3. Using $a = 2mn, b = m^2 - n^2, c = m^2 + n^2$, find as many Pathagorean triples as you can with a = 120. Which ones are **primitive**?

4. Prove that there are infinitely triples of **positive** integers a, b, c such that

4. Prove that there are infinitely triples of **positive** integers a, b, c such that

$$a^2 + b^2 = c^2 \quad .$$

Consider $n^2 + 2n + 1 = (n + 1)^2$ -when 2n + 1 is a square, a pythonyeron triple is formed.

2n + 1 is every old number, every other square number is old, and there are infinite old numbers. Thus, then are an infinite number of pythonyeron triples

5. Who first proved that there are no solutions, in **positive** integers a, b, c, of the equation

$$a^4 + b^4 = c^4$$
.

pierre Le Fermat

6. Who first proved that there are no solutions, in **positive** integers a, b, c, of the equation

$$a^3 + b^3 = c^3$$
.

Pierre de Fernat

7. Who first thought that he has a proof that, for any integer $n \geq 3$, there are no solutions, in **positive** integers a, b, c, of the equation

$$a^n + b^n = c^n$$
 ?

lierre de Fermat

8. Who first actually had a proof that, for any integer $n \geq 3$, there are no solutions, in **positive** integers a, b, c, of the equation

$$a^n + b^n = c^n ?$$

Andrew Viles

Andrew Wiles