vivian Choong

$$
640: 437: 02
$$

Homework 8
(c) Traditional proof that $\sqrt{2}$ is irrational

Proof - (By contradiction)
Suppose trier e exists $a, b \in \mathbb{Z}$ s.t. $\sqrt{2}=a / b$.

$$
\left(\sqrt{2}=\frac{a}{b}\right)^{2} \rightarrow 2=\frac{a^{2}}{b^{2}}
$$

$a^{2}=2 b^{2}$. both a in are poitrö integer
Then the e exists the pars (a, b) with the smallest value of $a+b$.
WLOG (with loss of geverality) - The above pair has $a+b$ as small numbers lutermediate needed fact: the square of an odd integer is always odd odd number $=2 \mathrm{mul}$

$$
(2 m+1)^{2}=\underbrace{(2 m)^{2}}_{\text {even }}+4 m+1 \rightarrow \text { odd integer. }
$$

Cossolang - If a^{2} is even, thin a is even.
Hence, you can write $a=2 n$ for $\exists n \in \mathbb{R}$.

$$
\begin{aligned}
(2 n)^{2} & =2 b^{2} \\
2 u & =b^{2}
\end{aligned}
$$

Hence b must be an wen integer, let us say $b=2 \mathrm{~m}$.

$$
\begin{aligned}
(2 m)^{2} & =2 n^{2} \\
4 m^{2} & =2 n^{2} \\
2 m^{2} & =n^{2}
\end{aligned}
$$

So, (m, n) is also a possibility
$m+n=\frac{(a+b)}{2}$, which is less tran $(a, b), \dot{\Psi}$
(2) Geometric proof tract $\sqrt{2}$ is incational

Second Proof (Insphed by Gcouretric Prof).- Using Helm.

$$
\begin{aligned}
& (2 b-a)^{2}-2(a-b)^{2} \\
& 4 b^{2}-4 b a+a^{2}-2\left(a^{2}-2 a b+b^{2}\right) \\
& 4 b^{2}-4+a+a^{2}-2 a^{2}+4 a b-2 b^{2} \\
& 2 b^{2}-a^{2}
\end{aligned}
$$

Algebraic identity: $(2 b-a)^{2}-2(a-b)^{2}=-\left(a^{2}-2 b^{2}\right)$
Suppose that there exist integers a and b such that $a^{2}-2 b^{2}=0$, then let (a, b) be the pair with smallest $\operatorname{sum}(a=b)$.
Define $c=2 b-a \quad d=a-b$.
$\begin{aligned} c^{2}-2 d & =0 \\ \text { But } c+d & =26-a+a-b=b<a+b-\dot{x} .\end{aligned}$
(3) Convert the fillowiy rational numbers into a simple continued function: (a) $\frac{29}{16}=1+\frac{1}{4+\frac{1}{3}}$
(b) $\frac{32}{19}=1+\frac{1}{2+\frac{1}{6}}$
(4) $\sqrt{2}+1=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}}$

Proves that $\sqrt{2}$ is irrational
(5) $\frac{(\sqrt{3}+1)}{2}=1+\frac{1}{2-\frac{1}{2-\frac{1}{\cdots}}}$

This is irrational, thus proving the sum cussed be irrational

