HW3 Kishan Patel 9/19/21 1) a) sum(2k-1) f(1)=2*1-1=1 f(2)=2*1-1=3+1=4 1=1^2 4=2^2 n => n+1 sum(2n-1)+2(n+1)-1 n^2+2n+1 (n+1)^2 b) 2k-1 is kth odd number first odd number 1 5 5 3 5 3 5 1 3 5 5 5 5 3 3 5 1 3 5 n^2 c) n=1 := 2*1-1 = 1^2 True n=2 := 2*2-1+1 = 2^2 True n=3 := 3*2-1+4+1 = 3^2 True 2) a) 1=1/2(1)(1+1) true sum(k+n+1) 1/2n(n+1)+(n+1)2/2 1/2(n+1)(n+2) thus this can be simplified to show that n+1 via indution is the same as n b) assume n=6 1 + 2 + 3 + 4 + 5 + 6 = 21 6 + 5 + 4 + 3 + 2 + 1 6(6+1)/2 = 21 c) n = 1 := 1 = 1(2)/2 True n = 2 := 2+1 = 2(2+1)/2 True n = 3 := 3+2+1 = 3(3+1)/2 True k=0 := 0 =0 k=1 := 1^2 =1 k=2 := 2^2+1 =5 k=3 := 3^2+4+1 =14 k=4 := 4^2+9+4+1=30 n*(n+1)(an+b) k=2 := 2/5=2a+b k=3 := 3/12=3a+b -3/20=a 2/5=-3/10+b b=7/10 n*(n+1)(-3/20n+3/10) 4) k=1 := 1^3 =1 k=2 := 2^3+1 =9 k=3 := 3^3+8+1 =36 k=4 := 4^3+27+8+1 =100 n=1 := (1(1+1)/2)^2 =1 n=2 := (2(2+1)/2)^2 =9 n=3 := (3(3+1)/2)^2 =26 n=4 := (4(4+1)/2)^2 =100