Real Quiz \# 7 for Dr. Z.'s MathHistory

NAME: (print!) Vivian Choong
Email DrZlinear@gmail.com as soon as I tell you (around 3:15pm)
Subject: q7
with an attachment called
q7FirstLast.pdf (e.g. q7PaulErdos.pdf)

1. (2 points) Who "proved" that

$$
1-1+1-1+1-1+1-1+\ldots
$$

equals $\frac{1}{2}$? Briefly describe his "proof".
Guido Grandi considered the case of a footer who gives a gean to his two sons
2. (2 points) Who translated Newton's Principia into French, and who wrote Lettres sur les Anglais? Chalet translated Mention's Priucipin into french Voltuine wrote Lettres surfer Anglais.
3. (1 point) Who proved that every integer is a sum of four or less squares?

Lagrange

4. (2 point) Express the permutation

$$
\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
9 & 8 & 7 & 5 & 6 & 4 & 3 & 2 & 1
\end{array}\right),
$$

as a product of disjoint cycles. What is the smallest i such that π^{i} is the identity permutation?

$$
\begin{gathered}
(19)(28)(37)(456) \\
\operatorname{lcm}(2,2,2,3)=6 \\
i=6
\end{gathered}
$$

5. (3 points) Prove that in the nine puzzle, if you start with

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 &
\end{array}\right) \quad \text { it is impossible to get to }\left(\begin{array}{lll}
3 & 2 & 1 \\
4 & 5 & 6 \\
7 & 8 &
\end{array}\right)
$$

by sliding.
Note: You can use (without proving) the lemma that whenever two elements of a permutation trade places, and all the other elements stay where they are, the number of inversions changes by an odd integer (i.e. is $\pm 1, \pm 3, \pm 5, \pm 7, \ldots$ of what it used to be.
To make a "legal move" through sliding, amy legal more preserver the parity of S. It is impossible to go from a parity that is even $(0+3+3)$ to a parity that is odd in $S(1+3+3)$ trooogh sliding either horizontally or vertically.

