Attendance for Dr. Z.'s MathHistory for Lecture 8 (due no later than 10 minutes after class)

NAME: (print!) Karan Amin

Email to DrZlinear@gmail.com right after class
Attendance Question

- 355/113 is important it is the approximation of pi found by Chinese mathematician Zu Chongzhi.
Subject: p8
with an attachment p8FirstLast.pdf
Part I: List all the "attendance questions" during the lecture, followed by your answers.
Part II:

1. Convert the fraction $\frac{11}{4}$ into a simple continued fraction.

$$
2+1 /(1+1 / 3)
$$

2. Give in full detail, any (correct!) proof that $\sqrt{2}$ is irrational.

Assume sqrt(2) is rational therefore $\operatorname{sqrt}(2)=\mathrm{a} / \mathrm{b}$ for some integers a and b and they are in lowest terms. Then $2=a^{\wedge} 2 / b^{\wedge} 2$. It follows that $2 b^{\wedge} 2=a^{\wedge} 2$. That means 2 divides $a^{\wedge} 2$, which means 2 divides a, hence we can write $a=2 k$. Therefore we have that $(2 k)^{\wedge} 2=4 k^{\wedge} 2=2 b^{\wedge} 2$. It follows that $2 k^{\wedge} \wedge=b \wedge 2$. Hence following the same logic we can see that 2 divides b, therefore both a and b are even, hence we can divide both by 2 and get a fraction in lower terms than a / b, which is a contradiction. Hence sqrt(2) is irrational.

