Farrah Rahman
Can publish on site

1. (a) For all positive integers n, denote by $S(n)$ the statement that $\sum_{k=1}^{n} 2 k-1=n^{2}$. Then $S(1)$ states that:

$$
\begin{aligned}
\sum_{k=1}^{1} 2 k-1 & =1^{2} \\
2(1)-1 & =1^{2} \\
1 & =1
\end{aligned}
$$

So $S(1)$, the base case, is correct. Next, assume that for some arbitrary positive integer $m, S(m)$ holds true. Then $\sum_{k=1}^{m} 2 k-1=m^{2}$. So,

$$
\begin{aligned}
\sum_{k=1}^{m} 2 k-1 & =m^{2} \\
\sum_{k=1}^{m} 2 k-1+2(m+1)-1 & =m^{2}+2(m+1)-1 \\
\sum_{k=1}^{m+1} 2 k-1 & =m^{2}+2(m+1)-1 \\
\sum_{k=1}^{m+1} 2 k-1 & =m^{2}+2 m+1 \\
\sum_{k=1}^{m+1} 2 k-1 & =(m+1)^{2}
\end{aligned}
$$

Thus $S(m+1)$ holds true. Because $S(m) \Rightarrow S(m+1)$, by the Principle of Mathematical Induction, $S(n)$ is true for all positive integers n.
(b) Consider the following 3×3 square:

The number of dots in the square, 9 , can be split up into 3 L shapes:

Each of the 1 shapes has $2 n-1$ dots, where n is the number of dots in the width. So a square with a width of 3 is made of the dots $2(1)-1+2(2)-1+2(3)-1$. This can be generalized into a formula for n dots, $\sum_{k=1}^{n} 2 k-1=n^{2}$.
(c) Because the formula is of degree 2, proving it at three separate values is sufficient to prove it for all values.
$S(1)$

$$
\begin{aligned}
& \sum_{k=1}^{1} 2 k-1=1^{2} \\
& 2(1)-1=1^{2} \\
& 1=1
\end{aligned}
$$

$S(2) \quad: \quad \sum_{k=1}^{2} 2 k-1=2^{2}$

$$
2(1)-1+2(2)-1=4
$$

$$
2-1+4-1=4
$$

$$
4=4
$$

$$
\begin{align*}
& \sum_{k=1}^{3} 2 k-1=3^{2} \tag{3}\\
& 2(1)-1+2(2)-1+2(3)-1=9 \\
& 2-1+4-1+6-1=9 \\
& 9=9
\end{align*}
$$

Thus the formula is correct.
2. (a) For all positive integers n, denote by $S(n)$ the statement that $\sum_{k=1}^{n}=\frac{(n)(n+1)}{2}$. Then $S(1)$ states that $\sum_{k=1}^{1}=\frac{(1)(1+1)}{2}$. This can be verified:

$$
\begin{aligned}
\sum_{k=1}^{1} & =\frac{(1)(1+1)}{2} \\
1 & =\frac{(1)(2)}{2} \\
1 & =1
\end{aligned}
$$

So $S(1)$, or the base case, holds true. Next, for some arbitrary number k, assume that $S(m)$ is true. Then it's known that:

$$
\begin{aligned}
\sum_{k=1}^{m} & =\frac{(m)(m+1)}{2} \\
\sum_{k=1}^{m}+m+1 & =\frac{m^{2}+m}{2}+m+1 \\
\sum_{k=1}^{m+1} & =\frac{m^{2}+m}{2}+\frac{2 m+2}{2} \\
\sum_{k=1}^{m+1} & =\frac{m^{2}+m+2 m+2}{2} \\
\sum_{k=1}^{m+1} & =\frac{m^{2}+3 m+2}{2} \\
\sum_{k=1}^{m+1} & =\frac{(m+1)((m+1)+1)}{2}
\end{aligned}
$$

So $S(m+1)$ holds true. Because $S(m) \Rightarrow S(m+1)$, by the Principle of Mathematical Induction, $S(n)$ holds true for all positive integers n.
(b) Let n be an arbitrary integer.

