Getting to know you Quiz (does not count towards the grade)

NAME: (print!) ViVian Choong
E-MAIL ADDRESS: (print!) VC 38才@ scauletmail.rutgers.edu-

Email to DrZlinear@gmail.com when I tell you to
Subject: pre0
with an attachment: pre0FirstLast.pdf
1.: What are your career goals?

I would like to beware a highschod mathenuties teacher.
2.: What are your hobbies?

I enjoy lanitting, baking, making custom keyboards.
3. What is a rational number?

A rational number is a number that can be written in the form $\frac{a}{b}$ such that $a, b \in \mathbb{Z}$.
4. Prove that the sum of two rational numbers is also a rational number, Let $a, b, c, d \in \mathbb{Z}$. Two rational numbles can be written as $\frac{a}{b}, \frac{c}{d}$.

$$
\frac{a}{b}+\frac{c}{d}=\left(\frac{a}{b}\right) d+\left(\frac{c}{d}\right) b=\frac{a d}{b d}+\frac{c b}{d b}=\frac{a d+c b}{b d}
$$

The sum of ad and $c b$ is an integer, likewise $\operatorname{lo} \in \mathbb{Z}$.
\therefore sum of two vationd I numbers is also avatonal number.
5. Prove or disprove (by giving a counterexample) : "the sum of two irrational numbers is always also an irrational number"

The sum of tow isvationd numbers is alcoves irvoitionul is false. $-\sqrt{2}$ is irrational and $\sqrt{2}$ is irvational
The sum of $-\sqrt{2}$ and $\sqrt{2}$ is 0 , which is (s not an irrational number.
6. Prove that there are infintely many primes.

Suppose there is a suite list of purines called P.
If we were to take the list of primes, called q, and add 1, we can look at $q+1$ to see if it is suime. If $q+1$ is prime, it would bc outside the bounds of P, disproving one statement of a finite list of primes. Suppose $q+1$ is not prime, then it would be divisible by
some prime r within our list p. This would not be possince as our r would used to divide- $q+1-q$, which means $r \mid 1 \cdot X \cdot$
\therefore There die infinitely many primed.
7. Prove that $\sqrt{5}$ is an irrational number.

Suppose $\sqrt{5}$ is vationut This mean i that $\sqrt{5}$ can be represented as a distinct unto between $\exists p, q \in \mathbb{Z}, \frac{p}{q}$.

$$
\begin{aligned}
(\sqrt{5} & \left.=\frac{p}{q}\right)^{2} \\
5 & =\frac{p^{2}}{q^{2}} \\
p^{2} & =5 q^{2}
\end{aligned}
$$

This implies that $S \mid p^{2}$, which means $S \| p$ since $51 p$, we can say $5 r=p$ for some $r \in \mathbb{Z}$. The same can be said to q which means 5 is a common factor. - X.
$\sqrt{5}$ is not a rational number, therefore is ivontionat

