NAME: (print!) Vivian Choow
Email DrZlinear@gmail.com as soon as I tell you (around 4:20 pm)
Subject: mt1
with an attachment called
mt1FirstLast.pdf (e.g. mt1LehonardEuler.pdf)
E-Mail address: vC 387 @ Scarlefmailvutgevs edu:
MATH 437 Exam I for Dr. Z.'s, Fall 2021 (Oct. 27, 2021)
No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTEBOOK (But not your Math Notebook)
Show your work! An answer without showing your work will get you zero points.
A random subset of the students will be picked for short (private!) chats via WebEx, in order to verify that there was no outside help

Do not write below this line (office use only)

1. (out of 10)
2. (out of 10)
3. (out of 10)
4. (out of 10)
5. (out of 10)
6. (out of 10)
7. (out of 10)
8. (out of 10)
9. (out of 10)
10. (out of 10)
11. (out of 10)
12. (out of 10)
total:
(out of 120)
13. (10 pts.) Prove that there are infinitely many primes.
we will prove by contradiction. Suppose there only exist finitely many primes. we will call this finite list of primes $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$.
If we take the product of the primes and add 1 , we will get the number $p=p_{1} p_{2} p_{3} \cdots p_{n}+1$. All of $p_{1}, p_{2}, p_{3}, \cdots, p_{n}$ would not divide p because you would get a remainder 1. This P would be a new prime because $P>P_{1}, P_{2}, P_{3}, \ldots, P_{n}$ and $P_{1}, P_{2}, P_{3}, \ldots, P_{n} \nmid P$. This is a contradiction of ar assuption that there exists a finite list of primes. Hence, twee exist infinitely mam primes.
14. (10 pts.) Prove that $\sqrt{29}$ is irrational.

Let us consider the infinite simple contined fraction:
$5+\frac{1}{5+\frac{1}{5+\cdots}}$ we an represent this contruned fraction with $\frac{a+\sqrt{N}}{b}$.

$$
x=5+\frac{1}{x} \rightarrow x^{2}-5 x-1=0 \quad x=\frac{+5 \pm \sqrt{25+4}}{2(1)} \rightarrow x=\frac{5 \pm \sqrt{29}}{2}
$$

The infinite continued fraction can be represented as $\frac{5+\sqrt{29}}{2}$ Since x is an infinite continued fraction, it would be irrational because a rational number would have a finite continued fraction. This implies $\frac{5+\sqrt{29}}{2}$ is irrational, which implies $\sqrt{29}$ is irrational as desired.
3. (10 pts) Derive (from scracth, only using geometric series, and calculus) the Taylor series around $x=0$ of the function

$$
\arctan x^{3}
$$

Explain all steps!
We know that $\operatorname{avctan}(x)=\int_{0}^{x} \frac{1}{1-t^{2}}$ and the trunons Taylor series $\frac{1}{1-z}=\sum_{n=0}^{\infty} x^{n}$
By replacing z with $-t^{2}$, we get By ueplacing z with $-t^{2}$, we get

$$
\frac{1}{1+t^{2}}=\sum_{n=0}^{\infty}\left(-t^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} t^{2 n}
$$

Hence $\operatorname{artan} x^{3}=\int_{0}^{x^{3}} \frac{1}{1+t^{2}}=\int_{0}^{x^{3}} \sum_{n=0}^{\infty}(-1)^{n} t^{2 n}=\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{x^{3}} t^{2 n}$

$$
\arctan x^{3}=\sum_{n=0}^{\infty}(-1)^{n}\left(\left.\frac{t^{2 n-1}}{2 n+1}\right|_{0} ^{x^{3}}\right)=\sum_{n=0}^{\infty}(-1)^{n^{3}} \frac{x^{2 n^{3}+1}}{2 n^{3}+1}
$$

4. (10 pts. altogether) Prove that

$$
\sum_{k=0}^{n} k(k-1)(k-2)=\frac{(n+1) n(n-1)(n-2)}{4}
$$

(i) (5 points): The Dr. Z. way (verifying it for sufficiently many special cases, explain how many you need)
The expression provided has a degree 4 , so we would only reed to verify 5 different

$$
\begin{aligned}
& \text { values. } \\
& n=0: \sum_{k=0}^{0} k(k-1)(k-2)=0=\frac{0(0+1)(0-1)(0-2)}{4} \\
& n=1: \sum_{k=0}^{n=1} k(k-1)(k-2)=0+0=\frac{1(1+1)(1-1)(1-2)}{4} \\
& 0=0 \\
& n=2: \sum_{k=0}^{2} k(k-1)(k-2)=0+0+0=\frac{2(2+1)(2-1)(2-2)}{4} \\
& \begin{aligned}
0 & =0 \\
n=3: \sum_{0}^{3} k(k-1)(k-2)=0+0+0+6 & =\frac{3(3+1)(3-1)(3-2)}{4}=\frac{3(4)(2)(1)}{4} \\
6 & =6 v
\end{aligned} \\
& n=4: \sum_{0}^{4} k(k-1)(k-2)=0+0+0+6+24=\frac{4(4+1)(4-1)(4-2)}{4}=(5)(3)(2) \\
& 30=30
\end{aligned}
$$

