NAME: (print!) Vivian Choong
E-Mail address: vc 387 @ scarletmail. nutgers.ed
MATH 437 Exam II for Dr. Z.'s, Fall 2021, Dec. 6, 2021, 3:00-4:20pm, (on-line)
No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTEBOOK (But not your Math Notebook).
Show your work! An answer without showing your work will get you zero points.

Do not write below this line (office use only)

1. (out of 10)
2. (out of 10)
3. (out of 10)
4. (out of 10)
5. (out of 10)
6. (out of 10)
7. (out of 10)
8. (out of 10)
9. (out of 10)
10. (out of 10)
11. (out of 10)
12. (out of 10)
total: (out of 120)
13. (10 points) Give two proofs of the Pythagorean theorem.

Prof \#1- Rearrangement of Triayles
Let wo ne urges 4 triangles of the same side, a,b,c. sues that it forms) a square maaluriry c on all sides

If we wee to rearouse said tingles, we can see that the shaded aren(c') would be equal to $\left(a^{2}\right)+\left(b^{2}\right)$.

$$
\text { b } b^{2} \text { Thus } a^{2}+b^{2}=c^{2}
$$

Proof \#2 - Proof using Similar Tricycles

hs we can see $\triangle A H C$ and $\triangle B H C$ we similar USing the ratios of the similar triangles:

$$
\begin{aligned}
& \frac{D C}{A B}=\frac{B H}{B C} \quad \frac{A C}{A B}=\frac{A M}{A C} \quad A \text { ter coos) multiphyj3, } \\
& B C^{2}=A B(B H), A C^{2}=A H(A B) \\
&\left.B C^{2}=A B C B H\right)+\left(A C^{2}=A H(A B)\right)=A B(A H+B H)=A B^{2}= \\
&\left(A C^{2}+A C^{2}=A B^{2}\right. \\
& C^{2}=A^{2}+B^{2} .
\end{aligned}
$$

2. (10 points) Prove that $\sqrt[7]{3}$ is irrational.

Suppose $\sqrt[3]{3}$ can be expressed as a fraction $\frac{a}{b}$ sit. $a, b \in \mathbb{Z}, b \neq 0$ and ard $(a, b)=1$.
This would mean $b^{7}(3)=a^{7}$. Let plea prime number st. $p \mid 3$. This implies $p \mid a^{7}$ and thus pla. This can be reavitton as $p^{7} \mid a^{7}$ Since 3 is square free, $p^{6} \mid b^{7}$. Since $7 \geq 2$ pl ${ }^{7}$, which means pleb. This implies $\operatorname{gcd}(a, b)=7$, This contradicter $\operatorname{gcd}(a, b)=1$ and $\sqrt[7]{3}$ is irrational
3. (10 points total)
(a) (5 points) Construct the Pascal triangle mod 2 Fractal using the first 8 rows (i.e, the row for $n=0$ through row for $n=7$). Highlight the middle 0 section, and show that the remaining part consists of three identical triangles with 4 rows,
11
121
$1331 \rightarrow$
14641
15101051
1615201561
$\left.\begin{array}{llllllll}1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 \\ 1 & 8 & 28 & 56 & 70 & 56 & 28 & 8\end{array} \right\rvert\,$
\square

It is afractal because it na an inverted equilateral tricyle
(b) (5 points) Define the Feigenbaum constant. Explain everything!

$$
\text { Feigenkaum notice tat } \lim _{k \rightarrow \infty} \frac{r_{k+1} v_{k}}{r_{k}-r_{k-1}}
$$

