E-MAIL ADDRESS: th586@scarletmail.rutgers.edu
$\stackrel{\text { It is }}{ }$ OK to post the homework in your website $: \quad V: 4 ; E: 6$
Cube: $F: 6 ; V: 8 ; E: 12$
Octahedron: $F: 8 ; V: 6 ; E: 12$
Dodecahedron: $F: 12 ; V: 12 ; E: 30$
Icosahedron: $\quad F: 20 ; V: 12 ; E: 30$
2. If the graph is not a tree, it has at least one cycle. Removing any edge of that cycle, decrease both e and f, but keeps v constant, in other words $e^{\prime}=e-1, \quad f^{\prime}=f-1, \quad v^{\prime}=v$.
So $v-e+f=v^{\prime}-e^{\prime}+f^{\prime}$ and by the inductive hypothesis is 1 .
The initial base case is a tree. A tree is a connected graph without cycles. The umber of regions, f is not 0 . of course it must have at least one vertex of degree 1, it is called a leaf. Removing such a leaf reduces the number of vertices by one, and also the number of edges by 1 , so we have $f^{\prime}=0 . v^{\prime}=v-1$, $e^{\prime}=e-1$.
So once again $v-e+f+v^{\prime}-e^{\prime}+f^{\prime}$, and this equals 1 by the inductive hypothesis.
3. (i) since every edges belongs to two vertices.
then $2 E=a v$
And since every face has b edges coming out of it, then $2 E=b F$.
So $V=\frac{2 E}{a}, F=\frac{2 E}{b}$
Corresponding Platonic solid, for example. Tetrahedro. there are 3 edges meeting every vertex, it has 4 vertices and 6 edges. plug in $V=\frac{2 E}{a}$, which is true.
(ii) $\frac{2 E}{a}-E+\frac{2 E}{b}=2 \Rightarrow E\left(\frac{2}{a}+\frac{2}{b}-1\right)=2 \Rightarrow$

Corresponding Platonic solid, for example. Tetrahedro. there are 3 edges meeting every vertex, there are 3 edges around every face, so $a=3, b=3$, it has 4 vertices and 6 edges.
plug in $E=\frac{2}{\frac{2}{a}+\frac{2}{b}-1}, E=\frac{2}{\frac{2}{3}+\frac{2}{3}-1}=6$. Which is true.
(iii) When $a=3, b=3, E=\frac{2}{\frac{2}{3}+\frac{2}{3}-1}=6$, it is a tetrahedro

When $a=3, b=4, E=\frac{2}{\frac{2}{3}+\frac{2}{4}-1}=12$, it is a cube.
When $a=4, b=3, E=12$, it is a octahedron.
When $a=3, b=5, E=\frac{2}{\frac{2}{3}+\frac{2}{5}-1}=30$, it is a dodecahedron
When $a=5, b=3, E=30$, it is an icosahedron.
When $a=4, b=5, E=\frac{2}{\frac{2}{4}+\frac{2}{5}-1}=-20 x$
When $a=5, b=5, \quad E=\frac{2}{\frac{2}{5}+\frac{2}{5}-1} \quad x$
When $a=5, b=4, x$
4. A perfect solid means that the faces are congruent and the same number meet at each vertex. But the surface of a soccer ball is made up of pentagons and hexagons, which doesnt not satisfy the defination of a perfect solid.
Soccer ball: $F: 32, E=90, V=60$.
$V-E+F=60-90+32=2$, which is also valid for a soccer ball.