First, assume n is even:

$$
\begin{aligned}
\sum_{k=1}^{n} & =1+2+3+\cdots n-2+n-1+n \\
& =(1+(n-2))+(2+(n-1))+(3+(n-2))+\cdots(n / 2)+(n / 2+1)) \\
& =(n+1)+(n+1)+(n+1)+\cdots(n+1)
\end{aligned}
$$

Each of these $(n+1)$ are the sum of two distinct terms from the set $\{1,2, \cdots n\}$. Therefore, the above sum is made up of $n / 2(n+1)$'s. In other words, when n is even, $\sum_{k=1}^{n}=\frac{(n)(n+1)}{2}$.
Next, assume that n is odd:

$$
\begin{aligned}
\sum_{k=1}^{n} & =1+2+3+\cdots n-2+n-1+n \\
& =(1+(n-2))+(2+(n-1))+(3+(n-2))+\cdots((n / 2-1 / 2)+(n / 2-1 / 2+2))+n / 2+1 / 2 \\
& =(n+1)+(n+1)+(n+1)+\cdots(n+1)+\frac{n+1}{2}
\end{aligned}
$$

The $(n+1)$ terms are each formed from distinct terms of the numbers from 1 to n, excluding the middle number, $n / 2+1 / 2$. Therefore there are $\frac{n-1}{2}$ groups of $(n+1)$'s, which sum to $\frac{(n-1)(n+1)}{2}$. The middle number can be added to this to get the sum of the numbers from 1 to n :

$$
\begin{aligned}
\frac{(n-1)(n+1)}{2}+\frac{n+1}{2} & =\frac{(n-1)(n+1)+(n+1)}{2} \\
& =\frac{(n+1)(n-1+1)}{2} \\
& =\frac{(n+1)(n)}{2}
\end{aligned}
$$

Thus when n is odd, the sum of the numbers from 1 to n is $\frac{(n+1)(n)}{2}$. Because the same formula holds for when n is even or odd, for all positive integers n, the sum of the numbers from 1 to n is $\frac{(n+1)(n)}{2}$.
(c) Because the formula is of the second power, proving it for three values is sufficient to prove it for all values.
$S(1) \quad: \quad \sum_{k=1}^{1} k=\frac{(1)(1+1)}{2}$
$1=2 / 2$
$1=1$
$S(2) \quad: \quad \sum_{k=1}^{2} k=\frac{(2)(2+1)}{2}$
$1+2=\frac{(2)(3)}{2}$
$3=6 / 2$
$3=3$
$S(3) \quad: \quad \sum_{k=1}^{3} k=\frac{(3)(3+1)}{2}$
$1+2+3=\frac{(3)(4)}{2}$
$6=12 / 2$
$6=6$
Thus the formula is correct.
3. Because the summand is of the second degree, the total sum must be of the third degree. So it must follow the form $a n^{3}+b n^{2}+c n+d$. Four variables can be solved through four equations:

$$
\begin{aligned}
1^{2} & =a\left(1^{3}\right)+b\left(1^{2}\right)+c(1)+d \\
1^{2}+2^{2} & =a\left(2^{3}\right)+b\left(2^{2}\right)+c(2)+d \\
1^{2}+2^{2}+3^{2} & =a\left(3^{3}\right)+b\left(3^{2}\right)+c(3)+d \\
1^{2}+2^{2}+3^{2}+4^{2} & =a\left(4^{3}\right)+b\left(4^{2}\right)+c(4)+d
\end{aligned}
$$

These can be simplified:

$$
\begin{aligned}
1 & =a+b+c+d \\
5 & =8 a+4 b+2 c+d \\
14 & =27 a+9 b+3 c+d \\
30 & =64 a+16 b+4 c+d
\end{aligned}
$$

This eventually gets the system $a=1 / 3, b=1 / 2, c=1 / 6, d=0$. This results in the polynomial $\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}=\frac{2 n^{3}+3 n^{2}+n}{6}$.
(a) This can be proved through induction:

For all natural positive integers n, denote by $S(n)$ the statement that $\sum_{k=1}^{n} k^{2}=\frac{2 n^{3}+3 n^{2}+n}{6}$. Then $S(1)$ states that $\sum_{k=1}^{1} k^{2}=\frac{2 * 1^{3}+3 * 1^{2}+1}{6}$. This can be verified:

$$
\begin{aligned}
\sum_{k=1}^{1} k^{2} & =\frac{2 * 1^{3}+3 * 1^{2}+1}{6} \\
1^{2} & =\frac{2+3+1}{6} \\
1 & =\frac{6}{6} \\
1 & =1
\end{aligned}
$$

