Vivian Choong 640:437:01 Atlandance Questions 5 9/22/21

(1) Look up a joke based on the Pythagonean Theorem Once upon a time there mere three ladic of the First Peoples of America sitting around the camptime

- On a reindeer skin sat on a lady who was the mother of a mighty warrior who meighed 140 poubles.

- On a buffalo sign sat a lady who was the mother of a fine young warrior who weighed les pounds

- The third lady was sitting on a hippopota mus skin weighed a mighty 300 pounds. The square on the hippoputance is equal to the sone of the squares on the other two hides.

(2) Complete the Cemma proof by hand

 $(m^{2} - n^{2})^{2} + (2mn)^{2} = (m^{2} + n^{2})^{2}$ $(m^{2} - n^{2})(m^{2} - n^{2}) + (2mn)(2mn) = (m^{2} + n^{2})(m^{2} + n^{2})$ $m^{4} - 2m^{2}n^{2} + n^{4} + 4m^{2}n^{2} = m^{4} + 2m^{2}n^{2} + n^{4}$ $m^{4} + 2m^{2}n^{2} + n^{2} = m^{4} + 2m^{2}n^{2} + n^{4}$ Attendance for Dr. Z.'s MathHistory for Lecture 5 (due no later than 10 minutes after class)

NAME: (print!) Villan Chovy

Email to DrZlinear@gmail.com right after class

Subject:p5

with an attachment p5FirstLast.pdf

Part I: List all the "attendance questions" during the lecture, followed by your answers.

Part II:

1. State the Pythagorean Theorem and prove it in two ways $\Lambda^2 + \iota^2 = \iota^2$

(I) Using the decomposition of an $(a+b) \times (a+b)$ square into an $a \times a$ square, a $b \times b$ square, and four right-angled triangles with sides a, b and hypotheneus c, and comparing it with a decomposition consisting of a $c \times c$ square and four right-angled triangles with sides a, b and hypotheneus c,

$$(a+b)^{2} = Area \quad af(arge triagle)$$

 $a^{2} + 2ab + b^{2} = 4ab + c^{2}$
 $a^{2} + b^{2} = c^{2}$

(II) Using similar triangles, by taking a right-angled triangle ABC with such that |AC| = b and |BC| = a, and |AB| = c, such that AB is horizontal, calling the projection of C to AB, C', and considering the three triangles ABC, ACC' and BCC'.

2. Find the first three smallest primitive Pythagorean triples.

$$(3, 4, 5)$$
 $(5, 12, 13)$ $(8, 15, 13)$