Part I.

1. Joke involving Pythagorean Theorem

Once upon a time there were three ladies of the First Peoples of America sitting around the campfire.

On a reindeer skin sat a lady who was the mother of a fine young warrior who weighed 140 pounds.
On a buffalo skin sat a lady who was the mother of a fine young warrior who weighed 160 pounds.
The third lady, as well she might, was sitting on the skin of a hippopotamus, as she herself weighed a mighty 300 pounds.

As you can see:
The squaw on the hippopotamus is equal to the sons of the squaws on the other two hides.
2. Proof that values always give Pythagorean Triplets

Let m and n be arbitrary integers.
Define $a=m^{\wedge} 2-n^{\wedge} 2, b=2 m n$
Then $a^{\wedge} 2+b^{\wedge} 2=\left(m^{\wedge} 2-n^{\wedge} 2\right)^{\wedge} 2+(2 m n)^{\wedge} 2$
$=m^{4}-2 m^{2} n^{2}+n^{4}+4 m^{2} n^{2}$
$=m^{4}+2 m^{2} n^{2}+n^{4}$
$=\left(m^{2}+n^{2}\right)^{2}$
Define $c=m^{2}+n^{2}$. Because linear combinations of integers are integers, a, b, and c are integers.
Thus $a^{2}+b^{2}=c^{2}$, making a, b, c a Pythagorean triplet.

Part II

1. $a^{2}+b^{2}=c^{2}$, where a, b are sides of a right triangle and c is the hypotenuse I.

$a+b$

$a+b$
II. Unsure
2. $(3,4,5)$
$(5,12,13)$
$(8,15,17)$
