1. Prof by contradiction.

Suppose $\sqrt{2}$ is rational, and there exists $m>n>0$, such that $\sqrt{2}=\frac{m}{n}$, where m and n are integers.
And there exists a pair such that it sum, $m+n$ is smallest.
since $2=\frac{m^{2}}{n^{2}}$, $m^{2}=2 n^{2}$, then m^{2} is even, and m is even.
Then $m=2 p$, where p is an integer.
Plugging it in, we have $(2 p)^{2}=2 n^{2}, 4 p^{2}=2 n^{2}, 2 p^{2}=n^{2}$, So we get $n>p>0$, such that $\sqrt{2}=\frac{n}{p}$, and $n+p=n+\frac{m}{2}<n+m$, Contradicting with $m>n>0$ was the pair with the smallest sum.
2. Suppose $\sqrt{2}$ is rational. Then $\sqrt{2}=\frac{a}{b}$ where a, b are integers and b is not zero. Then $a^{2}=2 b^{2}$, and we have $a^{2}-2 b^{2}=-\left((2 b-a)^{2}-2(a-b)^{2}\right)$.

Suppose there exists positive integer a, b such that $a^{2}-2 b^{2}=0$, then there exists a pair for which $a+b$ is the smallest. then suppose $c=2 b-a, d=a-b$. we have $c^{2}-2 d^{2}=0$.
$B \sim \pi c+d=2 d-a+a-b=b<a+b$.
Contradicting that (a, b) was the smallest pair.

$$
\begin{aligned}
3 .(a) \frac{29}{16}=1+\frac{13}{16}=1+\frac{1}{\frac{16}{13}}=1+\frac{1}{1+\frac{3}{13}} & =1+\frac{1}{1+\frac{1}{\frac{13}{3}}} \\
& =1+\frac{1}{1+\frac{1}{4+\frac{1}{3}}} \\
& {[1,1,4,3] \text { for short } . }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{32}{19}=1+\frac{13}{19}=1+\frac{1}{\frac{19}{13}}=1+\frac{1}{1+\frac{6}{13}}=1+\frac{1}{1+\frac{1}{\frac{13}{6}}} \\
&=1+\frac{1}{1+\frac{1}{2+\frac{1}{6}}} \\
& {[1,1,2,6] \text { for short. } }
\end{aligned}
$$

4. $\sqrt{2}+1=2+\sqrt{2}-1, \frac{(\sqrt{2}-1)(\sqrt{2}+1)}{\sqrt{2}+1}=\frac{1}{1+\sqrt{2}}$

$$
\sqrt{2}+1=2+\frac{1}{1+\sqrt{2}}=2+\frac{1}{1+\left(1+\frac{1}{1+\sqrt{2}}\right)}=2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\cdots}}}}
$$

So $\sqrt{2}$ is irrational.
5.

$$
\begin{aligned}
& \frac{\sqrt{3}+1}{2}=1+\left(\frac{\sqrt{3}+1}{2}-1\right) \\
& \frac{\sqrt{3}+1-2}{2}=\frac{\sqrt{3}-1}{2}=\frac{(\sqrt{3}-1)(\sqrt{3}+1)}{2(\sqrt{3}+1)}=\frac{2}{2(\sqrt{3}+1)}=\frac{1}{1+\sqrt{3}} \\
& \frac{\sqrt{3}+1}{2}=1+\frac{1}{1+\sqrt{3}}=1+\frac{1}{2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\cdots}}}}}}
\end{aligned}
$$

So $(\sqrt{3}+1) / 2$ is irrational.

