =0,
By =—(2a+8+1), By =a, Cy = f, and divide out by the superfluous a2, ,a2_ ;. As
in (4.9), we can find some exponential branches in the sequence tree for (4.11). The
following two theorems summarize the types of exponential branches found, which will

explain the 2l(n=3)?/4] and 273 branches in Ts.

Theorem 4.2.2. The sequence a, = ’yL”Q/‘lJ is annihilated by (4.11) iff v is a solution

to the following quadratic equation

(Al+A0+1)’y2+(z41+Bl+Bo)’y+A0+Bo+00=0.
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Proof. First note that the value of |n?/4] depends on the value of n modulo 4.

n=4m = (4T)2J = 4m?
n=4m+1 — -W = 16m2+48m+1J:4m2+2m
n=4m+2 = _W_:_16m2+416m+4J:4m2+4m+1
n=4m+3 = _W_:_16m2+424m+9J:4m2+6m+2

Now, assume that a, = ’yL"Q/ 4 is annihilated by (4.11) and let n = 0 mod 4. By

substituting

4m? 4m24+2m 4m24+6m+2
)

_ _ 4m24+4m+1
ap =7 y  An4l1 =7 ,

Gnto =7y and  apt3 =7y

into (4.11) we get:

2 2 2 2 2 2 2 2
|:<,74m +4m+1) <74m ) +AW4m +4m+1 (,y4m +2m) 74m +

4 2 2
+AO (,}/4m2+2m) :| (V4m2+2m> (,}/4m2+6m+2) +
2 2 2
+ |:A1 <,y4m2+4m+1> (74m2> + B1’74m2+4m+1 <v4m2+2m) ,74m2+
+B, <V4m2+2m) 4] ,74m2+2m (74m2+4m+1>2 74m2+6m+2 n
2 2 2
+ |:A0 (74m2+4m+1> <V4m2> + Bo,y4m2+4m+1 (74m2+2m> ,Y4m2+
+CO (74m2+2m) 4:| <,y4m2+4m+1>4 —-0.
Simplify the products of 7’s to get:

2 2 2 2
[,Ylﬁm +8m+2 | Al,Yle +8mtl A0716m +8m} 16m>+16m-+4 |

y

4 [A1716m2+8m+2 i Bwlﬁm2+8m+1 i Bo,ylﬁm2+8m} 716m2+16m+4+

i |:A0716m2+8m+2 § Byylom?8m+l 00716m2+8m] A6 16md _ ()

Now, divide both sides by ~32m*+24m+4,

[v* + A1y + Ag] + [A17? + Biy + Bo] + [Aoy* + Boy + Co] = 0.
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Finally, collect like terms to get the quadratic equation in « from the statement of the

theorem:
[A1+A0+1]’)/2+[A1+Bl+BQ]’Y+[A0+BQ+Co] =0.

The same procedure as above, carried out with n = 1 mod 4, 2 mod 4, or 3 mod 4, will
yield the same quadratic equation. So, if WL”Z/ 4] is annihilated by (4.11), then v must
be a solution to this quadratic equation. Similarly, if we assume that - satisfies this

quadratic equation, we see that fyL"Q/ 4 is annihilated by (4.11). O

Corollary 4.2.3. If v satisfies
Y+ (= Ra+ B+ D))y +at =0,

then s, = ’yL”Q/‘U is annihilated by the order 3 recurrence (4.9) for the generalized

Somos-4 sequence,
sosaig+ (O‘S?Hl — (204 B+ 1)Sn+25n415n) Sn+3 + sl o8n + Bsi as2 . = 0.
In particular, (o + B)"* /4 is annihilated by (4.9).

Proof. Since (4.9) is obtained by letting Ay = A9 =0, By = —(2a+ 8+ 1), By = «,
and Cy = f, in the recurrence (4.11) we can apply Theorem 4.2.2. Making these

substitutions into the quadratic equation from the statement of Theorem 4.2.2 yields

V4 (a—Q2u+B+1))y+a+B=0

as needed. O

n—3)2/4]

This corollary explains the existence of the 2L( branch in the sequence tree

for the original Somos-4, when a@ = 3 = 1. Next we will see why the 273 branch

appears.

