Getting to know you Quiz (does not count towards the grade)

NAME: (print!)
Farrah Rahman

E-MAIL ADDRESS: (print!) \qquad

Email to DrZlinear@gmail.com when I tell you to
Subject: pre0
with an attachment: pre0FirstLast.pdf
1.: What are your career goals?

I hope to become a software engineer or some kind of software developer. (l'm just taking this course because it sounded fun)
2.: What are your hobbies?

I enjoy reading and playing the piano.
3. What is a rational number?

A rational number is a number that can be written in the form p / q where p and q are rational and q isn't zero.
4. Prove that the sum of two rational numbers is also a rational number,

Assume some a and b are rational numbers.
Then by definition of rational there must exist some integers p and r and nonzero integers q and s such that
$\mathrm{a}=\mathrm{p} / \mathrm{q}$ and $\mathrm{b}=\mathrm{r} / \mathrm{s}$.
So, $\quad a+b=p / q+r / s$
$=(p s+r q) / q s$
Define $j=p s+r q$. Because linear combinations of integers are integers, j is an integer.
Define $k=q$. Because linear combinations of integers are integers and neither q nor s are zero, k is an integer.
So, $a+b=j / k$.
By definition of rational,
$\mathrm{a}+\mathrm{b}$, where a and b are rational, is also rational.
5. Prove or disprove (by giving a counterexample) : "the sum of two irrational numbers is always also an irrational number"

Counterexample: pi is irrational, as is 1 - pi.
$p i+1-p i=1$, which is rational.
6. Prove that there are in infinitely many primes.

Assume that integer k is prime.
(something involving using k to derive another prime that's larger than it?)
7. \bar{P} rove that sqrt5 is an irrational number

For the sake of contradiction, assume that sqrt(5) is rational.
Then by definition of rational there must exist some integers p and q where q is nonzero such that
$\operatorname{sqrt}(5)=p / q$.
So,
$5=p^{\wedge} 2 / q^{\wedge} 2$

