Vivian Choosy

$$
640: 437: 01
$$

Hffendance Quiz \#14
(1) who were the fro geciouser who pored the impossibility of a formula for solving a quintic equation? Galois and Cayley
(2) Find a way th place 31 doming pieces and cover completely an 8×8 square. Not possible. A domini placed on the chershourd will always be ontoy of a black square and white square. Therefore, a collection of domino placed on the bond will cover an equal number of squarer if each color. If two white squares are reenmed, then 30 squares will be white and 32 will be black, so it is impassible.
(3) At what age did the above geniuses die? Galois died at 19, Cayley died at 73
(4) What university did the most in classifying so-called simple groups? 1 do not lawn.
i
Attendance for Dr. Z.'s MathHistory for Lecture 14 (due no later than 15 minutes after class)

NAME: (print!) Vivian Choosy

Email to DrZlinear@gmail.com right after class
Subject: p14
with an attachment p14FirstLast.pdf
Part I: List all the "attendance questions" during the lecture, followed by your answers.
Part II:

1. Perform the following permutation-product

$$
\begin{aligned}
& \left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 5 & 7 & 6 & 1 & 2 & 3
\end{array}\right)\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 1 & 2 & 6 & 7 & 4 & 5
\end{array}\right) \\
& \left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
6 & 7 & 5 & 4 & 3 & 1 & 2
\end{array}\right)
\end{aligned}
$$

2. Let

$$
\pi=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right)
$$

find π, π^{2}, \ldots until you get the identity permutation.

$$
\begin{aligned}
& \pi^{2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right) \\
& \pi^{4}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 4 & 1 & 2
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right)
\end{aligned}
$$

3. Express the permutation

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 2 & 5 & 4
\end{array}\right)
$$

as a product of disjoint cycles. What is the smallest i such that π^{i} is the identity permutation?

$$
(132)(45) \text { Ido not know the smallest. }
$$

4. Find π^{-1} if

$$
\pi=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 2 & 5 & 4
\end{array}\right)
$$

$$
\pi^{-1}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 1 & 5 & 4
\end{array}\right)
$$