Theorem 4.2.4. For all Y € R, a, = Y™ is a solution to (4.11) iff

2A1 +2A0+B1 +2By+Cy+1=0. (4.12)
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Proof. Let ¢ € R. Assume that a, = ¢ is a solution to (4.11). Then
((2)7 @) + A2 () g + A (1)) (071)* () +
(A () (@) + By () gn 4 By () )t () g
+ (Ao (072)" (") + B2 () u 4 Co (™)) (1) " = 0.
Simplifying, we have
(¢4n+4 + A11/}4n+4 + A0w4n+4) w4n+8_’_
+ (A1w4n+4 + Blw4n+4 + B0¢4n+4) ¢4n+8+

+ (A4 Byttt Gyt it — o,

We divide both sides by %12 and simplify to get
2A1 +2A0+ B1 +2By+ Cy+1=0.

Therefore, if a,, = 9™, then (4.12) is true. This also gives us the reverse implication: if

(4.12) is true, then ¥" satisfies the recurrence (4.11) for any ¢ € R. O

Corollary 4.2.5. For ally € R, s, = ¢" is annihilated by the order 3 recurrence (4.9)

for the generalized Somos-4 sequence,
2.2 3 3 2 2
SpSn+s T (a5n+1 —(2a+ 8+ 1)5n+25n+15n) Sn+3 T Sy 98n + B, 198,41 = 0.

Proof. f Ay = Ay =0, B1 = —(2a+ +1), By = «, and Cy = 3, as in the generalized

Somos-4 case, then equation (4.12) in Theorem 4.2.4 is satisfied. O

Now we understand why the 2”3 branch occurs in the sequence tree for the original
Somos-4. Note, however, that the fact that ¢)" is annihilated by (4.9) doesn’t guarantee
that we will see it as a branch in the sequence tree with initial conditions uniformly
equal to 1. Exponential branches will only appear if the terms 7, ¥+ and 712
appear consecutively, as a,, an+1, and a,42, on a branch in the sequence tree. We can,
however, force them to appear by setting the initial conditions: a; = 1, as = %, and
az = 2.

Together, Theorems 4.2.2 and 4.2.4 give us the following theorem, in the same spirit

as Hone and Swart’s Theorem 4.2.1.



91

Theorem 4.2.6. Given Ay, A1, Bg, B1, Cy € Z, consider the following octic equation:

22 0? + Ao (t%2 + s2ub) + Ay (sthuv® + s*tu’v)+
+ Bo(tPu?v + st?*u®) + Byst*uv 4+ Cot*u* = 0 (4.13)

[e9]

The following sequences {an}, 1,

where s = ap, t = Apt1, U = Gpt2, and V = ap43,

produce infinitely many integer solutions of the Diophantine equation (4.13):
(i) an, = VL"Q/M iff v is a solution to

(A1+A0+1)")/2+(A1+B1—i—Bo)"Y-l—Ao-i-Bo-f—CoZO.

(ii) an =™ (for any ¢ € R) iff

2A1+2A0—|—Bl—|—2B0+Cg—|—1:0.

4.3 Conclusion

In this chapter we focused on surprising sequences produced by m-recurrences: mul-
tivariable polynomials in which one of the variables has degree m, treated from the
perspective of recurrences. In general we expect m-recurrences to produce complex
numbers, so it was unexpected when we found families that produce rational numbers.
We began by considering the sequence of ratios of ratios of a generalized Somos-4 se-
quence. The natural recurrence for this sequence is not an m-recurrence, however by
using a result of Hone and Swart we arrived at a 2-recurrence of order 1. Then we
proved that a more general version of this 2-recurrence produces rational numbers, and
was not specifically constructed to do so. This new 2-recurrence happened to be the
Euler-Chasles correspondence which is known to have connections to many other areas
in mathematics.

Sn+25n
2

Next, we made the substitution f, = into the 2-recurrence of order 1 for the

n+1
ratios of ratios of the generalized Somos-4 sequence to obtain a 2-recurrence of order 3.
We observed that this 2-recurrence annihilates the Somos-4 sequence, and also noticed

that sequences of exponentials were being produced. This is quite surprising for two

reasons: first the known closed form formula for Somos-4 is in terms of the Weierstrass
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sigma function, but the closed form of the exponential sequences are of course in terms of
an elementary function; secondly, the Somos-4 sequence is known to be asymptotically
¢"2, and this order 3 recurrence produces sequences that are asymptotically ¢™. We
then observed that exponential sequences were also being produced by the more general
2-recurrence of order 3 obtained by making an analogous substitution into the Euler-
Chasles correspondence.

