Part 1.

1. Who were the two genuises who proved the inpossibility of a formula for solving a quinic?
Abel and Galois
2. Find a way to place 31 domino piece, and cover completely an 8 by 8 square, where two opposite have been removed? It is impossible.
3. At what ages did the above geniuses did?

Abel: 27, Galois 21 .
4. What university did the most in the classification of simple groups and have quite a few faculy members with groups named after them?

Part II.

$$
\begin{array}{lll}
1 . & \rightarrow 4,4 \rightarrow 6, & \text { so } 1 \rightarrow 6 \\
2 \rightarrow 5, & 5 \rightarrow 7, & \text { so } 2 \rightarrow 7 \\
3 \rightarrow 7, & 7 \rightarrow 5, & \text { so } 3 \rightarrow 5 \\
4 \rightarrow 6, & 6 \rightarrow 4, & \text { so } 4 \rightarrow 4 \\
5 \rightarrow 1, & 1 \rightarrow 3, & \text { so } 5 \rightarrow 3 \\
6 \rightarrow 2, & 2 \rightarrow 1, & \text { so } 6 \rightarrow 1 \\
7 \rightarrow 3, & 3 \rightarrow 2, & \text { so } 7 \rightarrow 2
\end{array}
$$

So the product: $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 7 & 5 & 4 & 3 & 1 & 2\end{array}\right)$
2. $\pi^{2}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{array}\right) \pi^{3}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right) \pi^{4}=\left(\begin{array}{lll}1 & 2 & 3\end{array} 4\right.$ Which is the identity permutation.
3. $\left(\begin{array}{lll}1 & 3 & 2 \\ 3 & 2 & 1\end{array}\right)\left(\begin{array}{ll}4 & 5 \\ 5 & 4\end{array}\right)$

The smallest $i=2 \times 3=6$
4. $\left(\begin{array}{lllll}3 & 1 & 2 & 5 & 4 \\ 1 & 2 & 3 & 4 & 5\end{array}\right), \pi^{-1}=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4\end{array}\right)$

