Vivian Choong

$$
640: 437: 01
$$

Attendance Questions 5

$$
9 / 22 / 21
$$

(1) Look up a joke bused on the Pythagorean Theorem
once upon a time treremere three ladies of the First Peoples of America sitting around the camptive

- on a reindeer skin sat on a lady who was the mother of a mighty warrior who weighed 140 pounds.
- On a buffalo skin sat a lady who wa the mither of a fire young warrior who weighed $l 60$ pounds
- The third lady was sitting on a hippopota mus skin weighed a mighty 300 pounds. The squaw on the hippopationus is equal to the sows of the squaws on the other two hides.
(2) Complete the Cennsia proof by hand

$$
\begin{aligned}
& \left(m^{2}-n^{2}\right)^{2}+(2 m n)^{2}=\left(m^{2}+n^{2}\right)^{2} \\
& \left(m^{2}-n^{2}\right)\left(m^{2}-n^{2}\right)+(2 m n)(2 m)=\left(m^{2}+n^{2}\right)\left(m^{2}+n^{2}\right) \\
& m^{4}-2 m^{2} n^{2}+n^{4}+4 m^{2} n^{2}=m^{4}+2 m^{2} n^{2}+n^{4} \\
& m^{4}+2 m^{2} n^{2}+n^{2}=m^{4}+2 m^{2} n^{2}+n^{4}
\end{aligned}
$$

Attendance for Dr. Z.'s MathHistory for Lecture 5 (due no later than 10 minutes after class)
name: (print!) Vivian Choosy
Email to DrZlinear@gmail.com right after class
Subject:p5
with an attachment p5FirstLast.pdf
Part I: List all the "attendance questions" during the lecture, followed by your answers.

Part II:

1. State the Pythagorean Theorem and prove it in two ways $a^{2}+b^{2}=c^{2}$
(I) Using the decomposition of an $(a+b) \times(a+b)$ square into an $a \times a$ square, a $b \times b$ square, and four right-angled triangles with sides a, b and hypotheneus c, and comparing it with a decomposition consisting of a $c \times c$ square and four right-angled triangles with sides a, b and hypotheneus c,

$$
\begin{gathered}
(a+b)^{2}=\text { Area af cache mingle } \\
a^{2}+2 a b+b^{2}=4 a b+c^{2} \\
a^{2}+b^{2}=c^{2}
\end{gathered}
$$

(II) Using similar triangles, by taking a right-angled triangle $A B C$ with such that $|A C|=b$ and $|B C|=a$, and $|A B|=c$, such that $A B$ is horizontal, calling the projection of C to $A B, C^{\prime}$, and considering the three triangles $A B C, A C C^{\prime}$ and $B C C^{\prime}$.
2. Find the first three smallest primitive Pythagorean triples.

$$
(3,4,5) \quad(5,12,13) \quad(8,15,17)
$$