Within this chapter, and throughout the thesis, the use of computers and pro-
gramming was invaluable. Without experimentation many, if not all, of the results in
Chapters 3 and 4 would not have been conjectured. In addition, Lemmas 3.1.3 and
3.2.1, the piecewise polynomial expressions for the initial terms produced by two sim-
ilar nonlinear recurrences, were first conjectured and proved by a computer program
written for Maple. Finally, and most conspicuously, the usefulness of my algorithm
presented in Chapter 2 relies heavily on programming. As you can see in Appendix A.3
the polynomials that are produced, even for small K values, are very large. Making
the needed substitutions and expansions is not feasible by hand.

We have now seen that the general topic of nonlinear recurrences provides many
interesting phenomena to study. The idea of global asymptotic stability, or convergence
independent of initial conditions, is so simple to state, yet quite difficult to prove.
Through the use of computers and experimentation I was able to create a very general
algorithm to prove global asymptotic stability.

Additionally studying the terms of the sequences produced by nonlinear recurrences
can also be quite fascinating. When we expect sequences to be rational and observe
integers, as was the case in Chapter 3, or complex and observe rational, as in Chapter
4, there can be many ways to arrive at a proof of this fact. However, I believe that our
most valuable tool is experimentation. Though it does not always lead to a proof, it

invariably leads to more insight and a better understanding of the problem.
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Global Asymptotic Stability

A.1 Summary Table of GAS Results

The equation numbers given in the following table match up with those in [3], however

the difference equations themselves may look different. The parameters presented here

are to guarantee that the equilibria will be rational functions in the parameters, which

is necessary for the algorithm to work.

Eqn # Tpgl = Parameter Values Findings
2 AL MeR Z = |M]| is not LAS
3 A2 MeR % = |M]| is not LAS
5 By, 0<B<1 T =0 is GAS
1<p6 Z = 0 is not LAS
9 VTp—1 0<~<1 z=01is GAS
1<xw Z = 0 is not LAS
17 1M M~-1>0,M+1>0 z=1(M—1) is GAS
M-1<0,M+1<0 T=—1(M+1)is GAS
23 e 0<B<1 z =0is GAS
1< I =p—1is GAS
29 y s 0<A<1 T =1- Ais not LAS
1<A T =0 is GAS
30 e — 0<A<l1 z=1—Ais GAS
1<A T =0 is GAS
41 o+ By, 0<f8<1 a?zlaﬁisGAS
42 | g+ M g<0,M+¢<0,g>0 | &=-1(M-q)is GAS
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M-q¢q>0M+qg>0,g>0 fz%(M%—q)isGAS
2_ .2 B ]
65 %% M=-q>0,M+q>0,g>-1| z=3(M-q)is GAS
M-—q<0,M+q¢g<0,g>-1|z=—%(M+q)is GAS
109 | g 1< A 7 —=0is GAS

A.2 GAS Results for Specific Parameter Values

Conjecture A.2.1. Consider the rational difference equation xpy1 = %lﬂf;;ll. For
the equilibrium T = %(M — 1), the following K wvalues are conjectured depending on the

value of M.
o If1 < M <3 then K =2.

o [f3< M < oo then K =4.

Conjecture A.2.2. Consider the rational difference equation T,y = lf;:q' For the
equilibrium * = 0 and in the range 0 < 8 < 1, the following K wvalues are conjectured

depending on the value of 3.

e IfO< B <8 then K =2.

o If B < B < 2 then K = 4.

Conjecture A.2.3. Consider the rational difference equation x,11 = m. For

the equilibrium T = %, the following K wvalues are conjectured depending on the value

of B.
o If 1§ < B then K = 3.
o If2<B< i} then K =5.
o If { <B< 2 then K =6.

More conjectures along the lines of these, as well as evidence for their truth can be

found on my website in WebBooks.
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A.3 Polynomials from Section 2.4

Pnp = 25252 + 5402523 + 42462523 + 143641500 + 1768925 + 60|25 + 21582 ] x5+
+287642 T x5 + 180224z x3 + 534792z x5 + 60568221 + 712825 + 31102825+
+5708129 25 + 5534902523 4 29150772522 + 780158828 x5 + 827163128 + 722527+
432802325 + 643802725 + 7305542725 + 52817322725 4 2356165023235+
4575615202329 + 5794983627 + 47z ab + 2748z 2l + 62788z 4 7612082725+
4567054015 + 29017604z 23 4+ 1038959352723 4 2283383162122 + 22076495127+
+122329 + 11302325 + 372942327 + 6066042525 + 55073882325 + 2973382023 x5+
+103008074x3 x5 4 256148328x3x3 4 4645666087519 + 43566352223 + w32l +
+1782225 + 94892225 + 2327302227 + 30865292225 + 235307382225+
4103849099235 4+ 2594351042225 + 3670657832223 + 37849971622 x5+
434936668927 + 8x1230 4 8462125 + 33714z 25 + 6840362125 + 790129421 5+
+53857984x1 5 + 212832180z x5 + 44779707021 5 + 38400658221 x5 —
—6980904x1 9 4 1623° + 130425 + 4328925 + 7686605 + 802699025+

