Getting to know you Quiz (does not count towards the grade)

NAME: (print!) Karan Amin

E-MAIL ADDRESS: (print!) kya8@scarletmail.rutgers.edu

Email to DrZlinear@gmail.com when I tell you to
Subject: pre0
with an attachment: pre0FirstLast.pdf
1.: What are your career goals?

I want to use my knowledge in Computer Science and Math to become an expert Software Engineer.
Also hopefully one day work at Google or Apple!
2.: What are your hobbies?

I really like to build computers for fun! Unfortunately because of the pandemic computer parts are super expensive so I haven't been able to indulge in my hobbies recently.
3. What is a rational number?

A rational number is a number that can be represented as a ratio of two integers.
4. Prove that the sum of two rational numbers is also a rational number,

Let r and s be a rational number. It follows that $\mathrm{r}=\mathrm{p} / \mathrm{q}$ and $\mathrm{s}=\mathrm{t} / \mathrm{v}$ for some integers $\mathrm{p}, \mathrm{q}, \mathrm{t}, \mathrm{v}$. Then $r+s=p / q+t / v=(p v+t q) / q v$. Since the multiplication and sum of two integers is an integer, we can conclude that ($\mathrm{pv}+\mathrm{tq}$) is an integer and qv is also an integer, thus $\mathrm{r}+\mathrm{s}$ is a rational number.
5. Prove or disprove (by giving a counterexample) : "the sum of two irrational numbers is always also an irrational number"

We can disprove this statement by observing that $\pi-\pi=0$.
6. Prove that there are infintely many primes.

Didn't have time for this question!
7. Prove that $\sqrt{5}$ is an irrational number.

Assume sqrt(5) is rational. Then we can represent it as $\operatorname{sqrt}(5)=p / q$ for some integers p, q. Further assume p and q have no common factors. Then it follows that $5=p^{\wedge} 2 / q^{\wedge} 2$. Hence $5 q^{\wedge} 2=p^{\wedge} 2$. We can see that 5 divides $p^{\wedge} 2$, therefore divides p since 5 is prime. It follows that $5 s=p$ for some integer s. Furthermore $5 s^{\wedge} 2=p^{\wedge} 2=5 q^{\wedge} 2$. Similar to before we can conclude that 5 divides q. Since p and q can be further divided by 5 , we have reached a contradiction, hence sqrt(5) is irrational.

