Farrah Rahman
Can publish on site

1. (a) By the time that $A$ reaches the 50 mile mark where $T$ started, $T$ will still be ahead by 12 and a half miles. By the time $A$ reaches the 62 and a half mile mark, $T$ will still be ahead by another 3 and a quarter miles, etc.
(b) $A(t)=200 t, T(t)=50+50 t$

$$
\begin{aligned}
200 t & =50+50 t \\
150 t & =50 \\
t & =1 / 3
\end{aligned}
$$

$1 / 3(60)=20$, so $A$ will catch up to $T$ after 20 minutes.
(c)

$$
1 / 4+1 / 16+1 / 64+1 / 256+\cdots=\frac{1 / 4}{1-1 / 4}=1 / 3
$$

(d) If the smallest unit of time is $1 / 64$ of an hour, T is always ahead.

| Time (hours) | Distance, $A$ | Distance, |
| :--- | ---: | ---: |
| 0 | 0 | 50 |
| $0+1 / 4$ | 50 | 62.5 |
| $0+1 / 4+1 / 16$ | 62.5 | 65.625 |
| $0+1 / 4+1 / 16+1 / 64$ | 65.625 | 66.406 |

2. It is known that for any number $x, 1-x^{n+1}=1-x^{n+1}$.

For some nonnegative integer $n$, add $x-x+x^{2}-x^{2}+x^{3}-x^{3}+\cdots+x^{n}-x^{n}$, or 0 , to both sides.
$1-x^{n+1}+x-x+x^{2}-x^{2}+\cdots+x^{n}-x^{n}=1-x^{n+1}+x-x+x^{2}-x^{2}+\cdots+x^{n}-x^{n}$
$1-x^{n+1}+x-x+x^{2}-x^{2}+x^{3}-x^{3}+\cdots+x^{n}-x^{n}=1-x^{n+1}$
The left side can be rearranged:
$1-x+x+-x^{2}+x^{2}-x^{3}+x^{3}+\cdots-x^{n}+x^{n}-x^{n+1}=1-x^{n+1}$
On the left side, every 2 consecutive terms, going from left to right, are divisible by $1-x$ :

$$
\begin{aligned}
1(1-x)+x(1-x)+x^{2}(1-x)+\cdots+x^{n}(1-x) & =1-x^{n+1} \\
(1-x)\left(1+x+x^{2}+\cdots+x^{n}\right) & =1-x^{n+1} \\
1+x+x^{2}+\cdots+x^{n} & =\frac{1-x^{n+1}}{x-1}
\end{aligned}
$$

So $1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{x-1}$.
3. (a) It is known that for any number $x, 1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{x-1}$. Let $x$ be between 0 and 1 . Then,

$$
\lim _{n \rightarrow \infty} \frac{1-x^{n+1}}{x-1}=\lim _{n \rightarrow \infty}\left(\frac{1}{x-1}-\frac{x^{n+1}}{x-1}\right)=\frac{1}{x-1}-\frac{0}{x-1}=\frac{1}{x-1}
$$

(b) By Zeno,

$$
\begin{array}{rlrl}
A(0) & =0 & T(0) & =1 \\
A\left(0+x^{0}\right) & =0+x^{0} & T\left(0+x^{0}\right) & =x^{0}+x^{1} \\
A\left(0+x^{0}+x^{1}\right) & =0+x^{0}+x^{1} & T\left(0+x^{0}+x^{1}\right) & =x^{0}+x^{1}+x^{2} \\
A\left(0+x^{0}+x^{1}+\cdots x^{n}\right) & =0+x^{0}+x^{1}+\cdots x^{n} & T\left(0+x^{0}+x^{1}+\cdots x^{n}\right) & =x^{0}+x^{1}+\cdots x^{n+1}
\end{array}
$$

These two distances equal each other when $x^{n+1}=0$, which is when $n \rightarrow \infty$ since $0<x<1$. So $A$ and $T$ meet at time $\sum_{n=0}^{\infty} x^{n}$.
Algebraically, $A$ and $T$ meet the $t$ such that $A(t)=t=T(t)=1+x t$ :

$$
\begin{aligned}
t & =1+x t \\
t-x t & =1 \\
t(1-x) & =1 \\
t & =\frac{1}{1-x}
\end{aligned}
$$

So the time when $A$ and $T$ is $\sum_{n=0}^{\infty} x^{n}$, or $\frac{1}{1-x}$. In other words, $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$.
4. Before crossing some whole distance, you must cross half of it, and before crossing that you must cross half of that, etc. In other words, to cross a whole distance 1 , you must cross $1 / 2^{n}+1 / 2^{n-1}+1 / 2^{n-2}+$ $\cdots+1 / 2^{1}$, where $n \rightarrow \infty$. Therefore, $1=\sum_{n=1}^{\infty} \frac{1}{2^{n}}$.
5. square

| $f$ | $a$ | $r$ | $r$ | $a$ | $h$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $a$ | $w$ | $h$ | 1 | 1 | $e$ |
| $r$ | $h$ | $u$ | $m$ | $b$ | $a$ |
| $r$ | $i$ | $m$ | $m$ | $e$ | $r$ |
| $a$ | 1 | $b$ | $e$ | 1 | $t$ |
| $h$ | $e$ | $a$ | $r$ | $t$ | $h$ |