in the logistic map $x_{n}+1=k_{n}\left(1-x_{n}\right)$ if $1<k<3$, the population will stabalize. If $k>3$, then it will be the ultimate period if 2 . Makiy k bigger, there will be u_{n} atimate period if 4 . Bes the constant tends to 4.6692016 .
4. (10 points altogether)
(a) (2 points) Define a Platonic soild
(b) (2 points) Let a be the number of edges meeting each vertex, and let b be the number of edges surrounding each face. Express V (the number of vertices) and F (the number of faces) in terms of E (the number of edges), and a and b.
(c) (2 points) Find an expressions for F, in terms of a and b.
(d) (4 points) Obviously both a and b must be at least 3 , and F (and hence V and E) must be positive. It is easy to see (you don't have to do it) that a, b must be both between 3 and 5 , leaving 9 potential scenarios. Find those values of a and b that make sense, and thereby prove that there are exactly 5 Platonic solids. For each of them, find F (the number of faces) and give the name of the corresponding Platonic solid.
(a) A platonic solid is a poly uederon that have congunant faces that are regular polygons and the same number of faces meet at each vertex.
(b) $b F=2 E=a V$
(c) $F=\frac{4 a}{4-(b-2)(a-2)}$
(d) Since $n_{1} b$ mut be between 3 and 5 , we cam
have only 5 possibilitig. fir $\{a, b\}$:
$\{3\},\},\{4,3\},\{3,4\},\{5,3\},\{3,5\}$. wing Euler formal
that $\frac{2 E}{b}-E+\frac{2 E}{a}=2 \rightarrow \frac{1}{a}+\frac{1}{b}=\frac{1}{2}+\frac{1}{E} \rightarrow \frac{1}{a}+\frac{1}{b}>\frac{1}{2}$.
Thus $a+b>2$.
5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and $|H|$ and $|G|$ are their number of elements, respectively, then $|G| /|H|$ is always an integer.
Let $H \leq G,|G|=n$ and $|H|=m$.
Sivice every coset (left and rights of a subgroup has the same number of elements as A, we know t has m elements, Let r be the number of cell in the puritan of G into left covets of H.
Then $n=r m \Rightarrow|G|=|H|(G: H\rangle \Rightarrow \frac{|G|}{|H|}=r ., r \in \mathbb{N}$.
6. (10 points) What is the name of the following famous equation-pair?

$$
u_{x}=v_{y} \quad, \quad u_{y}=-v_{x}
$$

or, in fuller notation

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} .
$$

What is special about the function $u(x, y)+i v(x, y)$ where $u(x, y), v(x, y)$ satisfy the above system of two equations?
"Cauchy-Riemann" equations
iwo smooth neal functions $u(x, y)$ and $v(x, y)$ aus the real and imasinay parts of the complex variable $z=x+i y$
7. (10 points) Who discovered the quaternions? What city did that person live in?

William Rowan Hamilton, Dublin
8. (10 points) What is Heron's formula, what century did Heron live in?

$$
\begin{aligned}
& A=\sqrt{s(s-a)(s-b)(s-c)} \\
& 1^{\text {st }} \text { century (lined from 1OAD-70AD). }
\end{aligned}
$$

9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual action did that teacher do? What was Newton's position after he left Cambridge?

Isaac newton studied Attronong under his teacher
Isaac Barrow, who wore Lectiones op fica whish was unusual.
Newton became warden and later muster ot the mint.
10. (10 points) In what city was Leibnitz born? Where did he spend most of his life? What King of England was once the employer of Leibnitz?.
Leipziz, Germany, spent most of his lire hoar the court of Hanover. King George I.
11. (10 points total)
(a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$.

$$
\frac{2}{\pi}=\cos \frac{\pi}{4} \cos \frac{\pi}{8} \cos \frac{\pi}{16} \cos \frac{\pi}{32} \ldots
$$

(b) (5 points) State the names of two people who initiated the use of logarithms

John Napes and Henry Briggs.
12. (10 points altogether) (a) (3 points) Define a Eulerian path in a graph.

A Euleian path visits every edge of the graph exactly once
(b) (3 points) State the necessary condition for a graph to have a Eulerian path

A graph has a Eulerian path iff thee are at mol two vertices of odd degree.
(c) (4 points) Prove (or explain in your own words) why the condition in (b) is necessary. If we add an edge between two - odd degree wective, the gunph would have a Eulerian circuit. If we remove the edge, we would thus have a Eulerinn path. Suppose we have a graph with vertical that contaci an odd degree not be troand contains a Eulerian path. Let us add an edge at the two ends of the path. This would be aguaph with an odd degree vertex and Euler circuit which is a contradiction. Thus a Euler path mow hame at most 2 vertices of odd deguee.