4506381885 + 18871076725 + 38050738225 + 3187005753
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Py = 428230 + 228282 4 55292525 + 74820227 4 6218782525 + 32965962525+
+1130651525 25 + 25735114523 + 42709311222 4 57397664252 + 4638851625+
+2027 230 + 11902729 + 299302728 4 4177482723 + 356149027 25+
41923157627 25 + 6643635621 x5 + 14913246221 x5 + 23732037427 3+
430847885621 x5 + 25263686811 + 4329230 + 2675282 + 698892825+
410075362527 + 88205262525 + 485454262525 4 1687705242525+
4371564287253 + 5565191712923 + 6829315842829 4 56713875128 + 527230+

1 183983 24682083
_%§%;,x§xg4_442?47m§x§4-1371361x§x§4—44475447x?x34—69275600w?x3+

2499886882351 + LUA1223031 5 5 | 1433883725 ,

5 ) 5 x)a2 4 79687443825 10+
155 10565 597571 2304961
467135193427 + Tﬁxéo + Txi‘:cg + Tw%x% + Tx‘llx;

42682727 ,
_i_i

1721911435
; rizd + 611463982 x5 + ———— "t

< x4+ 449986674z 5+

44344641 1766924919 73 10417
—i—wx%x% + 51683718637‘11302 + %m% Zx:faﬁéo + T:ci’xg—i—
306723 5 o 2450327 5 . 46720239 5 o 68398863 ., -
+T(E1$2 Txll'Q + Tl’le + Tﬂclxz
485419901 5 , 1975828589 5 5 2119836981 ; , 353791143 ,
—i—fxl% + f%xz + f%% + fxlmg—i—
612436545 85 6345 194513 402403
t b e+ el + el + —adalt
15810465 , o 94747555 o 5 339955919 , , 1355697033 , ,
+T.’E1$2 + Tmle + Tl'lxé =+ Taclxﬁ-
1253946771 349366689 7 2185
Agggiégggfx%x%%—25183305x%x2%—4——§ﬂ§———aﬁ §x1x§04— =
69721x xg%_597651x x7+_12103333x x6+—9293423x x5+_67751361x o
32 12 16 b2 32 172 4 8 172
537116229x x3%_445397859x m2+_872613x . +-i5x104-1§§x94-43289x8+
32 12 32 12 g 12T 172 T 32 Tgnp 2
1921651; 4013495176_+ 12659547175_+ 188710767$4+190253691x3
64 2 128 2 64 2 256 2 128 2
+318700575gc2
256 2

9
T1TH+




152629 569321
Psp ::2025x§x%0%—13185m§xg—%4441447x§m§%—64679x§x;<+Agggfgfx§mg%—

425171 4 5 873625 o , 152503 ¢ 5 554437 4 ,  T4081 4

8 T1T2 + Tl‘le + 1765511‘2 + W$1x2 %Qfle—'—
17689 2301061
+~16§1—x§%—59490xzx504—392258x{xg-+44475447xzx§4_1978050xzx5%_

8835689 , 5 6700919 , . 13989249 . , 2482117 . 5 9175165
+ 21Ty + ——— 25 + ————— T + Txle +

4 4 16 128
1246809 302841 56742867
—|—W1ﬁm2 T2 o] 4+ 71916325210 + 47875512829 + Tm?x%
222746539 170955505 361391103
+2465223528 25 + Tm?x% ?mﬁxg + Tm?x%
+64966991 6,3 4 243455119 4 4 + 33556567 4 8271631 4
— 1T s se— AT 1 — T — X
16 12 256 12 256 7T 1024 !

