Farrah Rahman Can publish on site

- (a) By the time that A reaches the 50 mile mark where T started, T will still be ahead by 12 and a half miles. By the time A reaches the 62 and a half mile mark, T will still be ahead by another 3 and a quarter miles, etc.
 - (b) A(t) = 200t, T(t) = 50 + 50t

200t = 50 + 50t150t = 50t = 1/3

1/3(60) = 20, so A will catch up to T after 20 minutes.

(c)

$$1/4 + 1/16 + 1/64 + 1/256 + \dots = \frac{1/4}{1 - 1/4} = 1/3$$

(d) If the smallest unit of time is 1/64 of an hour, T is always ahead.

Time (hours)	Distance, A	Distance, T
0	0	50
0 + 1/4	50	62.5
0+1/4+1/16	62.5	65.625
0+1/4+1/16+1/64	65.625	66.406

2. It is known that for any number $x, 1 - x^{n+1} = 1 - x^{n+1}$. For some nonnegative integer n, add $x - x + x^2 - x^2 + x^3 - x^3 + \dots + x^n - x^n$, or 0, to both sides. $1 - x^{n+1} + x - x + x^2 - x^2 + \dots + x^n - x^n = 1 - x^{n+1} + x - x + x^2 - x^2 + \dots + x^n - x^n$ $1 - x^{n+1} + x - x + x^2 - x^2 + x^3 - x^3 + \dots + x^n - x^n = 1 - x^{n+1}$ The left side can be rearranged:

 $1 - x + x + -x^{2} + x^{2} - x^{3} + x^{3} + \dots - x^{n} + x^{n} - x^{n+1} = 1 - x^{n+1}$

On the left side, every 2 consecutive terms, going from left to right, are divisible by 1 - x:

$$1(1-x) + x(1-x) + x^{2}(1-x) + \dots + x^{n}(1-x) = 1 - x^{n+1}$$
$$(1-x)(1+x+x^{2}+\dots+x^{n}) = 1 - x^{n+1}$$
$$1+x+x^{2}+\dots+x^{n} = \frac{1-x^{n+1}}{x-1}$$

So $1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{x - 1}$.

3. (a) It is known that for any number x, $1 + x + x^2 + \dots + x^n = \frac{1 - x^{n+1}}{x-1}$. Let x be between 0 and 1. Then,

$$\lim_{n \to \infty} \frac{1 - x^{n+1}}{x - 1} = \lim_{n \to \infty} \left(\frac{1}{x - 1} - \frac{x^{n+1}}{x - 1} \right) = \frac{1}{x - 1} - \frac{0}{x - 1} = \frac{1}{x - 1}$$

(b) By Zeno,

$$A(0) = 0 T(0) = 1$$

$$A(0 + x^{0}) = 0 + x^{0} T(0 + x^{0}) = x^{0} + x^{1}$$

$$A(0 + x^{0} + x^{1}) = 0 + x^{0} + x^{1} T(0 + x^{0} + x^{1}) = x^{0} + x^{1} + x^{2}$$

$$A(0 + x^{0} + x^{1} + \dots x^{n}) = 0 + x^{0} + x^{1} + \dots x^{n} T(0 + x^{0} + x^{1} + \dots x^{n}) = x^{0} + x^{1} + \dots x^{n+1}$$

These two distances equal each other when $x^{n+1} = 0$, which is when $n \to \infty$ since 0 < x < 1. So A and T meet at time $\sum_{n=0}^{\infty} x^n$.

Algebraically, A and T meet the t such that A(t) = t = T(t) = 1 + xt:

$$t = 1 + xt$$
$$t - xt = 1$$
$$t(1 - x) = 1$$
$$t = \frac{1}{1 - x}$$

So the time when A and T is $\sum_{n=0}^{\infty} x^n$, or $\frac{1}{1-x}$. In other words, $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$.

4. Before crossing some whole distance, you must cross half of it, and before crossing that you must cross half of that, etc. In other words, to cross a whole distance 1, you must cross $1/2^n + 1/2^{n-1} + 1/2^{n-2} + \cdots + 1/2^1$, where $n \to \infty$. Therefore, $1 = \sum_{n=1}^{\infty} \frac{1}{2^n}$.

square							
F	٩	r	٢	01	h		
9	N	h	1	1	e		
٢	h	U.	m	6	9		
r	i	M	m	e	r		
a	(6	e	[t		
h	e	a	r	Ŧ	h		

5. square