Thus $S(1)$, or the base case, is correct. Next, assume for some arbitrary positive integer m that $S(m)$ is correct. Then,

$$
\begin{aligned}
\sum_{k=1}^{m} k^{2} & =\frac{2 m^{3}+3 m^{2}+m}{6} \\
\sum_{k=1}^{m} k^{2}+(m+1)^{2} & =\frac{2 m^{3}+3 m^{2}+m}{6}+(m+1)^{2} \\
\sum_{k=1}^{m+1} k^{2} & =\frac{2 m^{3}+3 m^{2}+m+6(m+1)^{2}}{6} \\
& =\frac{2 m^{3}+3 m^{2}+m+6 m^{2}+12 m+6}{6} \\
& =\frac{\left(2 m^{3}+6 m^{2}+6 m+2\right)+\left(3 m^{2}+6 m+3\right)+m+1}{6} \\
& =\frac{2(m+1)^{3}+3(m+1)^{2}+m+1}{6}
\end{aligned}
$$

Thus $S(m+1)$ is correct. Because $S(m) \Rightarrow S(m+1)$, by the Principle of Mathematical Induction, $S(n)$ is correct for all positive integers n.
(b) Because the formula is of order 3 , it can be proved by verifying 4 values.

$$
\begin{aligned}
& S(1) \quad: \quad \sum_{k=1}^{1} k^{2}=\frac{2\left(1^{3}\right)+3\left(1^{2}\right)+1}{6} \\
& 1=\frac{2+3+1}{6} \\
& 1=\frac{6}{6} \\
& 1=1 \\
& S(2) \quad: \quad \sum_{k=1}^{2} k^{2}=\frac{2\left(2^{3}\right)+3\left(2^{2}\right)+2}{6} \\
& 1+2^{2}=\frac{2(8)+3(4)+1}{6} \\
& 5=\frac{16+12+2}{6} \\
& 5=\frac{30}{6} \\
& 5=5 \\
& S(3) \quad: \quad \sum_{k=1}^{3} k^{2}=\frac{2\left(3^{3}\right)+3\left(3^{2}\right)+3}{6} \\
& 1+2^{2}+3^{2}=\frac{2(27)+3(9)+3}{6} \\
& 14=\frac{54+27+3}{6} \\
& 14=\frac{84}{6} \\
& 14=14 \\
& S(4) \quad: \quad \sum_{k=1}^{4} k^{2}=\frac{2\left(4^{3}\right)+3\left(4^{2}\right)+4}{6} \\
& 1+2^{2}+3^{2}+4^{2}=\frac{2(64)+3(16)+4}{6} \\
& 30=\frac{128+48+4}{6} \\
& 30=\frac{180}{6} \\
& 30=30
\end{aligned}
$$

Thus the formula is correct.
4. For all positive integers n, denote by $S(n)$ the statement that $\sum_{k=1}^{n} k^{3}=\left(\frac{(n)(n+1)}{2}\right)^{2}$. Then $S(1)$ states that:

$$
\begin{aligned}
1^{3} & =\left(\frac{(1)(2)}{2}\right)^{2} \\
1 & =1
\end{aligned}
$$

Thus $S(1)$, or the base case, is correct. Next assume for some arbitrary positive integer m that $S(m)$ is correct. Then:

$$
\begin{aligned}
1^{3}+2^{3}+\cdots+m^{3} & =\left(\frac{(m)(m+1)}{2}\right)^{2} \\
1^{3}+2^{3}+\cdots+m^{3}+(m+1)^{3} & =\left(\frac{(m)(m+1)}{2}\right)^{2}+(m+1)^{3} \\
1^{3}+2^{3}+\cdots+m^{3}+(m+1)^{3} & =\left(\frac{\left(m^{2}+m\right)}{2}\right)^{2}+m^{3}+3 m^{2}+3 m+1 \\
1^{3}+2^{3}+\cdots+m^{3}+(m+1)^{3} & =\frac{m^{4}+2 m^{3}+m^{2}+4 m^{3}+12 m^{2}+12 m+4}{4} \\
1^{3}+2^{3}+\cdots+m^{3}+(m+1)^{3} & =\frac{(m+2)^{2}(m+1)^{2}}{4} \\
1^{3}+2^{3}+\cdots+m^{3}+(m+1)^{3} & =\left(\frac{(m+1)(m+2)}{2}\right)^{2}
\end{aligned}
$$

So $S(m+1)$ is true. Because $S(m) \Rightarrow S(m+1)$, by the Principle of Mathematical Induction, $S(n)$ is true for all positive integers n.