1464894825230 + 311156122525 + 927125592525 4+ 16207196827 x5+
| 368447705 o o  284TT5455 5 o  GO6743359 5 , 55019841 , 4

9 T1To f%xz Tlﬁ% ?3‘1552
416470465 58046915 14487459

1395861723 5514235755

-+117432519x%x8%—4———11———7x%xg%—608178197x%xg%-4——415———7x%$g+
4252314293 , 5 9050945079 , , 1642995557 , 5 6239916847 ,

B R A T T

875486439 220764951
444556447x§x2 Agiﬁiif—fx%%—40895890x?x§0ﬁ—268768706x?x%+

1565987989 5897895725 4433312709
*+4444?§———7x?xg4%1333796560x?x;%—Agggifgggfx?xg4,44447f4447x§

9209512797 5 , 818859649 4 3, 6133626429 5 , 856875501 4

7

2

T2

5

Lo

16 Tt e i g et

217831761 4488027277
4%444515——7x?4763839013x%x%0%—404278497m%x8474———iI———fx§x§

179739927152 4 LAT30034957 5 g 10128161251 5 5 19011819929

2

2

4

3 T + g 1T + 39 T1To
+3042830919 9 3 + 10376769249 , , + 1368333729 , 349366689
——— T ———— I ———— T ———X
16 172 256 172 256 = 1024 1

+7580300021 230 + 4643663362125 + 1226670172215 4+ 182675050221 24+

1953449263 1406888001 575528697
—+1679123734x1xg%—4———??———fx1xg%—4———ii———fx1x§+—4444@4447x1x§

| 207710825, 872613
32 12 32
254953692 14974 1
13733260102 + 2 92?69 5.0 97i58765$g4_ 087%?8955x%
447147459 4 = 318700575 ,
+ 3 5 + ) x5

T19 + 5546310023° + 34268444029 + 91346721225+

97

T125+



Poyw = 348870425230 4 237064282529 + 712334172825 + 12470825025 25+

452745187 162175447
—F141003789x§x3—F107781737x§x3—%44443;————$§x§-+‘Aggig———fx§x§+-

2 43636229 11597129
4 10572657 s 2 2y + ————"2% 4+ 2100911627 230+

T 64 ! 256
1638161821
-+141731236x{xg%—422322457xzx§%—732306258x{x§—%4———75———7xzzg+

252 1 16913302
6186100200703 4 2269092528 ¢ 4 O0GGUGLTS o 1691330287 ;

3 LT 3 T1T9 61 122
238676371 63159217
444614447x3x24—Agéﬁifgfx{-k53827795x?x§0+—359954471x?x3+

4245985867 16044958663 11926554211
%—4444414———7x?1§-+ 1818444920x?xg—+—————¥§————fx?xg—+————A?g————fx?xgﬁ-

24204753531 o 4 2107604703 o o 15454551967 o » 2152762171 5
_— —— L1 — 1 —_———
3p 12 8 1%2 256 172 256 142

567138751 2943815873
Agjﬂiifgfx?+—7644O336x?x50ﬁ—505681254x?x%%—4———7?———7x?x3+

4964759983 10749765175 15635866609
-FAAA—E?———fx?xgﬁ-4———41————7x§$g—k4———4E;———fx?$g%—970763489x?x§+
10491130005 5 4 , AGS3TI6LY 5 | 150902827 , 335675067 ;
32 12 64 12 T 512 L
262097769 , o 1716787291 , o 19659880067 , 5 8120807643 , -
+f‘rlx2 + flilx2 + Tq:le + f‘rlx2
68574814865 4 o  AS3ACTSSOT , , 92523056871 , , 14966716723 , ,
32 12 32 12 128 "2 64 1h2
51168272293 4 o 6767275851 , . 1766024919 , , 140897099 4 1o,

1020 A2t Tyggy T2 1006 Aty 1%2
004934601 4 o 10149114177 4 o 8162486375 4 , 33285150493 , ,
+fx1x2 + BTG + g YT + gy %
1401534327 , - 40446119631 , , 12140134537 4 4 19062837339 4 ,
B I T e RS TTTR o

2354600439 , 612436545 5 186770213 , ., = 1177787401 ,

1024 172 1006 1T T %2 g it
12801726805 , o 627131823 , . 39110604305 , , 24708996989 , -
B R R I R T e A T

40537937381 , , 2637007233 , 5 13484496249 , , 1343900565
S A e A O AT e
349366680 , 18256175 |, 28324107 o 606799669
6384 At g T o mm et
1833276769 . 854987520 . 4036425797 . 2044467819

I S TR R A U B AT S
1213061130, 429690825 , 872613 13865775 1,
bz 1T Togpg TR T Topqg Tt g T
49835555 , 228366803 . 686663005 , 2540536925 1497468765 .
AT A A T A T A

1087838055 4 44TLATAS0 4  318T005T5 ,
1024 2 2048 277 T 16384 2
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