(ii) (5 points): The traditional way, using complete mathematical induction.
$\frac{\text { Base case: } n=0}{0}$

$$
\begin{aligned}
\frac{e \text { case : } n=0}{\sum_{k=0}^{0} k(k-1)(k-2)} & =\frac{(n+1) n(n-1)(n-2)}{4} \\
0(0-1)(0-2) & =\frac{(0+1)(0)(0-1)(0-2)}{4} \\
0 & =0
\end{aligned}
$$

$\frac{\text { Inductive case }}{n-\text { suppose } n \rightarrow n-1}$

$$
\frac{\text { Inductive case }}{\sum_{k=0}^{n-1} k(k-1)(k-2)=\frac{(n-1+1)(n-1)(n-1-1)(n-1-2)}{4}=\frac{(n)(n-1)(n-2)(n-3)}{4}}
$$

Inductive step:

$$
\begin{aligned}
& \text { Inductive step: } \\
& \sum_{k=0}^{n} k(k-1)(k-2)=\left(\sum_{k=0}^{n-1} k(k-1)(k-2)\right)+(n(n-1)(n-2)) \\
& \sum_{k=0}^{n} k(k-1)(k-2)=\frac{(n)(n-1)(n-2)(n-3)}{4}+n(n-1)(n-2)=\frac{(n)(n-1)(n-2)(n-3)}{4}+\frac{4 n(n-1)(n-2)}{4} \\
& \sum_{k=0}^{n} k(k-1)(k-2)=\frac{n(n-1)(n-2)(n-3)+\ln (n-1)(n-2)}{4}=\frac{(n-1)(n)(n-1)(n-2)}{4}
\end{aligned}
$$

5. (10 points) Construct a seven by seven Magic Square.

\rightarrow| | | | 5 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 6 | | | | |
| | 7 | 8 | | | | |
| 1 | 9 | | | | | |
| 10 | | | | | | 2 |
| | | | | | 3 | |
| | | | | 4 | | |

\downarrow						
			5	13		
		6	14			
	7	8				
1	9					
10						2
					3	11
				4	12	

6. (10 points) Arrange the following people according to their year-of-birth, from oldest to youngest.
Newton, Archimedes, Gathiteo, Euler, Gauss, Zeitherger, Euclid, Prates, Brahmagupta, Fibonacci.
For each person, state their century of birth.

Thaler (62 5BC), Euclid (30 0BC), Archimedes (287), Brahmagupta (590), Fibocnuaci (1130) Galileo (1564), Newton (1642), Euler (1707), Gauss (1777), Zélbezer (1950)
7. (10 points). What is an Egyptian fraction? Express $\frac{5}{6}$ as an Egyptian fraction Egyptian fraction is the sum of fractions if the firm $\frac{1}{n}$

$$
\frac{5}{6}=\frac{1}{2}+\frac{1}{3}
$$

with $n \in \mathbb{Z}$.
8. (10 points) What is the difference between Ionian (Greek) mathematics and ancient Babylonian and Chinese mathematics? Who was the traditional father of Greek mathematics?

Euclid is the father of greek mathematics.
9. (10 points) What book, except for the bible, was the most reproduced and studied in the Western world? Who was its author?
Elements by Euclid.
10. (10 points) In a closed polyhedron, what is a relation between V, the number of vertices, E, the number of edges, and F, the number of faces? Who is it due to?

$$
V+F-E=2
$$

This relation is due to Euler
11. (10 points) What is the name of the following constant:

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{1}+\frac{1}{2}+\ldots+\frac{1}{n}-\log n\right)
$$

What is its approximate value?
$\lim \left(\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{n}-\log n\right)=0.577216 \ldots$ andis called constant of Euler.
12. (10 points) Using the beginning of the famous Taylor expansion, about $x=0$ for $\sin x$, namely

$$
\sin (x)=x-\frac{1}{6} x^{3}+\ldots
$$

find the beginning (up to term x^{3}) of the Taylor series, about $x=0$ of

$$
f(x)=\sin \sin \sin x
$$

in the form

$$
a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x_{3}+\ldots
$$

Ans.:

$$
a_{0}=0 ; \quad a_{1}=1 ; \quad a_{2}=0 ; \quad a_{3}=\frac{-1}{6}
$$

